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ABSTRACT: Adaptive Kriging-based reliability analysis methods have shown great advantages over 
conventional methods for their computational efficiency and accuracy. However, the widely accepted 
learning strategies such as Expected Feasibility function and U function can select one training point for 
each iteration, and therefore are not suitable for parallel processing. To address this limitation, the 
uncertainty of the failure probability is estimated through Adaptive Kriging with probabilistic 
classification-based Monte Carlo simulation based on the fact that the total number of failure points 
follows a Poisson Binomial distribution. By maximally reducing the uncertainty of the estimated failure 
probability, the theoretically optimal learning strategy is derived in this paper. Due to the computational 
difficulty in implementing the optimal learning strategy, a pseudo optimal parallel learning strategy is 
proposed to closely reach the optimal solution. The efficiency of the proposed parallel learning strategy 
is investigated here by implementing two benchmark reliability problems. Results indicate that the total 
number of evaluations to the performance function through the proposed parallel learning strategy can 
be even close to the approach based on single training point enriching. 
 
1. INTRODUCTION 
Structures and infrastructure systems are 
vulnerable against gradual and shock-type 
disturbances such as aging, and natural and 
manmade hazards. Probabilities of occurrence of 
the failure of these systems are key for quantifying 
and managing risks. These probabilities are 
typically characterized by conducting reliability 
analysis, where the target is to estimate the 
probability of failure, denoted as 𝑃𝑃𝑓𝑓 . In the 
analysis of reliability, 𝑃𝑃𝑓𝑓 can be calculated as: 
 

𝑃𝑃𝑓𝑓 = � 𝜌𝜌(𝒙𝒙)𝑑𝑑𝒙𝒙
𝑔𝑔(𝒙𝒙)≤0

= � 𝐼𝐼𝑔𝑔(𝒙𝒙)𝜌𝜌(𝒙𝒙)𝑑𝑑𝒙𝒙
𝛺𝛺

, (1) 

 
where 𝒙𝒙 is the vector of random variables, 𝑔𝑔(𝒙𝒙) is 
the so-called performance or limit state function, 
𝜌𝜌(𝒙𝒙)  is the joint probability density function 
(PDF) of 𝒙𝒙  and 𝐼𝐼𝑔𝑔(𝒙𝒙)  is a failure indicator 
function. Note that 𝐼𝐼𝑔𝑔(𝒙𝒙) = 1  when 𝑔𝑔(𝒙𝒙) ≤ 0 , 

and 𝐼𝐼𝑔𝑔(𝒙𝒙) = 0  when 𝑔𝑔(𝒙𝒙) > 0 . Modern 
reliability analysis methods aim to estimate 𝑃𝑃𝑓𝑓 
with as few as possible number of evaluations to 
the computationally demanding numerical 
models. Those well-developed techniques 
primarily include simulation-based sampling 
techniques (e.g., the crude Monte-Carlo 
simulation (Rubinstein and Kroese 2016), 
importance sampling (Echard et al. 2013), and 
subset simulation (Huang, Chen, and Zhu 2016)) 
and approximation-based approaches (e.g. first- 
or second-order reliability analysis methods) 
(Ditlevsen and Madsen 1996; Lemaire 2013)), 
which estimate 𝑃𝑃𝑓𝑓  by searching for the most 
probable point in the probabilistic space. 
Although the first group can produce desirable 
estimates of 𝑃𝑃𝑓𝑓,  they are computationally 
expensive. On the contrary, approximation-based 
methods are often computationally fast, but they 
lack the accuracy for problems with non-linear 
responses near the limit state. To address these 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 2 

limitations, surrogate model-based reliability 
analysis has emerged and shown a great potential. 
These surrogate models typically include 
polynomial chaos expansion (Blatman and Sudret 
2010) and Kriging (Echard, Gayton, and Lemaire 
2011; Bichon et al. 2008). Among these 
techniques, Kriging-based methods have been 
developing fast (Echard, Gayton, and Lemaire 
2011; Wang and Shafieezadeh 2019).  

