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ABSTRACT: This research proposes a robust design framework for wind-excited systems in which
performance is estimated at a system level in terms of state-of-the-art performance-based design metrics.
In particular, the robust design problem is formulated as a stochastic optimization with objective the
minimization of the variance of the performance metric. Constraints are also imposed on the initial cost
of the system and expected value of the performance metric. To effectively treat the performance metrics
within the optimization problem, adaptive kriging models of the deagreggated loss metrics are defined in
terms of the second order statistics of the demands. By then relating the demand statistics to the design
variables through the concept of the Auxiliary Variable Vector, a deterministic optimization sub-problem
is defined that can handle high-dimensional design variable vectors and general stochastic excitation. By
solving a sequence of sub-problems, each formulated in the solution of the previous, solutions to the
original robust design problem are found. A case study consisting in a large-scale system subject to
stochastic wind excitation is used to illustrate the applicability of the proposed framework.

1. INTRODUCTION
Recent trends in wind engineering are leading to the
acceptance of performance-based design (PBD) as
a means for obtaining structures that meet the safety
requirements demanded by society (e.g. Bernardini
et al., 2015; Chuang and Spence, 2017). To achieve
this, the inevitable uncertainties affecting both the
system parameters and the external wind excita-
tions must be fully modeled. This has led to the de-
velopment of a number of probabilistic wind PBD
frameworks that describe performance in terms of
probabilistic metrics such as expected repair cost
and time (e.g. Chuang and Spence, 2017). The
greater complexity, as compared to traditional de-
sign approaches, that these frameworks are intro-
ducing has created a need for efficient optimiza-
tion methods that can inform decision-makers of
the optimal trade-offs between cost and design ro-

bustness. Within this context, this paper introduces
a robust design framework in which performance
is estimated at a system level in terms of state-of-
the-art wind PBD metrics. In particular, the ro-
bust design problem is formulated as a stochastic
optimization with objective the minimization of the
variance of the performance metric. Constraints are
also imposed on the initial cost of the system and
expected value of the performance metric. To ef-
fectively treat the performance metrics within the
optimization problem, adaptive kriging models of
the deagreggated loss metrics are defined in terms
of the second order statistics of the demands. By
then relating the demand statistics to the design
variables through the recently introduced concept
of the Auxiliary Variable Vector, a deterministic op-
timization sub-problem is defined that can handle
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high-dimensional design variable vectors and gen-
eral stochastic excitation. By solving a sequence
of sub-problems, each formulated in the solution of
the previous, solutions to the original robust design
problem are found.

2. PROBLEM SETTING

In designing wind-sensitive systems, one of perfor-
mance metrics that is of interest to stakeholders and
society is the anticipated economic loss given that
a severe windstorm has occurred. Hence, the per-
formance metric considered in this work is defined
as the system-level repair cost L. For robust wind-
excited systems, it is of interest here to identify sys-
tems that have minimal variability in this perfor-
mance metric, while still ensuring acceptable initial
cost and expected system loss. This robust design
optimization problem may be formulated as:

Find x = {x1, ...,xm}T

to minimize σ
2
L|im(x)

subject to V (x)≤V0

µL|im(x)≤ µ0

xi ∈ Xi i = 1, ...,m

(1)

where x is a design variable vector containing the
deterministic parameters used to define the struc-
tural system (e.g., beam and column dimensions);
σ2

L|im is the optimization objective function defined
in terms of the conditional variance of the loss mea-
sure L given an extreme windstorm of intensity im
(e.g., variance of the system repair cost); V repre-
sents a function associated with the initial cost of
the structural system (e.g., material volume of the
structural system); µL|im is the conditional expected
value of the loss measure (e.g., expected total re-
pair cost); V0 and µ0 are the threshold values that
V and µL shall not exceed; and Xi is the interval
to which the ith component of the design variable
vector must belong.

