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ABSTRACT: The performance of bridges can deteriorate during their lifetime due to aging, traffic 
load-induced fatigue, and environmental corrosion. In earthquake-prone areas, structural deterioration 
increases the seismic vulnerability of the bridges, which means a rise of potential economic and social 
losses in the future. Therefore, it is of critical importance to determine the optimum maintenance 
strategies considering bridge deterioration. To this end, the present paper proposes an infinite-horizon 
hybrid Markov decision process model, where the processes of both earthquake occurrence and 
structural deterioration are integrated into a unified Markovian framework. The structural deterioration 
process is modeled by a Markov chain, and a simplified earthquake-induced state transition probability 
matrix is adopted. For the purpose of demonstration, the proposed model is applied to a simple case 
study. 

 
The performance of bridges is degrading over 
time due to various deterioration factors, 
including aging, traffic load-induced fatigue, and 
environmental corrosion, among others. The 
performance degradation of bridges will impair 
their safety under extreme traffic loads or natural 
hazards (e.g. earthquakes or hurricanes). At 
present, a large number of bridges all over the 
world are approaching the end of their designed 
life. For example, according to the 2017 
Infrastructure Report Card (ASCE (2017)), of the 
overall 614,387 bridges in the United States, 
almost four in 10 are 50 years or older, and an 
additional 15% are between the ages of 40 and 
49 in 2016. The average age is 43 years old. 
9.1% of these bridges were structurally deficient. 
It is very important to manage aging bridges 
properly in order to extend their service life. 

Performance of a bridge is determined by 
the condition states of its elements, the 
assessment of which relies on visual inspection 

(Gattulli and Chiaramonte (2005)). Specifically, 
in bridge management systems such as the Pontis 
(Thompson et al. (1998)), visual inspection data 
are employed to give the condition rating indices 
of bridge elements to characterize their 
deterioration levels. It is assumed that the degree 
of deterioration along an element is uniform. 
There is much uncertainty in the prediction of 
element deterioration. After a period of time, an 
element will degrade from the original condition 
state to lower states according to certain 
probabilities. By assuming that deterioration 
rates are stationary over time, the transition of 
condition states can be modeled as Markov 
chains (Cesare et al. (1992); Morcous (2006)). 
Other more complicated models have also been 
proposed, such as stochastic duration models 
(Mauch and Madanat (2001); Mishalani and 
Madanat (2002)). 

The Markov decision process (MDP) model 
is a powerful mathematical tool for making 
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sequential decisions under uncertainty and has 
already received numerous applications in the 
optimum maintenance of bridges. To name a few 
here: Scherer and Glagola (1994) explored the 
use of MDP for bridge management systems, 
with emphasis on the issues of state-space 
explosion and Markovian property; Tao et al. 
(1995) proposed a reliability-based state space to 
capture both serviceability and safety attributes, 
and applied MDP to the optimal design of a 
composite five-girder bridge; Robelin and 
Madanat (2007) developed an MDP framework 
for bridge maintenance optimization using a 
deterioration model that takes into account 
aspects of the history of the bridge condition and 
maintenance. In situations when not all of the 
model parameters and system states are exactly 
known, the partially observable Markov decision 
process (POMDP) model is adopted instead. For 
example, Ellis et al. (1995) presented a POMDP 
model for bridge inspection, maintenance and 
repair by recognizing that inspections do not 
yield perfect estimates of the true internal state of 
structural components. In these cases, decisions 
are made at fixed time points. Accordingly, they 
are named discrete-time Markov decision 
processes (DTMDPs). There are also other cases 
in which the time interval between two 
consecutive decisions is random. Continuous-
time Markov decision processes (CTMDPs) or 
semi-Markov decision processes (SMDPs) have 
been widely applied to this class of problems in a 
variety of contexts (e.g. Beutler and Ross (1987); 
Buchholz and Schulz (2011)). As a critical part 
of bridge maintenance in earthquake-prone areas, 
the post-earthquake decision-making for 
restoring damaged bridges is also a CTMDP or 
SMDP in essence, depending on the probabilistic 
distribution of the occurrence time of 
earthquakes. However, as far as the authors 
know, little work has been carried out in this 
aspect. In this paper, we propose a hybrid MDP 
model which can integrate the preventive 
maintenance at fixed epochs and the essential 
maintenance after earthquakes into a unified 
framework. 

