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ABSTRACT: The reliability-based durability design approach doesn’t account for neither the surface 

deterioration of structures over service lives, nor the possible life-cycle maintenance. The paper employs 

the 2-dimentional (2D) simulation technique based on random field theory and Monte Carlo simulation 

method, to analyze the life-cycle performance of reinforced concrete structures under chloride attack, 

which is illustrated through the surface deterioration modelling of immersed tube tunnel segment of Hong 

Kong-Zhuhai-Macao (HZM) sea-link project. Then, the paper compares the maintenance demands 

imposed to different durability design specifications with different life-cycle performance target. The 

results may provide useful information in future durability design and aid the decision making process.   

KEYWORDS: Concrete structure, Durability design, Spatial variability, Structural reliability, Life-cycle 

performance 

 

Chloride-induced corrosion cracking is one of the 

main deterioration patterns of reinforced concrete 

(RC) structures in marine environment, leading to 

the reduction of service life and the increase of 

economic burden on maintenance. Thus, the 

owners put great concern on the durability 

performance of structures with long service lives. 

However, existing durability design approaches 

fail in providing such information. For one thing, 

the existing prescriptive approaches in most codes 

(ACI, 2004; CEN, 2004; GB/T 50476, 2008) are 

lacking of quantified descriptions on deterioration 

states and incompetent for structures with long 

expected service life or under brutal environment. 

For another, although variability of structure 

dimensions and material properties are taken into 

account, existing quantitative approach based on 

reliability theory (DuraCrete, 2000; fib, 2006 & 

2010) takes the onset of steel corrosion as the limit 

state and concerns the deterioration of concrete at 

a point rather than a surface; As consequences, it 

is unable to describe the surface’s spatial “post-

corrosion” deterioration behaviors, and the 

structure’s life-cycle deterioration behaviors are 

not considered in choosing durability target of 

long-term structures.  Therefore, it’s necessary to 

link the life-cycle durability performance with the 

reliability level of corrosion initiation which 

dominates the durability design, to answer owners’ 

concern on life-cycle deterioration and 

maintenance demands of structures.  

The paper firstly presents the models that 

describe the deterioration process of RC 

structures under chloride attack, and then the 

simulation technique based on 2D random field 

modelling. Taking the immersed tunnel segment 

in HZM project as an example, the surface 

deterioration process considering the effects of 

maintenance actions are predicted and presented. 

Finally, the life-cycle performance under different 

durability design levels and different intervention 

levels are compared.  

1. DETERIORATION MODELS 

Deterioration of RC structures in aggressive 

chloride environment was often modelled as a 

three-phase process (Li, 2003). The first phase is 

from the completion of construction to the 
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corrosion onset of rebar, during which the 

diffusion of chloride ions is the focus of the 

deterioration behaviors, and can be described by 

the Fick’s Second Law (Collepardi et al., 1972; 

Tuutti, 1982). The model suggests that the onset 

of corrosion is due to depassivation of rebar, 

which is characterized as the accumulation of the 

chloride ions until the content exceeds a threshold 

value (Ccr: % of binders). A time-dependent 

apparent diffusion coefficient is used in the model 

(Bamforth, 1995). The time to the onset of steel 

corrosion is given by: 
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 (1) 

in which Cs is surface chloride content (% of 

binders), Da0 is the apparent diffusion coefficient 

(mm2/s) at age t0 (s), n is the aging factor, c is the 

cover thickness (mm) and Φ-1 denotes the 

inversed cumulative probability function of 

standard normal distribution. 

The second phase starts at corrosion 

initiation and ends at the appearance of surface 

cracking. Models for describing this phase had 

been developed in previous studies (Liu and 

Weyers, 1998; El Maaddawy and Soudki, 2011). 

The model by Vidal et al. (2004) is adopted in this 

research, which is validated based on natural 

corrosion experiment results. By using Faraday’s 

Law of Electrolysis, the duration of the second 

phase (tci: years) is given by: 
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in which icor1 is the corrosion rate (μA/cm2) used 

at this phase, As is the cross-section of steel bar 

(mm2); d is the rebar’s diameter (mm); α is pit-

penetration factor, and takes the value of 4 to 8 for 

pitting corrosion pattern. 

After surface cracking, the corrosion product 

causes the extension and expansion of surface 

cracks. Models relating crack widths with 

corrosion amounts of rebar were developed based 

on acceleration corrosion tests (Rodriguez et al., 

1996; Mullard and Stewart, 2011) and natural 

corrosion experiments (Vidal et al., 2004; Zhang 

et al., 2010). Transition from pitting pattern to 

general pattern was observed in their experiments, 

and models for both patterns were suggested 

(Zhang et al., 2010). The model for general 

pattern is further modified by Khan et al. (2014). 

