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ABSTRACT: In this work we illustrate how the mathematics of rational thinking is formally equivalent 

to that of structural mechanics. Concepts from the wold of logic, such as accuracy, uncertainty, Maximum 

a Posteriori (MAP) and rationality correspond, in the world of mechanics, to stiffness, flexibility, 

equilibrium and conservativeness. For instance, a linear Gaussian N-parameter estimation problem can 

be solved through a N-dof linear elastic system, as the analogy goes along these lines: the parameters’ 

covariance matrix is the system's flexibility matrix; the Fisher’s information is the stiffness matrix; the 

negative log-distribution of the parameters is the elastic potential energy of the system; the Maximum a 

Posteriori (MAP) is the state of static equilibrium. In principle, based on this analogy, we could reproduce 

any logical inference problem with a finite element model, and make a judgment by finding its 

equilibrium state. We will show application of this analogy to a number of civil engineering inference 

problems, including Bayesian estimation, Bayesian networks and Kalman filter. 

1. INTRODUCTION 

Structural engineers usually have a solid 

background in mechanics, yet not always a good 

relationship with probability theory. In most 

cases, this is not that critical because code-based 

design is practically probability-free, with serious 

probabilistic analysis typically being confined to 

the most recondite annexes of the codes (EN 

1990:2002). It is different for those engineers who 

grapple with structural health monitoring (SHM), 

an activity where the objective is to estimate the 

state of a structure from an uncertain batch of 

observations provided by different kind of 

sensors, such as strain gauge (Zonta, et al., 2003), 

or fiber optic sensor (Inaudi & Glisic, 2006). A 

consistent framework for making inferences from 

uncertain information is Bayesian probability 

theory (Sohn & Law, 2000). Yet structural 

engineers are often unenthusiastic about Bayesian 

formal logic, finding its application complicated 

and burdensome, and they prefer to make 

inference by using heuristics. In this contribution, 

we wish to help structural engineers reconcile 

with probabilistic logic (Jaynes, 2003) by 

suggesting a quantitative method for logical 

inference based on a formal analogy between 

mechanics and Bayesian probability. To start, we 

will limit the analogy to the case of linear 

Gaussian single-parameter estimation, which 

corresponds in the mechanical counterpart to 

mere linear elastic single-degree-of-freedom 

analysis: a cakewalk for structural engineers. In 

section 3, we apply this formal analogy to a 

classical inference problem: the estimation of the 

deformation of a cable belonging to a cable-stayed 
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bridge, characterized by two independent 

parameters. We will carry out the simple problem 

of linear regression by solving the equivalent 

mechanical system of springs. 

2. FORMULATION OF THE ANALOGY 

FOR A SINGLE PARAMETER 

In this section, we refer to the problem of logical 

inference of a single parameter based on uncertain 

information (Cappello, et al., 2015). The goal is to 

estimate a parameter θ based on a set of uncertain 

information yi. Further assumptions are that all the 

uncertain quantities have Gaussian distribution, 

and that the relationship between information and 

parameter is linear. When the problem is linear 

and Gaussian, in principle we can solve any 

logical inference problem using the following two 

fundamental rules. 

First inference rule or inverse-variance 

weighting rule (Ku, 1966). Given a set of n 

observations yi of variance 2

i
 , the inverse of the 

variance 2

  of the parameter is the sum of the 

inverse-variances of the observations, and the 

expected value of the parameter μθ is the inverse-

variance weighted sum of the observations: 
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Second inference rule or linear propagation 

of uncertainties (Kirkup & Frenkel, 2006). The 

indirect measurement y = x1 + … + xm, being the 

sum of m different arguments xj of variance 2

j , 

the variance of the observations is the sum of the 

variance of the arguments and the mean value of 

the indirect observation is the sum of the 

arguments: 
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Before proceeding it is also convenient, primarily 

to lighten notation, to introduce the quantity 

                           

2

2

1
w 
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−
= = . (3) 

The quantity w is compatible with the official 

definition of accuracy (ISO5725-6:1994) and the 

word itself intuitively connects to the practical 

meaning of w: the higher the accuracy w of an 

observation is, the more accurate our knowledge 

about the parameter becomes. Therefore, in the 

rest of the paper we will refer to the inverse-

variance w simply as accuracy. Based on that, we 

can reword and reformulate the two basic 

inference rules. 

