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ABSTRACT: Modeling the recovery process of a community’s infrastructure after the occurrence of 

extreme events is now at the forefront of research. Estimating post-disaster recovery of either single or 

multiple infrastructure in a community requires proper flow and interaction of information of the 

physical, economic and social components of the involved sectors. Understanding this recovery process 

is essential, particularly for critical infrastructure, such as a hospital, which is vital for a community’s 

well-being. In this study, a full seismic functionality and recovery process of a hospital cluster, located 

in Shelby County, Memphis, TN, is quantified and assessed using a comprehensive framework. The 

hospital functionality assessment encompasses both quantity and quality of the hospitalization service. 

The quantity of the hospitalization service is presented as a function of the number of staffed beds, which 

is expressed as a combination of the staff, space and supplies availability while the quality measured by 

the patient waiting time. The demand on the hospitals, estimated based on a newly developed patient-

driven model, which considers patient constraints, patient-to-hospital connection, hospital availability in 

addition to hospital cluster interaction. The hospitals dependency on other infrastructure during the 

recovery process and the interaction between different hospitals is modeled. Socioeconomic data related 

to hospital operation and recovery after the earthquake are used for the assessment. The presented 

framework accounts for limitation in resources such as the repair crews within the community, expected 

economic return for each hospital, and interdependencies between the different lifelines including the 

investigated hospitals. The results are consequently used within a testbed to support assessment of 

community resilience in The Interdependent Networked Community Resilience Modeling Environment 

(NIST-CORE), which is a computational platform currently being developed to compute various 

resilience goals. 

 

1. INTRODUCTION 

Earthquake losses have concerned researchers and 

engineers over the years. The focus has primarily 

been placed on achieving certain performance 

objectives such as life safety and collapse 

preventions that are associated with certain drift 

limit states (ASCE/SEI 7-10, 2010). In other 

studies and guidelines the focus has been placed 

on maintaining a certain level of functionality for 

various infrastructures after the events (FEMA 

577, 2007). The recommendations provided in 

these studies, however, are more or less 

qualitative. There is therefore a need for 

developing frameworks that can be used to 

quantify the extent of the service that can be 

offered by infrastructure, in relation to the time-

varying demand, following an earthquake. 

Hospitals in particular are of great interest, as a 

critical infrastructure, since shortage of 

hospitalization service could have catastrophic 

short-term and long-term effects on the 

community including increase in morbidity and 

mortality due to either direct injuries or 

overcrowding in emergency departments as well 
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as the potential for outmigration and social 

instability.  

Unlike most of main community services that 

are not directly contacted to the service receptor, 

healthcare service has a direct impact on 

community members. Therefore, functionality of 

these services is not only measured in terms of the 

availability of service but also the level of 

consumer satisfaction. In the case of a hospital, 

functionality can be defined as the ratio between 

quantity (QV) and quality (QS) of the services 

offered before and after the hazard occurrence 

(Cimellaro, Reinhorn, & Bruneau, 2011). The 

quantity portion of the offered services is usually 

estimated based on hospital capacity or number of 

staffed beds offered for patients based on daily 

rate (Nt). According to (Jacques et al., 2014), for 

these beds to be available for service, three main 

components are required, namely 1) trained 

personnel such as physicians, nurses and 

supporting staff, 2) qualified space to offer an 

acceptable hospitalization service, and 3) 

sufficient supplies. The definition of the quality 

portion of the offered service, on the other hand, 

is complicated due to its qualitative nature. 

Previous studies identified several dimensions to 

define quality of the hospitalization service 

(Kalaja, Myshketa, & Scalera, 2016; Maxwell J. 

