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ABSTRACT: Water Distribution Systems (WDSs) are among the most important infrastructures that are 

critical for the smooth functioning of communities. However, age-old existing WDSs are progressively 

at risk in the United States. Since failure in a WDS may affect other interdependent infrastructure and 

result in high economic consequences, water utilities are more interested in preventing rather than 

reacting to failure. The current study proposes a decision support framework that employs fuzzy 

hierarchical inference and network graph analysis to rank the most vulnerable water pipelines considering 

a set of risk factors and their negative consequences. Fourteen (14) risk factors are identified considering 

water and road network interdependence. These factors are classified into four main vulnerability indices 

(strength, hydraulic, environmental, road) and one consequence class in order to evaluate the integrated 

risk of water mains.  Fuzzy analytical hierarchy process is used to quantify the uncertainty in the risk 

factors to aid the decision-making process. Network centrality analysis is used to identify the most critical 

components of the WDS. The final decision is made by combining the outputs from the fuzzy inference 

and the network centrality analysis. The WDS of Modena, Italy is used to demonstrate the proposed 

approach.

1. INTRODUCTION 

The performance of a WDS is often closely linked 

with other infrastructures (e.g. road network) due 

to physical proximity, functional dependency, 

shared resources, etc. (Rinaldi et al. 2001).  Most 

water pipelines are laid underground and often 

follow road networks. Past failures in water mains 

often led to failures of other inter-dependent 

infrastructures and resulted in huge economic 

losses (Zimmerman 2004). Hence, water utilities 

have become more interested in preventing rather 

than reacting to water pipeline failures. 

Existing water networks in the United States are 

at risk as a majority of water pipelines are old, 

with many of them past their expected lifespan. 

Each year, about 240,000 water main breaks occur 

throughout the United States (ASCE 2017). In the 

current context, many municipalities need to 

prioritize maintenance decisions under financial 

constraints and identify the riskiest pipelines 

under interdependency consideration. 

Performance evaluation and condition assessment 

have been extensively studied in the past for water 

pipelines (e.g. Shamir and Howard 1979; Rajani 
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and Makar 2000). However, studies on the 

integrated performance assessment that leads to 

decision making considering interdependency 

effect are rare. Most of the studies on WDS 

performance evaluation are performed separately 

from other infrastructure systems. Recently, some 

effort have been made to evaluate the condition of 

WDS considering interdependence effect of the 

road network (e.g., Shahata and Zayed 2016; 

Elsawah et al. 2016). These studies, however, 

have some limitations. For example, identification 

of critical components of a complex network 

(graph) system is often ignored during the 

decision-making process. Other limitations 

include the lack of consideration of the 

propagation of system disruption, risk updating, 

etc. (Ismaeel and Zayed 2018). Fuzzy-based 

hierarchy structure and network centrality 

analysis can overcome these limitations.   

The main focus of the current study is to formulate 

an integrated decision-making framework that 

considers the interdependence between WDS and 

the road network for facilitating rehabilitation 

planning. The integrated decision-making 

framework combines the condition rating and 

centrality analysis results of WDS. The proposed 

framework is presented in the next section. 

2. PROPOSED FRAMEWORK 

In order to formulate a comprehensive decision-

making tool, the current study integrates road 

factors that influence the performance of WDS. 

Figure 1 illustrates procedures and components of 

the proposed framework. The proposed 

framework uses Water Network Tool for 

Resilience (WNTR) to perform water hydraulic 

and network centrality analysis (Klise et al. 2017). 

Identified risk factors values are transferred into 

the fuzzy scale and Mamdani type input-output 

rules are applied for risk quantification in the 

fuzzy hierarchical inference. The outputs from 

fuzzy inference and network centrality analysis 

are combined using Geographic Information 

System (GIS) tool to generate decision 

alternatives. The output of this decision-making 

tool can be used for prioritizing preventive 

maintenance actions.  

 
Figure 1: Proposed decision-making framework 

3. PERFORMANCE INDICATORS 

Water distribution pipelines typically run under 

road networks and failures in WDS often leads to 

failures in road systems and vice versa. Integrated 

consequence due to failure in any of these two 

systems needs to be considered in risk assessment. 