To account for various sources of uncertainty
(e.g. uncertainties in structural properties, random
nature of stochastic wind loads, and epistemic un-
certainties in the analysis models), the variance and
the expected value of the system loss measure can
be determined through the following probabilistic

integrals based on recently introduced wind PBD
frameworks (Chuang and Spence, 2017)):

σ
2
L|im =

∫∫∫
(l−µL)

2 · p(l|dm) · p(dm|ed p)

· p(ed p|im) ·dl ·ddm ·ded p
(2)

µL|im =
∫∫∫

l · p(l|dm) · p(dm|ed p) · p(ed p|im)

·dl ·ddm ·ded p
(3)

where DM is the damage measure identifying the
extent of component damage (e.g., window crack-
ing); EDP is the engineering demand parameter
responsible for initializing the damage (e.g., inter-
story drifts); IM is the intensity measure of the se-
vere wind event (e.g., wind speed with a return pe-
riod of 1700 years); and p(a|b) denotes the condi-
tional probability of A assuming the value a given b.
This paper adopts the standard notation that upper-
case letters denote random variables while lower-
case letters represent realizations.

Due to the large number of uncertain parameters
necessary for describing the problem of interest (i.e.
in the order of thousands), the integrals of Eqs. (2)
and (3) have high dimensions. Therefore, in this
work, σ2

L|im and µL|im are estimated through meth-
ods based on stochastic simulation.

3. SIMULATION-BASED LOSS ASSESSMENT
To estimate σ2

L|im and µL|im through simulation
methods, realizations of the system-level loss mea-
sure, L, are needed. For a particular design x sub-
ject to a wind hazard of given intensity im, antici-
pated system loss can be obtained through the fol-
lowing four logical analysis steps: (1) wind load
estimation; (2) structural demand estimation; (3)
damage estimation; and (4) loss estimation.

3.1. Wind Load Estimation
In this work, the intensity measure of the wind
event is defined in terms of a reference wind speed
with a mean recurrence interval (MRI) of w years,
v̄w. The reference wind speed is generally ob-
tained from data collected at meteorological sta-
tions. To obtain the wind speeds at the site of in-
terest from this data, this work adopts the proba-
bilistic transformation scheme proposed in Mincia-
relli et al. (2001) for transforming the wind speed
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data of nearby meteorological stations to the site-
specific wind speeds, v̄H .

To generate a realization of the vector-valued
stochastic wind process f(t) while accounting for
complex aerodynamic phenomena such as vortex-
induced vibration, a wind tunnel-informed proper
orthogonal decomposition (POD)-based model
(e.g. Chen and Kareem, 2005) is adopted in this
work. Within this context, the kth component of
f(t) may be estimated as:

fk(t; v̄H ,ε) =
Nl

∑
l=1

Nb−1

∑
b=1

{
|Φkl(ωb)|

√
2Λl(ωb; v̄H)∆ω

· cos(ωbt +ϑkl(ωb)+ εbl)

}
(4)

where v̄H is the site-specific wind speed at the
building top; ε is a vector containing the ran-
dom variables used in the stochastic wind model;
Nl is the number of loading modes considered;
∆ω denotes the frequency increment (hence, the
Nyquist frequency is Nb∆ω/2, with Nb the total
number of discrete frequencies considered), while
ωb = b∆ω; εbl is an independent random variable
that characterizes the stochastic nature of the wind
and is distributed uniformly over [0,2π]; ϑkl =
tan−1(Im(Φkl)/Re(Φkl)); while Φkl(ω) and Λl(ω)
are components of Φ(ω) and Λ(ω) obtained from
solving the following eigenvalue problem:

[S f (ω; v̄H)−Λ(ω; v̄H)I]Φ(ω) = 0 (5)

where S f is the cross power spectral density matrix
of the full-scale loading processes obtained from
classic wind tunnel testing. Once Λ and Ψ are es-
timated at wind tunnel speed, they can be rapidly
scaled to any wind speed , v̄H , of interest.

