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ABSTRACT: In this paper it is attempted to highlight some problems of failure probability estimation in
high dimensions. These are the need to find structures and not only numbers, and the need for a solid
mathematical foundation by systematic testing. Then two new approaches for such problems are
introduced, the onion method and the BMM concept

1. INTRODUCTION
Most articles about failure probability estimation

start more or less in the following way:
A basic problem in structural reliability is the

computation of failure probabilities:

P =
∫

g(x)≤ 0
f (x) dx (1)

Here f (x) is a PDF (probability density function)
and g(x) is an LSF (limit state function). Trans-
forming the random vector X into a standard nor-
mal random vector U with independents compo-
nents gives the standardized form:

P = (2π)−n/2
∫

g(u)≤ 0
exp
(
−|u|

2

2

)
du (2)

Our totally new and highly efficient algorithm . . .
Here it will be attempted to look at this problem

from a broader point of view.

2. A BROADER VIEW
In a more realistic setting the LSF in Eq. (2) de-

pends on a parameter vector θθθ . This parameter vec-
tor may contain distribution and design parameters
as well. So this equation should be written as:

P(θθθ) = (2π)−n/2
∫

g(u|θθθ)≤ 0
exp
(
−|u|

2

2

)
du (3)

It is important to notice that due to the transforma-
tion to the standard normal space the dependence
on parameters appears only now in the LSF, not in
the standardized PDF.

It should be clear that methods which produce
only estimates of the probability P(θθθ) are not very
informative. In fact everybody knows that almost
always there are so many uncertainties in the under-
lying probability distributions that the found values
are wrong anyway.

Therefore it makes more sense to see these prob-
abilities more in a operational sense. This means
to look at the relations between the results for dif-
ferent parameter values, i.e. to study the relations
between parameters and its failure probability val-
ues. This requires the calculation of partial deriva-
tives and sensitivities of the failure probabilities.
This can be done by differentiating the asymptotic
SORM approximations, by approximating the sur-
face (Papaioannou et al. (2018)) or by replacing the
surface integral by a domain integral using the di-
vergence theorem (Breitung (1994), p. 23, Breitung
(2012)).

This view leads then to a structuralist view of the
whole problem. This is explained in the next sec-
tion.

3. STRUCTURALISM
Some short words about structuralism to begin

with. Structuralism is a scientific methodology em-
phasizing the relations between the elements of the
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subject as main topic of the study, for a description
see Piaget (1971). In Rickart (1995) structuralism
is defined as a method of analyzing a body of infor-
mation with respect to its inherent structure.

Figure 1: Example of a system: A framework and some
potential structures

A system is any collection of interrelated objects
along with all of the potential structures that might
be identified with it, see Fig. 1. So, from a struc-
turalist point of view for structural reliability the
focus should be on studying the structure or con-
figuration of components leading to failure.

Whereas in considering structural reliability as
a forward mathematical problem, one concentrates
on finding probabilities, seeing it a structuralist
problem, one concentrates on analyzing the struc-
ture related to the failure events, i.e. one sees it
more as an inverse problem.

Two main concepts of structuralism are isomor-
phism and reduction. An isomorphism between
two structures consists of a one-to-one correspon-
dence between the elements of the two structures
such that the sets of objects from one structure are
related if, and only if, the corresponding objects
from the other structure are related also.

A simple example of isomorphic structures in re-
liability are all the reliability problems defined in
the original space which can be transformed into
the same failure domain in the standard normal
space using the transformation given in Rackwitz
and Fiessler (1977). The structures have all the
same failure probability.

A main topic is to find for a given structure sim-
pler substructures which retain in some way the
important information. This is called in Rickart
(1995) a reduction, a more appropriate name might
be projection. In reliability theory it might be nec-
essary to project the original structure on several

simpler substructures to get an easier to handle rep-
resentation of the original structure. Nowadays also
the term surrogate model is used in this context.

The FORM/SORM approach can be viewed as a
projection method. For arbitrary LSF’s g(u) having
a unique design point u∗ with |u∗| = β , the set of
all these LSF’s is an affine space of functions.

The functions in this set are projected onto:

1. FORM: the set of all linear functions with
g(u∗) = 0 by

g→ gL = ∇g(u∗)T (u−u∗) (4)

2. SORM: the set of all quadratic functions with
g(u∗) = 0 by

g→ gQ = ∇g(u∗)T (u−u∗)

+
1
2
(u−u∗)T

∇
2g(u∗)(u−u∗) (5)

These projections now define new failure domains.
So the problem of failure probability calculation is
reduced to a calculating it for a simpler substruc-
ture, i.e. the reliability problems defined by lin-
ear/quadratic functions.

A program for a more structuralist approach is
shown in the following Fig. 2. First to derive from
the space of the underlying variables a subspace
which contains the relevant variables and then to
build functional relations there.

