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ABSTRACT: Estimating scale of fluctuation is an intriguing issue, for which several methods have 

been developed, such as simple estimators (e.g., 0.8d̄-estimator) based on the mean cross distance d̄ of 

a soil property profile, sample autocorrelation function method, maximum likelihood method, Bayesian 

method, etc. Among these methods, the 0.8d̄-estimator is the simplest one and can be readily used by 

geotechnical practitioners whose training in probability theory and statistics is usually limited. It, 

however, shall be noted that the 0.8d̄-estimator was derived from the normal random field with squared 

exponential correlation function, which is largely ignored in its practical applications. Effects of the 

distribution type (e.g., normal or lognormal) and correlation function on the performance of the 0.8d̄-

estimator remain unexplored and, hence, unknown to geotechnical practitioners, which potentially 

leads to misuse of the simple relationship. This paper aims to highlight the theoretical assumptions 

underlying the 0.8 d̄ -estimator and to, systematically, explore the effects of these theoretical 

assumptions on its performance (i.e., unbiasedness and variability). It is found that the 0.8d̄-estimator 

provides reasonably unbiased estimation of scale of fluctuation for the normal random field with 

squared exponential correlation function when there are, at least, two sampling data within a distance 

of scale of fluctuation. Whereas, results from the 0.8 d̄ -estimator for other cases violating the 

assumptions are biased, and may lead to a significant underestimation of scale of fluctuation. It is also 

found that the variability of the 0.8d̄-estimator increases as the sampling length decreases.  

1. INTRODUCTION 

Due to the variability of source materials, 

weathering patterns, transportation agents, stress 

and formation processes, etc. (Mitchell and Soga, 

2005), the soil properties in situ exhibit a certain 

of heterogeneity inherently, which is known as 

the inherent spatial variability (Phoon and 

Kulhawy, 1999). The inherent spatial variability 

is one primary source of geotechnical 

uncertainties and can be explicitly modeled by a 

random field model for a lack of site 

investigation data. Scale of fluctuation, , is an 

essential element in correlation function of 
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random field model (Vanmarcke, 1977), within 

which variations of geotechnical properties are 

considered strongly correlated. Proper estimation 

of  is prerequisite for site characterization and 

the subsequent statistical probability analysis in 

civil engineering based on random field 

modeling. 

The cone penetration test (CPT), which is 

fast, largely independent of operators and 

provides nearly continuous data profiles (Lunne 

et al., 1997), is usually used in random field 

characterization (Fenton, 1999). Several CPT 

based methods have been developed to estimate 

 in literature, e.g., the maximum likelihood 

estimation (e.g., DeGroot and Baecher, 1993), 

sample autocorrelation function method (e.g., 

Lloret-Cabot et al., 2014) and Bayesian method 

(e.g., Cao and Wang, 2013), etc. However, the 

method of 0.8 d̄ -estimator based on the mean 

cross distance of a soil property profile (e.g., The 

d̄  shown in Figure 1) is approximately the 

simplest one for objective and quantitative 

estimation of . Therefore, the 0.8d̄-estimator is 

convenient for geotechnical practitioners to make 

a rapid estimation of  at site. However, a note of 

caution, here, is that the 0.8d̄-estimator was deri 

ved from normal random field with squared 

exponential correlation function, which is largely 

ignored in practical applications. 

 

 

  
Figure. 1: Inherent soil variability and sketch map of 

0.8 d -estimator method (Phoon and Kulhawy, 1999). 

To enhance the application availability of 

0.8d̄-estimator for geotechnical practitioners, this 

paper clarifies the theoretical assumptions 

underlying the 0.8d̄-estimator and systematically, 

explores the effects of these assumptions on its 

practical performances. This paper starts with the 

analytical derivation of the 0.8 d̄ -estimator, 

followed by clarification of the underlying 

assumptions. Finally, the performance including 

unbiasedness and variability of the 0.8 d̄ -

estimator under different various cases are 

explored using data simulated from a virtual site. 

2. DERIVATION OF 0.8d̄-ESTIMATOR 

Consider, for example, that the inherent spatial 

variability along the vertical direction of 

normalized cone tip resistance qN=qc(σ
’ 

v0
/pa)

0.5/pa 

 can be represented by a one-dimensional 

random field model (Fenton and Griffiths, 2008). 

Herein, qc is the cone tip resistance measured by 

cone penetration test; pa is the standard 

atmospheric pressure and it is taken as equal to 

100kPa; σ
’ 

v0
 is the vertical effective stress. Let xN 

denotes the residual error of qN after de-trending. 

