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ABSTRACT: The growing interest in applying probabilistic performance-based design to wind excited
structural systems has increased the need for models capable of efficiently estimating the inelastic
responses of these systems. This paper outlines the development of such a model that combines the
theory of dynamic shakedown with distributed plasticity and simulation methods, providing a
framework for estimating any system-level probabilistic performance metric of interest. The potential of
the proposed framework is illustrated on a full scale three dimensional building.

1. INTRODUCTION
Performance assessment in wind engineering is
going through a period of significant change
with performance-based design becoming ever
more prevalent. Various system-level frame-
works that estimate performance in terms of prob-
abilistic measures that are consistent with the
needs of decision-makers have been proposed
(Ciampoli et al., 2011; Spence and Kareem, 2014;
Chuang and Spence, 2017). These frameworks,
however, were developed within the setting of elas-
tic systems. Integration of methods that enable
the inelastic response of the structural system to
be considered in the performance estimations are
lacking. This can be traced back to the significant
computational and theoretical challenges inherent
to modeling the long duration inelastic response
of wind-excited systems for which complex fail-
ure mechanisms can occur (e.g. low-cycle fatigue
failure in the across-wind direction, or ratcheting
in the along-wind direction). The need to propa-
gate uncertainties through the system in order to

estimate probabilistic performance metrics further
complicates the problem.

Recently, a framework for treating this prob-
lem based on recent advances in probabilistic dy-
namic shakedown theory was proposed, thereby en-
abling the inelastic response of the structural sys-
tem to be considered in the performance estima-
tions (Chuang and Spence, 2019a). Finite element
models for the inelastic response can be divided
into two categories: concentrated plasticity and dis-
tributed plasticity. In the framework outlined in
(Chuang and Spence, 2019a), the inelastic response
of the system is modeled under the assumption of
concentrated plasticity through the theory of plas-
ticity with the state of dynamic shakedown iden-
tified as a desirable performance objective. In-
deed, this state ensures the safety of the system
against both the aforementioned collapse mecha-
nisms. Models are introduced for efficiently esti-
mating not only the state of dynamic shakedown
for a given wind load trace but also the plastic
strains and deformations occurring at shakedown.
This is achieved through the development of path-
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following algorithms that only require the estima-
tion of the steady-state purely elastic response of
the system. This enables inelastic responses to be
efficiently estimated for any given load trace there-
fore allowing simulation models to be directly ap-
plied for propagating uncertainty through the sys-
tem and consequently estimating any system-level
probabilistic performance metric of interest.

This work is focused on extending this frame-
work to a distributed plasticity setting with the aim
of overcoming the limitations associated with con-
centrated plasticity models (Spacone et al., 1996;
Spacone and El-Tawil, 2004). In particular, the dy-
namic shakedown problem is reformulated within
the setting of section-based distributed plasticity
and then integrated into the space of probabilis-
tic performance-based wind engineering. To illus-
trate the framework, a case study of a full scale 3D
building subject to wind-tunnel informed stochastic
loads is presented.

2. PROBLEM SETTING
The performance of a wind excited system can be
expressed in terms of a set of probabilistic deci-
sion variables (DV s) of interest, e.g. repair time and
repair cost, which consider both collapse and non-
collapse scenarios, as follows (Chuang and Spence,
2017):

P(DV > dv|im) =P(DV > dv|NC, im)P(NC|im)

+P(DV > dv|C, im)P(C|im)
(1)

where dv is a decision variable threshold of in-
terest; im is an intensity measure; P(NC|im) and
P(C|im) are respectively the conditional proba-
bilities of non-collapse (NC) and collapse (C) of
the structural system given the intensity im; while
P(DV > dv|NC, im) and P(DV > dv|C, im) are the
corresponding conditional exceedance probabilities
of dv. The estimation of the system-level perfor-
mance therefore requires a full description of fail-
ure as well as an efficient approach for modeling
the inelastic behavior of the system.

In general, a building can be identified as col-
lapsed under the following failure scenarios: (1)
low cycle fatigue, instantaneous plastic collapse,
or ratcheting; (2) excessive plastic deformations.

Recently, a strain-driven approach based on the
dynamic shakedown theory has been proposed
to rapidly identify failures due to both scenar-
ios under the assumption of concentrated plasticity
(Chuang and Spence, 2019a). To further account
for the spread of plasticity along the element, this
paper presents development of the approach within
the context of distributed plasticity.