Recognizing this transition, using Faraday’s Law 

of Electrolysis, the crack width (w: mm) at 

different ages (t: years) can be calculated by (Li 

and Ye, 2018): 
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 (3) 

where t0.3 is the time to crack width reaching 

0.3mm (years); icor1 and icor2 are both corrosion 

rates (μA/cm2), which will be demonstrated later.  

More details about Eq.(3) can be found 

elsewhere (Li and Ye, 2018), and two notes are 

important. 

 The transition time from pitting corrosion to 

general corrosion remains unclear. Based on 

the mechanism of pitting corrosion (Wilkins 

and Sharp, 1990), continuous length of 

corroded rebar, in this paper, is used as the 

indicator determining the transition from 

pitting corrosion to general corrosion. For 

example, pitting corrosion is assumed to be 

dominant when the length is less than 40 mm, 

and general corrosion is dominant when the 

length is over 200 mm. Interpolation is used to 

determine the crack width when the length is 

between 40 mm and 200 mm.  

 The surface crack width will significantly 

accelerate the rate of corrosion (Bentur et al., 

1997), and 0.3-mm is adopted as the critical 

crack width in the research. The corrosion rate 
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assumed to be lognormally distributed with 

mean of 0.67 A/cm2 before cracking of 

0.3mm and 7.54 A/cm2 after that and a COV 

of 0.58 based on existing studies (Nakagawa 

et al., 2004; Li and Pang, 2015).  

2. SIMULATION TECHNIQUE 

Due to the spatial variability of exposed condition, 

concrete properties and cover thickness, the 

surface damage observed on in-service structures 

shows significant spatial variability, which 

suggests that spatial variability should be 

considered when conducting analysis of surface 

deterioration. We employ the random field theory 

(Vanmarcke, 1983) to account for the spatial 

variability of concrete cover, diffusion coefficient, 

chloride content, and corrosion rate. 

Monte Carlo simulation is used. The concrete 

surface is divided into k×n identical elements of 

size . The random variables, constant within 

each element, are identically distributed and 

correlated in different elements according to the 

correlation function. The Gaussian correlation 

function is adopted in this research: 
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in which τ is the distance between the elements; 

and  is the correlation length of the random field. 

Based on inspection data collected (Li and 

Ye, 2018), the correlation lengths of concrete 

cover and diffusion coefficient are 130 mm and 

250 mm, respectively. The correlation lengths of 

surface content of chloride, critical content of 

chloride and corrosion rates are taken as 1960 mm, 

2000 mm and 2000 mm respectively according to 

existing literatures (Karimi, 2002; Vu and Stewart, 

2005; O’Connor and Kenshel, 2013).  

3. RESULT AND DISCUSSION 

In this section, we analyze the life-cycle 

performance of an immerged tube tunnel segment 

of HZM project whose service life is 120 years. A 

22.5m×4m rectangular surface, seen in Figure 1, 

is taken as an example. 250 reinforcement bars 

with diameter of 28mm are vertically placed and 

equally spaced in the first layer. Table 1 

summarizes the statistics of the durability 

parameters, according to the research conducted 

by Li et al. (2015). 

 
Figure 1: Standard segment of immersed tunnel tube 

in HZM project. 

 
Table 1: Statistics for durability parameters. 

Variable Distribution 

Ccr  

(% binder) 

Beta (shape factors: 0.23, 033, 

bound:1.0%, 3.5%) 

Cs 

(% binder) 

Lognormal (mean=4.5%, 

deviation=0.68%) 

c 

(mm) 

Normal (mean=90, 

deviation=5.3) 

Da0  

(10-12m2/s) 

Lognormal (mean=3.5,  

deviation=1.23) 

n Lognormal (mean=0.47, 

deviation=0.029) 

icor1 

(A/cm2) 

Lognormal (mean=0.67, 

deviation=0.39) 

icor2 

(A/cm2) 

Lognormal (mean=7.54, 

deviation=4.37) 

3.1.  Surface deterioration process without 

maintenance 

The crack width is a most widely used 

measurement of surface deterioration for RC 

structures. Chinese code (JTJ 302-2006) grades 

the extent of deterioration into A, B, C and D by 

crack proportion and crack width, as seen in Table 

2. In existing studies, the percentage of surface 

where crack width exceed a specific value is used 

to judge whether the damage state is reached or 

repair should be taken (Canisius and Waleed, 

2004; Stewart and Mullard, 2007). In this study, 

we used the 1% crack proportion of specific crack 

width to classify the 4 grades of deterioration, also 

seen in Table 2. 

