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ABSTRACT: One distinguished feature of a resilient community is its ability and rapidity to recover 
from severe natural hazard events. The building portfolio acts as a crucial link in supporting the overall 
recovery of a community, as on the one hand, it relies on community’s lifeline systems to maintain 
functionality, and on the other hand, it interfaces with people in the most direct manner to sustain social 
and economic vitality in the community. In this study, we introduce a probabilistic framework for post-
disaster functionality recovery of community building portfolios, which at the same time allows the time-
variant dependencies among different infrastructure systems (water, power, transportation, building 
portfolio) to be collectively reflected in the recovery outcome of the community’s building portfolio. The 
post-disaster functionality restoration at individual building level is modeled as a discrete-state, 
continuous time Markov Chain (CTMC). To capture the functional dependency of a building on the 
availability of utilities (i.e. water and power), as well as its restoration dependency on the efficiency of 
the transportation system, the time-variant system-level performances of these lifelines are first de-
aggregated (or ‘downscaled’) to each building site, then their impacts on building restoration are 
incorporated in the building-level CTMC. The CTMCs of all individual buildings can then be aggregated 
to obtain the overall building portfolio recovery trajectory and recovery time. Such coupling of physical 
systems of distinct topologies over a consistent spatial and temporal scale can provide a rich array of 
information to support community recovery planning in a systematic manner. Lastly, this framework is 
implemented to Shelby County, TN under a scenario earthquake event. 

 

1. INTRODUCTION  
The building portfolio is essential to the day-to-
day operation of the community as it provides 
infrastructure that supports critical community 
functions such as housing, education, business, 
health services and government. Physical 
damages and functionality losses caused by past 
natural hazard events to a community building 
portfolio, as a system, has led to multi-scale 
social-economic impacts that cascade throughout 
all sectors of the community during and long after 
the hazard event (as manifested in Hurricane 
Katrina, 2005 and Sandy, 2012). The reason to 
such devastating consequences is twofold. Firstly, 

the impact of natural hazards on individual 
buildings has traditionally been considered by 
structural engineers through codes, standards and 
regulations in building design, construction and 
management (NEHRP, 2009; ASCE Standard 7, 
2016). These codes and standards for individual 
buildings, however, were developed mainly to 
protect life safety against natural hazard events, 
without addressing buildings’ functionality 
concerns explicitly. Secondly, current risk 
managements for buildings have overlooked the 
functional dependences among buildings of 
different occupancies or between a building 
portfolio and other supporting infrastructure 
systems that together contribute to the social-
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economic stability of a community. To achieve 
community disaster resilience goal, the current 
engineering practice of design, assessment, and 
risk management of buildings should move 
beyond the life-safety focused consideration at the 
individual building level to a comprehensive 
portfolio-level approach (Lin & Wang, 2016).  

Modeling post-disaster recovery processes of 
a community building portfolio is a crucial step 
towards achieving community disaster resilience 
(Bruneau et al., 2003; Cimellaro et al., 2010; 
NIST, 2015). However, it received scarce 
investigation at the early stage of disaster research 
due to its complexity and uncertainty in nature 
(Miles & Chang, 2003). The building portfolio is 
perceived as one of the most challenging and 
unpredictable systems as it, on the one hand, relies 
on the community’s lifeline systems to maintain 
functionality, and on the other hand, interfaces 
with people in the most direct manner to sustain 
social and economic vitality in the community 
(Lin & Wang, 2017a, b). Despite attention on 
post-disaster recovery modeling is increasingly 
growing, comprehensive building portfolio 
recovery models seldom exist that take into 
account various dependencies of buildings on its 
supporting lifelines at a community scale.   

In this study, we introduce a probabilistic 
framework for post-disaster functionality 
recovery of community building portfolios, which 
at the same time allows the time-variant 
dependencies among different infrastructure 
systems (transportation, water, power networks 
and building portfolio) to be collectively reflected 
in the recovery outcome of the community’s 
building portfolio. In the next section, the study 
starts with an introduction of the recovery metrics 
it utilizes as well as a comprehensive description 
of the probabilistic analysis framework.  