1. STATES AND ACTIONS 
Condition rating indices are assigned to elements 
in bridge management systems. In the Pontis, 
each element is visually inspected by a trained 
inspector and classified into one of four or five 
condition states (Thompson et al. (1998)). For 
example, the Colorado Department of 
Transportation suggested condition state ratings 
for painted open steel girders (Estes and 
Frangopol (2003)), as shown in Table 1. 
Table 1: Condition State Ratings for Painted Open 
Steel Girders 
Condition 
state Description 

1 No evidence of active corrosion. 
Paint system is sound and 
protecting the girder. 

2 Slight peeling of the paint, pitting, 
or surface rust, etc. 

3 Peeling of the paint, pitting, 
surface rust, etc. 

4 Flaking, minor section loss (<10% 
of original thickness). 

4 Flaking, swelling, moderate section 
loss (>10% but <30% of 
the original thickness). Structural 
analysis not warranted. 

5 Flaking, swelling, moderate section 
loss (>10% but <30% of 
the original thickness). Structural 
analysis not warranted due to the 
location of corrosion on the 
member. 

5 Heavy section loss (>30% of 
original thickness), may have 
holes through base metal. 

 
The damage degree of elements intensifies 

as the condition rating index increases. For a 
bridge, the condition states of all elements are 
then integrated into its overall performance by 
structural analysis. Moreover, earthquakes could 
cause additional damage to the bridge, which 
further reduces its performance indicator. A 
variety of performance indicators have been 
proposed, such as reliability, risk, and 
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sustainability, among others (Frangopol et al. 
(2017)). However, due to limited space, we don’t 
intend to specify the indicator and elaborate on 
the procedure for calculating it. Instead, an 
abstract indicator is used for demonstration 
purposes. 

The continuous range of performance can be 
discretized into a series of values. Without loss 
of generality, we define ten mutually exclusive 
bridge states from State 1 to State 10. Note that 
State 1, State 3, and State 5 are the target 
performance levels corresponding to the high, 
normal, and low design standard, respectively. In 
addition, State 10 represents the worst situation 
when the bridge loses its traffic load capacity and 
has to be rebuilt. 

Given a bridge state, the optional restoration 
actions are as follows: If it is above the 
prescribed threshold, which is taken as State 8 in 
this paper, the bridge can continue to work in the 
current state or be restored to one of the three 
target states. Otherwise, the bridge has to be shut 
down for restoration or reconstruction. 

2. RANDOM TRANSITION OF STATES 
For a bridge, its state changes over time due to 
progressive deterioration. Besides, an earthquake 
could also change its state, which is a big issue in 
earthquake-prone areas. In this section, the state 
transition models of these two mechanisms are 
described separately. 

2.1. Deterioration-induced State Transition 
The random transition process of states caused 
by progressive deterioration is modeled as a 
Markov chain, in which state transitions occur at 
a series of time points, and the transition 
probabilities to future states are independent of 
the past states. In addition, if the Markov chain is 
stationary, as assumed in this paper, the 
transition probabilities are constant over time. 

Assume that transitions happen only between 
two subsequent states in one year. Thus, a one-
year deterioration-induced transition probability 
matrix has the following form: 
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where ,i ip  denotes the probability that the bridge 
remains in the ith state. State 10 is considered to 
be an absorbing state. Further, according to the 
Markovian property, the t-year transition 
probability matrix can be expressed as ,tD tÎTP N . 

2.2. Earthquake-induced state transition 
Earthquake-induced damage further weakens the 
performance of a bridge. For an earthquake event, 
there are many uncertainties in its occurrence, 
epicenter, magnitude, propagation, site effect, 
and the resulting structural response. It is quite 
complicated to consider all these factors in 
determining the earthquake-induced transition 
probability matrix. Due to limited space, we 
adopt a simplified method instead. 
1. Normalize the performance indicator so that 

its difference between two consecutive states 
is equal to one. 

2. Given a bridge state, assume a lognormal 
distribution for the random decrease D of the 
normalized performance indicator caused by 
an earthquake. That is 

 2ln ~ ( , )i iD N µ s   (2) 
3. Divide the range of D into discrete values, 

and calculate the corresponding probability 
masses 
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where ( ),D i iF µ s×  denotes the cumulative 
distribution function of D corresponding to 
State i. 