A comprehensive literature review has been 

performed towards the identification of important 

parameters that are responsible for the failure and 

interdependency consequence of both 

infrastructures. A comparison of contributing risk 

factors used in past research for evaluating the 

performance of WDS is presented in Table 1. Past 

risk assessment methods considered the potential 

consequence of failure in the system in terms of 

direct and indirect losses (Fares and Zayed 2010). 

Past methods classified risk factors into various 

performance classes such as physical, hydraulic, 

operational, etc. The current study uses 14 risk 
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factors that are responsible for the integrated 

performance of WDS. 

Table 1: Performance parameters of WDS 

Reference 

Parameters 

Net. 
D t M 

S
T 

R
T 

N
L 

L
U 

T
L 

d A 
A
C 

R
F 

Elsawah et al. 

(2016) 
         X  X W, R, S 

Shahata and 
Zayed (2016) 

         X  X W, R, S 

Ismaeel and 
Zayed (2018) 

    X X  X   X  W 

Fares and 
Zayed (2010) 

    X X   X  X X W 

Kabir et al. 
(2015) 

     X   X  X X W 

*W: water network; R: road network; S: sewer network; D: 

diameter; t: thickness; M: pipe material; ST: soil type; RT: road 

type; NL: no. of lanes; LU: land use; TL: traffic load; d: burial 

depth; AC: accessibility; A: age; RF: roughness 

4. FUZZY MEMBERSHIP 

In WDS performance evaluation problems, the 

probability of various performance indicators is 

represented vaguely and imprecisely (Sadiq et al. 

2007). Zadeh (1965) provided a fuzzy set theory 

to overcome the problem associated with crisp 

and imprecise representation of probabilities. 

Fuzzy logic is a useful technique to transfer 

qualitative human knowledge into numerical 

reasoning (Demartinos and Dritsos 2006). The 

fuzzy-based technique is preferable in many 

decision-making models as it is capable of 

incorporating human jurisdiction whenever a 

database is incomplete.  

Fuzzy membership can be defined in various 

ways, such as triangular, trapezoidal, Gaussian, 

singleton, etc. The risk parameters are 

transformed into fuzzy membership ranges [0, 1]. 

The membership function of each parameter can 

be defined based on the available information, 

knowledge, literature review, contribution to the 

risk of failure, etc. The integrated risk of failure 

can be determined if vulnerability and 

consequence are identified. Based on the literature 

review, 14 parameters are classified into four 

vulnerability indices (physical strength, 

hydraulic, environmental and road) and one 

consequence index depending on their influence 

to the failure and consequence.  

4.1. Physical Strength Index 

The physical strength index parameters are pipe 

diameter, age, thickness, and material type (see 

Table 2). Past research shows that large diameter 

pipelines experience lesser number of breaks 

compared to smaller diameter pipelines. This is 

because larger diameter pipelines have stronger 

beam strength than comparatively smaller 

diameter pipelines (Najafi 2005). Pipeline wall 

thickness is a vital strength performance indicator 

for metallic pipes. Most buried water mains in the 

USA are metallic and the relatively thicker pipes 

are more resistant to failure (Mazumder et al. 

2018). Many researchers have identified pipe age 

as the most important factor that determines the 

likelihood of failure (Kleiner and Rajani 2001). 

Pipe material is also an indicator of pipe strength. 

Flexible pipelines (e.g. PVC) are capable of 

tolerating more deflection than rigid pipelines 

(e.g. Concrete) as they can transfer ground 

overloads to the surrounding soil beneath it 

(Potter 1985; Zhang et al. 2016). Cast iron 

pipelines have experienced more breaks in the 

past (Mazumder et al. 2018). 