4
.0

m
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Table 2: Durability damage grade for concrete 

structures. 

Grade Item in JTJ-302 Our 

quantification1 

A Without any visible 

cracking 
p0 ≤ 1% 

B A few corrosion-

induced cracks with 

width less than 0.3mm 

p0 > 1% and 

p0.3 ≤ 1% 

C Some continuous 

cracks along the 

reinforcement bar, 

with width between 

0.3mm and 3.0mm 

p0.3 > 1% and 

p3.0≤ 1% 

D A large amount of 

continuous cracks 

along the 

reinforcement bar, 

some crack widths 

exceed 3.0mm 

p3.0 > 1% 

1p0, p0.3, and p3.0 denote the proportion of cracking surface with the 

crack width exceeding 0mm, 0.3mm and 3.0mm, respectively. 

 

 
Figure 2: Crack distribution of a typical surface 

damage simulation. 

 

Figure 2 shows the crack distribution of a 

typical simulation of surface damage. Damage 

grades at the age of 100, 110 and 120 years are 

given in the figure.  

Figure 3 plots the time-dependent 

probabilities of deteriorating to the four grades. It 

can be seen from the figure that the portions of 

grade B and C are relatively small compared with 

the other portions, which suggests that the 

development of cracking is quick. Although the 

probability of no cracking is as high as 60% at the 

end of 120 years, the probability of severe damage 

(grade D) reaches 20%, which should be treated 

seriously. 

 

 
Figure 3: Probabilities of deteriorating to the four 

grades at different ages. 

3.2. Possible maintenance demand 

Maintenance serves as an essential part of life-

cycle management, and is crucial to guarantee the 

structures’ expected service life. The possible 

maintenance demand is a major concern of 

owners. The maintenance plan depends on not 

only the durability design level, but also the 

intervention level. In this study, three intervention 

levels for maintenance (preventive, necessary and 

mandatory) are considered. “Preventive” 

corresponds to the intervention threshold of grade 

B, while “necessary” and “mandatory” 

correspond to grades C and D, respectively (Li 

and Ye, 2018). 

We assume that once the maintenance action 

is conducted on a member, all areas on surface 

with visible crack are repaired; and the repaired 

section will return to the initial newly-built state, 

which means the chloride content at steel surface 

drops back to zero while the Cs, Da0, icor1 and icor2 

remains unchanged after the repairs. 

Figure 4 shows the distributions and mean 

values of time to first maintenance at three 

intervention levels, according to the 1000 times’ 
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Monte Carlo simulation. The histogram shows the 

frequency of the time to first maintenance at 

preventive level, and the solid curve is the fitting 

curve of Lognormal distribution. The fitting 

curves for the other two levels are also shown in 

the figure, with mean values marked. It is found 

that, averagely there is no maintenance demand 

over the expected service life of 120 years, no 

matter which intervention level is selected; 

However, the probability of conducting a 

maintenance as early as 80 years is pretty high 

because of the high variability. 

 

 
Figure 4: Distribution of time to first maintenance at 

three intervention levels. 

 

 
Figure 5: Distribution of maintenance times at three 

intervention levels over service life. 

 

Figure 5 shows the probability mass of 

maintenance times at three intervention levels 

over the expected service life of 120 years. It’s 

shown in the figure that the probabilities of at least 

2 maintenances are significant for the three 

maintenance levels (e.g., 0.3 for preventive 

maintenance). Compared to mandatory 

intervention level, the preventive intervention 

level corresponds to shorter inspection intervals 

and more frequent maintenance actions. The 

figure also suggests that, although the probability 

of no maintenance is over 60%, the probability of 

more than 5 maintenances is about 0.12 at 

preventive level due to the high variabilities.  

Figure 6 shows the mean values of crack 

proportion p0 and p0.3 when mandatory 

maintenance is conducted each time. It can be 

seen that the means of p0 and p0.3 increase at later 

maintenance. Although the threshold for 

mandatory maintenance is the same (when 

deteriorating to grade D), the area of surface needs 

to be repaired may increase in later maintenance, 

and the maintenance cost increases as well. 

 

 
Figure 6: Crack proportion conducting mandatory 

maintenance. 

3.3. Life-cycle performance under different 

durability design levels 

Target reliability index (βT) is used to represent 

the level of durability design. The value of 1.3 at 

120 years is taken for the design of immersed 

tunnel. In this section, by varying durability 

design level (βT), its effects on deterioration 

development and maintenance plan are discussed. 

Five durability design levels are considered, with 

βT being 0.8, 1.1, 1.3, 1.6 and 1.8. The diffusion 

coefficient is fixed at the design value shown in 
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Table 1. The cover thickness varies to achieve 

different βTs, as listed in Table 3. 

