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ABSTRACT: Bayesian updating is a powerful tool for model calibration and uncertainty quantification 
when new observations are available. By reformulating Bayesian updating into a structural reliability 
problem and introducing an auxiliary random variable, the state-of-the-art BUS algorithm has showcased 
large potential to achieve higher accuracy and efficiency compared with the conventional Markov-Chain-
Monte-Carlo approach. However, BUS faces a number of limitations. The transformed reliability 
problem often investigates a very rare event problem especially when the number of measurements 
increases. Moreover, conventional reliability analysis techniques are not efficient and in some cases not 
capable of accurately estimating the probability of rare events. To overcome the aforementioned 
limitations, we propose integrating BUS algorithm with adaptive Kriging-based reliability analysis 
method. This approach improves the accuracy of the Bayesian updating and requires considerably 
smaller number of evaluations of the time-consuming likelihood function, compared to BUS.  
 
 
1. INTRODUCTION 
The advancement of monitoring and measuring 
techniques in structures and infrastructure 
systems facilitates the uncertainty reduction in 
decision-making. Up-to-date information on 
responses and features including, for example, 
system capacities, structural deformations, system 
dynamic features and geometric deteriorations 
assist in comprehensively perceiving the 
probabilistic information of all system variables 
with randomness. The main purpose of Bayesian 
updating is to assess the posterior probabilistic 
information from the often empirically defined 
prior statistical assumptions using observations.  

In the past, the posterior distribution has 
commonly been estimated through the 
implementation of Markov chain Monte Carlo 
(MCMC) simulation (Beck James L. and Au Siu-
Kui 2002). In the MCMC-based Bayesian 
updating approach, points are generated by the 
proposal function, whose mean value changes 
corresponding to the last accepted point, while the 
samples generated by the proposal function are 
compared with a standard uniformly distributed 
random value to determine if those points are 

accepted or rejected. It has been shown that the 
probability density of the accumulated accepted 
points converges to the posterior probability 
density. However, failing to converge to a 
stationary state corresponding to Markov chain is 
the major limitation of the MCMC-based 
Bayesian updating method (Giovanis et al. 2017; 
Straub Daniel and Papaioannou Iason 2015; Betz 
et al. 2018). To address the aforementioned 
limitation, the transitional Markov chain Monte 
Carlo simulation (TMCMC) has been proposed 
by Ching et al. (Ching Jianye and Chen Yi-Chu 
2007), which attempts to sequentially sample a 
series of distributions that gradually approaches to 
posterior distribution. Although, the TMCMC-
based Bayesian updating method improves the 
performance by avoiding the burn-in phenomenon 
in the conventional approach, the gained 
efficiency is not significant when the dimension 
of the parameter space increases (Giovanis et al. 
2017; Betz Wolfgang, Papaioannou Iason, and 
Straub Daniel 2016). Considering those issues, an 
innovative methodology, called BUS (Bayesian 
Updating with Structural reliability methods), is 
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proposed by Straub et al. (Straub Daniel and 
Papaioannou Iason 2015). The primary idea 
behind BUS is to reformulate the Bayesian 
updating problem into structural reliability 
problem. By introducing an auxiliary standard 
uniform random variable, P, the Bayesian 
updating problem with simple rejection sampling 
strategy targets selecting points that satisfy the 
limit state equation: 𝑃𝑃 ≤ c𝐿𝐿(𝑿𝑿) , where c  is a 
constant ensuring a good acceptance ratio. 
Avoiding the process for ensuring the stationarity 
of Markov Chain in MCMC, BUS applies the 
subset simulation technique (Au and Beck 2001) 
to focus on the points with corresponding 
accepted domain regardless of the dimension of 
random variables. Accordingly, this approach 
adaptively prescribes and constrains the failure 
domain until the estimated intermediate failure 
threshold is smaller than zero and draws the 
samples in the last subset with MCMC.  