4.2. Hydraulic Index 

The hydraulic index parameters include water 

pressure and roughness. Water pressure at 

demand nodes is a measure of the hydraulic 

performance of WDS (Kabir et al. 2015). Higher 

surplus head at a node indicates more resiliency in 

the system especially during minor and moderate 

head losses (Todini 2000). Roughness is typically 

represented by the Hazen-William Coefficient (C-

Factor). Higher roughness degrades the hydraulic 

performance of WDS (Al-Barqawi & Zayed 

2008). 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 

Seoul, South Korea, May 26-30, 2019 

 4 

4.3. Environmental Index 

The environmental index parameters are soil 

corrosivity and freezing factor. Soil type is a key 

factor in the corrosion behavior of metallic 

pipelines (Al-Barqawi & Zayed, 2008). The soil 

corrosion characteristics are influenced by 

different chemical characteristics (e.g. pH, 

resistivity, etc.) of the surrounding soil (Fares and 

Zayed 2010). Temperature drops impose 

excessive pressure on pipelines and frost loading 

can increase the failure risk of water mains 

(Mazumder et al. 2018). Literature reveals that 

underground pipes experience relatively higher 

rate of failure during cold temperatures (Moser 

and Folkman 2001). Freezing factor can be used 

as a surrogate measure to account for cold weather 

effects on water pipe failures (Kabir et al. 2015).  

4.4. Road Index 

The road index parameters include pipe buried 

depth, pavement type, number of lanes, and traffic 

load. Heavy traffic load induces higher stress on 

pipelines and high-speed vehicles induce dynamic 

loads on pipelines (Potter 1985; Zhang et al. 

2016). The number of lanes is an important 

measure of the redundancy of roadways and the 

type of pavement indicates the condition of 

roadways (Al-Barqawi & Zayed 2008; Fares & 

Zayed 2010).  Effect of traffic load on pipelines 

decreases with higher burial depth. Buried 

pipelines located in shallow depths are more 

prone to damage due to combined traffic and 

underground loads. Increase in burial depth 

reduces the effect of imposed forces on the 

pipeline (Zhang et al. 2016). 

4.5. Consequence Index 

The consequence index of water mains failure 

includes a number of parameters. In the current 

study, pipe diameter, pipe type, burial depth, 

neighbourhood land use, and population density 

are considered to determine the consequence of 

failure. The consequence due to larger water 

mains failure is expected to be higher than the 

consequence of the failure of smaller water mains 

(Sahata and Zayed 2016). Type of pipe material is 

an important indicator of replacement cost. The 

cost of replacing concrete and metallic pipes is 

higher than the cost of replacing PVC pipes. The 

cost of rehabilitation and replacement increases 

with the burial depth. Losses can vary 

significantly due to the pattern of usage of the 

nearby area in case of a water main failure. For 

example, the impact in an industrial area will be 

more than the impact of the same failure in an 

agricultural area (Francisque et al. 2009). 

Population mass density is measured by the 

number of people living in a square kilometer. 

More people will be affected in densely populated 

regions (Kabir et al. 2015). 

 
Figure 2: Fuzzy membership; a) diameter, age, roughness, 

indices b) thickness, water pressure, soil corrosivity, 

freezing factor, burial depth, traffic load, population density 

and c) material type, pavement type, land use 

4.6. Fuzzy Membership Functions 

Five standard membership functions are used, and 

their corresponding score is evaluated from 0 to 1 

corresponding to a rating of insignificance and 

severity, respectively. Figure 2 shows the fuzzy 

membership representation of triangular, 

trapezoidal and singleton functions. The 

granularity fuzzy membership functions 

(singleton, triangular and trapezoidal are used in 
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the current study) for risk factors are given in 

Table 2. 

Table 2: Risk factors analyzed 

 

5. FUZZY HIERARCHICAL INFERENCE 

In the current study, the risk factors are 

categorized into five classes depending on their 

influence on the overall risk. The risk factors are 

evaluated through fuzzy hierarchical inference for 

risk aggregation, as shown in Figure 3. 

In the fuzzy inference system, risk parameters are 

classified into five classes and range values from 

0 to 1. The knowledge-base (using literature) 

technique is used to develop the fuzzy rules. 

