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ABSTRACT: These days, a Weigh-In-Motion (WIM) system enables us to estimate traffic loads on a bridge 
based on site-specific traffic environment. However, since the traffic environment of a bridge may change
significantly during its service life, it is necessary to monitor the in-service traffic environment and to update
the probabilistic model of traffic load. This study aims to develop a methodology to update distribution 
parameters of random variables in the probabilistic traffic load model by Bayesian inference. Three main 
methods are used together to establish the updating methodology: conjugate prior distributions, Bayesian 
linear regression, and Gibbs sampling. The proposed method is demonstrated by numerical examples
using WIM data from two sites in South Korea. 

1. INTRODUCTION
Traffic loads on bridges generally have large 
variability and uncertainties because of significant 
influences by the traffic environment.  Therefore, 
it is essential to consider these uncertainties 
through a probabilistic framework for accurate 
estimation of traffic load effects. However, most 
of the existing design codes and assessment
specifications do not consider these site-specific 
traffic conditions, and thus defined based on 
conservative assumption and engineer’s judgment 
(Moses 2001).

Recently, to collect information regarding
passing vehicles on roads and bridges, e.g. axle 
weight, axle spacing, passing time, and velocity, a 
large amount of Weigh-In-Motion (WIM) data 
have been collected. In structural engineering, 
many researchers have tried to estimate the traffic 
load effects on bridges using WIM data for cost-
effective design or accurate evaluation of a bridge 
in operation (O’Brien et al. 2015). To this end, 
Monte Carlo (MC) simulation based approach has 
been often adopted. This approach can provide 

accurate estimation of traffic load effects by 
extrapolation from results of a long-run 
simulation (Enright and O’Brien 2013). 

Kim and Song (2018) developed a 
probabilistic model of bridge traffic loads using 
an MC simulation approach based on statistical 
investigations of WIM data measured in South 
Korea and theories of transportation engineering. 
The developed model includes two major 
probabilistic models which respectively represent
(1) vehicle characteristics, e.g. weight and length 
of vehicles, and (2) traffic flow characteristics for 
simulating the pattern of traffic flow. This traffic 
load model can generate artificial WIM data for 
an operation period of interest by employing 
procedure illustrated in Figure 1, based on the 
aforementioned two major models. Next, traffic
load effects are computed using the generated 
WIM data and influence lines of the target bridge
to investigate important characteristics of the 
traffic load effects through extrapolation process 
toward the service life of the bridge.
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Figure 1: Procedure for generating artificial WIM data 
based on the traffic load simulation model (Kim and Song 
2018)

However, since the traffic environment of a 
bridge keeps changing due to many causes in 
surroundings of a bridge, e.g. construction of a 
factory near the bridge, or industrial development
of the city, it is necessary to monitor the change 
of traffic environment and continuously update
the probabilistic model of traffic load so that 
traffic load effects on the bridge can be estimated 
more accurately. This requires the development of 
a methodology that allows the parameters of
variables in traffic load model to be continuously 
updated through a probabilistic framework. In 
addition, since a WIM system is not always 
installed or operational for in-service bridges, 
WIM data may not be available at all, or can only 
be obtained for a short period of time. Therefore, 
only brief site-specific conditions such as traffic 

volume or the ratio of vehicle type could be
available, but this limited information may 
hamper accurate estimation of the traffic load 
effects. To address this, the traffic load model 
developed by the authors (Kim and Song, 2018) is 
used as a generic traffic load model, i.e. a model a 
priori. If only limited data are available, we update 
the corresponding parameters of the generic
model using the available traffic data while the 
parameters of the variables that cannot be 
obtained from the related data are supplemented 
by the parameters of the generic model. This 
makes it possible to more accurately estimate the 
site-specific traffic load effect for a particular 
bridge.

This study aims to develop a methodology to 
update the distribution parameters of random 
variables appearing in the probabilistic traffic 
load model based on Bayesian inference. In 
particular, the approach combines prior 
knowledge with in-service WIM data employing 
Bayes’ theorem (Gelman et al. 2013). In the 
following section, we briefly introduce the main 
random variables of the developed traffic load 
model, and then explain the Bayesian inference 
methods used for the sub-models: conjugate prior 
distribution, Bayesian linear regression, and
Gibbs sampling. In Section 3, numerical examples
are investigated to apply the developed updating 
methods and test them, e.g. in terms of the 
influence of hyper-parameters of the prior model. 
Finally, the conclusion is presented.