3. DYNAMIC SHAKEDOWN FRAME-
WORK

To model the distribution of plasticity along each
element of a structure experiencing inelastic be-
havior, the members composing the structural sys-
tem are modeled through a fiber-based framework.
This section firstly presents the displacement-based
(DB) fiber formulation used in this work and
then the corresponding dynamic shakedown model
based on the DB formulation.

3.1. Mechanical model
The formulation considered in this work is
based on Euler-Bernoulli beam theory with three-
dimensional (3D) displacement field described by:

vn(x) =
[
u(x) v(x) w(x)

]T (2)

where u(x), v(x) and w(x) are respectively displace-
ments in the x, y and z-direction for the nth element,
as shown in Figure 1. The section deformation vec-
tor, which contains the axial strain εx(x) and curva-
tures κz(x) and κy(x), is given by:

dn(x) =
[
εx(x) κz(x) κy(x)

]T

=

[
∂u(x)

∂x
∂ 2v(x)

∂x2 −∂ 2w(x)
∂x2

]T (3)

The corresponding section forces Dn(x) =[
Nx(x) Mz(x) My(x)

]T can be defined through
section constitutive relation as follows:

Dn(x) = ksn(x)dn(x) (4)

where Nx(x), Mz(x) and My(x) are respectively the
axial force and bending moments in local z and y di-
rections; while ksn(x) is the section stiffness matrix,
which can be derived from a fiber discretization of
the cross section.
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Figure 1: Displacements, section forces and deforma-
tions for a three-dimensional beam-column element.

The DB stiffness method follows the standard fi-
nite element approach, in which the displacement
field of the element is expressed by the nodal dis-
placements through appropriate interpolation func-
tions. The most commonly used functions for
beam-column elements are linear Lagrangian inter-
polation functions for the axial displacements and
cubic Hermitian polynomials for the lateral transla-
tions and rotations. The degrees of freedom at each
node are three displacements and two rotations for
a 3D beam-column element. The response in tor-
sion is assumed linear elastic and uncoupled from
the axial and flexural response. The displacement
field along the axis of the nth element, vn(x), can
then be related to nodal displacements through the
following expression:

vn(x) = Nn(x)qn (5)

where qn is the vector collecting nodal displace-
ments and rotations at the element ends in the local
coordinate system while Nn(x) is a matrix collect-
ing the interpolation functions for all nodal degrees
of freedom.

The section deformations dn(x) are then related
to the nodal displacements qn, as follows:

dn(x) = Bn(x)qn (6)

where Bn(x) is the strain-deformation matrix con-
taining the first derivative of the axial displacement
interpolating function and the second derivatives of
the transverse displacement interpolating functions.

Since the displacement field is approximate,
several displacement-based elements are required
along the length of a member to represent the de-
formations. From the principle of virtual displace-
ments, the element force vector Qn, i.e. nodal

forces at element ends, can be expressed in the fol-
lowing form based on equilibrium:

Qn =
∫ Ln

0
BT

n (x)Dn(x)dx (7)

with Ln the length of the nth element. The corre-
sponding element stiffness matrix ken , defined as
the derivative of the element force with respect to
the element displacement, can then be formulated
in terms of the section stiffness, as follows:

ken =
∂Qn

∂qn
=

∫ Ln

0
BT

n (x)ksn(x)Bn(x)dx (8)

Numerical quadrature, such as Gauss-Legendre
quadrature, can then be adopted for the evaluation
of the integrals involved in Eqs. (7) and (8). The
elastic stiffness matrix K for the overall system can
then be obtained by standard assembly over all nb
element:

K = ∑
nb

A (ken) (9)

3.2. Dynamic shakedown with distributed plastic-
ity

Dynamic shakedown is defined as a state in which
an elastoplastic structure will eventually respond
elastically after a finite amount of plastic deforma-
tion, which separates the safe state from collapses
due to the aforementioned first failure scenario
(Polizzotto et al., 1993). Under the assumption of a
periodic and infinite duration dynamic load, a nec-
essary and sufficient condition for an elastic per-
fectly plastic (EPP) structure to shakedown is that
the sum of the steady state elastic stresses in [0,T ]
(where T is the period of the load) and a time-
independent self-equilibrated stress field lies within
the elastic domain of the structure (Tabbuso et al.,
2016; Chuang and Spence, 2017).