4. Calculate the earthquake-induced transition 
probabilities by definition 
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3. HYBRID INFINITE-HORIZON MDP 
MODEL 

As mentioned above, DTMDPs and CTMDPs 
are applicable to the decision-making of 
optimum maintenance in the context of 
progressive deterioration and earthquakes, 
respectively. In this section, we propose a hybrid 
infinite-horizon MDP model which is able to 
take both hazards into account at the same time. 

The basic idea of the new Markovian 
framework is as follows: (1) A bridge is seen as 

an infinite-horizon dynamic system which 
repeatedly experiences degradation, restoration, 
and even reconstruction. (2) The occurrence of 
earthquakes is assumed to be a Poisson process. 
(3) If no significant earthquakes occur during a 
pre-defined time interval, the bridge will be 
inspected at the end of the interval, followed by a 
maintenance decision based on the inspection 
result. The end of the previous time interval is 
taken as the start of the next time interval. 
However, if a significant earthquake occurs 
during the time interval, inspections and 
maintenances are carried out immediately, and 
the time point is taken as the start of the next 
time interval. 

Based on the above description, the formula 
of the hybrid infinite-horizon MDP model is 
derived as follows: 
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where ν denotes the mean occurrence rate of 
earthquakes; λ denotes the discount rate; T 
denotes the pre-defined time interval for regular 
inspections; ( ), ap s st¢  is the state transition 

probability from as  to s¢  at time τ, which is a 
step function of time, as follows: 
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For more details on MDP theory, please 
refer to related monographs, such as Powell 
(2007). 

4. CASE STUDY 
The proposed hybrid MDP model is applied to a 
hypothetical bridge exposed to deterioration and 
earthquakes. 

The mean values and standard deviations in 
Eq. (3) are listed in Table 2. 
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Table 2:Mean Value and Standard Deviation 
State 1 2 3 4 5 6 7 8 9 10 

µ 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 
σ 0.3 

 
The one-year deterioration-induced state 

transition probability matrix is 
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Restoration or reconstruction losses include 

direct economic costs and indirect losses due to 
traffic delay. The direct economic costs are listed 
in Table 3. The indirect losses are converted 
equivalently to economic costs. For simplicity, it 
is assumed that the indirect costs incurred when 
the bridge is in State 8, 9, and 10 are $7 million, 
$8 million, and $20 million, respectively. In 
other cases, indirect losses are not considered. 

Other parameters involved in the analysis 
are as follows: ν=0.05; λ=4%; T=5 yr. 
 

 
Table 3: Direct Economic Cost (103 $) 
 Post-decision state 

State 1 
(High 
standard) 

State 3 
(Normal 
standard) 

State 5 
(Low 
standard) 

State 1 0 - - 
State 2 200 - - 
State 3 400 0 - 
State 4 600 200 - 
State 5 800 400 0 
State 6 1,000 600 200 
State 7 1,200 800 400 
State 8 1,400 1,000 600 
State 9 1,600 1,200 800 
State 10 3,400 3,000 2,600 
 

The optimum maintenance decisions in 
three cases are obtained by DTMDP, CTMDP, 
and the proposed model, respectively, as shown 
in Table 4. We can see that the coupling of 
deterioration and seismic hazards leads to a 
higher requirement for target performance in 
restoring the bridge. 
 

Table 4: Optimum Maintenance Decisions 

State Deterioration only 
(by DTMDP) 

Earthquake only 
(by CTMDP) 

Deterioration+Earthquake 
(by the proposed model) 

1 no restoration no restoration no restoration 
2 no restoration no restoration no restoration 
3 no restoration no restoration no restoration 
4 no restoration no restoration no restoration 
5 no restoration no restoration restored to State 3 
6 restored to State 5 restored to State 5 restored to State 3 
7 restored to State 5 restored to State 5 restored to State 3 
8 restored to State 5 restored to State 5 restored to State 3 
9 restored to State 5 restored to State 5 restored to State 3 
10 rebuilt to State 5 rebuilt to State 5 rebuilt to State 3 
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5. CONCLUSIONS 
A hybrid MDP model is creatively proposed in 
this paper for making optimum maintenance 
decisions in the environment of coupled 
structural deterioration and earthquake hazards. 
It integrates DTMDP and CTMDP into a unified 
Markovian framework. A simple case study is 
performed to demonstrate its application. There 
is still some work to be done before the model 
can be applied to practical problems. For 
example, the derivation of a more reliable 
earthquake-induced state transition probability 
matrix from probabilistic seismic hazard analysis 
and structural fragility analysis. 
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