4. ALGORITHMS: ATTEMPTS TO VALI-
DATE THEM

The algorithms developed for failure probabil-
ity estimation are mostly based on more heuristic
mathematical arguments. This is understandable,
since the given problems are often quite complex.
However on the other hand, the conclusions some
authors draw from this, that it is possible to validate
the correct performance of methods by examples, is
slightly problematic.

Basically there are two methods for validation.
One is a mathematical convergence proof. It shows
that under a set of reasonable conditions the algo-
rithm converges to the correct solution in "some
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(c) Building a functional model

Figure 2: A structuralist program for reliability

sense". An example is the SORM approach (Brei-
tung (1994)). Here it is shown that the approxima-
tions derived with SORM are asymptotic approxi-
mations. This means that for β → ∞ the relative
error goes to zero.

The second possibility is systematic testing of the
procedure. In most cases this is the only possible
way. In Bartz-Beielstein et al. (2010) this is out-
lined in more detail. It is important to distinguish
systematic testing from accumulating just a heap of
examples. The fact that a method works for hun-
dreds of examples can be very misleading if the ex-
amples are all more or less constructed in a simi-
lar way so that the algorithm will produce a satis-
factory result. This is then a case of self-fulfilling
prophecy.

Often the validation of an algorithm in a paper is

done in the following way. First two or three toy
examples are calculated where the results are obvi-
ous anyway. In these cases one can still see what is
happening. Then to demonstrate the power of the
proposed procedure, two or three very complex ex-
amples are studied. These are in general "dark ex-
amples" ( the author just invented this word). With
this he means that one cannot see what is going on
during the computations. There is given a correct
failure probability found by a Monte Carlo run and
then the algorithm produces a result near this value.
No further explanations given.

But here are some problems. First, is the Monte
Carlo result correct at all? Second, how does the
algorithm find the result? Maybe it is only a coinci-
dence that it ended near the correct point? Or were
it simply lucky random numbers?

It does not help that it is claimed in many cases
that the simple examples show that the algorithm
works and then the dark examples that this can be
generalized to complex structures.

To make meaningful investigations of the perfor-
mance of such numerical procedures it is neces-
sary to construct complex examples depending on
parameters where an analytic or an easily accessi-
ble numerical solution is given. These examples
should then be studied for systematically varied pa-
rameter values to test the behavior of the programs
under consideration. Certainly this requires more
time and a deeper mathematical understanding than
many researcher will or can invest. But only so one
can obtain reliable statements. This is important
especially now when one studies high dimensional
structures where intuitive interpretations and gener-
alization can be misleading.

Now a graphical illustration on the problematic
use of examples. Let the cube in Fig. 3a denote a
set of problems for which a solution algorithm has
to be found. For one algorithm maybe a mathe-
matical proof can be found; it shows that the algo-
rithm converges in the sphere shown in Fig. 3b. For
another algorithm working with examples only one
can show that it work for the examples in the cen-
ters of the green spheres and concludes that it will
work also for cases in the neighborhood, i.e. the
green spheres, see Fig. 3c. But if only in a non-
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systematic way examples are collected, it might be
that all examples share a hidden joint property, see
Fig. 3d the grey surface. Then in fact it can be as-
sumed only that the algorithm works on the surface
where the problem cases have this hidden property
too, see Fig. 3e.

(a) Underlying problem

(b) Mathematical proof for an algorithm

(c) Examples

(d) Grey surface= Hidden joint property of examples

(e) Real region of validity of examples

Figure 3: Validation of an algorithm

5. SUBSET SIMULATION
A quite popular approach to find failure probabil-

ities in high dimensional spaces is the subset sim-
ulation method, a variant of Monte Carlo methods
which tries to avoid the large amount of data points
which has to be created in standard Monte Carlo by
an iterative procedure. The basic idea of the method
(see Au and Wang (2014)) is to write the failure
probability Pr(F) as a product of conditional prob-
abilities

Pr(Fn) = Pr(F1|F0) ·Pr(F2|F1) . . . ·Pr(Fn|Fn−1)

=
n−1

∏
k=0

Pr(Fk+1|Fk) (6)

with RRRn = F0 ⊃ F1 ⊃ F2 ⊃ . . . ⊃ Fn = F . Usually
these sets are defined by a sequence of levels for
the LSF G(u) in the form F1 = {g(u) < c1},F2 =
{g(u) < c2} . . . ,Fn = {g(u) < 0} with c1 > c2 >
.. . > 0 = cn. Since the respective (suitably cho-
sen) conditional probabilities are relatively large
compared with the probability Pr(Fn) which should
be estimated, such an approach has the advantage
that these conditional probabilities can be estimated
more efficiently with smaller sample sizes. The de-
tails how these samples are produced using Monte
Carlo Markov Chains can be found in the reference
above. This concept is an iterated extrapolation
starting from an initial probability estimate P̂r(F1)
and then iterating towards the failure domain.