First inference rule. Given a set of n 

observations yi with accuracy wi, the accuracy wθ 

of the parameter estimation is the sum of the 

accuracy of the observations, and the mean value 

of the parameter μθ is the sum of the observations 

weighted with their accuracy: 

                    1
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Second inference rule. The indirect 

measurement y = x1 + … + xm being the sum of m 

different arguments xj of accuracy wj, the inverse-

accuracy of the observation is the sum of the 

inverse-accuracy of the arguments and the mean 

value of the indirect observation is the sum of the 

arguments: 

             1
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. (5a,b) 

At this point, it’s not difficult for a structural 

engineer to spot in (4a) the same form of the 

expression that provides the stiffness of a set of 

springs in parallel; and similarly, (5a) reminds of 

the stiffness expression of a set of springs in 

series. This allows to set an analogy between the 

world of logic and the world of mechanics. 

Particularly, the analogy statements (Cappello, et 

al., 2015) are summarized in Table 1, while Figure 

1 shows the mechanical representation of simple 

linear Gaussian inference problems.  
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Table 1: Analogy between inference and mechanical 

models. 

Symbol Logical meaning 
Mechanical 

meaning 

w, 
2 −

 
accuracy, inverse-

variance 
stiffness 

2  variance Flexibility 

y observation pre-stretch 

μ expected value 
equilibrium 

displacement 

 
(a)                            (b)                                  (c)                        

 

3. EXTENSION OF THE ANALOGY TO N 

PARAMETERS 

Now, we analyse a generic inference problem 

with N unknown parameters to estimate, 

represented by the vector T
1

( ,...., )
N

 = . We 

imagine that each parameter is characterized by a 

prior mean value 
i


  and a prior standard 

deviation 
 
s

q
i
; the latter is linked by the equation 

2

i i
w  −

 =  to the ith accuracy, which in our 

mechanical analogy represents the stiffness of the 

spring associated to each single parameter. The 

multivariate Gaussian distribution (Bishop, 

2006), linked to the N-dimensional vector θ, takes 

the form: 
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where   is the N-dimensional mean vector, 

containing the N values 
i


associated to each  

parameter,   is the NxN covariance matrix, and 

  denotes the determinant of  . We can notice 

that the exponent is characterized by a quadratic 

form that corresponds to the potential energy 

pE ( )
 
of a mechanical system with N degrees of 

freedom, related to the inference problem in 

question. It takes the following form: 

      

1 T 1E ( ) In(N( , ; )) ( ) ( ).p
2

−= −  = −  −         (7) 

Here, we name the inverse of the covariance 

matrix 1− = ; this is also known as accuracy 

matrix (Bishop, 2006). Its diagonal terms represent 

the posterior stiffness 
|i

w y
 of each single parameter

 
q

i
. Now, to obtain the N diagonal elements to 

we must get the second derivative of pE ( )  with 

respect to each of the parameters θi; the elements 

out of diagonal are instead obtained by calculating 

the mixed derivatives of each parameter with 

respect to all other parameters. To obtain the 

covariance matrix we simply make the inverse of 

 . The diagonal elements of S  represent the 

posterior variance 
   
s 2

q
i
|y

 of each single parameter 

θi. The posterior mean values 
i |

y of each 

parameter 
 
q

i  
correspond to those values that 

minimize the potential energy of our mechanical 

system. Therefore, to discover them, we have to 

resolve an algebraic system with N variables in 

which there are the partial derivatives of pE ( ) , 

each with respect to each parameter θi, set equal 

to zero. 

