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ABSTRACT: In this paper, a recursive Bayesian-filtering technique is presented for the joint 

estimation of the state and input forces. By introducing new prior distributions for the input forces, the 

direct transmission of the input into the state is eliminated, which allows removing low-frequency error 

components from the predictions and estimations. Eliminating such errors is of practical significance to 

the emerging fatigue monitoring methodologies. Furthermore, this new technique does not require a 

priori knowledge of the input covariance matrix and provides a powerful method to update the noise 

covariance matrices in a real-time manner. The performance of this algorithm is demonstrated using 

one numerical example and compared it with the state-of-the-art algorithms. Contrary to the present 

methods which often produce unreliable and inaccurate estimations, the proposed method provides 

remarkably accurate estimations for both the state and input. 

 

1. INTRODUCTION 

Real-time estimation of the state in linear time-

invariant (LTI) dynamical systems is a relatively 

well-addressed topic. The Kalman filter (KF) 

provides optimal solutions for the estimation of 

the state when the process and observation noise 

are both Gaussian, and the input forces are 

known (Anderson and Moore 1979). In practice, 

however, it is often the case that the input forces 

are unknown as well. This requires estimating 

the state and input forces simultaneously. Gillijns 

and De Moor (2007) proposed an optimal filter 

in the unbiased minimum-variance sense for the 

joint estimation of the state and input adopting a 

two-stage algorithm. Lourens et al. (2012) 

developed it further for modally-reduced 

dynamical models. This filter is often referred to 

as GDF (Eftekhar Azam et al. 2015). Another 

approach is to use a first-order random walk 

model to describe the variation of input forces 

over time. Then, an augmented state vector 

comprising both the state and input can be 

constructed, to which the original formulation of 

the KF can be applied (Lourens et al. (2012b). 

Therefore, this filter is regarded to as augmented 

Kalman filter (AKF). However, both GDF and 

AKF are extremely error-prone working only 

under certain conditions. These conditions can be 

categorized into observability, controllability, 
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direct inevitability, stability, and uniqueness of 

estimations discussed in Maes et al. (2015). 

However, it has been evidenced that the 

estimations of the state and input produced by 

both GDF and AKF are contaminated with low-

frequency drift components, even if such 

conditions are met. Naets et al. (2015) have 

shown that the drift can be reduced by using 

dummy displacement/strain measurements in 

addition to acceleration responses. Eftekhar 

Azam et al. (2015) demonstrated that the drift 

problem originates from the double-integration 

of noisy acceleration response measurements and 

have proposed a dual Kalman filter (DKF) 

method for the simultaneous estimation of the 

state and input forces. They indicated that the 

drift problem could be diminished if the 

covariance matrix of the input forces is 

calibrated very well by using L-curve methods. 

However, such calibration methods cannot be 

applied in an online manner, and the 

performance of the DKF can be influenced when 

the characteristics of the input forces vary 

considerably. 

In this paper, a recursive Bayesian filter is 

presented for the joint estimation of the state and 

input forces. This algorithm does not require 

knowing the covariance matrix of the input. It 

also updates the noise covariance matrices 

sequentially. The performance of this algorithm 

is demonstrated using one numerical example 

and compared with the AKF, GDF, and DKF. 

2. STATE-SPACE STOCHASTIC MODEL 

The discrete-time state-space representation of 

linear-time invariant dynamical systems can be 

expressed as (Anderson and Moore 1979): 

 
1k k k k   z Az Bp v  (1) 

where kz  denotes the state vector comprising the 

displacement and velocity of all degrees-of-

freedom, kp  is the input force, A  is the system 

matrix, B  is the input-to-state matrix, and kv  is 

process noise described using a zero-mean 

Gaussian distribution having covariance matrix 

kQ , i.e.  | ,k kN v 0 Q . Note that the sub-index k  

corresponds to discrete-time sample 
kt k t  , 

{0,1,..., }k n . The reader is referred to Chen 

(2003) for the definition of A  and B . 

Let 
kd  be the observation vector comprising 

discrete-time displacement, velocity, and 

acceleration measurements. This observation 

vector can be expressed as: 

 
k k k k  d Cz Dp w  (2) 

where matrices C  and D  are well-known in the 

context of joint input-state estimation methods 

can be found elsewhere (Eftekhar Azam et al. 

2015), and kw  is observation noise described 

using a zero-mean Gaussian distribution having 

covariance matrix kR , i.e.  | ,k kN v 0 R . 

3. SEQUENTIAL BAYESIAN APPROACH 

Given the characteristics of the process and 

observation models, we aim to estimate the state 

and input forces simultaneously using a 

sequential Bayesian approach. For this purpose, 

we use Gaussian conjugate distributions to 

establish a sequential relationship between the 

updating and estimating parameters such that the 

formulation can be implemented in a recursive 

non-iterative algorithm. In a recent study by the 

authors of this paper (Sedehi et al. 2018a,b), we 

have mathematically proved and proposed a new 

algorithm to handle this joint estimation 

problem. This novel Bayesian-filtering technique 

is outlined in Algorithm 1, offering several 

advantages over the existing algorithms 

summarized below: 

 It does involve using and calibrating an 

ad-hoc covariance matrix for the input 

forces, contrary to the DKF and AKF, 

which require doing so. This allows it to 

eliminate the adverse effects caused by 

using random walk models for describing 

the variation of input forces over time. 