 
Table 3: Design values (mean) of cover thickness for 

five target reliability indices. 

Specifications 

(βT) 

1 

(0.8) 

2 

(1.1) 

3 

(1.3) 

4 

(1.6) 

5 

(1.8) 

Design value 

of c (mm) 

80 85 90 95 100 

 

Table 4 shows the probabilities of the 

segment deteriorating to the four grade at the end 

of the service life without maintenance. The 

probability of deteriorating to grade C or D at the 

age of 120 years is more than 50% when βT = 0.8 

or 1.1 is selected, which implies that, to maintain 

the functionality and serviceability of the 

structure, intervention action is very likely to 

occur during the service life; While when βT=1.8 

is taken, the probability of remaining grade A is 

more than 85%, which suggests intervention 

action is less likely to occur during the service life. 

 
Table 4: Probabilities of damage grades at the age of 

120 years under five durability design level, without 

maintenance. 

Grade A B C D 

βT=0.8 0.240 0.057 0.146 0.557 

βT=1.1 0.420 0.067 0.155 0.358 

βT=1.3 0.608 0.070 0.116 0.206 

βT=1.6 0.759 0.041 0.073 0.127 

βT=1.8 0.852 0.023 0.055 0.070 

 

Table 5 shows the mean values of time to first 

maintenance during the 120 years’ service life, 

under five specifications and three intervention 

levels. Compared with the specification with 

βT=0.8, The specification with βT=1.8 will delay 

the time to first intervention by 46 years at 

preventive level, 42 years at necessary level and 

39 years at mandatory level. According to Table 

5, if the owner’s durability objective is 

“exemption from necessary maintenance during 

the service life averagely”, βT = 1.1 should be 

selected.  

 

Table 5: The time to first intervention under five 

specifications. 

Durability 

design 

Preventive Necessary Mandatory 

βT = 0.8 103 years 110 years 120 years 

βT = 1.1 117 years 123 years 132 years 

βT = 1.3 129 years 135 years 143 years 

βT = 1.6 140 years 144 years 152 years 

βT = 1.8 149 years 152 years 159 years 

 
Table 6: Maintenance intervals and the numbers of 

maintenance under five specifications over service 

life. 

Durability 

design 

Preventive Necessary Mandatory 

βT = 0.8 5.1 years 

5.46 times 

9.6 years 

2.25 times  

16.9 years 

0.86 times 

βT = 1.1 5.4 years 

3.20 times 

9.8 years 

1.36 times 

17.4 years 

0.50 times 

βT = 1.3 5.7 years 

1.85 times 

10.0 years 

0.77 times 

18.0 years 

0.27 times 

βT = 1.6 5.7 years 

0.95 times 

10.0 years 

0.41 times 

18.4 years 

0.14 times 

βT = 1.8 5.8 years 

0.50 times 

10.0 years 

0.20 times 

18.8 years 

0.07 times 

 

Table 6 shows the average number of 

maintenance and the mean intervention intervals 

during the service life of 120 years. Averagely, 

compared with the specification with βT=0.8, the 

specification with βT=1.8 will lessen the 

intervention number by 5 at preventive level, 2 at 

necessary level and 0.8 at mandatory level. As the 

intervention level changes from preventive to 

mandatory, the mean maintenance interval 

increases from around 5.5 years to around 18 

years. But changing the durability design level 

makes nearly no difference on the intervals. 

According to the table, if the owner durability 

objective is “at most 1 averagely for preventive 

maintenance”, βT = 1.6 should be selected. 

4. CONCLUSION 

2D random field modelling was employed to 

examine the life-cycle performance of immerged 

tunnel of HZM project.  The long-term 

deterioration process was simulated. Possible 

maintenance demand was estimated and discussed. 
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Comparisons were made among different 

specifications for reliability-based durability 

design. Conclusions are listed in the following. 

 The 2D random field simulation, combined 

with calculation models for deterioration 

behaviors, is able to analyze the long-term 

durability performance. 

 Analysis on surface deterioration of the 

segment in HZM project suggests that, 

maintenance is required to achieve the 

expected service life, and the probability of 

deteriorating to grade D is over 20% at the end 

of service life without maintenance. 

 Different intervention levels lead to 

significant differences in maintenance 

frequency. The cost of later maintenance 

usually increases compared with the earlier 

maintenance although the same intervention 

level is adopted. 

 Long-term deterioration process and possible 

maintenance demand are estimated under 

different durability design levels. Significant 

differences on time to first maintenance and 

maintenance frequency are observed, while 

the differences on maintenance interval are 

slight. 
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