3.2. Structural Demand Estimation
To estimate the vector-valued response process d(t)
of the system due to the stochastic excitation f(t),
the load-effect model outlined in (Spence and Ka-
reem, 2014) is adopted in this work. Hence, the kth
component of d(t) is given by:

dk(t;υ) = υ1Γ
T
dk

[
f(t)+KΨ

T
n qRn

(t;υ)
]

(6)

where υ1 is a random variable taking into account
the epistemic uncertainty in using the load-effect
model of Eq. (6) and is a component of the ran-
dom vector υ that collects all uncertain parameters
in the system (e.g. uncertainty in the damping ra-
tios and natural frequencies); Γdk is a vector of in-
fluence functions defined as the the response in dk
due to a unit load acting at each degree of freedom
of the system; K is the stiffness matrix of the sys-
tem; Ψn = [ψ1, ...,ψn] is the mode shape matrix of
order n; while qRn

(t) = {qR1(t), ...,qRn(t)}T is the
vector collecting the resonant modal responses.

Having obtained the wind-induced response pro-
cess in T , a realization of the corresponding engi-
neering demand parameter can be estimated as the
absolute maximum response in [0,T ] as follows:

ed pk(υ) = max
t∈[0,T ]

|dk(t;υ)| (7)

3.3. Damage Estimation
Each engineering demand parameter ed pk can
cause damage initialization for components suscep-
tible to ed pk. For efficiency, components having
similar properties and subject to the same ed pk can
be grouped together in a performance group (PG).
Consider a component having m possible damage
states, a damage measure associated with the cth
component in the kth PG can be defined as:

dm(c)
k (θ) =


0 if Frk(1|ed pk)< θ

(c)
k

1 if Frk(2|ed pk)< θ
(c)
k ≤ Frk(1|ed pk)

...

m if θ
(c)
k ≤ Frk(m|ed pk)

(8)
where Frk(m|ed pk) = p(dmk = m|ed pk) denotes a
fragility function defined as the conditional proba-
bility that the cth component assumes the damage
state m given the demand level ed pk; while θ

(c)
k is

a realization of a random variable, uniformly dis-
tributed between 0 and 1. It is assumed here that
the damage states follow a sequential logic and are
uncorrelated between different components.

3.4. Loss Estimation
In order to restore functionality to the system, all
damaged components must be repaired. Hence, the
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total wind-induced loss may be calculated as the
sum of all component losses. In repairing each
component, the uncertain repair cost can be mod-
eled as the probability of repair cost given the dam-
age state j, FCk| j . A realization of L can be esti-
mated through the following summation over all Nc
components and all Ng performance groups:

l(κ) =
Ng

∑
k=1

Nc

∑
c=1

F−1
Ck| j

(κ
(c)
k |dm(c)

k = j) =
Ng

∑
k=1

gk(κk)

(9)
where F−1

Ck| j
is the inverse cumulative probability

density function of the component-level loss given
the damage state j; κ

(c)
k is a realization of a uni-

formly distributed random variable between 0 and
1; and gk is the loss associated with the kth PG.

In determining σ2
L|im and µL|im, a Monte Carlo

simulation can be used. Within this context, σ2
L|im

may be estimated as:

σ
2
L|im ≈

1
Ns−1

Ns

∑
i=1

[
Ng

∑
k=1

g(i)k (u(i), v̄w)−µL|im

]2

(10)
where: Ns is the number of samples; u(i) =

{εT
,υT ,θ T ,κT}T collects the ith realization of all

uncertain variables; while µL|im is given by:

µL|im ≈
1
Ns

Ns

∑
i=1

[
Ng

∑
k=1

g(i)k (u(i), v̄w)

]
(11)

4. KRIGING-BASED OPTIMIZATION STRATEGY

To efficiently solve the robust optimization prob-
lem of Eq. (1), this section introduces a sequen-
tial optimization strategy that is based on approx-
imately decoupling the probabilistic analysis from
the optimization process. The proposed decoupling
strategy involves the following three steps: (1) ap-
proximation of the second order demand statistics;
(2) system loss approximation; and (3) optimization
sub-problem formulation.