Different from other deterministic regression 
models, outputs from the Kriging follow Gaussian 
distribution. The well-trained surrogate model can 
substitute the sophisticated model for the process 
of Monte Carlo simulations. Two widely used 
active learning-based reliability analysis methods 
are: Efficient Global Reliability Analysis (EGRA) 
proposed by Bichon et al. (2008) and Adaptive 
Kriging-based Monte Carlo simulation (AK-
MCS) proposed by Echard, Gayton, and Lemaire 
(2011).  It is known that the learning strategy for 
properly selecting training points plays a decisive 
role in Kriging-based reliability analysis methods. 
Aside from EFF (Expected Feasibility Function) 
and U learning functions, a lot of creative 
developments and variations of the 
aforementioned two methods have also been 
proposed. LIF (Least Improvement Function) 
takes advantage of the probability density of each 
point to prioritize training points with large 
probability densities (Sun et al. 2017). 𝝍𝝍𝑑𝑑   and 
𝝍𝝍𝜎𝜎  pick the best training point that is far away 
from the existing training points to avoid the ill-
conditioning problem, and is close to the limit 
state with high variance. It is shown that these 
functions are efficient in strategically picking 
design points (Echard, Gayton, and Lemaire 
2011). However, they can select only one training 
point upon each learning iteration, which is not 
flexible and does not allow parallel processing. 
Hence, a number of parallel training point-
enriching strategies, such as k-means clustering, 
have been proposed by Lelièvre et al. (2018). 
However, these parallel learning strategies are not 
optimal in selection of multiple training points.  

In this article, the theoretically optimal 
learning strategy is derived and a new learning 

strategy for enriching multiple training points is 
proposed to overcome aforementioned 
drawbacks. To explore such optimal learning 
strategy, uncertainty of the failure probability 
estimated through adaptive Kriging-based 
reliability methods is derived based on the fact 
that the total number of failure points estimated 
through probabilistic classification-based Monte 
Carlo simulation follows a Poisson Binomial 
distribution. This estimate of the uncertainty is 
used to derive the optimal learning strategy that 
identifies training points that maximally reduce 
the uncertainty in failure probability estimates.  

This article is organized as follows. Section 2 
briefly introduces the Kriging model and 
probabilistic classification-based Monte Carlo 
simulation. In Section 3, the proposed parallel 
learning strategy is elaborated. In Section 4, an 
example is investigated to evaluate the proposed 
strategy. Conclusions are drawn in Section 5.  
 
2. KRIGING MODEL 
In Kriging surrogate model-based reliability 
analysis, the performance or limit state function, 
𝑔𝑔(𝒙𝒙) is substituted by Kriging surrogate model 
𝑔𝑔�(𝒙𝒙) that is adaptively trained (“UQLab Kriging 
(Gaussian Process Modelling) Manual” n.d.). In 
this section, Kriging model with uncorrelated and 
correlated responses are briefly introduced 
(Echard, Gayton, and Lemaire 2011; Wang et al. 
2017). Generally, Kriging model  𝑔𝑔�(𝒙𝒙) can be 
represented as: 

 
𝑔𝑔�(𝒙𝒙) = 𝐹𝐹(𝒙𝒙,𝜷𝜷) +  𝑍𝑍(𝒙𝒙) = 𝒇𝒇𝑇𝑇(𝒙𝒙)𝜷𝜷 + 𝑍𝑍(𝒙𝒙), (2) 

 
where 𝐹𝐹(𝒙𝒙,𝜷𝜷) is the regression base representing 
the Kriging trend, which can be a constant or a 
polynomial. 𝒇𝒇(𝒙𝒙) is the Kriging basis and 𝜷𝜷 is the 
regression coefficients. 𝒇𝒇𝑇𝑇(𝒙𝒙)𝜷𝜷  usually have 
ordinary (𝛽𝛽0), linear (𝛽𝛽0+∑ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛𝑁𝑁

𝑛𝑛=1 ) or quadratic 
( 𝛽𝛽0 + ∑ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛𝑁𝑁

𝑛𝑛=1 + ∑ ∑ 𝛽𝛽𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑥𝑥𝑘𝑘𝑁𝑁
𝑘𝑘=𝑛𝑛

𝑁𝑁
𝑛𝑛=1 ) forms, 

whereas n is the dimension of the random input 
vector, x. Note that ordinary Kriging is used 
entirely in this paper. 𝑍𝑍(𝒙𝒙)  is the Kriging 
interpolation following a stationary normal 
Gaussian process with zero mean and a 
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covariance matrix between two points, 𝒙𝒙𝒊𝒊 and 𝒙𝒙𝒋𝒋, 
as defined below: 
 

COV �𝑍𝑍(𝒙𝒙𝑖𝑖),𝑍𝑍�𝒙𝒙𝑗𝑗�� =  𝜎𝜎2𝑅𝑅�𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋;𝜽𝜽�, (3) 
where 𝜎𝜎2  is the process variance or the 
generalized mean square error from the regression 
part and 𝑅𝑅�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗;𝜽𝜽� is the correlation function or 
the kernel function representing the correlation 
function of the process with hyper-parameter 𝜽𝜽. 
Multiple types of correlation functions are 
available in Kriging model including linear, 
exponential, Gaussian, Matérn models, among 
others (“UQLab Kriging (Gaussian Process 
Modelling) Manual” n.d.). In this paper, the 
Gaussian kernel function is implemented: 