There are three main flaws in this method:

1. the values of the LSF inside the beta sphere
are irrelevant for the calculation of the fail-
ure probability. So the sequentially calculated
probability integrals are not necessary for the
failure probability estimation.

2. the method might not find the relevant design
points, see Breitung (2019).

3. the concept produces only numbers no struc-
tural relations as design points and alpha fac-
tors.

An analysis of some mathematical aspects of this
approach can be found in Breitung (2018).
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6. THE BETA SPHERE
Returning now to the original problem in the

standard normal space, with the help of asymptotic
analysis some basic results about the structure of
the problem can be found.

The concept of the beta sphere seems to be to
introduced by Grooteman(2008). Let be defined fro
t > 0 the centered spheres:

S(t) = {u; |u|= t} (7)

and let β be defined by

β = min{t > 0; min
u∈S(t)

g(u)≤ 0} (8)

Then the beta sphere is defined as S(β ). It is obvi-
ous that the values of the LSF inside the beta sphere
are irrelevant for the calculation of the failure prob-
ability.

The conclusion is that therefore one has to find
the beta sphere in a first step; then starting from the
surface on this sphere one has to find more precise
estimates of the failure probability. From the defi-
nition of S(β ) one gets the following upper bound:

Pr(g(U))≤ 0)≤ Pr(|U| ≥ β ) = 1−χn(β
2) (9)

with χn(.) the chi-square distribution with n degrees
of freedom.

The second step is then to make a more precise
estimate of the conditional probability

Pr(g(U)≤ 0)
∣∣ | |U| ≥ β ) (10)

It will now be shown that the main probability mass
in the failure domain outside the beta sphere is con-
centrated near it. To derive the conditional distri-
bution in Eq. 10 results from Olver et al. (2017),
chap. 8.2, are used. For the n-dimensional standard
normal random vector U one has

Pr
(
|U|2 > β

2)
∝ β

n−2 exp(−β/2), β → ∞ (11)

This gives then for d > 0 neglecting the lower order
terms:

Pr(|U|2 >(β +d)2 ∣∣ |U|2>β
2)∝e−β ·d (12)

This demonstrates that if the beta sphere for a re-
liability problem defined by a LSF g(u) has been

determined, in high dimensions and for small prob-
abilities the most probability weight of the distribu-
tion outside of the sphere is concentrated on a shell
around it. In Breitung (1994) more precise results
for the distribution in the failure domain were de-
rived.

For this second step there are different possibili-
ties. One can use different Monte Carlo approaches
or asymptotic approximation methods.

7. THE ONION METHOD
To find the beta sphere one has to locate the de-

sign points, i.e. the points with

|u∗|= min
g(u)≤0

|u|. (13)

In the original FORM/SORM concept the design
point is determined by solving the Lagrangian sys-
tem:

u+λ∇g(u) = 0
g(u) = 0 (14)

Now, instead one searches the extrema of the LSF
on a centered sphere with radius γ in an iterative
way

∇g(u)+µu = 0
|u|2− γ

2 = 0 (15)

This is done in the following scheme:

1. choose an initial estimate β̂ ,

2. Start the algorithm from the sphere Sn(β̂ ),

3. minimize the LSF on this sphere Sn(β̂ ),

4. by extrapolation find from the minimum a new
approximation value β̂ for the beta sphere (see
Fig. 4).

5. return to step 2) if convergence has not yet be
reached.

The second step can be made simpler with stere-
ographic projection. In complex analysis the Rie-
mann sphere is used to project all points lying in
the complex plane onto the unit sphere S3 in RRR3 de-
fined by S3 = {(x,y,z);x2 + y2 + z2 = 1}. But the
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inverse of this projection can be used to project the
points on this sphere — with the exception of the
north pole (0,0,1) — onto the complex plane.

This projection method can be generalized to
n dimensions. This gives a projection of the
n-dimensional unit sphere onto the (n − 1)n-
dimensional plane RRRn−1 (see Fig. 5). For a given
point x = (x1, . . . ,xn) on the unit sphere Sn = {x ∈
RRRn; |x|= 1} the stereographic projection on a point
X=(X1, . . . ,Xn−1) in the (n−1)-dimensional plane
is given by

Xi =
xi

1− xn
(16)

The inverse of this projection is from the plane onto
the sphere given by

xi =
2Xi

S2 +1
, xn =

S2−1
S2 +1

(17)

with S2 = ∑
n−1
j=1 X2

i .

Figure 4: The onion method: one step

Using now these transformations it is possible to
replace a constrained minimization problem on the
unit sphere Sn by an unconstrained minimization
problem in the (n−1)-dimensional space. Depend-
ing on the location of the iteration points the pro-
jection should be switched to a projection from the
south pole if necessary.

