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ABSTRACT: Near Real-Time Loss Estimation Models (NRTLEMs) represent effective tools for 

developing improved parametric insurance products. This type of financial instruments enables rapid 

payments as they use one or more environmental variables measured immediately after the event and 

defined as trigger(s), to identify disaster events and predict the consequent impact. This study presents 

the preliminary development of such a NRTLEM, specific for floods. Given the importance of the event 

identification within the proposed methodology, different types of triggers are investigated and 

compared, with special focus on satellite precipitations estimates. NRTLE-based framework for 

identification of flood events in the Philippines using satellite precipitation estimates is investigated here. 

The methodology for event identification and the model calibration procedure are discussed. Finally, the 

model performance is investigated and the optimal configuration of model parameters minimizing basis 

risk, i.e., the mismatch between insurance claim settlement and the actual losses, is presented for the 

case-study application. 

 

1. INTRODUCTION 

According to the 2016 World Disasters Report by 

the International Federation of Red Cross, in the 

last decade, natural hazards have affected more 

than 1.9Bn people, killed 700k and caused $1.9Tr 

worth of damage [IFRC, 2016]. These figures are 

expected to worsen in the near future due to both 

population increase (and consequent increase of 

the exposed assets) and the potential significant 

impact of climate change. The expected increase 

in the overall cost of natural hazards highlights the 

importance of efficient financial strategies to 

improve preparedness and enable rapid response 

and recovery after a disaster occurs. In particular, 

there is a need to develop ex-ante funding 

mechanisms that are more efficient in meeting 

post-disaster needs and fostering disaster risk 

management (DRM) efforts [Cummins & Mahul, 

2009]. In recent years, innovative financial 

instruments have been developed to ensure 

financial resources before the occurrence of an 

event. Among these, increasing attention is being 

paid to the use of parametric or ‘trigger-based’ (or 

index-based) insurance, especially in countries 

with low financial capacity. Parametric insurance 

enables rapid action/payments and is cost-

effective, when compared to traditional 

(indemnity-based) insurance. In the case of 

parametric insurance, payments are made on the 

basis of the exceedance of weather-related or 

geological observations, also defined as triggers, 
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such as the cumulated (or average) rainfall over a 

given period, maximum wind speed or the 

magnitude of an earthquake [Ibarra, 2012]. The 

payout can be either fixed (related to the 

occurrence of a predefined event) or can be linked 

to an ad-hoc developed index computed by means 

of the above-mentioned parameter. Traditionally, 

the monetary coverage provided by parametric 

insurance products is aimed at covering short-

term revenue shortfall and filling the most 

pressing needs between short-term disaster relief 

and long-term redevelopment aid. Parametric 

insurance is inherently subjected to potential 

mismatch between claims settlement and the 

actual losses suffered by the insured and, more 

generally, to the risk that the payout does not 

correspond to the occurrence of an actual event. 

This type of risk is generally referred to as basis 

risk [Albertini & Barrieu, 2009]. 

This study presents the first step toward the 

development of a Near Real-Time Loss 

Estimation (NRTLE) model, here applied to flood 

events, to be implemented in a new generation of 

parametric insurance products. When compared 

to conventional catastrophe risk models, NRTLE 

models bring the time component into play and 

they are intended to first identify the occurrence 

of an event, and then produce a loss estimate 

immediately after (in near real-time) the event has 

been declared. In particular, this paper describes 

the methodology to identify triggering events, 

which is a crucial aspect in any NRTLE model. 

The main added value of NRTLE models is 

represented by the use of the same input data and 

structure for both risk assessment, i.e., the pricing 

phase, and the estimation of losses in near real-

time. This represents a fundamental difference 

with respect not only to traditional risk assessment 

models, but especially regarding other available 

post-disaster impact methodologies (PAGER, 

GDACS, etc.) [Mehta, 2017; Wald et al., 2010]. 