𝑅𝑅�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗;𝜽𝜽� = � exp �−𝜃𝜃𝑛𝑛�𝑥𝑥𝑖𝑖𝑛𝑛 − 𝑥𝑥𝑗𝑗𝑛𝑛�
2�

𝑁𝑁

𝑛𝑛=1

, (4) 

where N is the dimension of the random input 
vector, 𝒙𝒙𝑖𝑖  or 𝒙𝒙𝑗𝑗 . The hyper-parameter 𝜽𝜽  can be 
estimated via maximum likelihood estimation 
(MLE) or cross-validation (“UQLab Kriging 
(Gaussian Process Modelling) Manual” n.d.). It 
has been shown that the Kriging prediction is very 
sensitive to the value of 𝜽𝜽 (Kaymaz 2005; Wang 
et al. 2017). In this article, the well-known DACE 
toolbox is implemented (Lophaven, Nielsen, and 
Søndergaard 2002b), (Lophaven, Nielsen, and 
Søndergaard 2002a), where 𝜃𝜃𝑖𝑖  is searched in 
(0,10). MLE is aimed to search for: 

 

𝜽𝜽∗ =  argmin
𝜽𝜽

��𝑹𝑹�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗;𝜽𝜽��
1
𝑚𝑚 𝜎𝜎2� , (5) 

 
where m is the number of known training points 
or design-of-experiment (DoE) points. The 
Kriging model with correlated responses can be 
represented as (Wang et al. 2017): 

 
𝒀𝒀𝑈𝑈 ~ 𝑁𝑁(𝝁𝝁𝑈𝑈 ,𝚺𝚺𝑈𝑈), (6) 

 
where the Kriging mean can be expressed in a 
matrix form: 

 
𝝁𝝁𝑈𝑈 = 𝑭𝑭𝑈𝑈𝜷𝜷 + 𝒓𝒓𝑈𝑈𝑇𝑇𝑹𝑹−1(𝒀𝒀 − 𝑭𝑭𝑭𝑭), (7) 

 
and the corresponding covariance matrix can be 
read as: 

 
𝚺𝚺 = 𝜎𝜎2(𝑹𝑹𝑈𝑈 + 𝒖𝒖𝑈𝑈𝑇𝑇 (𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1𝒖𝒖𝑈𝑈 − 𝒓𝒓𝑈𝑈𝑇𝑇𝑹𝑹−1𝒓𝒓𝑈𝑈), (8) 

 
where 

𝑹𝑹𝑈𝑈 = �𝑹𝑹�𝒙𝒙𝑝𝑝𝑢𝑢,𝒙𝒙𝑞𝑞𝑢𝑢;𝜽𝜽��
𝑁𝑁𝑢𝑢×𝑁𝑁𝑢𝑢

𝑇𝑇
,𝒙𝒙𝑝𝑝𝑢𝑢,𝒙𝒙𝑞𝑞𝑢𝑢 ∈  𝑆𝑆𝑈𝑈 , 

 

𝒓𝒓𝑈𝑈 = �𝑹𝑹�𝒙𝒙𝑙𝑙 ,𝒙𝒙𝑝𝑝𝑢𝑢;𝜽𝜽��
𝑁𝑁𝑢𝑢×𝑚𝑚

𝑇𝑇
,𝒙𝒙𝑙𝑙 ∈ 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷 , 

 
𝒖𝒖𝑈𝑈 =  𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓𝑈𝑈 − 𝑭𝑭𝑈𝑈𝑻𝑻 , 

 
𝑭𝑭𝑈𝑈(𝒙𝒙) =  �𝑓𝑓(𝒙𝒙1𝑢𝑢),𝑓𝑓(𝒙𝒙2𝑢𝑢), … 𝑓𝑓�𝒙𝒙𝑁𝑁𝑢𝑢

𝑢𝑢 ��𝑇𝑇 . (9) 
 

Different from the Kriging model with 
uncorrelated responses, Kriging model with 
correlated responses follow the assumption in 
building the Kriging model that all the known and 
untried responses follow mutually correlated 
normal distribution. It is shown that Kriging 
model with correlated responses works better than 
that with uncorrelated responses in terms of 
estimating the confidence interval of failure 
probability (Wang and Shafieezadeh, 2019). Steps 
for adaptive Kriging-based reliability analysis are 
available in a number of studies including 
(Echard, Gayton, and Lemaire 2011; Wang and 
Shafieezadeh 2019, 2018). Note that several 
learning functions (e.g. Expected Feasibility 
Function ( 𝐸𝐸𝐸𝐸𝐸𝐸 ) and 𝑈𝑈  function) have been 
proposed to select the next best training points. 
The point that maximizes the 𝐸𝐸𝐸𝐸𝐸𝐸  response is 
chosen as the next best training point to refine the 
Kriging model. On the other hand, 𝑈𝑈  learning 
function measures the uncertainty of wrong sign 
(+/-) estimation of 𝑔𝑔�(𝒙𝒙). The point that minimizes 
the response of 𝑈𝑈  is selected in the learning 
iteration.  