To account for the distributed plasticity along the
element, this condition can be formulated in terms
of the section forces along the element or, in a more
sophisticated formulation, the fiber stresses at each
section (Chuang and Spence, 2019b). In this pa-
per, application to structural systems modeled with
displacement-based beam-column elements was in-
vestigated with each section assumed to follow an
EPP constitutive relation. Under this assumption,
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the structure will shakedown if the following con-
dition holds for all sections of the structure:

ÑT
ni
(
DEs

ni (x, t)+Dr
ni(x)

)
−Rni ≤ 0, x ∈ [0,Ln]

(10)

where DEs
ni (t) is the purely elastic steady state sec-

tion forces of the ith section of the nth member due
to external loads, while Dr

ni(x) is a time independent
generalized self stress distribution; Ñni is the block
diagonal matrix collecting the unit external normals
to the piece-wise linear yield surfaces defining the
yield function of the section; while Rni is the plastic
resistance vector. The shakedown problem then be-
comes the identification of the existence of Dr

ni(x).
To this end, an amplification factor s of the exter-
nal loads is introduced. Two critical values of s are
of particular interest: (1) the elastic multiplier se,
indicating the maximum amount the external loads
can be amplified before at least one section yields;
and (2) the dynamic shakedown multiplier sp, iden-
tifying the maximum amplification that the external
loads can undergo before dynamic shakedown no
longer occurs, i.e. the conditions of Eq. (10) can no
longer be satisfied.

Within this context, the aim is to not only iden-
tify the two critical amplification factors but also
rapidly estimate the associated plastic deformation
at shakedown. The first goal can be achieved
through solving a linear programming problem
(LPP) of the type otlined in Chuang and Spence
(2019a). For structures that undergo plastic defor-
mations but shakedown, i.e. se < 1 and sp > 1,
the inelastic responses will be estimated through an
incremental strain-driven approach from s = se to
s = 1.

Starting from the elastic limit state, the incre-
mental approach estimates the inelastic responses
by assuming an increment in load factor ∆s and the
residual displacement ∆ur. From ∆ur the residual
section deformations dr

ni(x j) of the jth section of
the nth element can be obtained through the follow-
ing geometric transformation:

dr
ni(x j) = Bn(x j)Tn∆ur (11)

where Tn is the global to local coordinate transfor-
mation matrix of element n. The associated incre-
ment in section forces can be determined through

the following return mapping scheme:

∆Dr
ni(x j) = ∆DE

ni(x j)+∆Dp
ni(x j)

= ∆DE
ni(x j)−ksnid

p
ni(x j)

(12)

where ∆DE
ni(x j) = ksnid

r
ni(x j) is the elastic predic-

tor of ∆Dr
ni(x j); while dp

ni(x j) is the plastic part of
the deformation increment dr

ni(x j), which must sat-
isfy the associated flow rule as well as the loading-
unloading and consistency conditions. The re-
turn mapping scheme of Eq. (12) can be effi-
ciently solved through the resolution of the follow-
ing quadratic optimization problem:

min
∆Dp

ni(x j)

1
2

∆Dp
ni(x j)

T k−1
sni

∆Dp
ni(x j)

subject to

D̄ni(x j)
s = max

06t6T
ÑT

niD
Es
ni (x j, t)

sD̄ni(x j)
s + ÑT

ni∆Dr
ni(x j)−Rni 6 0

(13)

This optimization problem ensures the shakedown
feasibility condition of Eq. (10). To further satisfy
the self-equilibrated condition, the section general-
ized self stresses ∆Dr

ni(x j) are updated iteratively
until the resultant internal forces at each degree of
freedom of the system, which can be estimated fol-
lowing the DB element assumption, are equal to
zero, i.e.

Sr(∆s,∆ur) = 0 (14)

Details on the solution scheme of the iterative pro-
cess can be found in Chuang and Spence (2019a).
The process is carried out until s = 1, i.e. unam-
plified loads, is reached. At shakedown, in addition
to the generalized self stresses Dr

ni(x j) and residual
displacements ur, section plastic deformations can
also be evaluated as follows:

dp
ni(x j) = Bn(x j)Tnur −k−1

sni
Dr

ni(x j) (15)

3.3. Estimation of the collapse probability
The efficiency of the strain-driven dynamic shake-
down approach, which requires only the estima-
tion of the peak elastic responses in [0,T ], allows
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simulation models to be directly applied for prop-
agating uncertainty through the system and con-
sequently estimating any system-level probabilistic
performance metric of interest.

