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ABSTRACT: In this study, we first construct the empirical cross-correlation matrices in the EEG signals 

by the Pearson’s correlation coefficient. Then, we apply random matrix theory (RMT) investigate the 

statistical properties of cross-correlations in EEG data. The EEG signals of Alzheimer's disease (AD) 

subjects are chosen as the research objects. Here, we examine the statistical properties of cross-correla-

tion coefficients, the distribution of eigenvalues. Meanwhile, we identify the deterministic or stochastic 

dynamics of the EEG system based on RMT. The correlation matrix of a Wishart matrix or a Gaussian 

Wigner matrix in random matrix theory has a structure similar to that of EEG data. For a noisy signal, its 

eigenvalue statistics are closely those of random matrix ensembles. The results show that the EEG signals 

are different from the stochastic time series. 

 

1. INTRODUCTIONS 

The electroencephalogram (EEG) is an important 

non-invasive technique to show the activity of the 

brain in real time. EEG data are often extremely 

complex and noisy although the EEG technique 

has been used in medical diagnosis and brain re-

search. It is of crucial for understanding the brain 

state how to characterize EEG signals. For the aim 

of helping to explore the meaning of EEG signals, 

many methods have been developed from time 

domain to frequency domain, from linear analysis 

to nonlinear analysis, such as AR model, spectral 

powers in five wide frequency bands, entropy es-

timate, etc. However, it is still a challenge for 

these methods how to understanding EEG signals 

measured from abnormal subjects.  

In statistics, random matrix theory (RMT) 

has successfully been proposed to explain the sta-

tistical properties of complex systems and multi-

variate time series, such as quantum chaotic sys-

tems, large complex atoms, price fluctuations in 

stock market, EEG data of brain, etc. For complex 

systems, their spectral properties have been pre-

dicted by RMT. For multivariate time series data, 

their empirical cross-correlation matrices have 

been analyzed in terms of RMT. 

The purpose of this paper is to investigate the 

existence of properties of the EEG signals for Alz-

heimer’s disease (AD). RMT has been applied to 

deal with the cross-correlations in EEG signals 

and compare them in different brain areas. 

2. METHODS AND MATERIALS 

2.1. Methodology 

For eigenvalues spectra study of the random 

matrix, spectral density or distribution of eigen-

values have to be considered.  Assuming that a 

time series nxxx ,,, 21   is coming from a Gaussian 

random system, it can be embedded into d×m di-

mension random matrix X in terms of the analysis 

period length: 
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where d is dimension, m is the length of the period 

studied, d·m≤n. Thus, X can describe the charac-

teristics of the system according to Takens’ em-

bedding theorem. The correlation matrix Cd× d(m) 

of the matrix X by Pearson’s correlation coeffi-

cient Cij: 

        
i j i j

ij

i j

X X X X
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where <·> means the time average over the anal-

ysis period. Xi and Xj represent the ith and jth  col-

umn vector in X, respectively. σi is the standard 

deviation of Xi. Cij ranges between -1 and 1.The 

matrix Cd× d(m) describe the correlation between 

two different analysis period for a time series x. 

The eigenvalues λk (k=1,…,d) of the correla-

tion matrix Cd× d is given by the singular value de-

composition (SVD). The eigenvalue distribution 

ρ(λ) is the simplest property of the eigenvalues 

family. In terms of the random matrix theory, uni-

versal statistical properties of its correlation ma-

trix C can be predicted by the eigenvalues spectra. 

That is, for random real symmetric matrices (or 

Gaussian orthogonal ensemble, GOE), the eigen-

values probability distribution is well approxi-

mated by the Wigner formal: 
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Here, the distribution is a Gaussian probability 

distribution.  

2.2.  EEG data 

The analyzed EEG signals are collected dur-

ing the resting state with open eyes for the Alz-

heimer’s disease (AD), mild cognitive impair-

ment (MCI) and healthy subjects, respectively. 

The sampling frequency is 1kHz. There are 16 

channel electrodes located at the scalp positions 

of Fp1, Fp2, F3, F4, C3, C4, P3, P4, F7, F8, T3, 

T4, T5, T6, O1, O2 (see Fig.1). Here, the EEG 

signal of each channel is denoted as xi, i = 1, … , 

50000.  Because the electrodes are very close, the 

correlation between EEG signals of each channel 

is strong. That means that we cannot get a like ran-

dom matrix from all channel data. Here, we ana-

lyze the EEG correlations of single channel to in-

vestigate the dynamical characteristics of the 

brain activity. The matrix X based on EEG data is 

constructed at m=2000, d=25.  

 
Figure 1: 10-20 system.  

3. ANALYSIS AND RESULTS 

The eigenvalues distribution of EEG signal is de-

pendent on the underlying brain activity system 

because EEG synchronizes with the correspond-

ing brain activity.  We assume that the brain ac-

tivity is random during the resting state and open 

eyes. Thus, the empirical cross-correlation matrix 

C is considered consistent with a real-symmetric 

random matrix. We investigate the EEG signals of 

three types of subjects, five in each category and 

evaluate the density function of the corresponding 

channels.  

Figure 2 shows the eigenvalue distributions 

ρ(λ) of correlation matrix C of EEG data for AD, 

MCI and healthy subjects at O2 (see Fig. 2a), T4 

(see Fig. 2b), Fp1(see Fig. 2c) and Fp2(see Fig.2d) 

positions, respectively, as well as the eigenvalue 

distribution ρGOE(λ) of a random real symmetric 

matrices. Compared with the eigenvalue distribu-

tions of healthy subjects, we can see that some ei-

genvalue distributions of correlation matrix C of 

EEG signals for AD and MCI subjects are not 
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close to the eigenvalue distribution of the random 

matrix when the eigenvalues are around one. For 

AD and MCI subjects, their eigenvalue distribu-

tions at O2 and T4 positions are either higher than 

random distribution values or lower than random 

values (see Fig.2a and 2b). These results might 

imply that for AD and MCI subjects, the brain 

function area at O2 and T4 are different from 

those of healthy subjects. At Fp1 and Fp2 posi-

tions, the eigenvalue distributions of correlation 

matrix C of EEG data for healthy subjects are sim-

ilar to those for AD and MCI subjects (see Fig.2c 

and 2d). And the results are almost all around the 

eigenvalue distribution of the random matrix. It 

indicates that the correlation matrix of EEG data 

at Fp1 and Fp2 positions are roughly consistent 

with the random matrix distribution. At Fp1 and 

Fp2, the EEG data could be uncorrelated time se-

ries. Comparing Fig. 2a and 2b with Fig. 2c and 

2d, the brain functions of occipital and temporal 

lobes might be abnormal for AD and MCI sub-

jects. 

(a)  

(b)  

(c)  

(d)  
Figure 2: The eigenvalues distribution P(λ) of corre-

lation matrix C of EEG data for three types of subjects 

at (a) O2, (b) T4, (c) Fp1, (d) Fp2 position (Red “*” 

for AD subjects, magenta “o” for MCI subjects, blue 

solid line for healthy subject, black solid line for the 

Wigner distribution by Eq.（3）).  
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4. CONCLUSIONS 

The results presented above are agree well with 

RMT predictions for the EEG signals at Fp1 and 

Fp2 positions. But, for AD and MCI subjects, the 

eigenvalue distributions of the EEG signals at O2 

and T4 positions deviate from RMT. The results 

show that the EEG signals are different from the 

stochastic time series. These indicate that the sys-

tems are specific and contain collective modes. 

AD and MCI subjects maybe have brain dysfunc-

tion in occipital and temporal lobes. 
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