4. A CASE STUDY: ELONGATION OF A 

CABLE BELONGING TO ADIGE BRIDGE 

Structural monitoring has been recognized as a 

powerful information tool, especially about 

bridges management (Pozzi, et al., 2010), and 

requests a deep knowledge of Bayesian rules. For 

this reason, we apply our method to the Adige 

Bridge (Cappello, et al., 2015), a two-span cable-

stayed bridge located ten kilometres north of the 

city of Trento, Italy (Figure 2). The composite 

deck is made from 4 “I”-section steel girders and 

a 25 cm cast-on-site concrete slab. The deck is 

also supported by 12 stay cables, 6 on each side, 

Figure 1: Mechanical analogy of simple linear 

Gaussian inference problems: parameter estimation 

based on one observation (a), three uncorrelated 

observations (b), one observation affected by two 

uncorrelated sources of uncertainty (c). 
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which have a diameter of 116 mm and 128 mm. 

Their operational design load varies from 5,000 

kN to 8,000 kN. The cables are anchored to the 

bridge tower, consisting of four pylons and 

located in the middle of the bridge. When the 

construction was completed, the Italian 

Autonomous Province of Trento, which owns and 

manages the bridge, decided to install a 

monitoring system to continuously record force 

and elongation of the stay cables. Elongations are 

recorded by 1 m long gauge sensors, placed on 

each of the 12 cables. These fiber-optical sensors 

(FOS) (Glisic, et al., 2007) are based on fiber 

Bragg gratings (FBG) and they also record local 

temperature for thermal compensation. 

 

 

Figure 2: Longitudinal section of the bridge and 

sensor layout (upper); plan view of the bridge (lower). 

4.1. Two parameters to estimate 

As an example, we use data acquired from 

October 12, 2011, to November 25, 2012, for 

cable 1TN, purified of the effect of temperature. 

We consider only one sample a day between 4 

AM and 6 AM, as we assume a constant 

temperature in this period. We have discarded 

those days in which no samples were found. 

Figure 3 shows the data acquired, expressed in 

terms of difference of deformation and time: 

                    1 1
,  .y y y t t ti i = −  = −   

(8a,b) 

During the analysis, 411 deformation 

measurements were recorded with an uncertainty 

for each measurement equal to
  
w

y
= 0.0016me -2

, i.e. 

y 25  = ; this is clearly a classical problem of 

linear regression. We have to estimate the two 

parameters that best characterize the straight line 

fitting our time-dependent data set. The function 

is: 

                               0
,y y t= +    (9) 

where 
 
y

0  
is the intercept and j

 
the slope of the 

straight line fitting our dataset. As we said before, 

the goal is to estimate the vector of the parameters 

 that characterizes the parametric 

model resulting in the observations

  
y = (y

1
,y

2
,....,y

N
)T

, linearly dependent on the time t, 

as shown in Figure 4. We can represent the 

problem as a bar with two degrees of freedom: 

vertical translation and rotation. According to the 

parametric model defined in (9), we consider the 

slope of the bar linked to the parameter φ, its 

length to the time t and its distance from the 

ground floor to the parameter y0. Based on our 

experience, we assign to the two parameters φ and 

t two prior Gaussian distributions that give us the 

initial information about the state of the bar. We 

connect the left-hand end of the rigid bar to a 

vertical linear elastic spring with flexibility equal 

to the standard deviation of the prior distribution 

associated to the parameter y0 and pre-stretch 

equal to its mean value. We connect the same end 

to a torsion spring with flexibility and imposed 

rotation equal respectively to the standard 

deviation and the mean value of the prior 

distribution associated to the parameter φ (Figure 

4). Finally, we introduce the measurements as a 

system of linear springs, each with flexibility and 

pre-stretch equal respectively to the standard 

deviation and value associated to a single 

measurement. Each spring is placed at a distance 

from the torsion spring equal to the corresponding 

interval of time 
it . The elastic potential of the 

mechanical system of Figure 4 becomes: 

    

2 2
0 0 0

2
0

1

1 1
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2 2
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2
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y w y wp y y
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where 
  
