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ABSTRACT: Energy-dissipation devices have been widely used for improving the performance of 

civil structures exposed to seismic hazard. In this study, a hybrid approach, which combines the 

probability density evolution method (PDEM) and the explicit time-domain method (ETDM), is 

proposed for the seismic reliability analysis of large-scale energy-dissipation structures with uncertain 

parameters of nonlinear energy-dissipation devices subjected to random seismic excitations. To 

demonstrate the feasibility of the proposed approach, a dynamic reliability analysis under random 

seismic excitations is carried out for a suspension bridge with a main span of 1,200 m equipped with 4 

nonlinear viscous dampers with uncertain parameters. 

 

1. INTRODUCTION 

Passive control using energy-dissipation devices 

has received considerable attention in recent 

years and has proven to be a very effective 

method for enhancing the performance of civil 

structures exposed to seismic hazard (Soong and 

Spencer, 2002). In view of the popular use of 

energy-dissipation devices in real engineering 

problems, there is a growing need for an 

effective seismic reliability analysis method of 

large-scale energy-dissipation structures. On the 

other hand, the parameters of the energy-

dissipation devices might be uncertain to some 

extent due to the manufacturing errors, and their 

uncertainties may have a significant impact on 

the dynamic reliabilities of energy-dissipation 

structures under seismic excitations. The seismic 

reliability assessment of large-scale energy-

dissipation structures with uncertain parameters 

of energy-dissipation devices is a more complex 

problem. 

For the first-passage problems, the dynamic 

reliability evaluation is equivalent to obtaining 

the peak-response probability density function 

(PDF). The probability density evolution method 

(PDEM) is capable of capturing the peak-

response PDF of a nonlinear stochastic structure 

by constructing a virtual random process 

associated with the peak response (Chen and Li, 

2007; Li and Chen, 2009). The seismic failure 

probability of the structure can then be directly 

evaluated through the integration of the peak-

response PDF over the failure domain. However, 

hundreds of deterministic nonlinear time-history 

analyses are embedded in the solution process of 

PDEM to compute the coefficients involved in 

the probability density evolution equation, which 

leads to relatively high computational cost for 

large-scale engineering structures when 

conventional numerical integration methods are 

adopted. 

To enhance the efficiency of PDEM, the 

explicit time-domain method (ETDM) with 

dimension-reduced explicit iteration scheme, 

recently proposed for time-history analysis of 

large-scale nonlinear systems (Su et al., 2018a; 

Su et al., 2018b), is incorporated into PDEM to 
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conduct the high-efficient nonlinear dynamic 

analyses, in which only a small number of 

degrees of freedom associated with the energy-

dissipation devices are considered in the iteration 

process. To demonstrate the feasibility of the 

above hybrid approach, the PDEM-ETDM, a 

dynamic reliability analysis under random 

seismic excitations is carried out for a suspension 

bridge with a main span of 1,200 m equipped 

with 4 nonlinear viscous dampers with uncertain 

parameters. 

2. SEISMIC RELIABILITY ANALYSIS OF 

ENERGY-DISSIPATION STRUCTURES 

BY PDEM 

2.1. Seismic reliability evaluation of energy-

dissipation structures 

For an energy-dissipation structure equipped 

with dn  nonlinear energy-dissipation devices 

with uncertain parameters subjected to random 

seismic excitations, the nonlinear equation of 

motion can be expressed as 

D D D( , ) ( , )X t    MU CU KU L F Θ V ME Θ  (1) 

where M , C  and K  are the mass, damping and 

stiffness matrix of the structure without energy-

dissipation devices, respectively; U , U  and U  

are the time-dependent nodal displacement, 

velocity and acceleration vector of the energy-

dissipation structure, respectively; Θ  is a vector 

of random parameters involved in the energy-

dissipation devices and the seismic excitation; E  

is the orientation vector of the seismic excitation; 

( , )X tΘ  is the random seismic excitation; DL  is 

the orientation matrix of the nonlinear restoring 

forces; T T T

D D D[  ]V U U  with 
DU  and 

DU  being 

the displacement and velocity vector of the nodes 

of energy-dissipation devices, respectively; and 

D D( , )F Θ V  is the nonlinear restoring force vector 

of energy-dissipation devices, which can be 

written as 

d

T

D D 1 2( , ) [ ( , )  ( , )    ( , )]nf t f t f tF Θ V Θ Θ Θ   (2) 

where d( , )( 1,2, , )kf t k nΘ  is the nonlinear 

restoring force of the kth energy-dissipation 

device. 