NRTLE models are designed to be consistent with 

traditional risk assessment models in terms of 

both hazard and estimated losses. Additional 

requirements are represented by the accessibility 

in near real-time of the selected trigger, which 

also needs to be highly reliable (in terms of 

accuracy of measurement of the environmental 

variable). Finally, the trigger must be highly 

correlated with losses (i.e., efficient). An 

application of the proposed NRTLE-based 

framework for flood events in the Philippines, one 

of the most flood prone countries in the world, is 

presented. Firstly, following the description of a 

reference historic disaster loss dataset, the 

selected environmental variable (satellite 

precipitation estimates) is analyzed and the 

features that make it a suitable trigger for flood 

NRTLE are described. Then, the procedures for 

event identification and model calibration are 

described. Finally, the model performance is 

assessed and the configuration for optimal 

thresholds, i.e. the one that minimizes the basis 

risk for the specific case-study region, is 

presented. 

2. STUDY AREA AND INPUT DATA 

2.1. The Philippines’ risk profile 

The Philippines is an archipelago of 7,107 islands 

(1,000 of which are inhabitable) whose total area 

is approx. 300,000 Km2. It is among the top global 

disaster hotspots and is exposed to a wide range 

of natural and human-induced hazards (Figure 

1a), which is a limiting factor to its sustainable 

development. For instance, in the 2014 

Germanwatch Climate Risk Index, the Philippines 

ranked 2nd worldwide among the most affected 

countries by disasters, with 85% of GDP in areas 

at risk. Located in the Pacific Ring of Fire, it is 

highly exposed to earthquakes, volcanic 

eruptions, and other geological hazards, as well as 

to multiple typhoons and monsoon rains. In 

recognition of the country’s vulnerability to 

natural disasters, the enactment of the Philippine 

Disaster Risk Reduction and Management 

(DRRM) Act in 2010 (Republic Act 10121) is 

enabling substantial progress in shifting the 

emphasis from emergency response to 

preparedness, mitigation and prevention. 

Significant resources have been provided for ex-

ante investments and new areas of engagement 

have been considered in the policy dialogue. 
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      (a)              (b)          (c) 

Figure 1: The Philippines’ disaster events (a) frequency, (b) damage and (c) reclassification of hydro-

meteorological events by island group between 1998 and July 2017, from EM-DAT (2018).  

 

However, challenges remain in enabling 

implementation of disaster risk reduction 

investments in several priority sectors. 

2.2. Historical event data: the EM-DAT database 

The event information used for the present study 

was collected from the EM-DAT database [Guha-

Sapir, 2018], which is a global database 

containing information related to the occurrence 

and consequences of more than 21,000 disasters 

worldwide from the beginning of the 20th century 

onwards. EM-DAT provides the specification of 

disaster type (e.g. storm, flood), disaster subtype 

(e.g. tropical cyclone, pluvial flood) and in some 

cases also an estimate of the magnitude of the 

event in terms of Km2 (flood) or Kph (storm) and 

(or) Latitude-Longitude coordinates of the event 

location. In terms of measured impact, total 

deaths, total affected (i.e. number of individuals 

affected, injured and homeless) and total damage 

(physical damages/direct and indirect economic 

losses) are the variables included in the EM-DAT 

database. Specifically, detailed data on historical 

hydro-meteorological events in the Philippines is 

used as an historical catalogue in this study for 

model calibration and validation purposes. The 

original data (493 events) was pre-processed to 

filter only events from January 1998 and July 

2017, for consistency with available precipitation 

data (as discussed in the next sub-section). As a 

result of this process, a total of 222 disasters were 

obtained. In order to allow for an assessment of 

the location accuracy of the events simulated by 

the proposed NRTLE model, a reclassification of 

the EM-DAT events based on the three main 

Philippines’ island groups - Luzon, Visayas, 

Mindanao - has been carried out (Figure 1c). 

2.3. Trigger: CMORPH precipitation estimates 

The proposed methodology for the near real-time 

identification of hydro-meteorological events (i.e. 

floods and storms) in the Philippines is based on 

a single trigger, that is the daily precipitation. In 

the present study, the CMORPH (CPC 

MORPHing technique) precipitation estimates are 

the selected input. CMORPH produces 

precipitation estimates in the latitude band 60°S – 

60°N with high temporal (30 minutes) and spatial 

(approximately 8km at the equator) resolution. 