2. UPDATING METHODS FOR
PROBABILISTIC MODEL OF TRAFFIC 
LOADS BASED ON BAYESIAN 
INFERENCE

The variables used in the probabilistic traffic load 
model (Kim and Song, 2018) can be categorized 
into three groups in terms of the type of 
probabilistic model used for fitting. The first one
is the Gaussian distribution, which is used to 
represent the heavy vehicle ratio. The second type
is linear regression model which is used to fit the 
percentage of small headway for a given traffic 
volume. The last one is the Gaussian mixture
model which is used to describe vehicle 
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characteristics, traffic volume and, average 
velocity. We have developed the updating 
methodology for the traffic load model by using
appropriate Bayesian inference methods for each 
of the three models. 

2.1. Gaussian distribution: conjugate prior
In Bayesian inference, the parameters of the 
probability distribution are treated as random 
variables rather than fixed values. The prior 
distribution of parameters is characterized by
hyper-parameters , i.e.
                                                                                
                                                                (1)

The main goal of Bayesian inference is to obtain 
the posterior probability distribution for the 
parameter by updating the prior distribution based 
on the Bayes rule with newly available
observations. This posterior probability 
distribution can be calculated as

(2)

where is a set of 
observations and is the conditional 
probability density of given called as 
likelihood function. However, since it is generally
difficult to calculate the integral of the 
denominator in Eq. (2), a conjugate prior 
distribution, which makes the posterior 
distribution a closed-form, is preferred if 
applicable (Raiffa and Schlaifer 1974). 

Among the random variables in the 
probabilistic traffic load model, the heavy vehicle 
ratio is fitted with a Gaussian distribution 
with mean and variance i.e.

                          (3)

When both parameters are considered as 
random variables, the normal and inverse-
gamma distribution form the conjugate
prior distributions consisting of four hyper-
parameters, i.e.

           (4)

where and are the hyper-parameters of the 
prior distribution of the mean parameter μ, and α, 
β are the hyper-parameters of the prior 
distribution of the variance parameter . The 
joint probability density function (PDF) of the 
normal-inverse-gamma distribution is expressed 
as

  (5)

When we obtain a set of n observations 
, can be calculated by

              (6)

Using the normal-inverse-gamma prior 
distribution in Eq. (5) and the likelihood function 
in Eq. (6), the posterior probability distribution in 
Eq. (2) is represented by the same form of 
distribution, i.e. normal-inverse-gamma 
distribution, whose hyper-parameters are updated 
as follows (Bernardo and Smith 2001):

        (7)

where and are the sample mean and variance. 
Thus, the posterior probability distribution of the 
parameters can be obtained simply by
updating the parameters of the conjugate prior 
distribution. When desired, during the Bayesian 
inference, one can determine the relative 
importance of information embedded in the prior 
information and the currently measured data by 
adjusting the values of the hyper-parameters of 
the prior distribution model.
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2.2. Linear regression model: Bayesian linear 
regression

In the probabilistic model describing traffic flow 
characteristics, the percentage of small headway 
is used as an important criterion regarding 
whether generating small or large headway when
simulating the headway between two adjacent 
vehicles in MC simulations. Kim and Song (2018) 
developed the linear regression model of the 
percentage on the traffic volume for each of the 
traffic volume ranges as shown in Figure 2.

Figure 2: Predicting percentage of small headway for a 
given traffic volume (Kim and Song 2018)

The linear regression model developed for 
each group of traffic volume can be expressed as

                          (8)

where , is the response variable, 
is (p+1)×1 predictor vector, is (p+1)×1 
parameter vector, and is independent and 
identically normally distributed random variable 
representing the model error. Bayesian linear 
regression is an appropriate method for linear 
regression within the context of Bayesian 
inference so this study employs this method for
updating the linear regression model in the traffic 
load model.

As shown above, the posterior probability 
distribution for the parameter of linear regression
is calculated using the conjugate prior distribution
to facilitate calculation of posterior distribution. 
Since the model error variable follows the 
Gaussian distribution, a normal-inverse-gamma 
distribution is selected as a conjugate prior 

distribution which is defined as follows. In this 
case, by contrast, the prediction vector consists of 
multiple random variables so multivariate 
Gaussian distribution is used as a conjugate prior 
distribution, i.e. 