Dy

i
= y

0
+j ×t

i
- y

i
 represents the elongation 

suffered by the N springs linked to the 

observations, due to a generic translation y0 and a 

generic rotation φ imposed on the system. The 

accuracy matrix is simply the Hessian matrix of 

(10): 
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The inverse of the matrix (11) represents the 

covariance matrix  : the first term of its diagonal 

is the posterior variance associated to the 

parameter y0 
while the second term on the same 

diagonal is the posterior variance associated to the 

parameter φ. To identify instead the values 
0 |y

y

and |
y that represent the posterior mean values 

associated respectively to the parameters 
 
y

0
 and 

φ, we must solve the system formed by the first 

derivative of (10) with respect to the parameter y0 

and the parameter φ, set equal to zero. 

 
0 00 0 10

0
1

E ( )p
( ) [( ) ] 0

E ( )p
) [( t ) ] 0

N
w y w y t yy y y i iy i

N
w w t y yy i i ii

 

  











= − + + − =

 =


= ( − + + − = =




.(12)

 

The solutions of the system (12) give us the values 

of 
0 |y

y and |
y , that represent the posterior mean 

values associated respectively to the parameters y0 

and φ and that minimize the potential p 0E ( )y , of 

our mechanical system. Now we can substitute the 

numerical values into the equations formulated 

above, and we obtain the final outcomes reported 

in Table 2, compared with the prior values of the 

parameters. Figure 3 reports the two straight lines 

interpolating our dataset. We obtain the same 

results as applying the flexibility method to the 

same mechanical system (Cappello, et al., 2015), 

although, with the potential energy, we considerably 

reduce the computational algebra cost. 

Figure 3: Relative strain of cable 1TN and 

interpolating lines. 

 

Figure 4: Linear regression problem in the world of 

Mechanics. 

Table 2: Prior and posterior values of the parameters 

to estimate. 
Prior distributions 

Parameter 𝑦0 Parameter φ 

𝑤𝑦0
 [𝜇𝜀−2] 0.0025 𝑤𝜑 [𝜇𝜀−2𝑑𝑎𝑦2] 1 

𝜎𝑦0
 [𝜇𝜀] 20.00 𝜎𝜑 [𝜇𝜀 𝑑𝑎𝑦−1] 1.0000 

𝜇𝑦0
 [𝜇𝜀] 0.00 𝜇𝜑 [𝜇𝜀 𝑑𝑎𝑦−1] 0.0000 

Posterior distributions 

Parameter 𝑦0 Parameter φ 

𝑤𝑦0
 [𝜇𝜀−2] 0.6601 𝑤𝜑 [𝜇𝜀−2𝑑𝑎𝑦2] 36893 

𝜎𝑦0
 [𝜇𝜀] 2.44 𝜎𝜑 [𝜇𝜀 𝑑𝑎𝑦−1] 0.0103 

𝜇𝑦0
 [𝜇𝜀] -49.07 𝜇𝜑 [𝜇𝜀 𝑑𝑎𝑦−1] 0.0473 

4.2. Three parameters to estimate 

We now extend the case of Adige Bridge, 

presented in the previous Section, by introducing 

the effect of temperature   DT̂ . Thus, we must 

estimate an additional parameter α and the model 

that fits our time dependent dataset becomes the 

following: 

                     0
ˆ ˆŷ y T t  = +  +  . (13) 

