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ABSTRACT: Inspections, Structural Health Monitoring (SHM), and Damage Detection System (DDS)
are integral parts of structural integrity management (SIM) to ensure the structural performance and
the required safety. This paper describes novel approaches on how the outcomes of Structural Health
Monitoring (SHM) can be modeled, predicted, and combined with inspection planning in the frame of
pre-posterior decision analysis and utilized for an optimization of the SIM. The SIM is hereby formulated
for a deteriorating structural system subjected to extreme loading with the objective to minimize the risk
and expected costs for an envisaged and extended service life. Due to the complexity of the decision
analysis for this type of problem, several simplifications and a decision rule are derived and discussed
to reduce the computational costs. An application example with a deteriorating brittle Daniels system is
presented and discussed. The example shows SHM and DDS can be utilized together with inspections to
further optimize SIM strategy and reduce the expected costs over the service life.

1. INTRODUCTION
As part of structural integrity management (SIM),
inspection and monitoring provide valuable infor-
mation with respect to the structural system perfor-
mance. Approaches to optimize inspection plan-
ning by utilizing the Bayesian decision analysis
framework, especially the Value of Information
(VoI) theory, had been studied in the last decade
(see e.g., Straub (2004)). Similar studies had been
conducted to optimize the utilization of SHM (see
e.g., Thöns (2017)) and DDS (see e.g., Thöns et al.
(2018)).

This paper addresses the quantification of the
value of inspections when combined with SHM and
DDS in order to optimize SIM strategy. In Section
3, the modeling approaches for inspection, SHM
and DDS are presented. A novel approach for SHM
modeling by utilizing the stress range model uncer-
tainty based on the approach by Agusta and Thöns
(2018) is introduced. Three SIM strategies are in-

vestigated in this study: (1) only inspections, (2) in-
spections with SHM, and (3) inspections with DDS
(see Section 4). Deteriorating brittle Daniels sys-
tem with four components subjected to an external
load is utilized in the case study (see Section 5).
The results show a high reduction in total expected
costs by utilizing the SIM strategies compared to
without SIM. It is also observed that the outcome
of SHM/DDS can significantly influence future in-
spection planning by changing the inspection fre-
quency and inspection interval.

2. STRUCTURAL RELIABILITY MODELING

2.1. Probability of Fatigue and System Failure for
Brittle Daniels System

Structural systems performance may deteriorate
due to the accumulation of damage during the ser-
vice life. With increasing damage, the component
resistance is decreasing due to the loss of cross-
sectional area and may cause component failure.
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The component failure’s limit state function is

gF,i(XXX , t) = MR,iRi(t)−ML,iLi (1)

Li is the maximum component load, and MR,i and
ML,i are the resistance and the load model uncer-
tainty, respectively. XXX is a vector of random vari-
ables that influence the deterioration. The compo-
nent resistance Ri deterioration is modeled as fol-
lows

Ri(, t) = R0,i

(
1−dR,i

δi(, t)
δc,i

)
(2)

where R0 is the initial resistance, δi(t) is the crack
size at time t, and δc,i is the critical crack size. dR
is the damage scaling function:

dR,i =

{
1 δi(t)/δc,i ≤ 1
δc,i

δi(t)
δi(t)/δc,i > 1

(3)

The damage event D is defined with the following
limit state function:

gD,i(XXX , t) = 1− δi(t)
δc,i

(4)

Real structures often consist of redundant com-
ponents and the Daniels system (see Figure 1) may
be used to idealize such structural systems. As-
suming brittle material behavior, the system fail-
ure limit state function for brittle Daniels system
is written as follows:

gFS(XXXS, t) =
NC⋂
i=1

{
(NC− i+1)M̂R,iR̂i(t)−MLSLS

}
(5)

where NC is the number of components in the
Daniels system, and M̂R,i and R̂i(t) are the re-
alizations of MR,i and Ri(t), respectively. Note
that M̂R,iR̂i(t) need to be ordered in ascending or-
der to calculate Eq. 5, e.g., M̂R,1R̂1(t) ≤ ... ≤
M̂R,NC R̂NC(t). The probability of system failure
P(FS(t)) is then calculated as follows

P(FS(t)) =
∫

gFS (t)≤0
fXXXS(xxxS)dxxxS (6)

where fXXXS is the joint distribution of random vari-
able XXXS.