Within this context, a Monte-Carlo scheme is
adopted to estimate the system-level collapse prob-
ability P(C|im) with respect to the two failure sce-
narios defined in Section 2. For a wind storm of
intensity im = v̄y, the collapse probability P(C|v̄y)
is therefore estimated through the following expres-
sion:

P(C|v̄y) =
1
Ns

Ns

∑
i=1

I(i)C (v̄y) (16)

where Ns is the total number of samples used in the
simulation while I(i)C is an indicator function defin-
ing system-level failure within the context of dy-
namic shakedown or excessive plastic deformations
estimated from the strain-driven shakedown algo-
rithm.

4. CASE STUDY
4.1. Description
The simulation-based methodology presented
above is here applied to a full scale 3D case study.
Illustration of the 59-floor building of interest
and the lateral load resisting system are shown
in Figure 2. The lateral load resisting system
consists of a concrete core and an outrigger truss
connected at floors 38-40 that engages six outrigger
columns. The concrete core walls are connected
by coupling beams at the floor levels, while the
outrigger columns extend from the foundation to
the outrigger truss. The concrete core system is
composed of three cells from the foundation to
Level 18, two cells from Level 18 to 40, and one
cell from Level 40 to the roof. Each floor was
considered to act as a rigid floor diaphragm for
horizontal movements. Therefore, the floors could
move freely in the X- and Y -directions and rotate
about the Z-axis (indicated with uX , uY and θZ
respectively), giving the building a total of 177
degrees of freedom.

The material strengths considered in estimating
the steady state elastic response of the system are
summarized in Table 1. The Young’s modulus
of the concrete was calculated according to Ec =

57,000
√

f ′c, while the shear modulus was calcu-
lated using basic mechanics of materials with the
assumption that the Poisson ratio of the concrete
was 0.15.

(a) (b)

Figure 2: Rainier Square Tower: (a) Architectural and
structural system rendering of the building (Hilburg,
2018); (b) OpenSees finite element model.

Table 1: Summary of material properties.

Material Strength
Structural steel (wide flange) Fy = 50 ksi

Concrete (shear walls and
mega-columns) f ′c = 8 ksi

Reinforcing steel fy = 60 ksi

To implement the distributed dynamic shake-
down framework, the structure was modeled us-
ing DB beam-column elements. Gauss-Legendre
quadrature was adopted for all elements with five
integration points. To maintain continuity across
all elements along the height of the building, ad-
jacent wall elements were connected at each floor
using two-node rigid link connections. All cou-
pling beams were also connected to adjacent wall
elements using two node rigid link connections.

In addition to the mass of all elements and the
framing system, which consists of 2.5 inches of
normal-weight (145 pounds per cubic foot) con-
crete over 3-inch ribbed steel decking (490 pounds
per cubic foot), additional lumped mass equal to the
superimposed dead loads, summarized in Table 2,
was applied at the mass nodes, taken to be located
at the geometric centers of each floor.
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Table 2: Summary of the superimposed dead loading.

Use Superimposed Dead
Loading

Corridors and Stairs
(within core) 15 psf

Level 2 to 38 and Level 59 10 psf
Level 39 to 58 30 psf

Level 60 25 psf

Wind load histories of total length of T = 3600
s with wind direction randomly selected from α =
{10◦,20◦, ...,350◦,360◦} following a uniform dis-
tribution were simulated from a wind tunnel driven
stochastic model (Chuang and Spence, 2019a) for a
3-s gust wind speed, v̄3, at 33 ft height of 91 mph
(corresponding to a MRI of 300 years for Seattle).
In addition to the wind loads, gravity loads, includ-
ing the self-weight of the structure and the superim-
posed dead loads, were also considered in the anal-
yses. To estimate the steady state elastic response
of the system, the first five modes were considered
in the modal analysis with damping ratios of 5%.