                                                  (9)

where is a multivariate Gaussian 
distribution of (p+1) dimensional random vector 

with the mean vector and covariance matrix 
and and ( are assumed to be 

uncorrelated.
When n samples consisting of n 1

vector and n (p+1) vector are observed, the 
posterior probability distribution is obtained as 
follows using Bayes rule. More details about the 
derivation can be found in Seber and Lee (2012).   

                                 (10)

   (11)

                                  (12)

is the estimate of by ordinary least squares 
(OLS), which is one of the methods to minimize 
the sum of squared residuals and obtained by Eq. 
(12). In this study, the Bayesian linear regression 
method described in this section is used to update 
the linear regression models for percentage of 
small headway using the mean values of the 
posterior distributions of the parameters.

2.3. Gaussian mixture model: Gibbs sampling
A Gaussian mixture model (GMM) is a 
probabilistic model consisting of multiple
Gaussian distributions, and is suitable for 
representing random variables with multiple 
peaks or modes. Therefore, Kim and Song (2018) 
modeled various random variables showing 
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multiple peaks, i.e. axial weight, axle spacing, 
traffic volume, average velocity of the developed
traffic load model using GMMs. The PDF of 
GMM of each of the random variables is
described as

                     (13)

where

denotes all parameters of GMM, is the relative 

weight of the j-th Gaussian component, satisfying 
and and is the 

PDF of the j-th Gaussian distribution whose 
parameters are .

To facilitate parameter estimation of GMM
models, a classification vector 
consisting of latent variables is introduced. 
This is because the GMM models have weight 
parameters unlike other probability distributions. 
The latent variable means that the i-th 
observation is classified into the j-th component 
(Bilmes 1998).

In the Bayesian inference of the GMM, a
conjugate prior distribution appropriate for the 
likelihood function of each parameter is desired.
In this study, a normal-inverse-gamma 
distribution shown in Eq. (3) and (4) is used as 
conjugate prior distribution of the parameters of 
each Gaussian distribution. The weight 

is modeled by a Dirichlet prior 
distribution because the likelihood function of
is a multinomial distribution which can represent
the probability of the number of samples 
belonging to each component when they are
observed (Gauvain and Lee 1994). A Dirichlet 
distribution can be expressed as follows:

        (14)

where is the hyper-parameter of Dirichlet 

distribution.
When n samples y are observed, the above 

conjugate prior distributions and the likelihood 
function are used to calculate posterior 
distributions of parameters from Eq. (2). First, the 

posterior distribution of the Gaussian distribution
for j-th component is calculated as follows to have
a form which is similar to Eq. (7):

     (15)

The difference from Eq. (7) is that the number of 
samples classified into j-th component, and the 

sample mean , variance are used instead. 

Second, the posterior distribution of Dirichlet 
distribution π can be defined as

                                       (16)

where represents the process to 
count the number of samples belonging to the j-th 
component. Also, one needs to obtain the 
classification vector that 
describes which component the corresponding 
sample belong to. To obtain the classification 
vector , the posterior probability , i.e. the 

probability that the i-th sample belongs to the j-th 
component is calculated as

        (17)

Unlike the above two cases (Gaussian 
distribution, linear regression), GMM introduces
latent variable for the parameter estimation so 
Gibbs sampling is used to Bayesian inference in 
this study. Gibbs sampling is one of the Markov 
Chain Monte Carlo simulation (MCMC) methods, 
which is useful particularly when it is difficult to 
extract a sample directly from the joint 
distribution of parameters while it is easy to 
extract a sample from the conditional probability 
distribution of the parameters of interest given the 
values of other parameters (Gelfand 2000). The 
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samples of parameters sequentially extracted one 
by one are used as conditional values when 
sampling other parameters in the next step. We set 
the initial values and then generate the samples of 
parameters from the conditional posterior 
distribution through the following four steps
(Franzén 2008):

1) Generate the sample for variance , j=1,…,J 

of each component from the posterior inverse 
gamma distribution, given and

2) Generate the sample mean , j=1,…,J of 

each component from the posterior Gaussian 
distribution, given , and 
new sample of variance from Step 1

3) Generate the sample for the weight of 

components from the 

posterior Dirichlet distribution given and

4) Calculate the new classification vector 
based on the new posterior 

probability which is calculated using and 

new samples of parameters

These four steps are repeated until the samples of 
the parameter can well represent that of the 
posterior distribution.