Using the first passage failure criterion with 

symmetric double boundary value, the seismic 

reliability of the energy-dissipation structure 

described in Eq. (1) can be defined as 

 r P{ ( , ) ,  [0, ]}P s t b t T  Θ   (3) 

where P{ }  indicates the probability of the 

random event; T  is the duration of the seismic 

excitation; b  is the value of the symmetric 

boundary; and ( , )s tΘ  is the critical response 

that controls the structural failure. 

The expression of Eq. (3) is equivalent to 

 r P{ ( , ) }P Z T b Θ   (4) 

where 

 
[0, ]

( , ) max ( , )
t T

Z T s t


Θ Θ   (5) 

is the peak absolute value of the critical response 

( , )s tΘ  over time interval [0, ]T . Assume that 

the PDF of the peak response ( , )Z TΘ  has been 

obtained. Then, based on Eq. (4), the seismic 

reliability of the energy-dissipation structure can 

be directly evaluated as 

 
r

0
( )d

b

ZP p z z    (6) 

where ( )Zp z  is the peak-response PDF. Hence, 

the failure probability of the energy-dissipation 

structure is f r1P P  . 

2.2. Evaluation of peak-response PDF by PDEM 

The PDEM can be used to obtain the peak-

response PDF ( )Zp z  by constructing a virtual 

random process as follows: 

 ( ) ( , )Y Z T  Θ   (7) 

where   is the virtual time. It can be seen from 

Eq. (7) that the peak response ( , )Z TΘ  equals 

the value of the virtual random process ( )Y   at 

the time instant 1  , i.e. 
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1

( , ) ( )Z T Y





Θ   (8) 

Once the evolutionary PDF of the virtual random 

process ( )Y  , ( , )Yp y  , is obtained, one can 

immediately get the peak-response PDF as 

 
1, 

( ) ( , )Z Y y z
p z p y




 
   (9) 

Employing the thoughts of PDEM and 

noting that ( ) ( , )Y Z T  Θ  from Eq. (7), the 

probability density evolution equation with 

regard to the joint PDF of ( ( ), )Y  Θ  can be 

obtained as 

 
( , , ) ( , , )

( , ) 0Y Yp y p y
Z T

y

 



 
 

 

Θ Θ
θ θ

θ   (10) 

with the initial condition 

 
0

( , , ) ( ) ( )Yp y y p


 



Θ Θ
θ θ   (11) 

where ( )  is the Dirac function and ( )pΘ θ  is 

the joint PDF of the random vector Θ . 

Solving the initial-value problem (10) and 

(11) for ( , , )Yp y Θ θ , one can obtain the 

evolutionary PDF of ( )Y   as the marginal 

distribution of ( , , )Yp y Θ θ , i.e. 

 ( , ) ( , , )dY Yp y p y 


 
Θ

Θ θ θ   (12) 

where Θ
 is the distribution domain of Θ . Then, 

the peak-response PDF ( )Zp z  can be obtained 

using Eqs. (9) and (12). 

To solve Eq. (10), θ  must be first 

prescribed and the peak response ( , )Z Tθ , i.e. 

the value of the coefficient in Eq. (10), should 

then be determined through numerical 

integration of the nonlinear equation of motion 

(1). After that Eq. (10) can be solved numerically 

and the integral with regard to θ  in Eq. (12) can 

be carried out eventually. 

It should be noted that, for each 

representative point θ , one needs to conduct one 

nonlinear time-history analysis of the energy-

dissipation structure shown in Eq. (1), and there 

could be hundreds of representative points to 

ensure the accuracy of the numerical integration 

in Eq. (12). Therefore, hundreds of nonlinear 

time-history analyses would be embedded in the 

solution process of PDEM, which leads to 

relatively high computational cost for large-scale 

engineering structures when conventional 

numerical integration methods are adopted. To 

enhance the efficiency of PDEM, the ETDM 

with dimension-reduced explicit iteration scheme 

can be used to conduct the high-efficient 

nonlinear time-history analyses of the energy-

dissipation structure, which will be elaborated in 

Section 3 that follows. 