In Figure 5, we can note the N translation springs 

linked to the different measurements with 

stiffness 2 20.0016LH LHw  − −= =  and the springs 

linked to the prior distribution: a translation spring 
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associated to the parameter y0, a rotational spring 

associated to α and a rotational spring associated 

to ,  whose numerical values are the same as the 

case in the previous Section. To determine the 

posterior standard deviation of the three 

parameters to estimate
 
(y

0
,a,j) we have to express 

the potential energy 
   
E

p
( y

0
,a ,j) of the mechanical 

system represented in Figure 5, as a function of 

the three unknown parameter. We can now obtain 

the accuracy matrix   simply by calculating the 

Hessian Matrix associated to 
   
E

p
( y

0
,a ,j) , and the 

covariance matrix from the inverse of  . To 

discover the values 
   
m

y
0
|y

, 
  
m

a |y  and 
  
m

j|y , which 

represent the posterior mean values associated 

respectively to the parameters y0, α and j , we 

must solve the system formed by the first 

derivative of the potential energy with respect to 

the three parameters, set equal to zero. Figure 6 

shows the graphical representation of the two 

surfaces fitting our data set. Finally, Table reports 

the numerical values obtained from the posterior 

distribution of the parameters. 

Figure 5: Three parameters estimation problem in the 

world of Mechanics. 

 

Figure 6: Two fitting surfaces related to prior 

parameters (grey) and posterior parameters (black). 

Table 3: Posterior values of the three parameters to 

estimate. 
Posterior distributions 

Parameter 𝑦0 Parameter φ 

𝑤𝑦0
 [𝜇𝜀−2] 0.6601 

𝑤𝜑 

[𝜇𝜀−2𝑑𝑎𝑦2] 
36893 

𝜎𝑦0
 [𝜇𝜀] 2.54 𝜎𝜑 [𝜇𝜀 𝑑𝑎𝑦−1] 0.0106 

𝜇𝑦0
 [𝜇𝜀] 0.48 𝜇𝜑 [𝜇𝜀 𝑑𝑎𝑦−1] -0.1209 

Parameter α 

𝑤α [𝜇𝜀−2 °𝐶2] 27.88 

𝜎α [𝜇𝜀 °𝐶−1] 0.20 

𝜇α [𝜇𝜀 °𝐶−1] 13.80 

5. NON GAUSSIAN SINGLE PARAMETER 

ESTIMATION 

How does change the theory of the mechanical 

equivalent if we decide to involve non-Gaussian 

variable? As is logical, we will obtain non-linear 

springs, whose constitutive laws vary depending 

on the probability distributions that characterize 

them. To extend the mechanical analogy to 

distribution other than the Gaussian results very 

simple thanks to the three basic rules explained 

below. We denote with
  
f (q;a,b)  a generic 

probability distribution, where θ is the unknown 

parameter to estimate, a and b the parameters that 

characterize the probability distribution in exam. 

The potential energy, the elastic force and the 

stiffness linked to the spring representing the 

generic distribution f are the following (14a,b,c): 

              
2

2
.

E ( )
E ( ) In( ), F ( ) ,

E ( )
( )

p
fp e

p
k


 









= − =




=



 
(14a,b,c) 

In the following sections we will report some 

examples, regarding the main probability 

distributions used in the world of logic, and we 

will try to define for each the mechanical features 

of the spring that represent them. We remember 

that, in case of Gaussian distribution, we solve any 

inference problem through mechanical systems 

composed by elastic linear springs, with a 

constant stiffness and a quadratic potential.  
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5.1. Lognormal distribution 

The lognormal distribution (Forbes, 2011) is 

applicable to random variables that are 

constrained by zero but have a few very large 

values. The resulting distribution is asymmetrical 

and positively skewed. In particular, in 

engineering field, the lognormal distribution is 

often used to describe the fatigue behavior of 

many mechanical components and the mechanical 

resistance of structural materials, as the steel. The 

application of a logarithmic transformation to the 

data can allow the data to be approximated by the 

symmetrical normal distribution, although the 

absence of negative values may limit the validity 

of this procedure. In other words, it is the 

probability distribution of a random variable θ 

whose logarithm In(θ) follows a normal 

distribution, and it takes the following form: 

                    

2

2
1- In( )-

1 2l( ; ) = e
2

with 0 ,

,

<+

 
  

 



 
 
 



 

 (15) 

where  is the mean of 
 
In(q)  and  the standard 

deviation of 
 
In(q), which are both dimensionless. 