To evaluate the inelastic response of the struc-
ture, EPP constitutive relationships were assumed
for each section. The associated yield domain was
approximated by piecewise linear yield surfaces.
In particular, the 26-surface yield domain proposed
in Malena and Casciaro (2008) was adopted for all
reinforced concrete sections while the AISC yield
surface (AISC 360-16, 2016) was used for the steel
sections. A general description of collapse, consid-
ering both non-shakedown and failure due to exces-
sive plastic deformations, was defined for estimat-
ing the conditional collapse probability P(C|v̄3) as
follows:

1. the inability of the structure to reach the state
of dynamic shakedown;

2. peak interstory drift ˜̂ur ≥ h/100;

3. permanent set ũr ≥ h/500;

where h is the interstory height between each floor
of the structure while the peak interstory drift ˜̂ur at
shakedown can be directly estimated as:

˜̂ur = max
0≤t≤T

[|ũ(t)+ ũr|] (17)

0 50 100 150 200 250 300 350

1

2

3

4

5

6

Figure 3: Mean values of the ratios sp/se for all wind
directions under 300 MRI wind loads.

with ũ(t) the purely elastic interstory drift response
at shakedown while ũr are the residual interstory
drifts estimated from the strain-driven shakedown
algorithm.

4.2. Results
Analyses were first carried out to estimate the plas-
tic reserve of the system in terms of the ratio be-
tween the plastic and elastic multipliers, i.e. sp/se,
over all wind directions. As can be seen from Fig-
ure 3, the plastic reserve of the system has a mean
value larger than 1.5 for most wind directions, sug-
gesting that the structure will still shakedown even
under wind loads that are multiplied by 1.5. For
wind loads coming from angles α between 190◦

and 290◦, the plastic reserves are even higher with
a maximum ratio of 5.1.

The Monte Carlo algorithm was then run for
Ns = 5000 realizations. Under 300 MRI wind loads,
46.9% of samples remained elastic while none of
the 5000 samples collapsed. From a traditional de-
sign standpoint, the structure is under designed with
over a 50% chance of inelastic behavior. However,
with respect to collapse as defined in this work, the
system is safe, i.e. the structure can reach the safe
state of dynamic shakedown without experiencing
excessive permanent deformations for all 5000 re-
alizations.

In addition, this simulation-based framework
provides not only the system-level collapse proba-
bility but also the probability distributions of plastic
deformations and residual displacements, which are
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Figure 4: Exceedance probability of the residual displacements at the master nodes in the global X-direction at:
(a) Level 20; (b) Level 40; (c) roof.

useful for estimating the non-collapse performance.
Within this context, Figures 4 and 5 report the ex-
ceedance probability distributions associated with
the residual displacements in the global X- and Y -
directions at shakedown at three different floor lev-
els. The response at the master node of each floor
was chosen for representation. It can be seen that
residual displacements in the Y -direction are larger
than those in the X-direction, even though both are
within the deformation limits.

To illustrate the distributed plasticity, Figure 6
shows the plastic curvature χpz distributed along a
representative element together with the locations
of the five integration points marked by dashed
lines. Based on the assumption of linear curvature
along the element for a DB element, plastic defor-
mations between integration points can be evalu-
ated. For the selected element, plasticity (colored
in red) occurred from the two ends of the element
to around half the distance to the midpoint of the
element.

Finally, it should be observed that the simulation-
based approach provided the solutions discussed
above in less than 72 hours while running the anal-
ysis on a typical dual processor desktop machine.
If a similar analysis was carried out by direct in-
tegration for each of the Ns = 5000 windstorms of
duration T = 3600 s, the estimated run time would
be in the order of months.

5. CONCLUSIONS
This paper presented an approach for character-
izing the inelastic response of structural systems
within the setting of probabilistic performance-
based wind engineering and distributed plasticity.
The efficiency of the proposed dynamic shakedown
based approach enables the integration of simula-
tion methods for uncertainty propagation, thereby
providing a probabilistic description of any perfor-
mance metric of interest. With the knowledge of
the wind climate at the site of interest, the pro-
posed probabilistic framework can readily be ex-
tended for system-level structural reliability estima-
tion by identifying all uncertainties involved and
simulating over all intensity levels. The proposed
approaches have the potential to open the door to
the inelastic design of the structural systems during
severe wind events.
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Figure 5: Exceedance probability of the residual displacements at the master nodes in the global Y -direction at
(a) Level 20; (b) Level 40; (c) Core roof.
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Figure 6: Plasticity distributed along an element of the
structure for a representative sample.
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