Mamdani fuzzy input-output rules system is 

applied in this fuzzy inference. Mamdani fuzzy 

inference uses simple rules based on if and then 

relationship and is easy to understand (Mamdani 

1976; Fares and Zayed 2010). A typical form of 

the fuzzy rule can be expressed as below; 

𝐼𝐹 (𝐴𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡) 𝑇𝐻𝐸𝑁 (𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) 

𝑅𝑖 =

𝐼𝐹 (𝑥1𝑖𝑠 𝐴1
𝑖  𝑎𝑛𝑑 𝑥2𝑖𝑠 𝐴2

𝑖  𝑎𝑛𝑑 … … … . 𝑎𝑛𝑑 𝑥𝑛𝑖𝑠 𝐴𝑛
𝑖 ) 𝑇𝐻𝐸𝑁 (𝑦 𝑖𝑠 𝐵𝑗); 

i,j=1,2,….,n                                                                            (1) 

where  𝑅𝑖 is the i-th rule; 𝐴1
𝑖  is input subsets; 𝐵𝑗 

is output subsets. 

The rule-base fuzzy system typically requires a 

large number of inputs to account for the fuzzy 

behaviour of all possible ranges of input variables.  

The fuzzy inference process allows for 

determining consequent functions based on the 

antecedent functions. The fuzzy rules use ‘and’ 

operator to get the consequence function 

depending on output values. Then the fuzzy 

consequence value is obtained using the minimum 

operator, as shown below (Fares and Zayed 

2010); 

𝜇𝑅 (𝑥1, 𝑥2 … … , 𝑥𝑛 , 𝑦) = ⋀ [𝜇𝑅 
𝑗(𝑥1, 𝑥2 … … , 𝑥𝑛 , 𝑦)]𝑛

𝑖=1                             
              (2) 

where  represents the minimum operator. The 

consequence values of fuzzy rules are aggregated 

by using the maximum operator, as expressed in 

the equation below; 

𝜇𝑅 (𝑥1, 𝑥2 … … , 𝑥𝑛 , 𝑦) = ⋁ [𝜇𝑅 
𝑗(𝑥1, 𝑥2 … … , 𝑥𝑛 , 𝑦)]𝑁

𝑖=1                             

(3) 

where  represents the maximum operator and R 

denotes the consequent membership functions 

defining a range from insignificant to severe. 

 
Figure 3: Fuzzy hierarchical structure 

Each hierarchical layer uses the defuzzification 

process to convert fuzzy output numbers into crisp 

values. The centroid of area method is applied in 

this study to determine the crisp number. The final 

layer quantifies the overall risk by multiplying 

vulnerability and consequence values. The five 

qualitative risk functions are evaluated on a 

quantitative scale [0, 1], as shown in Table 3. 
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Table 3: Risk scaling 

Risk 

Score 

Likelihood 

of failure 

Letter 

Grade 
Description 

  Severe S 
Severe impact on the 

performance and consequence 

0.7 High H 
Highly influence the 

performance and at risk 

0.5 Moderate M 
Moderately affect the system 

component 

0.3 Low L 
Minor impact on the 

performance 

  Insignificant I 
No or very little influence on 

the performance 

 

6. NETWORK CENTRALITY ANALYSIS 

WDS is often large and inherently complex due to 

its nature, topology and operation. Condition 

rating alone is not sufficient to prioritize 

maintenance decisions. Network centrality 

analysis, along with risk analysis explained in 

previous sections, can be a useful tool to prioritize 

maintenance decisions by utility managers under 

budget constraints and resource limitation. A 

WDS can be represented by a graph G (n, e) 

composed of a collection of n junctions (e.g. 

node) connected by e edges (e.g. pipeline). In a 

WDS, a node is defined as a consumer point or 

source (pump, tank, reservoir) and an edge 

represents transmission or distribution mains 

(Hawick 2012). A graph can be either directed or 

undirected depending on the representation of 

edge direction. A graph is said to be undirected if 

a node can be reached from any other nodes 

whereas in directed graph, nodes can be reached 

by following directed edges only.  For simplicity 

of analysis, all of the graphs are assumed to be 

undirected in this study. 

6.1. Node Degree (ND) 

The simplest centrality measure is called degree 

centrality. ND refers to the number of nearest 

neighbours. A higher importance is given to a 

node that is connected to more nodes. ND is 

expressed as (Barthélemy, 2011);  

𝑁𝐷(𝑖) = ∑ 𝑎𝑖𝑗𝑗⊂𝑛                           (4) 

where n is the number of nodes and aij denotes 

the matrix elements. 