2. RECOVERY METRICS AND ANALYSIS 
FRAMEWORK  

Prediction of building portfolio recovery should 
begin with clearly-defined metrics that can 

directly measure the functionality of a building 
portfolio, and at the same time, explicitly reflect 
the dependency of the building portfolio on other 
infrastructure systems in maintaining its desired 
functionality level. The concept of building 
functionality is defined as the availability of a 
building to be used for its intended purpose, 
determined by whether a building is structurally 
safe to occupy and whether basic utilities (e.g. 
water, power, etc.) are available at the building 
site (Almufti & Willford, 2013; Lin & Wang, 
2017a).  Specifically, a building’s damage is 
categorized into five states (𝑑𝑠#—none, 𝑑𝑠$—
slight, 𝑑𝑠% —moderate, 𝑑𝑠&  —extensive, 𝑑𝑠' —
complete), with each symbolizing different 
extents of structure and non-structural damages 
(as listed in Figure 1); while the utility availability 
is categorized into three states ( 𝑢𝑎# —not 
available, 	𝑢𝑎$ —partially available, 𝑢𝑎% —all 
available). Based on a building’s damage 
condition and utility availably at the building site, 
five different building functionality states are 
defined in Figure 1 (Lin & Wang, 2017a), i.e., 
Restricted Entry (RE), Restricted Use (RU), Re-
occupancy (RO), Baseline Functionality (BF), and 
Full Functionality (FF). 

The building functionality states 𝑆, , 𝑗 ∈ (RE, 
RU, RO, BF, FF) introduced above serves as the 
functionality metric for individual buildings. To 
track functionality recovery of a building 
portfolio as a whole, we further introduce a 
portfolio-level functionality metric, i.e., portfolio 
recovery index (PRI), defined as the percentage 
of buildings in a portfolio that are in each of the 
five functionality states, i.e.,  

𝑃𝑅𝐼, 𝑡 = #
5

𝐼,
6 𝑡5

67# ,					𝑗 ∈ 𝑅𝐸, 𝑅𝑈, 𝑅𝑂, 𝐵𝐹, 𝐹𝐹					
(1)	

where N is the total number of buildings in a 
portfolio, and  𝐼,6 𝑡  is the functionality state 
indicator of the building 𝑛, i.e.,  
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𝐼,6 𝑡 =
0, 														𝑆6 𝑡 ≠ 𝑆,	
1, 														𝑆6 𝑡 = 𝑆,

 ; 				𝑛	∈1, 2,…, N       (2) 

in which 	𝑆6 𝑡  is the functionality state of 
building n at time 𝑡. 

 
Figure 1: Building functionality state definition (Lin 
& Wang, 2017a) 
 

The probabilistic analysis framework to 
quantify the 𝑃𝑅𝐼 𝑡 	can be expressed in Eq. (3) 
(Lin & Wang, 2017b):  

 𝑓 𝑃𝑅𝐼 𝑡 𝐻 =   
𝑓 𝑃𝑅𝐼 𝑡 𝑺 𝑡F 𝑑𝐹 𝑺 𝑡F 𝑫𝑺 𝑑𝐹 𝑫𝑺 𝑰𝑴 𝑑𝐹[𝑰𝑴|𝐻]        

(3)    

where 𝑓 ∙  and 𝐹 ∙  denote the probability 
density function and cumulative distribution 
function (CDF) of random variables, respectively; 
light-face letters represent one-dimensional 
variables while bold-face letters represent multi-
dimensional variables; from left to right, 𝐻 
denotes the extreme hazard event investigated;	𝑰𝑴 
denotes the hazard intensity (e.g. spectral 
acceleration, spectral displacement for earthquake 
events) at all building sites; 𝑫𝑺  denotes the 
damage states of all buildings; 𝑺(𝑡F) denotes the 
functionality states of all individual buildings at 𝑡F 
(the time of hazard occurrence, also the starting 
time of recovery); the dimension of the random 
vectors - 𝑰𝑴, 𝑫𝑺, 𝑺	- is consistent with the total 
number of buildings in the portfolio, N; for each 

of these random vectors, correlation exists among 
its N random variables associated the N spatially 
distributed buildings (Vitoontus & Ellingwood, 
2013, Lin & Wang, 2017b).  