Figure 1: An illustration of Daniels system with NC

components subjected to an external system load LS.

2.2. Fatigue crack growth model
The damage is assumed caused by the fatigue crack
growth and modeled with Paris’ law. The crack size
at time t at an infinite panel is calculated as follows
(Ditlevsen and Madsen, 1996)

δ (t) =

(
δ

1−m
2

0 +
(

1− m
2

)
C
(

BSIFB∆S∆Se
√

π

)m
vt

) 1
1−m

2

(7)
where C and m are the empirical model parame-
ters, δ0 is the initial crack size, v is the cycle rate,
and BSIF and B∆S are the model uncertainties of the
stress intensity factor and the stress range, respec-
tively. The equivalent stress range ∆Se is defined as
follows:

∆Se = k

[
Γ

(
1+

m
λ

)]1/m

(8)

where k and λ are the Weibull scale and shape
parameter and Γ(·) is the complete gamma func-
tion. Therefore, the random space is defined as
XXX = [δ0,m,C,∆S,BSIF ,B∆S,k,λ ]

3. STRUCTURAL INFORMATION MODELING
3.1. Inspection and Damage Detection System

Modeling
There are two outcomes of inspection and DDS: no
indication (I1) or indication (I2) of damage. Inspec-
tion by non-destructive test (NDT) can be modeled
by utilizing the signal distribution, fS(s) (Gandossi
and Annis, 2010). With this method, the probabil-
ity of indication given damage δ can be calculated
as follows

P(I2|δ ) =
∫

∞

ths

fS(s)ds (9)
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where thS is the signal threshold. The signal thresh-
old may be defined by using the noise distribution
fSR(sR) at undamaged component and taking into
account the probability of false indication (PFI) as
seen in Eq. 10.

ths :
∫

∞

ths

fSR(sR)dn = PFI (10)

where PFI is assumed to be known. The thresh-
old can also be treated as optimization parameter
to maximize the value of information and action
(VoIA).

The marginal probability of no indication (I1) is
calculated as follows

P(I1) =
∫

gI1(XXX ,t)≤0
P(I1|δ ) fδ (δ )dδ (11)

where gI1(XXX , t) is the no indication limit state func-
tion (Hong, 1997):

gI1(XXX) = P(I2|δ )− z (12)

where z is a uniformly distributed random variable.
DDS can be modeled with a multivariate prob-

ability of indication based on the damage indica-
tor value (DIV) distribution for each damage states
(Thöns et al., 2018). The multivariate probability
of indication contains the uncertainties of the mea-
surement precision, DDS operation, model uncer-
tainty of the DIV derivation, and algorithm preci-
sion. The probability of no damage indication given
damage vector δδδ is given as follows

P(IDDS
2 |δδδ ) =

∫
∞

thV

fV (v|δδδ )dv (13)

where δδδ = [δi, ...,δNC ] and thV is the DIV threshold
and may be derived from the DIV distribution in
undamaged system by taking into account the prob-
ability of false indication PFIS

thV :
∫

∞

thV

fVR(vR|δδδ = 0)dvR = PFIS (14)

Similar to inspection approach, the threshold can
also be treated as optimization parameters to max-
imize VoIA. The probability of no damage indica-
tion is defined as follows

P(IDDS
1 ) =

∫
gIDDS

1
(XXXS)≤0

P(IDDS
1 |δδδ ) fδδδ (δδδ )dδδδ (15)

where gIDDS
1

(XXXS) is calculated as follows

gIDDS
1

(XXXS) = P(IDDS
2 |δδδ )−u (16)

u is a uniformly distributed random variable.
P(IDDS

2 |δδδ ) is calculated by utilizing the mixture of
DIV distribution in undamaged/reference state and
in damaged state as illustrated in Figure 2.

Figure 2: An example of POD distribution of DDS for
sensors placed at two components.

3.2. Structural Health Monitoring Modeling
SHM can be installed to monitor specific structural
properties (such as e.g., vibration). Operational
modal analysis (OMA) can be used in conjunction
with structural model to estimate the stress ranges.
OMA is utilized to estimate the mode shape vec-
tors from the monitoring data (e.g., vibration mea-
surement) which then expanded to cover the entire
model (Brincker and Ventura, 2015). Therefore,
the calibrated model will give better estimates of
structural responses (e.g., stress ranges). The stress
ranges estimate obtained from OMA can be viewed
as the possible realizations of the stress ranges
model uncertainty. Before SHM implementation,
the SHM outcome is unknown but with a known
monitoring uncertainty U and may be predicted by
utilizing the stress range model uncertainty B∆S and
two thresholds η1 and η2. Each threshold is associ-
ated with a target damage probability PT

D as shown
in Eq. 17.