3. NONLINEAR TIME-HISTORY 

ANALYSIS OF ENERGY-DISSIPATION 

STRUCTURES BY ETDM 

3.1. Time-domain explicit expressions of 

dynamic responses 

Substituting a prescribed representative point 

Θ θ  into Eq. (1), one can derive a 

deterministic nonlinear equation of motion as 

D D D( , ) ( , )X t    MU CU KU L F θ V ME θ  (13) 

Moving the nonlinear term D D D( , )L F θ V  to the 

right-hand side of Eq. (13), one can obtain the 

following quasi-linear equation of motion as 

 
D( , , )t  MU CU KU LF θ V   (14) 

where 

 T T

D D D( , , ) [ ( , )  ( , )]t X tF θ V θ F θ V   (15) 

and 

 
D[   ] L ME L   (16) 

are the equivalent excitation vector and the 

corresponding orientation matrix, respectively. 

For the quasi-linear equation of motion 

shown in Eq. (14), define the state vector as 
T T T[  ]V U U . Then, the recurrence formula for 

the state vector can be written as 

 
1 1 1 D, 1 2 D,( , ) ( , )

                                            ( 1,2, , )

i i i i i i

i n

    



V TV Q F θ V Q F θ V
 (17) 
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where n T t   is the number of time steps for 

time-history analysis with t  being the time step; 

the subscripts i  and 1i   denote 
it i t   and 

1 ( 1)it i t    , respectively; and T , 
1Q  and 

2Q  

can be deduced based on the Newmark-β 

integration scheme, which can be expressed as 

(Su et al., 2016) 
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 (18) 

where Ι  is the unit matrix, and   and   are two 

parameters related to the integration stability. In 

this study, 0.5   and 0.25   are used and 

the Newmark-β integration scheme will be 

unconditionally stable. 

Assuming 
0 V 0 , based on Eq. (17), one 

can derive the explicit expression of the state 

vector at each time instant as 

 

,0 0 D,0 ,1 1 D,1

, 1 1 D, 1 , D,

( , ) ( , )

    ( , ) ( , )

                                      ( 1,2, , )

i i i

i i i i i i i i

i n

  

  

 



V A F θ V A F θ V

A F θ V A F θ V   (19) 

where 
D,( , )( 0,1, , )j j j iF θ V  are the 

equivalent excitation vectors at different time 

instants, and 
,0 ,1 ,, , ,i i i iA A A  are the 

corresponding coefficient matrices, which are 

only associated with M , C , K  and L  in Eq. 

(14) and can be expressed in closed forms as 

1,0 1 ,0 1,0

1,1 2 2,1 2 1 ,1 1,1

, 1, 1

,    (2 )

,  ,    (3 )

  (2 )

i i

i i

i j i j

i n

i n

j i n





 

    


     
    

A Q A TA

A Q A TQ Q A TA

A A

 (20) 

It can be observed from Eq. (20) that only 

the coefficient matrices 
,0iA  and 

,1iA

( 1,2, , )i n  need to be determined and stored, 

while the other coefficient matrices can be 

directly obtained from 
,1( 1,2, , )i i nA . 

3.2. Dimension-reduced explicit iteration scheme 

With the advantage of explicit representation of 

the state vector, iV  in Eq. (19) can be divided 

into two vectors. The first vector is 
D,iV , which 

consists of the nodal displacements and 

velocities directly associated with the nonlinear 

restoring forces of the energy-dissipation devices, 

and the other vector can be denoted as 
R,iV , 

which is composed of the rest components of iV  

except for those in 
D,iV . Correspondingly, Eq. 

(19) can be divided into two equations as follows: 

 

D D

D, ,0 0 D,0 ,1 1 D,1

D D

, 1 1 D, 1 , D,

( , ) ( , )

    ( , ) ( , )

                                        ( 1,2, , )

i i i

i i i i i i i i

i n

  

  

 



V A F θ V A F θ V

A F θ V A F θ V  (21) 

 

R R

R, ,0 0 D,0 ,1 1 D,1

R R

, 1 1 D, 1 , D,

( , ) ( , )

    ( , ) ( , )

                                        ( 1,2, , )

i i i

i i i i i i i i

i n

  

  

 



V A F θ V A F θ V

A F θ V A F θ V  (22) 

where 
D

,i jA  and 
R

,i jA  consist of the rows simply 

extracted from 
, ( 0,1, , )i j j iA  with respect to 

D,iV  and 
R,iV , respectively. 