Figure 3: The CDF of prior (original), observation and 
posterior (updated) probability distribution

The initial steps of sampling process which 
do not show convergence to the posterior 
distribution are called burn-in period (Gelman et 

al. 2013). The corresponding samples are
discarded before the sample-based Bayesian 
inference. In this study, the GMM of second axle 
spacing in Type 5 is updated by artificially 
simulated observations. Figure 3 shows the 
cumulative distribution function (CDF) of the 
prior (original) GMM, posterior (updated) GMM 
and the cumulative frequency function of the 
observations. Figure 4 shows the histories of the 
estimated weights of the three components. It is 
shown that the samples of the parameter converge 
to the posterior distribution after around 20 
iterations.

Figure 4: Convergence histories of the estimated weights
of three components in GMM

3. VERIFICATION OF UPDATING 
METHODS

To verify the Bayesian inference-based updating 
methodology introduced in Section 2, the 
probabilistic model of traffic load (Kim and Song 
2018) is updated by actual WIM data. After each 
updating, a total of 10 sets of artificial WIM 
datasets are generated for one-year period from
the updated model, and traffic load effects were 
obtained using the influence line loading. The 
daily maximum load effect was selected and mean 
values of 10 sets are plotted in the Gumbel 
probability paper to examine whether the traffic 
load effects from updated models converge to the 
traffic load effects from observations as the
number of updatings increases. 
The probabilistic model constructed from the 
WIM data of the primary lane of Gimcheon (Kim 
and Song 2018) is assumed to be a prior model
(original) and the measured WIM data from the 
primary lane of Sunsan is assumed to be the new 

Prior model

Observation

Posterior model

Component 1

Component2

Component3
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observations. For the updating, the hyper-
parameters of the prior model are set to the value
which has the same weight as that of observations.
In this paper, this is expressed as the relative 
weight of prior model being 1 and this weight is 
an indicator of how much we believe the prior
information compared to the new observations. In 
addition, the total load on a bridge is used to 
assure general validity regardless of the bridge’s 
span length. The results are shown in Figures 5(a) 
and (b) for two span lengths: 100 m (short span) 
and 800 m (long span).

Figure 5(a): Gumbel probability paper of daily maximum 
total load for 100m span (the weight of prior model: 1)

Figure 5(b): Gumbel probability paper of daily maximum 
total load for 800m span (the weight of prior model: 1)

As the number of updatings increases, it is 
shown that the CDF of the total load of updated 
models converge to that by the observations, and 
it is seen that convergence is achieved after the 
updating is performed about 10 times. 

In addition, to confirm the effect of the
hyper-parameter of the prior model, the updating 
of a traffic load model is performed the same way
except that we changed the value of hyper-

parameters corresponding the relative weight of 
prior model to 2 and 0.5, respectively.

Figures 6 and 7 show the result of updating 
for the two different weights. It is seen that the 
required number of updating for convergence 
increases as the weight of the prior model 
increases, which is a reasonable result considering 
the characteristics of Bayesian updating. Through 
these numerical examples, it is verified that the 
proposed updating methods can effectively update 
the probabilistic model for traffic load based on 
Bayesian inference.

Figure 6(a): Gumbel probability paper of daily maximum 
total load for 100m span (the weight of prior model: 2)

Figure 6(b): Gumbel probability paper of daily maximum 
total load for 800m span (the weight of prior model: 2)

        
Figure 7(a): Gumbel probability paper of daily maximum 
total load for 100m span (the weight of prior model: 0.5)
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Figure 7(b): Gumbel probability paper of daily maximum 
total load for 800m span (the weight of prior model: 0.5)

4. CONCLUSIONS
In this study, we proposed a methodology to 
update the probabilistic model recently developed 
for traffic load (Kim and Song 2018) based on 
Bayesian inference. The three main methods used 
to establish the Bayesian updating method are 
conjugate prior distribution, Bayesian linear 
regression, and Gibbs sampling. Numerical 
examples of employing the developed updating 
method are provided to verify that the traffic load 
effects from prior model converge to those from 
new observations as the number of updating 
increases. Additionally, it was confirmed that the 
convergence speed slows down by adjusting the 
hyper-parameter value of the prior model to 
increase the relative weight of the prior 
distribution. Through these examples, the 
developed Bayesian updating methodology was
successfully demonstrated. Through further 
developments and applications, the effects of 
Bayesian updating based on actual in-service 
WIM data and other site-specific traffic 
conditions on traffic loads and the corresponding 
reliability of bridges will be thoroughly 
investigated.
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