η1 : P(D|η1(t)) = PT
D,1

η2 : P(D|η2(t)) = PT
D,2 (17)
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where PT
D,1 < PT

D,2. If the component damage prob-
ability is lower than PT

D,1, the SHM will indicate
that the component is better than expected (Z = Z1).
If it is in-between PT

D,2 and PT
D,2, the component is

performing as designed (Z = Z2) and a bad perfor-
mance (Z = Z3) if the damage probability exceeds
PT

D,2. Therefore, the outcomes can be defined as
three indication events as follows (see e.g. Agusta
and Thöns (2018)):

Z1 : B̂∆S ≤ η1

Z2 : η1 < B̂∆S < η2

Z3 : B̂∆S ≥ η2 (18)

As in inspection and DDS approach, the thresholds
can also be treated as optimization parameters to
maximize VoIA. The marginal probability of each
of the outcomes is calculated from the stress range
model uncertainty distribution as follows, see Fig-
ure 3:

P(Zk) =
∫

ηk

ηk−1

fB∆S(B∆S)dB∆S (19)

where η0 = 0, η4 = ∞, and k = 1,2,3.

3.3. Structural System Updating
The outcome of an inspection can be used to up-
date the probability of system failure by utilizing
the Bayes’ rule. Given no indication of damage
during an inspection campaign, the updated system
failure probability is given as follows:

P(FS|IC
1 ) =

P(FS
⋂

IC
1 )

P(ĪC)
(20)

Figure 3: The probability density function of B∆S with
two thresholds.

where IC
1 is defined as

IC
1 =

NC⋂
i=1

I1,i =
NC⋂
i=1

{
gI1,i(XXX)≤ 0

}
(21)

If DDS is installed before the inspection cam-
paign is performed, the system failure probability
is updated according to Eq. 22.

P(FS|IDDS, IC
1 ) =

P(FS
⋂

IDDS⋂ IC
1 )

P(IDDS⋂ IC
1 )

(22)

IDDS is the possible outcome of DDS, which can
be no indication (IDDS

1 ) or an indication (IDDS
2 ) of

system damage.
If SHM is installed at a component before the

inspection campaign, the system failure probability
is updated as follows:

P(FS|Z, IC
1 ) =

P(FS
⋂

Z
⋂

IC
1 )

P(Z
⋂

IC
1 )

(23)

where Z is the possible outcome of SHM (see Eq.
18).

4. VALUE OF INSPECTIONS, MONITORING,
AND DAMAGE DETECTION SYSTEM

The Value of Information (VoI) theory has been
used to quantify the value of inspection and mon-
itoring (see e.g. Agusta et al. (2017), Thöns et al.
(2018)). Detailed explanation of the pre-posterior
decision analysis can be seen in Raiffa and Schlaif-
fer (1961). In order to calculate the value of inspec-
tions before the actual inspections are performed,
two scenarios are considered: the do-nothing sce-
nario (prior) and the scenario with inspections (pre-
posterior). The value of information and action is
then calculated as the difference between the ex-
pected total costs in the prior scenario C0 and the
pre-posterior scenario C1 as follows:

VoIA =C0−C1 (24)

In the prior scenario, no inspections and repair is
performed on the structural system. Therefore, the
prior expected total costs C0 is simply the sum of
expected failure costs over the service life, see Eq.
25.

C0 =

(
NC

∑
i=1

E[CF,i]

)
+E[CFS] (25)
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E[CF,i] and E[CFS] are the expected component and
system failure costs over the service life, respec-
tively.

In this paper, three strategies of SIM are consid-
ered: (1) only inspections, (2) inspections and mon-
itoring, and (3) inspections and DDS (see Table 2).
In the first strategy, inspections are performed one
year before the annual system failure probability
exceeds the threshold ∆Pth(FS). After the inspec-
tions, repair can be conducted at the inspected com-
ponents.