R., 1984). One way to do so is through defining it 

as a function of losses of different hospital 

departments, while considering the possibility of 

service redistribution among the departments as 

indicated by Jacques et al. (2014). The patient 

waiting time is also commonly used to represent 

the quality part of the functionality as per 

Mccarthy, Mcgee, & Boyle (2010). The losses, 

which caused the changed in functionality, can be 

recovered over time. Undoubtedly, different 

parameters play critical roles in the level of 

recovery that can be achieved following a major 

event. These include for example the type of 

damaged components, extent of damage, and 

available funding resources (e.g. insured losses or 

federal sources). The recovery process of 

infrastructure or its components is usually 

represented by plotting functionality over time. 

The area under the functionality curve is an 

indication of extend of losses and recovery 

endured by the infrastructure and is indicative of 

resilience. 

The notion of resilience was first developed 

in 1940s in the area of psychology and psychiatry 

(Garmezy & Crose, 1948) and has been later 

recognized as a critical indicator of behavior in 

different fields, and more recently by community 

planners and decision makers in relation to natural 

and man-made disasters. The literal definition of 

resilience is the capacity to recover quickly from 

difficulties; it can be also defined as the ability to 

offer proper level of functionality for a lifeline. 

Therefore, the aim of this study is to devise a 

comprehensive model that can be used as a tool to 

investigate the functionality and recovery of 

hospitalization service and to use the model to 

estimate demand on hospitals, while accounting 

for their interaction, following a major 

earthquake. 

2. RECOVERY FRAMEWORKS 

2.1. Hospital functionality Framework 

Reduction in hospital functionality can be defined 

as the ratio between the amount of services 

offered after the hazard to the amount of services 

offered before the hazard. The functionality itself 

can be categorized into quality, measured by the 

patient waiting time (Peek-asa et al., 1998) and 

quantity, measured by the number of beds 

available for the patient (Lupoi, Cavalieri, & 

Franchin, 2013). The quality of the hospitalization 

service is function of the hospital demand and 

therefore is expected to reduce with increase in the 

number of casualties (Lupoi et al., 2013; Peek-asa 

et al., 1998). Usually capacity of hospitals is 

represented as the number of beds offered. For 

effective operation of these beds, they need to be 

supported by physical components such as 

electric and water systems,  medical equipment 

and supplies, and qualified physicians and nurses 

as well as supporting staff (Jacques et al., 2014). 

The functionality of each hospital used in this 

study, is based on fault tree analysis and is 

outlined in detail in (Hassan & Mahmoud, 2018b). 
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The framework is presented in terms of quantity 

of the offered hospitalization service, which 

includes the effect of functionality of other 

lifelines or infrastructure as well as their 

interdependence. The fault tree presented here 

extends the work by Jacques et al. (2014), where 

functionality of an emergency department was 

estimated, so that it 1) applies to a complete 

hospital building and 2) accounts for 

interdependence between other relevant 

infrastructure. Estimating hospital functionality 

using the fault tree analysis is conducted by 

assigning functionality levels for different basic 

events. These basic events not only depend on the 

hospital building itself but are also highly related 

to the surrounding community’s physical, 

economic and social infrastructure. Therefore, 

mathematical functions are introduced to 

represent the availability of each basic event. 

These functions are considering the components 

affect the availability of each basic event. 

The quality component of the hospital 

functionality represents patient’s satisfaction of 

the offered hospitalization service. Maxwell 

(1984) listed six different dimensions of 

healthcare quality service: relevance, 

accessibility, effectiveness, fairness, acceptability 

and efficiency, and economy. For immediate 

functionality drop after the earthquake, 

accessibility is the main dimension controlling 

hospitalization quality. The waiting time W(t) can 

be used to express service accessibility as per 

(McCarthy, McGee, & O’Boyle, 2000) and is 

calculated in this study as a function of the patient 

travel time to the hospital and the patient waiting 

time in hospital before getting the hospitalization 

service. Quality functionality is estimated as 

shown in Equation (1). 