 It offers to update the noise covariance 

matrices using a Bayesian updating 

paradigm, while the present methods 
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require tuning the covariance matrices at 

the very beginning. 

 The correlation of the state and input 

forces is fully considered, whereas the 

DKF totally neglects it. 

 The direct transmission of the input into 

the state required for estimating the input 

of the next step is entirely eliminated. 

This new formulation removes the 

adverse effects caused by the erroneous 

input estimations obtained at the 

preceding steps. 

 
Algorithm 1: Bayesian estimation of the state and 

input in dynamical systems. 

Set initial estimations for 

 
1|0z ,

1|0z , 
1|0

zP , 
1|0

pP , 
1|0

zP
P , 0Σ , 0Ω , 0 , and 0  

 

For time steps k = 1 : n 

1- Kalman gain of the input 
1

| 1 | 1 1
ˆ( )p p T p T

k k k k k k



   G P J JP J R
  

 

2-Input estimation 

| | 1( )p

k k k k k k p G d Gz  

 

3-Estimating the input covariance matrix  

| | 1 | 1 | 1

p p p z T p p p

k k k k k k k k k k k    P P G GP G G G JP
 

 

4- Kalman gain of the state 
1

| 1 | 1 1
ˆ( )z z T z T

k k k k k k



   G P G GP G R
 

 

5-State estimation 

| | 1 | 1 |( )z

k k k k k k k k k k    z z G d Gz Jp  

 

6-Estimating the state covariance matrix  

| | 1 | 1 | 1

z z z P T z p z

k k k k k k k k k k k    P P G JP J G G GP  

 

7-Estimating the correlation between the 

state and input 

| |

zp z p

k k k k k P G JP
 

 

8-Updating the covariance matrix of 

observation noise 

 

 

1 | |

| |        

k k k k k k k

T

k k k k k

    

 

Σ Σ d Gz Jp

d Gz Jp
 

1 1k k   
 

 0
ˆ / 1k k k N  R Σ

 
 

9-Updating the covariance matrix of process 

noise 

 

 

1 | 1| 1 1| 1

| 1| 1 1| 1         

k k k k k k k k

T

k k k k k k

    

   

    

 

Ω Ω z Az Bp

z Az Bp
 

1 1k k   
 

 ˆ / 2 1k k k dN  Q Ω
 

 

10-Prediction of the state without 

feedthrough of the input 

1| |k k k k z Az  

 

11-Prediction of the state with feedthrough of 

the input 

1| | |k k k k k k  z Az Bp  

 

12-Prediction of the input covariance matrix 

1| |

p p

k k k k P P  

 

13-Prediction of the state covariance matrix 

1| | | |

|
ˆ        

z z T p T zP T

k k k k k k k k

zPT T

k k k

   

 

P AP A BP B AP B

BP A Q
 

End For 

 

In the next section, we use a numerical 

example to demonstrate the proposed method 

and compare it with the GDF, AKF, and DKF. 
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4. ILLUSTRATIVE EXAMPLE 

Figure 1 shows the four degrees-of-freedom 

(DOF) dynamical system selected to demonstrate 

the proposed method. The mass matrix is a 4×4 

identity matrix. The stiffness of springs is 

assumed to be 1kN/m. The damping mechanism 

is considered to be viscous having 1N.s/m 

damping coefficient.  Given these assumptions, 

the state-space model can be constructed based 

on Eqs. (1) and (2). 

 

 
Figure 1: 4-DOF dynamical system considered for 

the joint input-state estimation. 

 

External force ( )p t  is applied to the fourth 

DOF. A Gaussian white noise (GWN) process 

and an impulse force are considered as the 

applied forces acting on the 4
th

 DOF. The 

loadings are considered to be discrete-time 

functions sampled at intervals of 0.001s given 

by: 

 
. . .

( ) ~ (0,10)   N
i i d

p t N  (3) 

  ( ) 5 ( 1) ( 1.01)   Np t u t u t     (4) 

where ( )u t  denotes unit step function; (0,10)N  

is a Gaussian distribution with mean 0 and 

standard deviation 10N. Acceleration time-

history responses of the 2
nd

 and 4
th

 DOF are 

considered as the measurements. This 

measurement selection falls within the category 

of collocated sensing owing to performing the 

acceleration measurement at the location of the 

applied loadings. Zero-mean GWN process 

having the standard deviation equal to 1% of the 

root-mean-square of the noise-free acceleration 

response is added to the response to account for 

the measurement noise.  