6.2. Betweenness Centrality (BC) 

In a graph, a node may not be important locally 

but may be important globally if many access 

flows need to pass through it (Hawick 2012). BC 

measures the number of shortest pathways that 

passes through each node or edge (Barthélemy, 

2011). BC is calculated by the following equation; 

  𝐵𝐶(𝑖) = ∑
𝜎𝑠,𝑡(𝑣)

𝜎𝑠,𝑡
𝑠≠𝑡≠𝑣∈𝑉                                                   (5) 

where () is the number of connecting paths that 

pass-through node ,  is the total number of 

shortest paths from node s to node t. 

6.3. Closeness Centrality (CC)  

This measure is calculated as the reciprocal of the 

sum of the length of shortest pathways from a 

node to all other nodes in the network. Hence, the 

node is said to be more central if it is closer to 

other nodes. CC, normalized by the sum of 

minimum possible distances, is defined as 

(Barthélemy, 2011).; 

𝐶𝐶(𝑖) =
𝑛−1

∑ 𝑑(𝑣,𝑢)𝑛−1
𝜐=1

                            (6) 

where n is the number of nodes in the graphs and 

d(,u) represents the shortest path distance 

between the node  and u. 

7. ILLUSTRATIVE EXAMPLE 

The WDS of Modena city, Italy, taken from the 

Centre for Water Systems at the University of 

Exeter is used to demonstrate the proposed 

framework. The network consists of 268 nodes 

(junctions), 317 elements (pipes) and 4 reservoirs 

(sources), as shown in Figure 4a. However, due to 

the unavailability of actual data of the risk 

parameters, desired values of risk parameters are 
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randomly generated. The water pressure is 

calculated using EPANET and the maximum 

pressure of end nodes is considered for a 

particular pipeline. Table 4 shows a part of 14 risk 

parameters data of the Modena WDS. 

Table 4: Risk parameters of Modena WDS 

 

 
Figure 4: WDS of Modena, Italy; a) Network model; 

b) Vulnerability; c) Consequence and d) Risk 

 

The vulnerability and consequence of Modena 

WDS obtained from fuzzy hierarchical process 

are represented in GIS, as shown in Figure 4b and 

Figure 4c, respectively. The final risk of a 

component is obtained by multiplying the 

vulnerability and consequence scores, as shown in 

Figure 4d. Network centrality analysis is 

performed to identify critical components of the 

network. Figure 5 shows various centrality 

measures of Modena WDS.  This figure shows the 

relative importance of components in the WDS. 

Components marked with red colors in Figure 5 

are more critical than other components of the 

WDS.  

Based on centrality analysis, criticality rating (1.0, 

1.05, 1.1, 1.15 and 1.2) is assigned to a component 

based on its relative criticality importance (higher 

value is assigned to highly critical component). 

Then the final decision output is obtained by 

multiplying the risk analysis result by the 

criticality rating. Figure 6 shows different priority 

groups (priority group 1 to priority group 5) for 

maintenance decision of WDS components. 

Components with higher priority should be 

maintained before those with lower priority.  

 
Figure 5: Network centrality measures of Modena 

WDS; a) normalized ND, b) normalized BC of nodes, 

c) CC of nodes and d) BC of pipes 

 
Figure 6. Decision support output 

8. CONCLUSION 

In the current study, integrated decision-making 

tool is developed utilizing fuzzy inference and 

network centrality analysis. A number of risk 

parameters that influence the performance of 

WDS are identified through rigorous literature 
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review. The risk parameters are classified into 

four vulnerability classes and one consequence 

class in order to perform fuzzy hierarchical 

inference analysis. At the same time, topological 

vulnerability or the critical component of WDS is 

identified through network centrality analysis. 

The proposed concept is illustrated for the WDS 

of Modena, Italy. However, due to unavailability 

of real data, hypothetical data was generated 

randomly for the purpose of demonstration. Final 

decision support map was generated combining 

the outputs from fuzzy inference and network 

centrality analysis.  
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