 
Figure 2: flowchart of the building portfolio analysis 
framework  

 
In Eq. (3), the probabilistic characterization 

of the 𝑃𝑅𝐼(𝑡) requires four steps of analysis ¾ 
probabilistic hazard modeling at community scale 
[𝑰𝑴|𝐻] , damage fragility analysis for spatially 
distributed buildings 𝑫𝑺 𝑰𝑴 , functionality loss 
assessment (damage to functionality mapping) for 
all buildings in the portfolio 𝑺 𝒕𝟎 𝑫𝑺 , and 
building portfolio functionality recovery 
modeling (BPRM) [𝑃𝑅𝐼(𝑡)|𝑺(𝒕𝟎)]  - with each 
step conditional on its previous step and 
performed at the community scale.    

In addition, the building portfolio analysis 
requires taking into consideration building 
dependences on its supporting lifelines, namely, 
functional dependencies on utilities (as buildings 
rely on power and water networks to provide 
utility service, which affects step 3 and step 4) and 
restoration dependencies on transportation 
(building’s repair/reconstruction activities rely on 
the travel efficiency of the transportation network, 
which affects step 4), as shown in Figure 2.  

The present study will focus on the 
formulation of the fourth step, i.e. BPRM, which 
includes building-level restoration and portfolio-
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level recovery. At the building level, an individual 
building’ post-disaster functionality restoration is 
modeled as a discrete-state, continuous time 
Markov Chain (CTMC) (Lin & Wang, 2017a). To 
capture aforementioned functional dependency 
and restoration dependency, the time-variant 
system-level performances of these lifelines are 
first de-aggregated (or ‘downscaled’) to each 
building site, then their impacts on building 
restoration are incorporated in the CTMC 
(introduced in Section 3). At the portfolio level, 
the CTMCs of all individual buildings are 
aggregated to obtain the overall building portfolio 
recovery trajectory and recovery time (introduced 
in Section 4). 

3. BUILDING-LEVEL RESTORATION 
For an individual building, n, the time-variant 
functionality metric 𝑆6 𝑡 	(which takes one of the 
five functionality states 𝑅𝐸, 𝑅𝑈, 𝑅𝑂, 𝐵𝐹, 𝐹𝐹 
defined in Figure 1) can be modeled as a discrete 
state, CTMC, with its time-variant functionality 
state probability vector defined as (Lin & Wang, 
2017a), 
		𝝅𝑛 𝑡 = 𝜋1𝑛 𝑡 , … , 𝜋5

𝑛 𝑡 	 	 (4) 

Next, we develop theoretical approach and 
mathematical formulation in order to incorporate 
functional dependency and restoration 
dependency in the CTMC modeling building-
level restoration, as detailed in section 3.1 and 3.2, 
respectively.  

3.1 functional dependency modeling  
Examining building’s functionality definition, the 
𝑆6 𝑡  is determined by the building’s physical 
damage state 𝐷𝑆6(𝑡) , as well as utility 
availability state 𝑈𝐴6(𝑡) . Accordingly, the 
element of 𝝅6 𝑡  is calculated by 

𝜋,6 𝑡 	= 𝐼V,W ∙ Prob 𝐷𝑆6 𝑡 = 𝑑𝑠V, 𝑈𝐴6(𝑡) = 𝑢𝑎W

%

W7#

'

V7#

 

(5) 
in which 𝐼V,W = 1  only if joint state (𝑑𝑠V, 𝑢𝑎W ) 
belongs to 𝑆,, otherwise 0 (cf. Figure 1); 𝑑𝑠V, 𝑘 =
1, 2, 3,4,5 and 𝑢𝑎W, 𝑙 = 1,2,3	are accordance with 
the definition of building damage states and utility 
availability states in Section 2.  

Define building n’s time-variant damage 
state probability vector as 𝒃6 𝑡 =
𝑏#6 𝑡 , … , 𝑏'6 𝑡 	 , in which 	𝑏V6 𝑡 =
Prob[𝐷𝑆6(𝑡) = 𝑑𝑠V] ; and utility’s time-variant 
availability state probability vector (at the 
building site) as 𝒖6 𝑡 = [𝑢#6 𝑡 , 𝑢$6 𝑡 , 𝑢%6 𝑡 ], 
in which 𝑢W6 𝑡 = Prob[𝑈𝐴6(𝑡) = 𝑢𝑎W] . 
Neglecting statistical correlation between 
building and utility’s performances, Eq. (5) can be 
calculated by 