Thus, xN can be considered as a stationary 

random process X(D) with a constant mean X 

and standard deviation σX, where D is the 

sampling depth. Without loss of generality, the 

X can be assumed to be equal to zero in this 

section.  

The length (or distance) of the xN profile 

stays above and below the zero-mean are taken 

as d
+ 

0  and d
- 

0 , and the mean up-crossing and 

down-crossing rate of zero-mean are taken as v
+ 

0  

and v
- 

0. The relationship between v
+ 

0  and d
+ 

0  (or v
- 

0 

and d
- 

0) can be obtained by the theory of recurrent 

events (Vanmarcke, 1970). The v
+ 

0  and v
- 

0  are 

theoretically identical for a sufficiently long 

profile of xN. Then, the relationship between d̄ 

and v
+ 

0  can be obtained: 

 
0 0

0 0 0

1 1

2 2

E d d
d

v v v

 

  

    


 (1) 

where v
+ 

0  was given by Rice (1944, 1945) and 

commented by Rainal (1988)： 
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2 X X
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   (2) 

where ẋ denotes the derivative of x; fX,Ẋ(0,ẋ) is 

the joint probability density function (PDF) of 

X(D) and its derivative process Ẋ(D) evaluated at 

x=0. In the context of random process (Bendat 

and Piersol, 2000), X(D) and Ẋ(D) are 

independent and Ẋ(D) is also a normal random 

process with a zero mean if X(D) is a stationary 

normal random process. Thus, Eq. (2) can be 

rewritten as: 

      0

1 1
0 = 0

2 2
X XX

v f x f x dx f E X





  

  (3) 

where fX(0) is the marginal PDF of X(D) 

evaluated at x=0; fẊ(ẋ) is the marginal PDF of 

Ẋ(D); E[|Ẋ|] is the mean of the absolute value of 

the slope of X(D).  

 
2

20
2
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X
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  (4) 

where σẊ is the standard deviation of the Ẋ(D). v
+ 

0  

can be given by combining the expression 

σẊ=σX(M2/M0)
1/2/2 (Vanmarcke 1983) and Eqs. 

(3)-(4): 

 

1

2
2

0

0

1 1
=

2 2

X

X

M
v

M



  

  
  

 
 (5) 

where M0 and M2 are zero and second order 

spectral moment of X(D). As indicated by Eq. (5), 

the estimated v
+ 

0  is independent of X, so does the 

. The derivation of M0 and M2 are based on the 

spectral density function sX() of X(D), where   

is the frequency.  

Since the 0.8d̄-estimator was derived from 

the squared exponential correlation function. The 

spectral density function of X(D) can be obtained 

using the Wiener-Khinchine formula and Euler 

formula (Li and Chen, 2009).  

     
2 2

4
1

2 2
X Xs R cos d e

 




   
 




   (6) 

Then, M0 and M2 can be calculated as follows: 
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   (7) 
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   (8) 

The relationship between d  and  can be 

obtained by combining Eqs. (1), (5), (7) and (8): 

 

1

2
2

0 2

M
d

M


 



 
  

 
 (9) 

Then, Eq. (9) can be approximately rewritten as: 

 0.8d   (10) 

Eqs. (1)-(10) give the analytical derivation of the 

classic 0.8d̄-estimator, and it shows that the 0.8d̄-

estimator is valid under the following three 

assumptions: 

1. Normal random field 

2. Squared exponential correlation function 

3. A sufficiently long sampling distance 

The next section explores effects of these 

assumptions on the performance of 0.8 d̄ -

estimator of .  

3. ILLUSTRATIVE EXAMPLE 

In this section, CPT data is simulated from a 

virtual site for exploring the effects of 

assumptions on the performance of 0.8 d̄ -

estimator. The unbiasedness and variability of 

the  value estimated from 0.8d̄ are two major 

criteria considered in this section for discussing 

the performance of the 0.8d̄-estimator.  

3.1. A virtual site for simulating CPT data 

Random field model (Vanmarcke, 1983) is 

applied to representing a virtual site for 

simulating CPT data within a statistically 

homogeneous soil stratum. For example, the de-

trended normalized cone tip resistance xN of a 

virtual site can be represented by a one-

dimensional normal random field X(D) with a 

mean X and standard deviation X, and the 

spatial correlation of X(D) at a separation 

distance of  can be characterized by correlation  
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Table 1: Five typical correlation functions in 

geostatistical analysis (Phoon et al, 2003). 