It can be observed from Eqs. (21) and (22) 

that the nonlinear iteration can be carried out just 

focusing on 
D,iV  via Eq. (21). Once 

D,iV  is 

obtained, the other responses in 
R,iV  can be 

directly calculated using Eq. (22) without any 

further iteration. In general, only a limit number 

of energy-dissipation devices are used in an 

energy-dissipation structure. Therefore, Eq. (21) 
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is only a small-size system of nonlinear algebraic 

equations, which will lead to much higher 

efficiency for nonlinear analysis. Note that the 

above dimension-reduced explicit iteration 

scheme can yield the results of responses at the 

same accuracy as those obtained with the 

traditional nonlinear time-history analysis 

methods because no truncation treatment is 

introduced in the present scheme. 

In practical engineering design, not all 

structural responses are required, and only a 

certain number of critical responses need to be 

acquired. Therefore, with the explicit expression 

of 
R,iV  in Eq. (22), one can also conduct the 

dimension-reduced calculation of the responses 

in 
R,iV , which will further enhance the efficiency 

of the subsequent response analysis. Suppose is  

is a critical response component in 
R,iV . Then, 

from Eq. (22), is  can be directly obtained as 

 

,0 0 D,0 ,1 1 D,1

, 1 1 D, 1 , D,

( , ) ( , )

    ( , ) ( , )

                                     ( 1,2, , )

s s

i i i

s s

i i i i i i i i

s

i n

  

  

 



a F θ V a F θ V

a F θ V a F θ V   (23) 

where ,

s

i ja  is the corresponding row vector of 

R

, ( 0,1, , )i j j iA  with respect to is . 

In summary, using the time-domain explicit 

expressions of dynamic responses shown in Eq. 

(19), dimension-reduced analysis can be easily 

conducted with high efficiency for time-history 

analysis of the energy-dissipation structure 

equipped with nonlinear energy-dissipation 

devices. The analysis procedure is composed of 

two steps. The first step is the dimension-reduced 

iteration for the nodal displacements and 

velocities of energy-dissipation devices using Eq. 

(21), and the second step is the dimension-

reduced calculation of the other critical responses 

using Eq. (23). 

4. SOLUTION PROCESS OF PDEM-ETDM 

As can be seen from Section 3, the ETDM with 

dimension-reduced explicit iteration scheme can 

be incorporated into PDEM to conduct high-

efficient nonlinear time-history analyses of the 

energy-dissipation structure. This hybrid 

approach, which combines the thoughts of 

PDEM and ETDM, can be termed as PDEM-

ETDM. For the sake of clarity, the solution 

procedures of PDEM-ETDM for seismic 

reliability analysis of energy-dissipation 

structures are summarized as follows: 

(1) Select representative points ( 1,2, , )q q Nθ  

in the distribution domain Θ
, where N  is 

the total number of the selected points. The 

strategy of selecting points can be found in 

Li and Chen (2007). 

(2) Calculate the matrices T , 
1Q  and 

2Q  using 

Eq. (18) and determine the coefficient 

matrices 
, ( 1,2, , ; 0,1, , )i j i n j i A  using 

Eq. (20). Then extract 
D

,i jA  shown in Eq. (21) 

from 
,i jA  with respect to 

D,iV , and extract 

,

s

i ja  shown in Eq. (23) from 
,i jA  with respect 

to any critical response is . 

(3) For a prescribed representative point 
qθ , 

conduct the nonlinear dimension-reduced 

iteration focusing on 
D,iV  through Eq. (21), 

and then carry out the dimension-reduced 

calculation for any critical response is  using 

Eq. (23). Start from 1i   and repeat this step 

until i n . 

(4) Calculate the peak response ( , )qZ Tθ  using 

Eq. (5) based on the obtained 

( 1,2, , )is i n , and then solve the initial-

value problem (10) and (11) for ( , , )Y qp y Θ θ

with the finite difference method. The details 

for implementation of the finite difference 

method can be found in Li and Chen (2009). 

(5) Repeat steps (3) and (4) for each 

representative point until all points have been 

considered. 