𝝅6 𝑡 = 𝑼6 𝑡 ∙ 𝒃6 𝑡                                    (6) 

in which 𝑼6 𝑡  is defined as utility dependency 
matrix, with the following form 

𝑼6 𝑡 =

1 			0
0 			1
0 			0

								
0 						0 	0
0 						0 	0
1 							𝑢#6(𝑡) 		𝑢#6(𝑡)

	0 			0
0 			0							

	0 	1 − 𝑢#6(𝑡) 𝑢$6(𝑡)
	0 				0 𝑢%6(𝑡)										

 

(7) 
In Eqs. (6) and (7), the probability vector 

with respect to utility’s availability restoration 
process 𝒖6 𝑡  is obtained by performing 
interdependent utility network recovery analysis, 
through which the time-variant performance of 
utility network are downscaled to each building 
site (more details can be found in Zhang et al., 
2018); the building’s damage restoration process 
𝒃6 𝑡  is determined by that building’s own 
repair/reconstruction activities, which can also be 
modeled as a discrete, CTMC. The element of  
𝒃6 𝑡  is calculated by 

𝑏,6 𝑡 = 𝑝g,,6 𝑡 ∙ 𝑏g6 𝑡F ,'
g7# 			𝑗 = 1,… ,5     (8) 

in which  𝑏g6 𝑡F , 𝑖 = 1,…5, is the initial damage 
state probabilities derived in step 2 of the building 
portfolio analysis framework in Eq (3);  𝑝g,,6 𝑡  is 
the transition probability of building n upgrading 
to damage state 𝑑𝑠, at time 𝑡 given initial building 
damage state 𝑑𝑠g at time 𝑡F, i.e., 

𝑝g,,6 𝑡 = Prob 𝐷𝑆6 𝑡 = 𝑑𝑠, 𝐷𝑆6 𝑡F = 𝑑𝑠g        (9) 

Further, we define building’s damage 
restoration time 𝐷𝑅𝑇g,,6 	as the time takes to restore 
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the damage of building n from 𝑑𝑠g  at time 𝑡F to 
𝑑𝑠,  at time 𝑡 . Accordingly, the transition 
probability 𝑝g,,6 𝑡 	is estimated by (Lin & Wang, 
2017a): 

𝑝g,,6 𝑡 =
𝐹jklm,no 𝑡 − 𝐹jklm,npqo 𝑡 ,				𝑗 = 1,2,3,4
𝐹jklm,no 𝑡 ,																																								𝑗 = 5  (10) 

Generally, the building damage restoration 
time D𝑅𝑇g,,	  includes two major time components: 
(1) delay time (𝑇jrWst,g), the time takes to initiate 
a repair given building’s initial damage state 𝑑𝑠g, 
(e.g., time for inspection, secure financing, 
engineering/contract mobilization, permitting, 
etc.); (2) repair time (𝑇krusgv,g,,), the time takes to 
complete all required repair items in order to 
restore to less severe damage state 𝑑𝑠,  given 
initial damage state 𝑑𝑠g . Specific methodologies 
to derived statistical distribution of 𝑇jrWst  and 
𝑇krusgv can be found in Lin & Wang (2017a, b). 

3.2 Restoration dependency modeling 
A buildings’ post-disaster repair/reconstruction 
activities are very likely to be influenced if the 
community’s travel efficiency is impaired due to 
its disrupted transportation network. To take into 
account this effect, we introduce a scale factor, 
𝛾 = 𝑇krusgv/𝑇krusgv ,  in which 𝑇krusgv  and 
𝑇krusgv  are repair times with and without 
considering the effect of decreased traffic 
efficiency during a building’s repair phase. We 
assume that the ratio of post-hazard travel time 
(that transports crews and construction materials 
to the construction site) to pre-hazard travel time 
is inversely proportional to ratio of post-hazard 
traffic efficiency to pre-hazard traffic efficiency 
averaged over building’s post-hazard repair phase 
[𝑇jrWst,g, 𝑇jrWst,g + 𝑇krusgv,g,,]  (as shown in 
Figure 3). Accordingly, 

𝛾 = 1 − δ + δ ∙ 𝑇krusgv,g,,/ 𝑇𝐸 𝑡	l{|}~�,m�l�|�~m�,m,n
l{|~}�,m

𝑑𝑡    

(11)               

in which δ  is the proportion of (crew and 
construction materials) travel time to the total 
repair time; 𝑇𝐸 𝑡  is the time-variant traffic 

efficiency associated with the building site, which 
is obtained from transportation network recovery 
model (Zhang, et al., 2017); again, the 
performance outcome of this transportation 
system analysis should be downscaled to each 
building site.  