However, the process of estimating the 
posterior distribution through BUS is quite 
computationally expensive especially when the 
likelihood functions (e.g. Finite element model) 
becomes very complex (Betz et al. 2018). It is the 
reason that the method for solving the structural 
reliability problem in BUS is through Subset 
simulation, which needs a large number of 
evaluations to the performance function. Second, 
due to the fact that the failure probability 
estimated from the limit state function in BUS is 
typically very rare as the number of measurements 
increases, other non-simulation-based techniques 
such as First and Second Order Reliability 
Methods (FORM & SORM) become inefficient or 
even invalid. As pointed out in (Giovanis et al. 
2017), this computationally expensive problem 
can be tackled through the application of 
surrogate model-based structural reliability 
analysis methods. These methods can use 
surrogate models such as Polynomial Chaos 
Expansion (Blatman and Sudret 2010) or Kriging 
(Echard, Gayton, and Lemaire 2011; Fauriat and 
Gayton 2014). Among all these methods, adaptive 
Kriging-based reliability analysis methods have 
been proven to be highly accurate and efficient in 

solving structural reliability problems (Gaspar, 
Teixeira, and Soares 2014; Wang and 
Shafieezadeh 2019, 2018), and therefore, have 
gained a lot of attention in recent years (Wang and 
Shafieezadeh 2019).  

In this article, an algorithm named BUAK 
(Bayesian Updating using Adaptive Kriging), is 
proposed to combine the BUS algorithm with 
advanced Kriging-based reliability analysis 
methods. Several examples are investigated to 
showcase the computational efficiency and 
accuracy of BUAK. Specifically, number of 
evaluations to the likelihood function has been 
significantly reduced, while the posterior 
probabilistic distributions are estimated very 
accurately. Eventually, with the well-trained 
Kriging surrogate model, samples with posterior 
distribution can be generated unlimitedly, which 
does not rely on the computationally expensive 
likelihood function.  

Bayesian updating with structural reliability 
methods and BUS algorithm are briefly 
introduced in Section 2. Afterwards, the elements 
of Kriging-based reliability analysis methods are 
presented in Section 3. The proposed method, 
BUAK, is subsequently presented in Section 4. An 
example is implemented in section 5 to showcase 
the performance of BUAK. Conclusions are drawn 
in Section 6. 
 
2. BAYESIAN UPDATING  
Bayesian updating facilitates inferring the status 
of a system’s variables by assuming a reasonable 
prior probability distribution for those variables, 
denoted as 𝑓𝑓(𝒙𝒙), and then estimating the posterior 
probability distribution, denoted as 𝑓𝑓′(𝒙𝒙) , 
according to existing observations. 𝑓𝑓′(𝒙𝒙) can be 
estimated by the Bayes’ theorem, which can be 
represented as: 

𝑓𝑓′(𝒙𝒙) =
𝐿𝐿(𝒙𝒙)𝑓𝑓(𝒙𝒙)

∫ 𝐿𝐿(𝒙𝒙)𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙𝛺𝛺

(1) 

 
where 𝛺𝛺  is the probabilistic domain of random 
variable 𝒙𝒙  and 𝐿𝐿(𝒙𝒙)  is the so-called likelihood 
function, which is proportional to the conditional 
probability of observations, and can be read as:  
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𝐿𝐿(𝒙𝒙) ∝ Pr(𝑍𝑍|𝑿𝑿 = 𝒙𝒙) (2) 

 
In estimating 𝑓𝑓′(𝒙𝒙)  through MCMC, the 
denominator  ∫ 𝐿𝐿(𝒙𝒙)𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙𝛺𝛺  in Eq. (1) can be 
ignored since it is only a normalizing constant 
ensuring that 𝑓𝑓′(𝒙𝒙) integrates to one (Giovanis et 
al. 2017). Typically, the likelihood function 𝐿𝐿(𝒙𝒙) 
is composed of three parts: observations 𝑍𝑍 , 
responses from the model 𝑠𝑠(𝒙𝒙)  and error ε  that 
represents the deviation of 𝑠𝑠(𝒙𝒙) from 𝑍𝑍. Because 
of the measuring error and modeling errors, 
observations 𝑍𝑍  can not really reflect 𝑠𝑠(𝒙𝒙) . 
Therefore, the relationship below always holds: 

 
ε =  𝑍𝑍 − 𝑠𝑠(𝒙𝒙) (3) 