4.1. Approximation of the Demand Statistics
Once the Monte Carlo simulation of Sec. 3 has
been carried out in xMC, the second order statis-
tics of the engineering demand parameters can be

efficiently and effectively approximated for moves
of x away from xMC through the Auxiliary Variable
Vector (AVV) approach (Spence et al., 2016; Bobby
et al., 2016). Within this context, the second order
demand statistics are approximated as:

µEDPk(x)≈ Γ
T
dk
(x)ϒ̂k(xMC) (12)

σEDPk(x)≈ Γ
T
dk
(x)ϒ̆k(xMC) (13)

where ϒ̂ and ϒ̆ are the AVVs corresponding to
µEDPk and σEDPk and that can be estimated from the
results of a single simulation carried out in xMC. In
particular, Eqs. (12) and (13) are exact in xMC.

4.2. Approximation of the Loss Statistics
To estimate the loss statistics, a prediction strategy
is needed that can efficiently approximate σ2

L|im and
µL|im based on the demand statistics of Sec. 4.1.
It is proposed here that kriging models can be con-
structed and used to predict the standard deviation,
σGk , and the mean, µGk , of the group-level loss as-
sociated with the kth PG in the space of the de-
mand’s second order statistics.

Let σ̃Gk represent a kriging model for estimat-
ing σGk , the kriging prediction at a given point
(µEDPk ,σEDPk) is given by (Sacks et al., 1989):

σ̃Gk(µEDPk ,σEDPk) = µ̂+

Ω
T (µEDPk ,σEDPk)R

−1(y−1µ̂)
(14)

where µ̂ is the maximum likelihood
estimate for the mean of the random
field assuming that the observations y =

{σGk(µ
(1)
EDPk

,σ
(1)
EDPk

), ...,σGk(µ
(h)
EDPk

,σ
(h)
EDPk

)}T

are realizations of a Gaussian process; Ω is a vector
collecting basis functions; while R−1(y− 1µ̂) are
the corresponding weights assigned to the basis
functions of Ω. In selecting the h support points of
the sampling plan y, the Morris-Mitchell optimal
Latin hypercube sampling (Morris and Mitchell,
1995) is used to ensure an optimal space-filling
property. In obtaining h observations, stochastic
simulation is carried out at each point to estimate
the nonlinear mapping between the loss and de-
mand statistics while taking into account variability
in the system as well as in stochastic loads. Once
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a full simulation is carried out for the first obser-
vation, σGk(µ

(1)
EDPk

,σ
(1)
EDPk

), the other observations
only require the execution of a damage and loss
assessment in terms of the following transformed
samples:

¯ed p(i)k =
σ
( j)
EDPk

σ
(1)
EDPk

(ed p(i)k −µ
(1)
EDPk

)+µ
( j)
EDPk

(15)

where ed p(i)k is the original ith demand sample
while i = 1, . . . ,Ns and j = 2, . . . ,h.

A similar procedure can be carried out for cal-
ibrating a kriging model, µ̃Gk , for predicting the
group-level expected loss, µGk . Consequently,
σ2

L|im and µL|im can be replaced with the following
kirging-based approximations, σ̃2

L and µ̃L, as:

σ
2
L|im(x)≈ σ̃

2
L(x) =

Ng

∑
k=1

Ng

∑
j=1

ρk j(xMC)σ̃Gk(x)σ̃G j(x)

(16)

µL|im(x)≈ µ̃L(x) =
Ng

∑
k=1

µ̃Gk(x) (17)

where ρk j is the correlation coefficient between Gk
and G j.