The expected total costs of the first SIM strategy
is as follows:

C1,1 =

(
NC

∑
i=1

E[CI,i]+E[CR,i]+E[CF,i]

)
+E[CFS] (26)

E[CI,i] and E[CR,i] are the expected inspection and
repair costs, respectively.

The second strategy combines inspections with
monitoring. The expected total costs for this strat-
egy is calculated as follows:

C1,2 =

(
NC

∑
i=1

E[CInsp,i]+E[CF,i]

)
+E[CSHM]+E[CFS] (27)

E[CInsp,i] = E[CI,i]+E[CR,i] (28)

E[CSHM] is the expected SHM costs.
The third strategy is to utilize DDS together with

inspections. The expected total costs is calculated
as follows:

C1,3 =

(
NC

∑
i=1

E[CInsp,i]+E[CF,i]

)
+E[CDDS]+E[CFS] (29)

where E[CDDS] is the expected DDS costs.

5. CASE STUDY
5.1. Structural System Description
A brittle Daniels system with NC = 4 hotspots and
20 years service life is considered. The annual max-
imum system load LS is Weibull distributed and re-
sisted by equally by 4 components with initial re-
sistance R0,i. The expected value of the initial re-
sistance is calibrated to 10−5 probability of com-
ponent failure in undamaged state. The correlation
coefficient of the component resistance and fatigue
model parameters is assumed 0.6. The summary of
the random variables is shown in Table 1.

Table 1: Summary of the random variables for system
and FM modeling.

Var. Dim. Dist. Exp. Std.

MR - LN 1 0.15
R0 - LN Cal. 0.15µR0

MLS - LN 1 0.1
LS - WBL 9.1 6.53
TSL year - 20 -
δ0 mm EXP 0.11 -
δc mm - 8 -
lnC N and

mm
N -29.97 0.5095

m - - 3.0 -
BSIF - LN 1.0 0.1
B∆S - LN 1.0 0.2
lnk N and

mm2
N 2.1 0.22

λ - N 0.8 0.08
v 1/year - 107 -

LN:Lognormal, WBL:Weibull, N:Normal,
EXP:Exponential

5.2. SIM Strategy
The inspection is performed at all hotspots by
utilizing the constant threshold approach. The
threshold of the annual system failure probability
∆Pth(FS) is assumed 3 · 10−5 (unless varied). The
repaired components are assumed to behave as un-
detected components. The signal distribution is
Normal distributed with the expected value and the
standard deviation are defined as follows:

µs,i(t) = 1.0+0.1 ·δ (t)
σs,i(t) = 0.15−0.1 ·δ (t) (30)

The noise distribution is Normal distributed with
the expected value of 1 and the standard deviation
of 0.5. The signal threshold ths is associated with
probability of false indication of 0.01.

The stress range monitoring is performed at 1
component for one year at t = tI,1− 1 where tI,1 is
the time of the first inspection. For simplicity, the
thresholds η1 and η2 are associated with two tar-
get component damage probabilities of 3 ·10−4 and
2 ·10−3, respectively. The measurement uncertainty
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Table 2: The decision scenario and variables for the case study.

U is assumed Normal distributed with the expected
value of 1 and the standard deviation of 0.05.

Sensors with damage detection system are in-
stalled for one year at at t = tI,1−1. The DIV dis-
tribution in undamaged state is assumed to follow
multivariate Normal with the following expected
value and covariance matrix:µVR,1

...
µVR,4

=

1
...
1

 ,ΣΣΣVR =

0.5 · · · 0
... . . . ...
0 · · · 0.5

 (31)

The DIV distribution in damaged state is multi-
variate Normal distributed with following parame-
ters:µV1

...
µV4

=

µDDS
s,1
...

µDDS
s,4

 ,ΣΣΣV =

σDDS
s,1 · · · 0
... . . . ...
0 · · · σDDS

s,4


(32)

µDDS
s,i and σDDS

s,i are in dependency of the damage
vector δδδ (see Eq. 33).

µ
DDS
V,i = 1.0+0.1 ·δi(t)

σ
DDS
V,i = 0.7−0.01 ·δi(t) (33)

The DIV threshold thV is associated with the prob-
ability of false system damage indication PFIS of
0.001.