 
Generally 𝐿𝐿(𝒙𝒙) can be estimated through the 

probability density function (pdf) of the error ε. 
This relation can be read as: 

 
𝐿𝐿(𝒙𝒙) = 𝜌𝜌ε(ε) = 𝜌𝜌ε�𝑍𝑍 − 𝑠𝑠(𝒙𝒙)� (4) 

 
where 𝜌𝜌ε(∙) denotes the pdf of ε . Although the 
type of pdf of 𝐿𝐿(𝒙𝒙) is commonly assumed to be a 
multivariate Gaussian distribution with zero 
mean, it can be any other unbiased distribution. 
Moreover, when 𝑚𝑚  mutually independent 
observations are available, the likelihood function 
in Eq. (4) can be reinterpreted as: 

 

𝐿𝐿(𝒙𝒙) = �𝐿𝐿𝑖𝑖(𝒙𝒙)
𝑚𝑚

𝑖𝑖=1

= �𝜌𝜌ε𝑖𝑖�𝑍𝑍𝑖𝑖 − 𝑠𝑠𝑖𝑖(𝒙𝒙)�
𝑚𝑚

𝑖𝑖=1

(5) 

 
In this article, the likelihood function is denoted 
as 𝐿𝐿(𝒙𝒙)  for both independent and dependent 
observations.  

2.1. Simple Rejection Sampling (SRS) 
The idea of transforming the Bayesian updating 
problem into a structural reliability problem 
according  to the simple rejection algorithm was 
initially proposed by Straub and Papaioannou 
(Straub Daniel and Papaioannou Iason 2015). It is 
known that the goal of Bayesian Updating is to 

estimate the posterior distribution 𝑓𝑓′(𝒙𝒙), which is 
proportional to the product of the likelihood 
function 𝐿𝐿(𝒙𝒙) and prior distribution 𝑓𝑓(𝒙𝒙): 

 
𝑓𝑓′(𝒙𝒙) ∝ 𝐿𝐿(𝒙𝒙)𝑓𝑓(𝒙𝒙) (6) 

 
Achieving stability in the Markov Chain via 

the conventional MCMC approach is not 
computationally efficient. Thus, a simple 
rejection sampling algorithm can be applied here. 
First, the accepted domain Ω𝑎𝑎𝑎𝑎𝑎𝑎  can be defined 
corresponding to the augmented outcome space 
[𝒙𝒙, 𝑝𝑝] with an auxiliary random variable 𝑃𝑃, which 
can be expressed as:  

 
Ω𝑎𝑎𝑎𝑎𝑎𝑎 = [𝑝𝑝 ≤ 𝑐𝑐𝑐𝑐(𝒙𝒙)] = [ℎ(𝒙𝒙, 𝑝𝑝) ≤ 0] (7) 
 
where ℎ(𝒙𝒙, 𝑝𝑝) = 𝑝𝑝 − 𝑐𝑐𝑐𝑐(𝒙𝒙)  and 𝑐𝑐  is a 

constant satisfying 𝑐𝑐𝑐𝑐(𝒙𝒙) ≤ 1  for all the 
outcomes for 𝑿𝑿. Moreover, it is suggested that 𝑐𝑐 
can be defined as: 
 

𝑐𝑐 =
1

𝑚𝑚𝑚𝑚𝑚𝑚�𝐿𝐿(𝒙𝒙)�
(8) 

 
Based on this scenario, a simple rejection 
sampling algorithm is available according to 
(Smith and Gelfand 1992), which is shown in 
Algorithm 1.  

2.2. Bayesian Updating with Structural 
Reliability Methods (BUS) 

Due to the inherent disadvantages of simple 
rejection sampling-based Bayesian updating, the 
MCMC method was proposed. However, to 
ensure a stable Markov chain, the MCMC-based  
Bayesian updating needs to investigate a large 
number of evaluations to the likelihood function. 
Thus, the MCMC-based Bayesian updating needs 
to investigate even a larger number of evaluations 
to the likelihood function. On the other hand, 
though the acceptance rate of simple rejection 
sampling-based Bayesian updating approach is 
low, it is very straightforward to implement and 
can guarantee an exact and uncorrelated posterior 
distributed samples. 
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Algorithm 1. Simple Rejection Sampling  
1. 𝑖𝑖 = 1  
2. Generate a sample 𝒙𝒙𝑖𝑖 from 𝑓𝑓(𝒙𝒙) 
3. Generate a sample 𝑝𝑝𝑖𝑖  from the standard uniform 

distribution [0.1] 
4. If �𝒙𝒙𝑖𝑖, 𝑝𝑝𝑖𝑖� ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎 