8. THE BMM CONCEPT
Now, another method for calculating failure

probabilities will be described shortly. It avoids the

Figure 5: Stereographic projection of a circle

pitfalls of SuS, but seems to be more efficient, at
least at the first glance.

Let ϕn(u) = (2π)n/2 exp(−|u|2/2) denote the n-
dimensional standard normal density. For a given
failure domain F = {g(x)< 0} one can write

P(F) =
∫

g(x)<0

ϕn(x) dx =

Making the substitution x 7→ u = β−1x yields

= β
n

∫
g(βu)<0

ϕn(βu) du (18)

This can be split up into the product of two normal
densities. Neglecting the integration constants, one
gets

∝

∫
g(βu)<0

ϕn(
√

β 2−1 ·u) ·ϕn(u) du (19)

Multiplying nominator and denominator by P(1) =
Pr(g(βU)< 0) yields

∝ P(1)
∫

g(βu)<0

ϕn(
√

β 2−1 ·u)
[

ϕn(u)
P(1)

]
du (20)

Given the probability measure π(u) with Radon-
Nikodym derivative ϕn(u)1{g(βu)<0}/P(1) with re-
spect to the Lebesgue measure on the set g(βu)< 0
the term in the square brackets can be interpreted as
this derivative. So this can be written as

∝

∫
g(βu)<0

ϕn(
√

β 2−1 ·u) π(du) (21)
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Now, if one has a set of (maybe dependent) data
points in the domain {g(βu) < 0} having this sta-
tionary probability distribution π(du), the integral
above can be estimated by the MC method. This
can be done by running MCMC algorithms having
π(u) as stationary distribution. This leads to the
following approximation method for failure proba-
bilities.

1. Calculate the reliability index β =
ming(u)=0 |u|.

2. Run an MC estimate of the probability content
of the set {g(βu)< 0} under the standard nor-
mal distribution; i.e. produce a sample of k1
points with an n-dimensional standard normal
distribution and estimate the probability by the
percentage of points in this set. The estimate
will be denoted by P̂(1). In the MC data de-
note the set of all the points u with g(βu)< 0
by S.

3. From the data points in the set S take
k points u0

1, . . . ,u
0
k . Run for each of

these points an MCMC with length nc hav-
ing the stationary distribution with density
ϕn(u)1{g(βu)<0}/P(1), see Fig. 6. Denote the
set of all these points including the starting
points by S1.

4. Calculate:

I(β ) = k−1
s

ks

∑
i=1

ϕn(
√

β 2−1 ·ui). (22)

Here ks = nc · k and S1 = {u1, . . . ,uks} is the
set of all the points produced by the Markov
chains in step 3) including the starting points.

5. Estimate P(F) by

P̂(F) = β
n(2π)n/2P̂(1)I(β ) (23)

Here the integers k1,k2 and nc have to be chosen
appropriately. For the third step it is important to
note that in this case the starting points have already
the stationary distribution, since they come from an
MC run. If points are produced by MCMC methods

Figure 6: The stationary distribution in {g(βu)< 0}

as in the further steps of the SuS concept, this is not
always the case as outlined in Breitung (2018).

For the MCMC step it appears to be useful to use
an algorithm which works well also for high dimen-
sions. Appropriate seems to be the preconditioned
Crank-Nicolson algorithm (see Wikipedia contrib-
utors (2019)), proposed first in Neal (1999) and in
Cotter et al. (2013). Later it was used in SuS by
Papaioannou et al. (2015).

This approach can be generalized to non-normal
probability densities. Consider a standardized and
centered n-dimensional random distribution. Then
one takes λ =ming(u)=0 |u| instead of the reliability
index and modifies the following steps accordingly.

This approach can be modified by varying the pa-
rameter for the uniform scaling and by trying to op-
timize the MCMC runs in the second step.

Since the trick with splitting the integrand re-
minds of the famous Münchhausen maneuver
of pulling himself out of the mud, the author
named this approch BMM (Breitung’s Münch-
hausen Method).

Certainly there will be cases where this is no op-
timal and critics will soon point out those; how-
ever it seems — at least at the first look — that this
method is more efficient and not so prone to errors
appearing in the sequential approach of SuS.

9. CONCLUSIONS
This is only an attempt to try to look at the prob-

lem of faulure probability calculation from different
viewpoints and an appeal to experiment with vari-
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ous methods and concepts. Here two new concepts
were outlined, the onion and the BMM approach.

Since science is — as Feyerabend (1993) says
— in principle an anarchistic enterprise. And as he
said also, all methodologies have their limits even
the most obvious ones. What should be done is —
as proposed in Bartz-Beielstein et al. (2010) — a
systematic testing of various methods
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