Apparently, the scale factor γ is dependent 
on 𝑇jrWst,g and 𝑇krusgv,g,,. Therefore, the building 
damage restoration time, DRT, is obtained by, 
𝐷𝑅𝑇g,, = 𝑇jrWst,g + 𝛾(𝑇jrWst,g, 𝑇krusgv,g,,) ∙ 𝑇krusgv,g,,      

(12)    

with its distribution          

𝐹jklm,n 𝑡

= 𝑓l{|}~�,m 𝑥 𝑓l�|�~m�,m,n 𝑦 𝑑𝑥𝑑𝑦
	

���(�,t)∙t��
 

(13)   

 
Figure 3: Averaged travel efficiency during a 
building’s repair phase 

Note that Eqs. (11)-(13) are specific to 
building n (for simplicity the superscript n is not 
written). With the probability distributions of 
delay time and repair time available, as well as the 
time-variant travel efficiency obtained from 
transportaion system analysis, the 𝑝g,,6 𝑡  can be 
derived using Eq. (10). Further, the CTMC 
modeling building-level restoration process is 
calculated using Eqs. (5)-(8).  
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4. PORTFOLIO-LEVEL RECOVERY 
The portfolio-level recovery is then obtained by 
aggregating the CTMC restoration processes of 
individual buildings, 𝑆6 𝑡 , 𝑛 = 1,… ,𝑁, across 
the geographic domain of the community and over 
the entire recovery time horizon. Based on the 
definition of 𝑃𝑅𝐼, 𝑡 , i.e., Eqs. (1) & (2), we 
further calculate its mean value and variance by 
(Lin & Wang, 2017a): 

𝐸 𝑃𝑅𝐼,(𝑡) = #
5

𝜋,65
67# 𝑡 	                        (14)  

𝜎�k�n
$ 𝑡 = #

5�
𝜌,	�6 𝑡 𝜎,6 𝑡 𝜎,� 𝑡5

�7#
5
67#     

(15)             

in which 𝑛,𝑚 ∈ (1,	 … ,	N) denote building n and 

m; 𝜎,6 𝑡 = 𝜋,6 𝑡 1 − 𝜋,6 𝑡  is the standard 

deviation of 𝐼,6 𝑡  and 𝜌,�6(𝑡) is the correlation 
matrix describing correlations between 
functionality states of building n, 𝐼,6 𝑡 , and that 
of building m, 𝐼,� 𝑡 , at any time	𝑡.  

We refer the portfolio recovery index 
associated with FF, 𝑃𝑅𝐼��(𝑡) , as the portfolio 
recovery trajectory, which represents the 
percentage of buildings in the FF functionality 
state at any time 𝑡 following hazard occurrence. 
We further define portfolio recovery time, 
𝑃𝑅𝑇,,s%, as the time takes for a% (e.g. 95%) of 
community buildings to regain a predetermined 
functionality state 𝑗 (e.g. FF).  Then, the CDF of 
𝑃𝑅𝑇,,s% can be derived as (Lin & Wang, 2017a): 

𝐹�kln,~% 𝑡 =		= 𝑓�k�n(𝑥, 𝑡)
#
s% 𝑑𝑥              (16) 

The proposed BPRM, as outlined in Section 3 
and 4, provides probabilistic characterizations of 
both building-level restoration and portfolio-level 
recovery expressed in terms of portfolio recovery 
trajectory 	𝑃𝑅𝐼��(𝑡)  and recovery trajectory 
𝑃𝑅𝑇,,s%. Next, we apply the BPRM framework to 
a testbed community – Shelby County, TN, USA. 

5. CASE STUDY 
The residential building portfolio in Shelby 
County, TN, accounts for approximately 90% of 

the Shelby building inventory (nearly 300,000 
buildings) and is distributed spatially across 221 
census tracts as shown in Figure 4.  