   (a). Accept 𝒙𝒙𝑖𝑖 
   (b). 𝑖𝑖 = 𝑖𝑖 + 1 

5. Stop if 𝑖𝑖 = 𝑁𝑁𝑠𝑠, else go to step 2 
 
By maintaining these advantages in simple 
rejection-based approach,  Straub and 
Papaioannou (Straub Daniel and Papaioannou 
Iason 2015) proposed Bayesian Updating with 
Structural reliability methods (BUS) that 
strategically integrates the simple rejection 
sampling with structural reliability analysis 
techniques.  

In BUS algorithm, the Bayesian updating 
problem is handled in a way of solving a structural 
reliability analysis problem. The equivalent limit 
state function in BUS approach can be read as: 

 
ℎ(𝒙𝒙, 𝑝𝑝) =  𝑝𝑝 − 𝑐𝑐𝑐𝑐(𝒙𝒙) (9) 

 
note that the task of Bayesian updating is different 
from that in reliability analysis. In the process of 
reliability analysis, the target is to estimate the 
probability of failure, while drawing the samples 
in the accepted (failure) domain is the main 
purpose of BUS. Concerning this point, many 
existing reliability analysis methods such as First 
& Second Order Reliability Methods (FORM & 
SORM), Importance Sampling (IS) and Subset 
Simulation (SS) can be adjusted to be applicable 
in association with BUS. For instance, the 
combination of subset simulation and BUS has 
shown great efficiency in drawing samples from 
posterior distributions. Details of BUS with subset 
simulation can be found in (Straub Daniel and 
Papaioannou Iason 2015).  

 
3. ADAPTIVE KRIGING-BASED 

RELIABILITY ANALYSIS  

Kriging-based reliability analysis methods are 
known for their capabilities in substituting the 
limit state function and reducing the number of 
evaluations to the performance function (Echard, 
Gayton, and Lemaire 2011). The main idea of 
using adaptive Kriging-based reliability analysis 
through BUS is to train a surrogate model ℎ�(𝒙𝒙, 𝑝𝑝) 
to substitute the computationally demanding limit 
state function ℎ(𝒙𝒙, 𝑝𝑝) in Eq. (9). Then, SRS can 
be conducted directly on the computationally 
efficient surrogate model. In this section, the 
elements of Kriging model and Kriging-based 
reliability analysis are briefly reviewed.  

The Kriging surrogate model, also known as 
the Gaussian Process Regression, has been widely 
used in computer-based experiment design 
(“UQLab Kriging (Gaussian Process Modelling) 
Manual” n.d.). In this model, the estimated 
responses are mean values and variances 
following a normal distribution (“UQLab Kriging 
(Gaussian Process Modelling) Manual” n.d.). In 
this model, the responses ℎ�(𝑿𝑿) ( 𝑿𝑿  represents 
[𝑿𝑿, 𝑃𝑃] in this section) are defined as 

 
ℎ�(𝑿𝑿) = 𝐹𝐹(𝜷𝜷, 𝒙𝒙) +  𝜓𝜓(𝒙𝒙)

= 𝜷𝜷𝑇𝑇𝒇𝒇(𝒙𝒙) + 𝜓𝜓(𝒙𝒙) (10)
 

 
where 𝑿𝑿  is the vector of random variables, 
𝐹𝐹(𝜷𝜷, 𝒙𝒙) are the regression elements, and 𝜓𝜓(𝒙𝒙) is 
the Gaussian process. In  𝐹𝐹(𝜷𝜷, 𝒙𝒙) , 𝒇𝒇(𝒙𝒙)  is the 
Kriging basis and 𝛽𝛽  is the corresponding 
coefficient. There are multiple formulations of 
𝜷𝜷𝑇𝑇𝑓𝑓(𝒙𝒙) including ordinary (𝛽𝛽0),  linear (𝛽𝛽0 +
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∑ 𝛽𝛽𝑖𝑖𝒙𝒙𝑖𝑖𝑁𝑁
𝑖𝑖=1 ),  or quadratic 

(𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝒙𝒙𝑖𝑖𝑁𝑁
𝑖𝑖=1 +∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝒙𝒙𝑖𝑖𝒙𝒙𝑗𝑗𝑁𝑁

𝑗𝑗=𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ), where N is the 

number of dimensions of 𝒙𝒙. In this article, the 
ordinary Kriging model is used. The Gaussian 
process 𝜓𝜓(𝒙𝒙) has a zero mean and a covariance 
matrix that can be represented as: 

 
𝐶𝐶𝐶𝐶𝐶𝐶 �𝜓𝜓(𝒙𝒙𝑖𝑖), 𝜓𝜓�𝒙𝒙𝑗𝑗�� =  𝜎𝜎2𝑅𝑅�𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗; 𝜽𝜽� (11) 

 
where 𝜎𝜎2  is the process variance or the 
generalized mean square error (MSE) from the 
regression,  𝒙𝒙𝑖𝑖  and 𝒙𝒙𝑗𝑗  are two observations, and 
𝑅𝑅�𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗; 𝜽𝜽�  is known as the kernel function 
representing the correlation between observations 
𝒙𝒙𝑖𝑖  and 𝒙𝒙𝑗𝑗  parametrized by 𝜽𝜽 . The correlation 
functions implemented in Kriging can include, 
among others, linear, exponential, Gaussian, and 
Matérn functions. The Gaussian kernel function is 
used in this paper, which has the following form: 

 

𝑅𝑅�𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗; 𝜽𝜽� = �exp �−𝜃𝜃𝑘𝑘�𝑥𝑥𝑖𝑖𝑘𝑘 − 𝑥𝑥𝑗𝑗𝑘𝑘�
2�

𝑁𝑁

𝑘𝑘=1

(12) 

 
where 𝑥𝑥𝑖𝑖𝑘𝑘  is the 𝑘𝑘𝑡𝑡ℎ  dimension of 𝒙𝒙𝑖𝑖  and 𝜽𝜽  is 
estimated via the Maximum Likelihood 
Estimation (MLE) method (“UQLab Kriging 
(Gaussian Process Modelling) Manual” n.d.). To 
maintain consistency,  𝜃𝜃𝑘𝑘  is searched in (0,10) 
according to the optimization algorithm in the 
MATLAB toolbox DACE (Lophaven, Nielsen, 
and Søndergaard 2002b), (Lophaven, Nielsen, 
and Søndergaard 2002a). Here, MLE can be 
represented as: 

 

𝜽𝜽 =  argmin
𝜽𝜽∗

��𝑹𝑹�𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗; 𝜽𝜽��
1
𝑚𝑚 𝜎𝜎2� (13) 

 
where 𝑚𝑚  is the number of training points. 
Accordingly, the regression coefficient 𝜷𝜷, and the 
predicted mean and variance can be determined as 
follows (“UQLab Kriging (Gaussian Process 
Modelling) Manual” n.d.): 

 
 

𝜷𝜷 =  (𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1𝑭𝑭𝑇𝑇𝑹𝑹−1𝒀𝒀  
 

𝜇𝜇ℎ�(𝒙𝒙) = 𝒇𝒇𝑇𝑇(𝒙𝒙)𝜷𝜷 + 𝒓𝒓𝑇𝑇(𝒙𝒙)𝑹𝑹−1(𝒚𝒚 − 𝑭𝑭𝑭𝑭)  
 

𝜎𝜎ℎ�
2(𝒙𝒙) = 𝜎𝜎2 �

1 − 𝒓𝒓𝑇𝑇(𝒙𝒙)𝑹𝑹−1𝒓𝒓(𝒙𝒙)

+�𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓(𝒙𝒙) − 𝒇𝒇(𝒙𝒙)�𝑇𝑇

(𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1(𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓(𝒙𝒙) − 𝒇𝒇(𝒙𝒙))
� (14) 

 
where 𝑭𝑭 is the matrix of the basis function 𝒇𝒇(𝒙𝒙) 
evaluated at the training points, i.e., 𝐹𝐹𝑖𝑖𝑖𝑖 =  𝑓𝑓𝑗𝑗(𝒙𝒙𝑖𝑖), 
𝑖𝑖 = 1, 2, … ,𝑚𝑚 ; 𝑗𝑗 = 1,2, … , 𝑝𝑝,  𝒓𝒓(𝒙𝒙)  is the 
correlation between known training points 𝒙𝒙𝑖𝑖 and 
an untried point 𝒙𝒙: 𝑟𝑟𝑖𝑖 = 𝑅𝑅(𝒙𝒙, 𝒙𝒙𝑖𝑖, 𝜽𝜽), 𝑖𝑖 = 1,2 …𝑚𝑚, 
and 𝑹𝑹  is the autocorrelation matrix for known 
training points: 𝑅𝑅𝑖𝑖𝑖𝑖 =  𝑅𝑅�𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗, 𝜽𝜽�,  𝑖𝑖 =
1,2, … ,𝑚𝑚; 𝑗𝑗 = 1,2, … ,𝑚𝑚. Therefore, the estimated 
Kriging mean 𝜇𝜇ℎ�(𝒙𝒙) and variance 𝜎𝜎ℎ�

2(𝒙𝒙) can be 
presented as: 

 
ℎ�(𝒖𝒖) ~ 𝑁𝑁 �𝜇𝜇ℎ�(𝒙𝒙), 𝜎𝜎ℎ�

2(𝒙𝒙)� (15) 
 
It is obvious that the responses from the 

Kriging model ℎ�(𝒙𝒙)  are not deterministic but 
probabilistic in the form of a normal distribution 
with mean 𝜇𝜇ℎ�(𝒙𝒙) and variance 𝜎𝜎ℎ�

2(𝒙𝒙).  
Details of the implementation of Kriging-

based reliability analysis can be found in (Echard, 
Gayton, and Lemaire 2011; Wang and 
Shafieezadeh 2019, 2018). Note that learning 
functions have a crucial role in adaptive Kriging-
based reliability analysis methods. As the name 
implies, the ‘learning’ refers to the process of 
iterative selection of points for Kriging 
refinement based on the stochastic information for 
each design point. A popular learning function is 
𝑈𝑈 that is concerned with uncertainties in sign (±) 
estimation of ℎ�(𝒙𝒙)=0. This learning function is 
used in this paper. In this regard, 𝑈𝑈  takes the 
probabilistic distribution of estimated responses 
into consideration, and quantifies the probability 
of making a wrong sign estimation in ℎ�(𝒙𝒙). The 
formulation of 𝑈𝑈 is: 
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𝑈𝑈(𝒙𝒙) =  
|𝜇𝜇ℎ�(𝒙𝒙)|
𝜎𝜎ℎ�(𝒙𝒙)

(16) 

 

 

The general principle of adaptive Kriging-based 
reliability analysis method is to start with a small 
number of candidate design samples to 
estimate  𝑃𝑃�𝑓𝑓  and then adaptively refine the limit 
state.  
 

 

4. NUMERICAL STUDIES 
In this section, an examples is investigated to 
demonstrate the performance of the proposed 
method BUAK. This example has also been 
studied in (Betz et al. 2018). A one-dimensional 
random variable is used here which follows a 
standard normal prior distribution, and is denoted 
as φ(𝑥𝑥) . The likelihood of this problem also 
follows a normal distribution with mean 𝜇𝜇𝑙𝑙 = 3 
and standard deviation 𝜎𝜎𝑙𝑙 = 0.3 . Thus the 
maximum value of this likelihood is 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 =
1

𝜎𝜎𝑙𝑙√2𝜋𝜋
= 1.33 , which means 𝑐𝑐 = 1

𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚)
=

0.752. Then the limit state function according to 
Eq. (9) can be represented as: 
 

ℎ(𝑥𝑥, 𝑝𝑝) =  𝑝𝑝 − 𝑐𝑐𝑐𝑐(𝑥𝑥|𝜇𝜇𝑙𝑙, 𝜎𝜎𝑙𝑙) (17) 
 

where 𝑝𝑝 is an auxiliary random variable following 
uniform distribution and 𝜙𝜙(𝒙𝒙|𝜇𝜇𝑙𝑙, 𝜎𝜎𝑙𝑙) denotes the 
probability density function (PDF) of normal 
distribution parameterized by 𝜇𝜇𝑙𝑙 and 𝜎𝜎𝑙𝑙.  