5.3. Costs model
The costs considered in this study are the inspection
costs CI , the SHM costs CSHM, the DDS installation
and operating costs CDDS, the repair costs CR, the
component fatigue failure costs CF,i, and the sys-
tem failure costs CFS. The cost model used in this
study is shown in Table 3 following Thöns et al.
(2015). The SHM cost CSHM is consist of invest-
ment, installation, and operating costs of 5 channel
SHM system and are determined following Thöns
et al. (2014). The discount rate r is assumed 0.06.

Table 3: Cost models used in the case study.

Type Cost

CI 0.001
CInv

SHM 1.33 ·10−4/channel
CInst

SHM 1.33 ·10−4/channel
COp

SHM 2 ·10−4/year
CDDS 0.002

CR 0.01
CF,i 1
CFS 100

5.4. Results and Discussion
The first SIM strategy is to perform only inspec-
tions at all hotspots to ensure the annual system fail-
ure probability lower than the threshold of 3 ·10−5.
The cumulative system failure probability P(FS)
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Figure 4: Annual system failure probability with only
inspections.

over the service life is shown in Figure 4. The in-
spection times are at 4,7,10,14, and 19 years. It is
observed that the inspection interval is becoming
longer with every inspection due to the updating of
the system failure probability. The expected total
costs C1,1 is 0.0637. In the prior scenario (without
SIM), the expected total costs C0 is 0.0888.

The second SIM strategy is to install SHM sys-
tem for a year before the first inspection is per-
formed. The first and the second threshold (η1,η2)
of B∆S are 0.79 and 1.07, respectively. The pos-
terior system failure probability for each of mon-
itoring outcomes is shown in Figure 5. If SHM
indicates that the monitored component behaves
better than designed (Z1), no further inspection in
the future is needed. If SHM indicates that the
monitored component behaves worse than designed
(Z3), more inspections are required (6 in total) com-

Figure 5: Annual system failure probability with SHM
and inspections.

pared to inspection-only scenario. Reduction in in-
spection frequency is also observed if SHM indi-
cates that the monitored component behaves as de-
signed (Z2), where only 3 inspections are needed
instead of 5 inspections. The expected total costs
with this strategy C1,2 is 0.0535.

The third SIM strategy is to install DDS for one
year before the first inspection. The posterior sys-
tem failure probability for given DDS outcome can
be seen in Figure 6. If no system damage is detected
by DDS, the inspection interval is becoming longer
but it does not change the number of required in-
spections (5 inspections). If DDS detects system
damage, there is no observed change in inspection
interval but the expected total becomes higher due
to higher annual system failure probability. The ex-
pected total costs for inspections with DDS C1,3 is
0.0624.

Figure 6: Annual system failure probability with DDS
and inspections.

The Value of Information and Action (VoIA) of
each strategy is shown in Figure 7 for three differ-
ent system failure probability thresholds. From the
figure, it can be seen that the VoIA has inverse rela-
tionship with system failure probability threshold.
In a system with a low threshold, information from
inspections, SHM, and DDS is essential to ensure
the safety of the structural system and lower the
annual system failure probability over the service
life. In system with high threshold, the information
from inspections, SHM, or DDS is only obtained in
later part of the service life. Therefore, the value of
information is lower due to discounting and lower
remaining service life after the first inspection.
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Figure 7: Value of Information and Action of each
strategy for three different system failure probability
thresholds.

From the computational costs point of view,
the inspection-only strategy has the lowest com-
putational costs due to the applied decision rule
and the repair assumption. The third strategy
(DDS+inspection) has the highest computational
costs because of the complexity of the DIV dis-
tribution. The computational costs of the second
strategy (SHM+inspection) is not as high as with
DDS+inspection because the SHM thresholds are
easier to calculate.

6. CONCLUSION

This paper addresses the quantification of the value
of inspections, SHM, and DDS information by uti-
lizing the Value of Information theory. A novel ap-
proach to predict SHM outcomes and update the
system failure probability pre-posteriorly based on
the stress range model uncertainty is introduced
and combined with inspection planning to optimize
SIM strategy. A deteriorating brittle Daniels system
subjected to an extreme system load is used in the
case study. Three different SIM strategies are in-
vestigated: inspections, inspections with SHM, and
inspections with DDS. The results show that the in-
formation obtained from SHM and DDS could alter
future inspection plans such as lowering/increasing
the inspection frequency and reduces the expected
total costs over the service life. It is also observed
that the value of information and action (VoIA)
of inspections, SHM, and DDS is decreasing with
lower system failure probability threshold.
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