(6) Carry out the numerical integration with 

regard to θ  in Eq. (12) based on the obtained 

( , , )( 1,2, , )Y qp y q N Θ θ  to evaluate the 

evolutionary PDF ( , )Yp y  . 
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(7) Determine the peak-response PDF ( )Zp z  

using Eq. (9) from ( , )Yp y  , and then 

evaluate the seismic reliability of the energy-

dissipation structure using Eq. (6). 

It can be seen from the above procedures 

that the coefficient matrices required for 

construction of the time-domain explicit 

expressions of dynamic responses need to be 

calculated only once and can be used for all the 

selected points, and owing to the use of explicit 

formulation of dynamic responses, dimension-

reduced analysis can be easily conducted for 

each selected point. These merits lead to a 

significant reduction in computational cost for 

PDEM. 

5. ENGINEERING APPLICATION 

5.1. The suspension bridge 

A 2,040 m long suspension bridge now being 

built in South China, as shown in Figure 1, is 

used to illustrate the accuracy and efficiency of 

the proposed approach for seismic reliability 

analysis of large-scale energy-dissipation 

structures. The bridge has a main span of 1,200 

m, leading to a rise-span ratio of 1:9.5. Each 

main tower of the bridge has 2 cross beams and 

rises to a level of 191 m. To restrain the 

excessive longitudinal displacement of the main 

girder under seismic excitations, the suspension 

bridge is equipped with 4 nonlinear fluid viscous 

dampers, as illustrated in Figure 2. The viscous 

dampers are installed between the lower cross 

beam of the main tower and the bottom plate of 

the main girder. The nonlinear damping force-

velocity relation for viscous dampers can be 

analytically expressed as a fractional velocity 

power law 

 
D( ) sign( )f t v C v


   (24) 

where ( )f t  is the damping force of the viscous 

damper; sign( )  is the sign function; v  is the 

axial nodal relative velocity between damper 

ends; and DC  and   are the damping coefficient 

and the velocity exponent of the viscous damper, 

respectively, which are mutually independent 

random variables with the probabilistic 

information listed in Table 1. In this study, the 

damper parameters are assumed to be the same 

for all viscous dampers, and two cases are 

considered for different coefficients of variation 

of the damper parameters. 

 
Figure 1: Elevation of a suspension bridge. 

 
Figure 2: Locations of viscous dampers between 

main tower and main girder. 

Table 1: Probabilistic information of the random 

parameters. 

Random variable 
Distribution 

type 

Case 1 Case 2 

Mean COV Mean COV 
1

D  (kN/(m s ) )C   Normal 2,500 0.1 2,500 0.2 

  Normal 0.4 0.1 0.4 0.2 

2

1  (m/s )  Normal 2.0 0.25 2.0 0.25 

2

2  (m/s )  Normal 2.0 0.25 2.0 0.25 

Note: COV = coefficient of variation. 

5.2. Finite element model 

The finite element model of the suspension 

bridge is established using the general-purpose 

finite element software ANSYS, as shown in 

Figure 3. The whole model consists of 479 beam 

elements and 374 truss elements, leading to a 

total number of 5,100 degrees of freedom for the 

whole structure. The completion state of the 

suspension bridge is obtained through form-

finding analysis, in which geometric nonlinear 

effects, including the large-displacement and 

stress-stiffening effects under the dead load of 

the bridge, are taken into consideration. It has 

been observed that the newly induced geometric 

nonlinear effects due to seismic excitations can 

be neglected as compared with those induced by 

the dead load of the bridge during erection. 

Therefore, the above model can be used to 
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conduct the subsequent seismic reliability 

analysis of the suspension bridge after 

completion. 

 
Figure 3: Finite element model of suspension bridge 

after completion. 

5.3. Random seismic excitation 

The ground motion acceleration is assumed to be 

random combination of two time histories (Li 

and Chen, 2007), i.e. 

 
1 21 2( ) ( ) ( )g g gx t x t x t     (25) 

where 
1
( )gx t  and 

2
( )gx t  are the standardized N-S 

and E-W El-Centro records with the unit 

amplitude, respectively, and 1  and 2  are 

mutually independent random variables with the 

probabilistic information also listed in Table 1. 