Temporal coverage is from 1998 to present. Its 

latency is quite low, since CMORPH estimates 

are available after 18 hours from acquisition. The 

technique used to produce precipitation estimates 

uses exclusively low-orbiter satellite microwave 

observations, which are transported using spatial 

propagation obtained entirely from geostationary 

satellite InfraRed (IR) data. This procedure is 

aimed at determining precipitation features in half 

hourly periods between microwave scans and is  
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        (a)                   (b)        (c) 

       
Figure 2: CMORPH precipitation over the Philippines on 2009-10-03. Precipitation over an area with a 50 km 

buffer from country boundaries (a) and precipitation on land (b). Daily mean precipitation values between 1998-

01 and 2017-07 (c). 

 

referred to as “morphing” technique [Joyce et al., 

2004]. CMORPH data was processed through a 

code developed in R programming language (R 

version 3.5.1 and RStudio 1.1.453) to compute 

daily totals of precipitation from the original half-

hourly data. Original data was first filtered over a 

rectangular area around the Philippines (Figure 

2a). Subsequently, daily precipitation values were 

computed and finally they were masked over the 

country borders (Figure 2b). The resulting raster 

was composed of 4,630 cells with a resolution of 

approximately 8 km by 8 km. A daily mean 

precipitation map (values between 5 and 300 

mm/day) was also produced to obtain a visual 

representation of the areas most affected by higher 

daily precipitation values (Figure 2c). 

It is worth noting that 25% of the daily 

precipitation values are lower than 1 mm/day, a 

low value caused by the length of the investigated 

period. The 75th percentile is 12.1 mm/day and 

99% of daily precipitation values are lower than 

86 mm/day. 

3. METHODOLOGY 

3.1. Event definition procedure 

The proposed procedure for the identification of 

hydro-meteorological events in the Philippines, 

based on the daily precipitation, can be 

summarized in four main steps: 

1. Computation of active cells over the area of 

interest (the Philippines); 

2. Definition of active days within the 

investigated period; 

3. Definition of event start and end dates; 

4. Identification of events within a control 

period. 

 

The first step (1) is represented by the 

identification of the active cells, defined as those 

cells where a predefined precipitation threshold is 

exceeded. Such a precipitation threshold is 

defined as Threshold 1 (Thr.1) (Figure 3). The 

next step (2) is the computation over the whole 

Philippines of the total number of active cells for 

each given day (Figure 4).
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Figure 3: Computation of active cells over the Philippines. 
 

The event duration [step (3)] is estimated on the 

basis of this binary array of active days. The start 

date of the event is set on the first day in which 

the number of active cells is above a number of 

cells (or cell percentage) threshold, Threshold 2 

(Thr.2), and the end date of the event corresponds 

to the day in which the number of active cells 

drops below the threshold with a period of 

tolerance (here set to one day). 

Figure 5 contains a graphical representation 

of the event definition above described. The last 

step of the procedure (4) is represented by the 

definition of a control period, in which to assess if 

an event has occurred. Two main reasons justify  

 

the adoption of a period longer than one day to 

check estimated events with respect to the 

historical (real) ones. Firstly, daily analysis would 

be misleading (events usually last more than one 

day) and demanding. The same can be said for its 

opposite, that is an event-based approach. 

Secondly, the so-called “72 hours clause” is 

typically applied to perils such as storm or flood 

in the insurance and reinsurance sector for the 

parametric products associated with this kind of 

models. Hence, an aggregation over a period of 

three day was here selected (Figure 6). Therefore, 

a final binary array was produced based on the 

presence of at least one day with a number of 

active cells above the active cell threshold (Thr.2)  

 

 
Figure 4: Computation of total number of active cells for each day 
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Figure 5: Event definition with highlighted period of tolerance. 

 

within the 3-day control period above discussed. 

3.2. Model calibration and performance metrics 

The model calibration was aimed at identifying 

the optimal values for Thr.1 and Thr.2 and was 

conducted using two sets of values for both of 

them. 

Each of these thresholds is used to produce 

the binary vector above described that has to be  

verified against an analogous binary array 

produced for historical (real) events. This array is  

created from the EM-DAT events and assuming 

the same control period reported earlier (3 days). 