𝑄𝑆 = [𝑊𝑚𝑎𝑥 − 𝑊(𝑡))]/[𝑊𝑚𝑎𝑥 − 𝑊(0)] ≥ 0.0              (1) 

Where, Wmax is the maximum waiting time when 

the hospital reaches its capacity; the waiting time, 

W(t), is the waiting time during recovery of the 

hospital; and W(0) is the waiting time at normal 

operating conditions. The total functionality is 

estimated by combining both the quantity and 

quality functionalities as shown in Equation (2). 

Where, αV and αS are weighting factors. 

𝑄 = 𝑄𝑉
𝛼𝑉 ∗ 𝑄𝑆

𝛼𝑆                          (2) 

The reason for multiplying the two measures of 

functionalities is because they are calculated in a 

probabilistic sense and as such their 

multiplication indicates the joint functionality of 

two independent events. 

2.2. Hospital Demand Estimation 

The demand on hospitals is controlled by patients 

and expected to increase after earthquakes due to 

the injures resulting from the earthquake damage. 

The total number of patients in each severity level 

is estimated as a function of the buildings damage 

level based on (FEMA/NIBS, 2003). The severity 

levels after the earthquake is classified into four 

categories based on the injury level and the patient 

need for hospitalization service: a) severity 1 

where no medical care needed, b) severity 2 where 

some medical care needed; c) severity 3 where  

immediate medical care is needed, and d) severity 

4 which is ultimately death. On other hand, the 

day-to-day demand on a hospital under normal 

operation can be estimated using each hospital’s 

service area, which is well defined before the 

earthquake hazard and is expected to change after 

earthquake occurrence. Both regular and 

earthquake-related injuries have to be assigned to 

hospitals to avoid complications from injuries. 

The demand on hospitals is usually estimated 

based on either data collection or predictive 

methods (Barros, Weber, Reveco, Ferro, & Julio, 

2010; Boyle, Ireland, Webster, & Sullivan, 2016). 

However, these methods are applicable during 

normal operation of the healthcare network and 

are not very relevant after earthquake disruption.  

To estimate the demand on hospitals after 

earthquake occurrence, a patient-driven model is 

introduced in this study, which can be used to 

distribute patients to the surrounding hospitals. 

The presented model gives the probability each 

patient will go to a hospital within the healthcare 

network. The probability of a patient going to a 

specific hospital is function of patient constraints, 

availability of the connection between the patient 
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and the hospital and capability of the hospital to 

treat that patient. 

2.3. Hospital Interaction Framework 

The interaction between hospitals can take place 

in different forms. Closure or partial closure of 

any hospital is expected to affect the demand on 

other surrounding hospitals. Transferring the 

patients, staff, resources, etc. can significantly 

change the functionality and the recovery of 

hospitals. However, in general, the ability to 

perform the transfer process is function of the 

existence of agreement between hospitals. The 

hospitals with the same management or the same 

brand have the higher willingness to transfer. 

To ensure that the patient will receive the 

required medical care, the hospital might offer to 

transfer the patient to other hospital specially 

when it reaches the capacity or when it cannot 

treat the patient (Kulshrestha & Singh, 2016). The 

patient transfer process is function of the patient 

case criticality. For instance, some patients can 

only be transferred using air ambulance while 

others can use the regular ambulance. Equation 

(3) is used to calculate the number of the 

distributed patients (Ndist). Where, 𝜀(t) is the 

maximum capacity of the hospital, which varies 

by time based on the available number of staffed 

beds, I(t) is the interaction matrix. The interaction 

matrix, shown in Equation (4), represents the 

probabilities (P) that hospital i will transfer a 

patient to one of the other hospitals within the 

healthcare system, where, n is the total number of 

the hospitals. The diagonal entries of the matrix 

denote the probability of a patient transferring to 

a hospital in which he/she already reside and as 

such they are zero. In addition, Equation (5) 

shows the demand on hospitals after transferring 

the patient.   