5.4. Seismic reliability analysis 

The first passage failure criterion with symmetric 

double boundary value is used for this 

engineering application, and the critical response 

that controls the structural failure is taken as the 

longitudinal displacement at mid-span of the 

main girder. Seismic reliability analysis of the 

suspension bridge equipped with nonlinear 

viscous dampers is conducted using the PDEM-

ETDM presented in Section 4. To demonstrate 

the accuracy and efficiency of the proposed 

approach, seismic reliability analysis is also 

carried out using Monte Carlo simulation (MCS) 

with 5

s 10N   samples. In the above two 

methods, the duration of the time-history 

analysis is set to be 30 sT   with the time step 

being 0.02 st  . The total number of the 

selected representative points for PDEM-ETDM 

is 
p 864N  . 

The curves of failure probability of the 

suspension bridge corresponding to the two cases 

are shown in Figure 4 and Figure 5, respectively. 

It can be seen that the results obtained by 

PDEM-ETDM are in good agreement with those 

obtained by MCS for all levels of thresholds, 

demonstrating the good accuracy of the proposed 

approach. 

 
Figure 4: Curve of failure probability (Case 1). 

 
Figure 5: Curve of failure probability (Case 2). 

The structural failure probabilities with 

respect to different thresholds corresponding to 

the two different cases are presented in Table 2 

and Table 3, respectively. From the tables it can 

be seen that the failure probabilities computed by 

the PDEM-ETDM is of fair accuracy. It can be 

further observed that, at the same level of 

threshold, the failure probability of the structure 

increases with the increase of the coefficients of 

variation of the damper parameters. At a low 

threshold level, e.g. 0.28 mb  , the increase rate 

of the failure probability is small. However, on 

the contrary, at a high threshold level, e.g. 

0.58 mb  , the increase rate of the failure 

probability could be large, which indicates that, 

for the case of small failure probability, it is 

necessary to take into account the influence due 

to the uncertainties of the damper parameters 
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besides the effect due to the random seismic 

excitation. 

Table 2: Failure probability of the structure (Case 1). 

Method 
Threshold level  (m)b  

0.28 0.38 0.48 0.58 

PDEM-ETDM 0.17 0.032 0.0033 0.00019 

MCS 0.18 0.034 0.0035 0.00022 

Table 3: Failure probability of the structure (Case 2). 

Method 
Threshold level  (m)b  

0.28 0.38 0.48 0.58 

PDEM-ETDM 0.18 0.042 0.0053 0.00044 

MCS 0.19 0.045 0.0056 0.00050 

As for the computational efficiency, it can 

be seen from Figure 4 and Figure 5 that the 

number of nonlinear dynamic analyses required 

by PDEM is much smaller than that required by 

MCS. Take Case 2 for further illustration. The 

time elapsed by PDEM-ETDM is just 1,567 s 

(26.1 min), while the time elapsed by the PDEM 

in conjunction with the traditional nonlinear 

analysis method (TNAM), which can be termed 

as PDEM-TNAM, is up to 746,496 s (8.64 d), as 

presented in Table 4. The high efficiency of the 

present approach is owing to the fact that the 

average time spent on each nonlinear time-

history analysis by ETDM is only 1.8 s, while 

that by TNAM is around 864 s (14.4 min). For 

seismic reliability analysis of such a large-scale 

engineering problem involving nonlinear 

structural behaviors, the elapsed time of less than 

30 minutes is relatively short and can be 

accepted in practical application, indicating the 

feasibility of the proposed approach. 

Table 4: Comparison of elapsed time by different 

seismic reliability analysis methods (Case 2). 

Method Elapsed time (s)  

PDEM-ETDM 1,567 

PDEM-TNAM 746,496 

6. CONCLUSIONS 

A hybrid approach, termed as PDEM-ETDM, 

has been proposed for seismic reliability analysis 

of large-scale energy-dissipation structures with 

uncertain parameters of nonlinear energy-

dissipation devices subjected to random seismic 

excitations. The ETDM with dimension-reduced 

iteration scheme is used to conduct the high-

efficient nonlinear time-history analyses 

embedded in the solution process of PDEM, 

which leads to a significant reduction of 

computational cost for PDEM. The proposed 

approach is successfully applied to the seismic 

reliability analysis of a suspension bridge with 

nonlinear viscous dampers, indicating the 

feasibility of the proposed approach to 

engineering problems. 
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