The use of binary arrays to verify a forecast 

against a corresponding measured observation is  

 

derived from the weather forecast verification 

sector [Stanski et al., 1989]. Typically, a 

contingency table is created to conduct a forecast 

verification. The ‘hits’ represent the number of 

events which occurred and were detected by the 

model. ‘Misses’ refer to the number of events 

which occurred and were not detected by the 

model. The ‘False alarms’ entry is the number of 

events which did not occur but were detected by 

the model. ‘Correct negatives’ refer to the number 

of events which did not occur and were not 

detected by the model. Two useful metrics to 

investigate the model performance are the 

Probability of Detection (POD) and the 

Probability of false detection (POFD) which can 

be obtained using, respectively, Eq. (1) and (2): 
 

 
Figure 6: Event definition with highlighted period of tolerance.
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Table 1: Contingency table. 

 Real events 

Modelled 

events 
Yes No 

Yes Hits 
False 

Alarms 

No Misses 
Correct 

Negatives 

 

The POD measures the fraction of the observed 

“yes” events which are correctly detected by the 

model. Conversely, the POFD calculates the 

portion of the observed “no” events which were 

incorrectly identified as “yes” event from the 

model. 

POD = 
Hits

Hits+Misses
 (1) 

POFD =
False alarms

False alarms+Correct Negatives
 (2) 

To provide an overall measure of the model 

performance, a Skill Score (SS) metric can be 

defined as the difference between the two above 

reported statistics, according to Eq. (3): 

 SS = POD-POFD (3) 

Two sets of threshold values (i.e., 1, 2.5 and 

from 5 to 100mm, with 5mm steps for Thr.1 and 

from 1% to 15%, with 0.5% steps for Thr.2). have 

been used for a total of 638 runs. Another analysis 

tool that is commonly used to assess the accuracy 

of a continuous measurement for predicting a 

binary outcome is the so-called relative operating 

characteristic (ROC). The ROC curve shows the 

POD on the vertical axis against the POFD on the 

horizontal axis for different combinations of Thr.1 

and Thr.2. Model calibration (training) was 

accomplished by filtering recursively 18 years; 

the model was then tested on the remaining 2 

(testing), that is through a bootstrapping method. 

For each training period, all 638 different model 

configurations were run. 

4. RESULTS: PERFORMANCE METRICS 

AND BEST MODEL CONFIGURATION 

The best model configuration for almost all 

investigated training periods (except period 1998-

2015) was found to be Thr.1 = 65mm/day and 

Thr.2 = 2%. Model performance was finally 

assessed over the whole investigated period 

(1998-2017) by using the 638 different 

combinations of Thr.1 and Thr.2. This analysis 

confirmed the best model configuration reported 

above. The conditional distributions of 

precipitation on real-event days and on non-event 

days was also compared to assess if the rainfall is 

a reasonable predictor for a flood event. Figure 7a 

clearly shows that for low daily precipitation 

values, the non-event curve stays above the event 

one, indicating that, during non-event days, the 

daily precipitation is generally lower than the one 

in event days, as expected. This trend is reversed 

after 72mm/day, as it is clearly visible by the 

value of the distribution ratio which becomes 

lower than one after that level. 

This suggests that high daily rainfall values 

are correlated with flood events and therefore with 

their losses. The ROC curve (Figure 7b) confirms 

the optimum model configuration (Thr.1 = 65 

mm/day and Thr.2 = 2%, highlighted by a red 

star), which typically coincides with the farthest 

point from the diagonal line. Indeed, this point 

represents the model with the best performance 

with respect to a completely random model 

(diagonal line). The event location accuracy of the 

model was also assessed and, although it is not 

included here due to space limitations, promising 

results were obtained. 

5. CONCLUSIONS 

This study introduced the first component of a 

NRTLE model, specifically applied to flood risk 

due to hydro-meteorological events in the 

Philippines. The model relies on CMORPH 

satellite precipitation estimates as a trigger to 

identify a disaster event. Model performance was 

assessed using methodologies available in the 

literature for forecast precipitation verification 

and the model calibration was performed using a 
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bootstrapping method to train recursively the 

model on 18 years and test it on the remaining.  

The best model configuration resulted for a 

precipitation threshold value, Thr. 1 = 65mm/day, 

and a number of active cells threshold, Thr. 2 = 

2%. The R.O.C. curve, which was produced by 

running the model using all 638 different 

combinations over the whole period of analysis, 

confirmed an overall good model performance 

and the best model configuration thresholds 

obtained in the calibration phase. 

 

 

 
    (a)                                              (b) 

Figure 7: Conditional distribution of (a) CMORPH precipitation below 200mm/day and (b) ROC curve. 
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