𝑁𝑑𝑖𝑠𝑡(𝑡) = (𝑁(𝑡) − 𝜀(𝑡)) ∗ 𝐼(𝑡)     (3) 

𝐼(t) =

[
 
 
 

0 𝑃𝑖,𝑗+1

𝑃𝑖+1,𝑗 0
⋯

𝑃𝑖,𝑛

𝑃𝑖+1,𝑛

⋮ ⋱ ⋮
𝑃𝑛,𝑗 𝑃𝑛,𝑗+1 ⋯ 0 ]

 
 
 
                (4) 

𝑁𝑚𝑜𝑑(𝑡) =  𝑁(𝑡) − 𝑁𝑑𝑖𝑠𝑡(𝑡)                (5) 

It worth noting that the patient transfer 

process is complicated and not all cases can be 

transferred. Fault tree analysis used to estimate 

the probability of patient transfer, which will be 

utilized in the calculations of the intreaction 

matrix I(t). Different factors control the patient 

transfer decision: 1) patient constraint, 2) 

hospital-to-hospital connection and 3) receiver 

hospital availability. The main constraints that 

might control the patient transfer are either case 

criticality or insurance coverage. On the other 

hand, the presence of a smooth transfer and the 

availability of connections between hospitals is 

expected to encourage both the patient and the 

hospital to make the transfer decision. In addition, 

capability of the receiver hospital to safely 

transfer and treat the patient have major effect on 

this transfer decision. 

2.4. Hospital Cluster Recovery Framework 

A discrete Markov chain process is utilized in this 

study to estimate recovery for the various 

hospitals components such as corridors, elevators, 

stairs, and structural and non-structural 

components, through discretizing the 

functionality to different independent sub-levels. 

Since there are typical limitations in available 

resources following an extreme event, the 

resources are distributed to different lifelines 

based on their importance and significance in 

community recovery. Previous studies by Hassan 

& Mahmoud (2018a, 2018b) showed that water, 

power, transportation, telecommunication, 

wastewater and the drinking water, in addition to 

different supplies, are important factors affecting 

hospital functionality. Moreover, in the work by 

Cimellaro (2016), leadership indices were 

assigned to the various lifelines to represent the 

importance of the lifeline and its effect on other 

lifelines. The highest leadership indices were 

assigned for the government, electricity, 

emergency department, transportation, food 

supply and water. In addition, Ramachandran et. 

al. (2015) developed a priority matrix for 

estimating recovery of different lifelines and 

showed that transportation has the highest priority 

since roads are essential for any repair crews to 
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reach the damaged building or infrastructure. In 

addition, electric power network was shown to be 

the second lifeline to be restored followed by 

communication, water, and sewer water.  

Equation (6) shows the Markov chain 

process, which includes the interaction matrix, E, 

that dictates the effect of functionality of each 

lifeline on the repair process of the other 

considered lifelines. This equation can provide an 

estimate of lifeline, n, functionality, Qn, based on 

the assigned repair resources, xn, for damaged 

components as function of time accumulation 

after earthquake occurrence, k∆t. Where, k is a 

counter and ∆t is the time increment from the 

onset of earthquake occurrence to total recovery. 

The functionality at time, k∆t, is calculated using 

the initial functionality, Qn(0). The transition 

probability matrix, Pn, is used to introduce the 

probability that lifeline, n, will successfully 

transfer to the next state of functionality. The 

adjustment factor, An, is used here to adjust the 

transition probability matrix, Pn, to consider the 

effect of lifelines interaction. This adjustment 

factor depends on the interaction matrix, E, as a 

multiplication of the αj factor for each lifeline 

from lifeline one to lifeline N as shown in 

Equation (7). The factor αj can be set equal to one 

if the interaction factor, enj, equals to zero or Qj/ 
αnj if enj is more than zero. Each interdependency 

factor is an element of the interaction matrix as 

shown in Equation (8). The factors, eij, represent 

the effect of lifeline j on lifeline i. Therefore, the 

interaction matrix is utilized to simulate the 

relationship between the different lifelines and 

their effect on each other and on the hospital 

repair process.  