In both cases of the input forces, the initial 

values 
1|0z ,

1|0z , 
1|0

zP , 
1|0

pP , 0 , 0 , and 
1|0

zP
P  are all 

set to zero. The parameters 0Σ  and 0Ω  are 

considered to identity matrices of appropriate 

dimensions. 

4.1. Gaussian input force 

The GWN force expressed by Eq. (3) is applied 

to the 4
th

 DOF. Figure 2(a) shows estimations of 

the input force compared with the actual values. 

As shown, the proposed method provides 

reasonable estimations of the applied force. 

Figure 2(b) compares the errors produced by the 

GDF, AKF, DKF and the proposed method when 

they are used to predict the input force. It can be 

seen that the proposed method outperforms the 

other three methods, produced the smallest 

errors. However, both the AKF and GDF diverge 

and the DKF is involved with large estimation 

errors. 

 

 
Figure 2: (a) estimation of the input force compared 

with the actual values (b) input prediction errors 

produced by the AKF, GDF, DKF, and the proposed 

method 

 

Figure 3(a-b) shows the predictions of the 

displacement and velocity time-history responses 

corresponding to the 1
st
 DOF obtained by using 

the proposed method. The accuracy of 

predictions is excellent, and the predicted 

response is free of low-frequency drift 

components. The response predictions 

corresponding to t<1s seem somewhat 

inaccurate, which is attributed to the 

m
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convergence in estimating the noise covariance 

matrices. 

Figure 4(a-b) compares the prediction errors 

produced by the four methods used for capturing 

the actual responses. As indicated, the proposed 

method gives the smallest errors, while the AKF 

and GDF entirely diverge, and the DKF produces 

extremely large errors. Similar observations were 

made for all other DOF confirming the efficacy 

of the proposed method. 

 

 
Figure 3: predictions of the 1

st
 DOF time-history 

responses (a) displacement response (b) velocity 

response. 

 

 
Figure 4: prediction errors produced by the AKF, 

GDF, DKF, and the proposed method in estimating 

(a) the displacement response of the 1st DOF (b) the 

velocity response of the 1st DOF. 

 

Updating the noise covariance matrices is 

performed using the proposed algorithm. Figure 

5 represents the convergence of the elements of 

covariance matrices to constant values. This 

remarkable stability and convergence achieved in 

estimating the covariance matrices broaden a 

new horizon to the state-input estimation 

problems. 

 

 
Figure 5: online update of the noise covariance 

matrices (
1w  and 

2w  denote the measurement noise 

standard deviation corresponding to the 1st DOF and 

2nd DOF acceleration responses, respectively; 
4x  is 

the standard deviation of the 4th DOF displacement 

response; 
8x  is the standard deviation of the 4th 

DOF velocity response). 

4.2. Impulse force 

The impulse function expressed by Eq. (4) is 

applied to the 4
th

 DOF. Figure 6(a) shows the 

estimated input forces by using the proposed 

algorithm compared with the actual values, and 

Figure 6(b) compares the prediction errors of the 

four methods. As can be seen, the proposed 

method produces the smallest errors in predicting 

the actual input force.  
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Figure 6: (a) estimation of the input force compared 

with the actual values (b) prediction errors produced 

by the AKF, GDF, DKF, and the proposed method. 

 

Predictions of the displacement and velocity 

time-history responses corresponding to the 1
st
 

DOF are made by the proposed method. The 

results are shown in Figure 7(a-b) representing 

perfect accuracy in predictions of the state at an 

unmeasured DOF. 

 

 
Figure 7: predictions of the 1st DOF time-history 

responses (a) displacement response (b) velocity 

response 

 

 
Figure 8: prediction errors produced by the AKF, 

GDF, DKF, and the proposed method in predicting 

(a) the displacement response of the 1st DOF (b) the 

velocity response of the 1st DOF 

 

Prediction errors of the displacement and 

velocity responses are compared in Figure 8(a-b) 

to put the four methods into perspective. The 

results suggest that the proposed method greatly 

outperforms the other three methods. Moreover, 

estimations of the state and input are both free of 

low-frequency drift components. Resolving this 

drift problem shows promise for adopting this 

algorithm in the present fatigue prognosis 

methods in order to estimate fatigue damage 

accumulation and to predict the remaining 

fatigue life of critical system members. 

5. CONCLUSIONS 

A new Bayesian-filtering technique is presented 

for estimating the state and input, as well as 

updating the noise covariance matrices. A 

numerical example is selected to demonstrate the 

method and to compare it with three state-of-the-

art methods. It is observed that the proposed 

method outperforms them in terms of the 

stability of estimations made for the state and 

input. While the three methods give unreliable 

estimations contaminated with large low-

frequency error components, the offered method 

provides great accuracy without any drift in 

results. Eliminating this significant drawback 

appearing in the outcome of the present joint 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 

Seoul, South Korea, May 26-30, 2019 

 7 

input-state estimation methods has significance 

in the fatigue monitoring methodologies.  
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