Types Expression 

SQECF 
2( ) ( )exp         

SMCF ( ) (1 4 ) ( 4 )exp         

SECF ( ) ( 2 )exp      

BNCF 
1 , | |

( )
0, | |

   
 

 

  
 


 

CECF ( ) ( ) ( )cos exp        

 

function (). In this study, the five typical 

correlation functions in geostatistical analysis 

(i.e., squared exponential correlation function 

(SQECF), second-order Markov correlation 

function (SMCF), single exponential correlation 

function (SECF), binary noise correlation 

function (BNCF), and cosine exponential 

correlation function (CECF)) are considered to 

represent the spatial correlation of X(D) as 

shown in Table 1. 

Let X=[X(D1), X(D2),…, X(Dn)] be n×1 

vector of xN data at n different sampling depths. 

Thus, X follows multivariate normal distribution 

with a mean vector Xl and covariance matrix 

C=σ
2 

XR, in which l is a vector with n components 

that are all equal to one and R is the correlation 

matrix of X. Then, X can be written as (e.g., Cao 

and Wang, 2014). 

 =
T

X XX l L N   (11) 

in which N is a n×1 standard normal random 

vector; L is a n by n upper-triangular matrix 

obtained from Cholesky decomposition of 

correlation coefficient matrix R, the (i,j)-th entry 

i,j of which represents the correlation coefficient 

between X(Di) and X(Dj). The i,j can be 

calculated using the five typical correlation 

functions shown in Table 1.  

Eq. (11) is used to simulate xN data (e.g., X̂= 

[X̂(D1), X̂(D2),…, X̂(Dn)]) with different 

sampling depths and intervals in this section. 

Moreover, when the lognormal random field is of 

interest, the simulation is performed using the 

following equations. Consider, for example, a 

stationary lognormal random field of X(D) with 

squared exponential correlation function. The 

statistics of the logarithm of X(D) (i.e., Y(D) = 

lnX(D)) are calculated as follows (Fenton and 

Griffiths, 2008): 

 2= ln 2Y X Y    (12) 

 2

X
= ln 1 ( )Y X      (13) 

 

2 2

2

ln ( ) ( ) 1

ln 1 ( )

X X

Y

X X

exp    


 

     
  

 (14) 

where Y and Y are the mean and standard 

deviation of Y(D), respectively; Y is correlation 

function of Y(D). It is worth noting that Y is 

largely dependent on the coefficient of variation 

of X(D), (i.e., Cov=X/X), which means that Y 

is sensitive to the statistics of X(D). Since there 

are various combinations of X/X, the method of 

simple estimator may not be suitable for the 

lognormal random field. In this section, for the 

limited page, the lognormal random field with 

correlation function of SQECF (see in Table 1) is 

taken as an example. 

3.2. Simulated cases 

Although there are various combinations of 

random field model parameters, it was proved 

and explained in previous section that the X and 

X have no effect on the performance of the 

simple estimator in analytical derivation, and the 

sensitivity studies using different combinations 

of random field model parameters (i.e., X and 

X) provide similar results. Consider, for 

example, X = 150 and X = 15 in this section, 

which are consistent with typical values of 

normalized cone tip resistance reported in the 

literature (e.g., Uzielli et al., 2005). The range of 

 is taken as [0.1, 6] according to the previous 

studies on CPT-based spatial variability 

characterization (e.g., Cao et al., 2016), and 

thirteen typical values shown in the fourth row of 

Table 2 are selected to be the predetermined 

scale of fluctuation, T. 
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To systematically explore the performances 

of 0.8 d̄ -estimator under different cases, this 

section considers five correlation functions 

shown in Table 1 (i.e., SECF, BNCF, CECF, 

SMCF and SQECF), two types of random field 

(i.e., normal and lognormal random fields), three 

sampling intervals (i.e., 0.02m, 0.05m and 0.1m), 

and four sampling lengths (i.e., 20m, 30m, 40m 

and 50m) for simulating xN data at a virtual site. 

This results in a total of 351 cases, which are 

summarized in Table 2.  