But how can we model a spring representing

  
l(l,e;q)? The answer is simple: we must use the 

three aforementioned expressions (14a,b,c), to 

spot the trend of the potential, of the elastic force 

and of the stiffness of the spring linked to the 

lognormal distribution (16-18). 

                       
( )

2

2

E ( ) = -In(l( ; )) =

1
= In( ) - In( )

2

,p

a ,

   

  
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+ +
               (16) 

where a is an additive constant that we can 

neglect. 
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p
+e


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   
(17) 

         
( )

2
2

2 2 2

E ( ) 1
( ) 1 In( ) + .

p
k -


   
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
= = −


  (18) 

Figure 7 shows that the constitutive low of the 

spring is absolutely non-linear. We note that the 

potential energy, Figure 7a, has a minimum in 

correspondence to the mode of the probability 

distribution 
2

1e − =  and not in correspondence to 

the mean. This time the potential energy is not 

symmetric with respect to its minimum value. 

When the displacements become remarkable, the 

elastic force becomes constant, tending to a value 

little greater than zero; consequently, the stiffness, 

i.e. the first derivative of 
 
F

e
(q ) , tends to zero. 

                   (a)                              (b)                             (c) 

 
Figure 7: Three mechanical properties of a lognormal 

distribution l( ; ),    

5.2. Cauchy distribution 

The Cauchy distribution (Forbes, 2011) is of 

mathematical interest due to the absence of 

defined moments. Its probability density function 

takes the following form: 
1

2
c( ; ) = 1 with ,

a
a,b b <+

b


 

−
  
          

−
 + −    (19) 

where a and b are the parameters that characterize 

the distribution. The Cauchy distribution is 

unimodal and symmetric, with much heavier tails 

than the normal. The probability density function 

is symmetric about a, with upper and lower 

quartiles, a b . The potential, the elastic force 

and the stiffness function linked to the Cauchy 

distribution c( ; )a,b  are: 

                     

2

E ( ) = In 1p
a

c,
b




       

−
+ +  (20)

 

                   

( )

( )
22

E ( ) 2p
F ( ) ,e

a

b a

 


 

 −
= =

 + −
 (21) 

   

( ) ( )

( )( )

2 2 22

2 2
22

E ( ) 2[ ] 4p
( ) .

a b a
k

b a

  





 − + − −
= =


+ −

 

(22) 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 

Seoul, South Korea, May 26-30, 2019 

 8 

Figure 8 shows these mechanical properties 

linked to a Cauchy distribution  

  
c(2,10;q)

 

with 

mode value a=2. Also, this time the potential 

energy has a minimum in correspondence to its 

mode a=2, but unlike the non-linear previous 

examples, here the potential energy is symmetric 

respect to the mode. The elastic force, in 

correspondence to the mode, has an inflection 

point and changes its curvature. We observe that 

if the non-linear probability distribution is 

symmetric respect its mode, the equivalent 

potential energy results symmetric respect to the 

same value, where it yields also its minimum 

value. 

                  (a)                              (b)                             (c) 

Figure 8: Three mechanical properties of a Cauchy 

distribution c( ; ),    

6. CONCLUSIONS 

We have stated an analogy between the world of 

logic and the world of mechanics, allowing us to 

solve, using the methods of classical structural 

engineering, any complex inference parameter 

estimation problem, in which the values of the 

parameters have to be estimated based on multiple 

Gaussian-distributed uncertain observations. By 

simply expressing the potential energy of the 

mechanical system associated to our inference 

scheme, we are able, with a few trivial algebraic 

steps, to determine the posterior mean values and 

standard deviations of the parameters to estimate. 

With the aid of real-life structural health 

monitoring cases, we have showed how our 

approach allows structural engineers to solve 

simply general problems of linear regression. 

Although the examples shown in this paper are 

incidentally all structural engineering cases, the 

scope of application of the method is evidently the 

most general, and we seek to demonstrate in the 

future its applicability to inference problem 

arising from various disciplinary fields, including 

cognitive science, economics and law. 
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