We subject Shelby to a scenario earthquake 
(H) with 𝑀� =7.7 and an epicenter located at 
35.3N and 90.3W (the most likely event 
associated with 2475-year return period). The 
Atkinson and Boore (1995) attenuation 
relationship is used to calculate the ground motion 
intensities at the building site ([𝑰𝑴|𝐻]), and the 
spatial correlations in IM are simulated using 
Wang and Takada (2005)’s model. The spatial 
variation in median peak ground acceleration 
(PGA) in Shelby is also shown in Figure 4. 
Fragility functions from HAZUS-MH 
(FEMA/NIBS, 2003) are adopted for damage 
evaluation ( 𝑫𝑺 𝑰𝑴 ) . Different damage-to-
functionality mapping algorithms 
(i.e. 𝑺 𝒕𝟎 𝑫𝑺 ) can be found in literature (e.g. 
FEMA, 2012; Lin & Wang, 2017b). 
 

 
Figure 4: The residential building portfolio of Shelby 
County (red dots) and median PGA (contour with 
grey shades)  

 

Statistics of delay time, repair time (as 
discussed in Section3) are obtained using 
analytical analysis calibrated by existing 
empirical database (Lin & Wang, 2017b). The 
recovery analysis of lifelines (including power & 
water networks, and transpiration networks) are 
performed by Zhang et al. (2018), in order to 
obtain 𝒖(𝑡) and 𝑇𝐸 𝑡  at each building site. The 
propagations of uncertainties and spatial 
correlations are enforced in the case study by 
multiple layers of Monte-Carlo Simulation (MCS) 
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coupled with sampling techniques (Lin & Wang, 
2016).    

Figure 5 shows the mean estimate of portfolio 
recovery index, 𝑃𝑅𝐼,(𝑡), j = RE, RU, RO, BF, FF. 
The curve associated with FF is the mean 
portfolio recovery trajectory. The spatial 
evolution of portfolio recovery is depicted at four 
selected points in time ¾ 𝑡 = 0, 25,50, 75 weeks 
following the event. Notable spatial disparities are 
observed, reflecting differences in hazard-induced 
damages and recovery capacities, both underlined 
by the social and economic disparities among 
different population groups. 

Furthermore, the uncertainties associated with 
the portfolio recovery trajectory and recovery 
time are shown in Figure 6. The mean recovery 
time associated 95% residential buildings restored 
to their FF states is approximate 87.5 weeks.  

Figure 7 shows the effect of resuming utility 
(blue area in the figure, which occurs at short-term 
phase), as well as the effect of revitalizing travel 
efficiency (red area in the figure, which occurs at 
intermediate and long-term phase) on building 
portfolio functionality recovery. Both effects 
indicate that the neglect of dependencies between 
building portfolio and lifeline systems will lead to 
unconservative estimate of portfolio recovery 
trajectory and recovery time. 

 
 

 
Figure 5:  Mean portfolio recovery trajectory and 
spatial variation of portfolio functionality recovery 
 

 
Figure 6: Uncertainties of the portfolio recovery 
trajectory and portfolio recovery time 

 
Figure 7: Portfolio recovery trajectory with and 
without considering dependencies 

6. CONCLUSIONS 
The probabilistic analysis framework developed 
in this study addresses a significant gap in the 
building portfolio recovery modeling through 
investigation and incorporation of building’s 
dependencies on the community’ lifelines. In the 
literature, the building portfolio’s functionality 
recovery modeling is perform in two steps: 
building-level restoration and portfolio-level 
recovery (Lin & Wang, 2017a,b). To take into 
account functional dependency of a building on 
the availability of utilities (i.e. water and power), 
as well as its restoration dependency on the 
efficiency of the transportation system, 
performances of those lifeline systems are 
downscaled to each building site and incorporated 
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in the CTMC modeling building-level restoration. 
Such coupling of physical systems of distinct 
topologies over a consistent spatial and temporal 
scale can provide a rich array of information to 
support community recovery planning in a 
systematic manner. Besides the model itself, the 
present study contributes an illustrative example 
of how building portfolio recovery can be affected 
by its supporting lifelines, underling the 
importance of considering dependences among 
different infrastructure systems.  
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