For each case, 50 sets of xN data are 

generated to account for the effect of statistical 

uncertainty, and the  value of each set of 

simulated data is estimated by 0.8d̄. The mean 

value of the 50 sets of calculated  is denoted as 

M, and the ratio MT indicates the 

unbiasedness of the  value estimated from the 

0.8d̄. The value of ratio T is also calculated 

to explore the accuracy of the  value estimated 

from the 0.8d̄

 

3.3. Performance of the 0.8d̄-estimator 

Figure. 2 shows the performance of the 

unbiasedness of 0.8 d̄ -estimator under different 

correlation functions and different types of 

random fields. Results of MT under different 

sampling intervals (i.e., 0.02m, 0.05m and 0.1m) 

are shown by hollow symbols of squares, circles, 

and triangles, respectively. The solid horizontal 

line of MT=1 provides the reference to 

examine the unbiasedness of the  value 

estimated from the 0.8d̄ The closer the MT 

values are to the line, the more unbiased the 

estimated  values are.  

For the normal random field, it is found that, 

for the correlation functions of SECF, BNCF and 

CECF (see in Figure. 2(a)-(c)), the MT values 

of all decay exponentially, which indicates that 

using the 0.8 d̄ -estimator leads to an 

underestimation of the , especially when the 

predetermined  value is relatively large. 

Moreover, the performance of 0.8 d̄ -estimator 

depends on the sampling interval. The smaller 

the sampling interval is, the lower the estimated 

 value is.  

As shown in Figure. 2(d)-(e), for the 

correlation functions of SMCF and SQECF, the 

MT values are invariant for different sampling 

intervals under the unbiased cases, and there is 

an approximate linear relationship between d̄ and 

. More importantly, the 0.8 d̄ -estimator is 

statistically unbiased for SQECF when there are, 

at least, two sampling data within a distance of 

T. If there is only one sampling data within a 

distance of T, using the 0.8d̄-estimator leads to a 

significant overestimation of . The  value 

estimated from 0.8 d̄  for SMCF is somewhat 

underestimated. 

For the lognormal random field with 

correlation function of SQECF, the performance 

of the 0.8d̄-estimator is rather poor as shown in 

Figure. 2(f). Similar to the performance of the 

random fields with SECF, BNCF and CECF, 

using the 0.8d̄-estimator for lognormal random 

fields generally leads to underestimation of , 

particularly as T is relatively large. The 

performance under different sampling interval is 

also different. Hence, the 0.8d̄-estimator is not 

suitable for the lognormal random field.  

 
Table 2: Summary of simulated cases. 

Factors Simulated Cases 

Correlation Function SECF BNCF CECF SMCF SQECF 

Random Field Normal Lognormal 

Predetermined SOF (m), T 0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

Sampling Interval (m), D 0.02 0.05 0.10 

Sampling Length (m), D 50 40 30 20 
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Figure 2: Unbiasedness of  values estimated from the 0.8d̄-estimator.
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Figure 3:Variability of  values estimated from 0.8d̄-estimator for the normal random field with SQECF. 

 

The performance of the 0.8 d̄ -estimator in 

terms of variability for the normal random field 

with SQECF are also investigated by considering 

different sampling lengths (including 20m, 30m, 

40m, and 50m). As shown in Figure. 3, the left 

axis indicates the accuracy of result , which are 

shown by the box-plot, and the right axis colored 

by blue indicates the coefficient of variation (i.e., 

Cov) of the =T value, which is shown by the 

line with hollow squares symbols colored by blue. 

The solid horizontal line indicates the unbiased 

situation of T=1. The box-plot contains the 

maximum and minimum value, upper and lower 

quartiles, and the mean value of . It can be 

found that when the sampling length is fixed, the 

variability of estimated  value increases as the 

T increases. Moreover, for a given T, the 

variability increases as the sampling length 

decreases. Thus, the variability of the  value 

estimated from the 0.8d̄ is significantly affected 

by the sampling length.  

4. SUMMARY AND CONCLUSIONS 

This paper clarifies theoretical assumptions 

underlying the 0.8d̄-estimator, and systematically, 

explores effects of these assumptions on its 

performance using CPT data simulated from a 

virtual site. Results showed that the 0.8 d̄ -

estimator is only valid for the normal random 

field with squared exponential correlation 

function (SQECF) when there are, at least, two 

sampling points within a distance of . Using 

0.8d̄-estimator for other cases that violating the 

assumptions causes significant underestimation 
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of . In addition, it was also exhibited that the 

0.8d̄-estimator is not applicable to the lognormal 

random fields neither. The variability of the  

value estimated from the 0.8d̄ largely depends on 

the sampling length. Although the 0.8d̄-estimator 

provides a simple and convenient way to 

estimate  at site, it is only applicable when the 

underlying assumptions (i.e., normal random 

field with correlation function of SQECF and a 

sufficient amount of samples) are satisfied. These 

assumptions shall be bearing in mind when using 

it in practice.  
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