𝑄𝑛(𝑥𝑛, 𝑘 △ 𝑡) = 𝑄𝑛(0) ∗ ∏ 𝐴𝑛𝑃𝑛(𝑥𝑛, 𝑗 △ 𝑡)𝑘−1
𝑗=0      (6) 

𝐴𝑛 = ∏ 𝛼𝑗
𝑁
𝑗=1                                                           (7) 

𝐸 = (

𝑒11 ⋯ 𝑒1𝑛

⋮ ⋱ ⋮
𝑒𝑛1 ⋯ 𝑒𝑛𝑛

) = 𝑒𝑖𝑗                      (8) 

3. CASE STUDY 

Shelby County, Tennessee is used as a 

testbed to demonstrate and evaluate the 

previously introduced frameworks. Shelby 

County has 21 hospitals that provide medical care 

for a population of 936,961. These hospitals have 

a total of 4730 staffed beds, which have average 

ER visits of 432 per each 1000 population a year. 

Most of these ER visits are not major and only 

lead to 4 inpatients per each 1000 population a 

year. In addition, some hospitals in Shelby County 

have the same brand name and/or the same 

managements, therefore the probability of 

patients and resources transfer between these 

hospitals is higher.  

A scenario earthquake with magnitude 7.7 

and origin located at 35.3N and 90.3W is selected. 

This earthquake is expected to impact various 

lifelines and buildings within Shelby County and 

result in a number of deaths and severities as 

shown in Fig. 1(a) and (b) for severity level 2 and 

3, respectively. Moreover, people with severity 

level 2 require immediate medical care; therefore, 

they have priority to receive healthcare and are 

expected to stay longer in a hospital. Demand on 

each hospital is classified into a regular demand, 

which refers to injuries that is not related to 

earthquake and additional demand caused by the 

earthquake. The patient-driven model with 

hospital interaction model are applied in a 

preliminary analysis to obtain the demand on each 

hospital and estimate the total number of patients 

that will be transferred. Fig. 1(c) shows the 

selected hospital by each patient at day 1 after the 

earthquake in each census tract within Shelby 

County. It also displays total number of available 

staffed beds, average waiting time and average 

hospitalization service functionality at this day in 

Shelby County. 

 

DAY 1

(a) (b)

(c)
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Fig. 1. (a) Severity level 2 (immediate medical care 

needed), (b) severity level 3 (some medical care 

needed) and (c) patients distribution per hospitals 

 

Earthquake damage at hospitals is mainly 

function of both the earthquake intensity and 

buildings’ earthquake damage resistance. It can 

also result to damage to transportation, power, 

telecommunication, water and wastewater 

systems, which have a direct effect on hospitals 

that depend on these systems. The previously-

mentioned frameworks have been applied to 

Shelby County to estimate the effect of 

earthquake damage on hospitals, direct social and 

economic losses resulting from this earthquake 

and immediate functionality drop for these two 

systems. Recovery model, which is function of 

repair resources and allocation of these resources 

to achieve specific targets, is utilized. Dynamic 

optimization with different objective functions 

has been used to distribute repair resources to all 

hospitals in Shelby County. Fig. 2(a) and (b) show 

quality and quantity portion of the hospitalization 

service for each hospital, respectively. Fig. 2(c) 

shows the total functionality after the selected 

earthquake scenario.  

 

 

Fig. 2. (a) quality functionality, (b) quantity 

functionality and (c) total functionality of the 

hospitals in Shelby County 

4. CONCLUSIONS 

In this study, a framework for estimating hospital 

cluster functionality and recovery after 

occurrence of a scenario earthquake are 

introduced. Followings are the major findings 

form this study:  

➢ Considering the quality of the service as a 

part of the functionality is essential for 

fully quantifying functionality term.  

➢ Hospital and transportation network 

functionality are the most significant 

component in estimating the patient 

demand immediately after the earthquake. 

➢ Including hospital interaction is critical for 

reduce the patient waiting time. 
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