4.3. Sequential Optimization
To decouple the simulation from the optimization
loop, if it is assumed that the AVVs, ϒ̂ and ϒ̆,
and the correlation coefficient, ρk j, do not vary as
the design x changes during the optimization pro-
cess, the following deterministic optimization sub-
problem can be defined:

Find x = {x1, ...,xm}T

to minimize σ̃
2
L(x; ϒ̂(xMC), ϒ̆(xMC),ρk j(xMC))

subject to V (x)≤V0

µ̃L(x; ϒ̂(xMC), ϒ̆(xMC))≤ µ0

xi ∈ Xi i = 1, ...,m
(18)

This deterministic sub-problem can be solved us-
ing any gradient-based optimization technique. The
Optimality Criteria algorithm is adopted here. Be-
cause the solution to this sub-problem is only exact
in xMC, the Monte Carlo simulation is carried out

again in the solution of the previous sub-problem,
and a new sub-problem is formulate. This process
is denominated a design cycle (DC) and needs to be
repeated until solutions of two consecutive DCs are
identical therefore ensuring an exact solution to the
original robust design problem of Eq. (1).

5. APPLICATION
The main purpose of this section is to examine the
applicability of the proposed framework.

5.1. Description of the system
The structural system considered in this example
is a 37 stories and six bay steel moment-resisting
frame envisaged as part of 3-D building. The first
floor height is 6 m while the height of all other
floors is 4 m. The bay width is 5 m. Thus, the
total height and total width are 150 m and 30 m re-
spectively, while the total depth is taken as 60 m.
All beams belong to the family of AISC (American
Institute of Steel Construction) W24 steel profiles.
All columns are square box sections whose mid-
line diameters, bi must belong to the discrete set
{0.20,0.21, ...,3.99,4.00} m with the correspond-
ing wall thickness taken as bi/20. A total of 259
design variables are considered as shown in Figure
1. In the initial design, all beams were assigned
W24×176 profile, while the mid-line diameter of
all columns was set to 0.60 m. The floor systems are
assumed to be rigid diaphragms having an area den-
sity of 100 kg/m2. The first three modes (with ini-
tial circular frequencies ω1 = 0.926 rad/sec, ω2 =
2.964 rad/sec, and ω3 = 5.535 rad/sec) were used
in estimating the resonant response of the system.
The mean modal damping ratios were assumed to
be 1.5%. The distributions used to described the
uncertain parameters associated with the response
estimation can be found in Table 2 of Suksuwan and
Spence (2018).

5.2. Hazard and wind model description
In modeling the hurricane wind hazard, the meteo-
rological wind speeds were estimated from a Type
II distribution of mean 32 m/s and standard devia-
tion of 4.7 m/s. This wind speed data was assumed
to correspond to an averaging time τ = 60 s, rough-
ness length z01 = 0.01 m, and height at the mete-
orological station Hmet = 10 m. In transforming
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Figure 1: (a) 37-story building plan; (b) Isometric
view; (c) Frame layout showing beam and column as-
signments.

V̄Hmet to V̄H , the transformation scheme proposed
in Minciarelli et al. (2001) was adopted. In particu-
lar, the averaging time T was taken as 3600 s while
the roughness length at the site of interest was taken
as z0 = 1 m. Distributions associated with the basic
random variables related to the wind speed trans-
formation can be found in Table 3 of Suksuwan
and Spence (2018). The distribution of V̄Hmet was
used to derive the site-specific wind speed associ-
ated with an MRI of 1700 years, v̄1700. The stochas-
tic wind loads were generated based on wind tun-
nel tests carried out on a rigid 1:300 scale model
of the aforementioned building (Tokyo Polytech-
nic University, 2008) using three loading modes.
Only wind blowing down the X-direction was con-
sidered.