To reduce the nonlinearity of Eq. (17), a 
logarithmic formulation of the limit state function  
can be represented as (Betz et al. 2018), 

 
𝑔𝑔(𝑥𝑥, 𝑝𝑝) =  𝑙𝑙𝑙𝑙(𝑝𝑝) − 𝑙𝑙𝑙𝑙(𝑐𝑐) − 𝑙𝑙𝑙𝑙�𝜙𝜙(𝑥𝑥|𝜇𝜇𝑙𝑙, 𝜎𝜎𝑙𝑙)�(18) 

 
The performance of this method is evaluated in 
terms of the number of calls to the likelihood 
function, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . Since the acceptance ratio, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 , 
of this example is 4.63 × 10−3, the total number 
of calls to the performance function through BUS 
in association with subset simulation is more than 
1500 according to (Straub Daniel and 
Papaioannou Iason 2015). However, the total 
number of calls to the likelihood function 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is 
equal to 20 through the proposed Kriging-based 
Bayesian updating method in this example. Fig. 1 
showcases the limit state of Eq. (17) or (18) 
estimated through BUAK with  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 15  and 
 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 20. According to Fig 2., the limit state 
ℎ(𝒙𝒙, 𝑝𝑝) = 0 is gradually refined as the number of 
training points 𝑥𝑥𝑡𝑡𝑡𝑡  increases. The accepted 
samples and inaccurately classified samples are 
illustrated in Fig. 2. There are totally 17 points out 
of 104(as denoted in the magenta cross dots in 
Fig. 2(b)), whose labels are estimated wrongly 
(i.e., points that should be accepted but are 
rejected, and points that should be rejected but are 
accepted).  

 

  
         (a)          (b) 

Fig. 1. The limit state of ℎ(𝒙𝒙, 𝑝𝑝) = 0 and ℎ�(𝒙𝒙, 𝑝𝑝) = 0 with (a) 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 15, (b) 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 20 
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         (a)           (b) 

Fig. 2. Illustration of accepted samples through (a) the true limit state ℎ(𝒙𝒙, 𝑝𝑝) (b) the estimated 
limit state ℎ�(𝒙𝒙, 𝑝𝑝) 

 

5. CONCLUSIONS 
A novel framework, termed BUAK, that combines 
Bayesian Updating with structural reliability 
methods (BUS) and Adaptive Kriging surrogate 
model is proposed in this article to improve the 
performance of Bayesian updating. The main idea 
behind BUAK is to integrate the BUS algorithm 
with the advanced adaptive Kriging-based 
reliability analysis methods, which have shown 
great capability in reducing the number of 
evaluations to the performance function and 
simultaneously training very accurate surrogate 
models. By training multiple parallel Kriging 
surrogates for these decomposed limit state 
functions, the BUS algorithm can be well 
implemented based on the advanced adaptive 
Kriging-based reliability analysis. A numerical 
example is investigated to analyze the 
performance of the proposed method. Results 
indicate that BUAK offers great computational 
efficiency in accurately estimating the posterior 
distribution of correction factors. 
 
ACKNOWLEDGMENTS 
This research has been partly funded by the U.S. 
National Science Foundation (NSF) through 
awards CMMI-1462183, 1563372, and 1635569. 
Any opinions, findings, and conclusions or 
recommendations expressed in this paper are 

those of the authors and do not necessarily reflect 
the views of the National Science Foundation. 

REFERENCES 
Au, Siu-Kui, and James L. Beck. 2001. 

“Estimation of Small Failure Probabilities 
in High Dimensions by Subset 
Simulation.” Probabilistic Engineering 
Mechanics 16 (4): 263–277. 

 
Beck James L., and Au Siu-Kui. 2002. “Bayesian 

Updating of Structural Models and 
Reliability Using Markov Chain Monte 
Carlo Simulation.” Journal of 
Engineering Mechanics 128 (4): 380–91.  

 
Betz, Wolfgang, Iason Papaioannou, James L. 

Beck, and Daniel Straub. 2018. “Bayesian 
Inference with Subset Simulation: 
Strategies and Improvements.” Computer 
Methods in Applied Mechanics and 
Engineering 331 (April): 72–93.  

 
Betz Wolfgang, Papaioannou Iason, and Straub 

Daniel. 2016. “Transitional Markov Chain 
Monte Carlo: Observations and 
Improvements.” Journal of Engineering 
Mechanics 142 (5): 04016016.  

 

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 8 

Blatman, Géraud, and Bruno Sudret. 2010. “An 
Adaptive Algorithm to Build up Sparse 
Polynomial Chaos Expansions for 
Stochastic Finite Element Analysis.” 
Probabilistic Engineering Mechanics 25 
(2): 183–197. 

 
Ching Jianye, and Chen Yi-Chu. 2007. 

“Transitional Markov Chain Monte Carlo 
Method for Bayesian Model Updating, 
Model Class Selection, and Model 
Averaging.” Journal of Engineering 
Mechanics 133 (7): 816–32.  

 
Echard, B., N. Gayton, and M. Lemaire. 2011. 

“AK-MCS: An Active Learning 
Reliability Method Combining Kriging 
and Monte Carlo Simulation.” Structural 
Safety 33 (2): 145–154. 

 
Fauriat, William, and Nicolas Gayton. 2014. 

“AK-SYS: An Adaptation of the AK-
MCS Method for System Reliability.” 
Reliability Engineering & System Safety 
123: 137–144. 

 
Gaspar, B., A. P. Teixeira, and C. Guedes Soares. 

2014. “Assessment of the Efficiency of 
Kriging Surrogate Models for Structural 
Reliability Analysis.” Probabilistic 
Engineering Mechanics 37 (July): 24–34.  

 
Giovanis, Dimitris G., Iason Papaioannou, Daniel 

Straub, and Vissarion Papadopoulos. 
2017. “Bayesian Updating with Subset 
Simulation Using Artificial Neural 
Networks.” Computer Methods in Applied 
Mechanics and Engineering 319 (June): 
124–45.  

 
Lophaven, Søren Nymand, Hans Bruun Nielsen, 

and Jacob Søndergaard. 2002a. “Aspects 
of the Matlab Toolbox DACE.” 
Informatics and Mathematical Modelling, 
Technical University of Denmark, DTU.  

 

“DACE-A Matlab Kriging Toolbox, Version 
2.0.”  

 
Smith, A. F. M., and A. E. Gelfand. 1992. 

“Bayesian Statistics without Tears: A 
Sampling–Resampling Perspective.” The 
American Statistician 46 (2): 84–88.  

 
Straub Daniel, and Papaioannou Iason. 2015. 

“Bayesian Updating with Structural 
Reliability Methods.” Journal of 
Engineering Mechanics 141 (3): 
04014134.  

 
“UQLab Kriging (Gaussian Process Modelling) 

Manual.” n.d. UQLab, the Framework for 
Uncertainty Quantification. Accessed 
May 13, 2017.  

 
Wang, Zeyu, and Abdollah Shafieezadeh. 2018. 

“ESC: An Efficient Error-Based Stopping 
Criterion for Kriging-Based Reliability 
Analysis Methods.” Structural and 
Multidisciplinary Optimization, 
November.  

 
Wang, Zeyu, and Abdollah Shafieezadeh. 2019. 

“REAK: Reliability Analysis through 
Error Rate-Based Adaptive Kriging.” 
Reliability Engineering & System Safety 
182 (February): 33–45.  

 


	1. Introduction
	2. Bayesian Updating
	2.1. Simple Rejection Sampling (SRS)
	2.2. Bayesian Updating with Structural Reliability Methods (BUS)

	3. Adaptive Kriging-based Reliability Analysis
	4. Numerical studies
	5. Conclusions
	References