5.3. Calibration of the loss model
The system-level repair costs associated with dam-
age to the cladding system of the building is consid-
ered as the loss metric. The cladding components
are taken as midrise stick-built curtain wall and
grouped together in 37 PGs. Each PG consists of 60
components that are susceptible to the same EDPk.
Within this context, EDPk for k = 1, ...,37 are taken
as the maximum inter-story drift ratios. Three dam-
age states are considered for each cladding com-
ponent. In determining the component damage
state and consequence, fragility curves with associ-
ated consequence functions were obtained from the
fragility database contained in Federal Emergency

Management Agency (FEMA) (2012).

5.4. Optimization objective and adaptive search
scheme

The main objective of this example is to mini-
mize the variance of the total repair cost given that
a windstorm of return period 1700 years has oc-
curred, while still ensuring that the total volume
of the structural system does not exceed V0 =150
m3 and the expected value of the total repair cost
does not exceed µ0 = $1000000. A total of Ns =
4000 samples were used in the Monte Carlo simula-
tion. In updating kriging surrogates, the following
adaptive search scheme was considered: µEDPk ∈
[(1− ∆µ)µ

(DC−1)
EDPk

,(1 + ∆µ)µ
(DC−1)
EDPk

] and σEDPk ∈
[(1− ∆σ )σ

(DC−1)
EDPk

,(1 + ∆σ )σ
(DC−1)
EDPk

] where ∆µ =
∆σ = 0.95 for the initial DC while ∆µ = ∆σ = 0.5
for successive DCs. If µEDPk and σEDPk changed
by less than 1%, only the center point was updated
as long as the current center point of the adaptive
search space moved less than a total of 5% from the
center point of the last fully updated model.

5.5. Results and discussion
Figure 2 presents the convergence history of the ob-
jective function. The steady and smooth conver-
gence properties of the method is clearly seen. Re-
garding the system-level constraints, Figures 3 and
4 present the convergence histories of the structural
volume and the expected value of the total repair
cost. From Figures 3 and 4, it can be observed that
useful designs that satisfy both constraints were ob-
tained within only three design cycles, leaving the
remaining design cycles for further minimization of
the objective function.

With respect to the approximation of the demand
statistics using the AVV approach, Figure 5 re-
ports the convergence histories of the second or-
der demand statistics associated with the 5th per-
formance group. The high accuracy of approximate
demand statistics as compared to the actual values
obtained from the Monte Carlo simulation is clearly
observed. Regarding the adaptive updating algo-
rithm, Figures 6 and 7 illustrate how the kriging
surrogates were progressively updated during the
optimization process. In particular, the large initial
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Figure 2: Convergence history of the objective function.
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Figure 3: Convergence history of the constraint on the
material volume of the system.
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Figure 4: Convergence history of the constraint on the
expected system-level loss.
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Figure 5: Illustration of the convergence histories of
the second order statistics of EDP5.

Figure 6: Illustration of the adaptively updated kriging
surrogate for µDV5 .

kriging surfaces of DC=1 allows for a global search
for the optimal solution, while the subsequent up-
dated kriging surfaces fine-tune the loss approxi-
mation in the optimal region of the design space.
The proposed updating scheme provides accurate
performance approximations as shown in Figures 2
and 4.

6. CONCLUSIONS
This paper presented a robust design optimization
framework for wind-excited systems in which per-
formance is estimated at a system level in terms
of performance-based design metrics. A stochastic
optimization is formulated with objective to mini-
mize the variance of the performance metric. Con-
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Figure 7: Illustration of the adaptively updated kriging
surrogate for σDV5 .

straints are imposed on the initial cost of the sys-
tem and expected value of the performance met-
ric. The framework is based on developing a low-
dimensional kriging model of the deagreggated loss
metrics within the space of the second order statis-
tics of the demands. By then relating the demand
statistics to the design variables through the Auxil-
iary Variable Vector approach, a deterministic op-
timization sub-problem is defined that can handle
high-dimensional design variable vectors and gen-
eral stochastic excitation. By solving a sequence
of sub-problems, each formulated in the solution
of the previous, solutions to the original robust de-
sign problem are found. The applicability of the
proposed framework was demonstrated through a
large-scale case study.
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