3. MULTIPLE TRAINING POINTS 
ENRICHMENT STRATEGY 

It is shown that both the 𝐸𝐸𝐸𝐸𝐸𝐸  and 𝑈𝑈  learning 
functions are efficient in strategically picking 
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design points (Echard, Gayton, and Lemaire 
2011). However, they can select only one training 
point upon each learning iteration, which is not 
flexible and impractical for implementation. To 
select multiple training points at one time and 
simultaneously keep the total number of 
evaluation of the performance function minimum, 
parallel learning strategies need to be explored. In 
this section, a new learning strategy for selecting 
multiple training points is proposed to overcome 
aforementioned drawbacks. Before proposing this 
strategy, the uncertainty of the estimated failure 
probability is represented (Wang and 
Shafieezadeh, 2019), which facilitates the 
derivation of the optimal learning strategy. 

Denote that the failure probability estimated 
through Probabilistic Classification-based Monte 
Carlo Simulation (PC-MCS) can be estimated as: 

𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 =  

𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
, (10) 

where 𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝  is the expected number of failure 

points in 𝑆𝑆. In this approach, for each candidate 
design sample, 𝒙𝒙𝑖𝑖 , the outcome of the indicator 
function follows a Bernoulli distribution: 

 
𝐼𝐼𝑔𝑔�(𝒙𝒙𝑖𝑖)~𝐵𝐵�𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖),𝜎𝜎𝑏𝑏2(𝒙𝒙𝑖𝑖)�,𝒙𝒙𝑖𝑖 ∈  𝑆𝑆, (11) 
 

where B denotes the Bernoulli distribution, 
𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖)  is the Bernoulli mean with 𝜇𝜇b(𝒙𝒙𝑖𝑖) =
 Φ�

−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)

𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)
�  and 𝜎𝜎𝑏𝑏2(𝒙𝒙𝑖𝑖)  is the variance of the 

Bernoulli distribution, 𝜎𝜎𝑏𝑏2(𝒙𝒙𝑖𝑖) =  𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖)�1 −
𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖)�. As 𝑁𝑁�𝑓𝑓

𝑝𝑝𝑝𝑝 can be derived as the expected 
value of the sum of 𝐼𝐼𝑔𝑔�(𝒙𝒙𝑖𝑖), 𝒙𝒙𝑖𝑖 ∈  𝑆𝑆, it follows that 
𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝 has Poisson binomial distribution (PBD): 

 
𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝~𝑃𝑃𝑃𝑃 �𝜇𝜇𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝 ,𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝

2 � ,𝒙𝒙𝑖𝑖 ∈  𝑆𝑆, (12) 

 
where 𝜇𝜇𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝  and 𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝

2  are the mean value and 

variance of 𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝 . Therefore, the Confidence 

Interval of 𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝, with confidence level 𝛼𝛼, can be 

calculated as:  

 

𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝 ∈ �𝜣𝜣𝑁𝑁�𝑓𝑓

𝑐𝑐
−1 �

𝛼𝛼
2
� ,𝜣𝜣𝑁𝑁�𝑓𝑓

𝑝𝑝𝑝𝑝
−1 �1 −

𝛼𝛼
2
�� , (13) 

 
where 𝜣𝜣𝑁𝑁�𝑓𝑓

𝑝𝑝𝑝𝑝
−1 (∙) is the inverse CDF of PBD with 

mean 𝜇𝜇𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝  and variance 𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝
2 . According to( 

Wang and Shafieezadeh, 2019), the distribution of 
𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝 in Eq.(12) can be represented as: 

 
 𝑁𝑁�𝑓𝑓

𝑝𝑝𝑝𝑝~𝑁𝑁 �𝜇𝜇𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝 ,𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝
2 � ,  

 

𝜇𝜇𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝 =  � Φ�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

,

𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝
2 =  � � 𝚺𝚺𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑗𝑗=1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

,𝒙𝒙𝑖𝑖 ∈  S (14)

 

 
where 𝑁𝑁(∙) denotes the normal distribution with 
corresponding CDF, Φ(∙) , and 𝚺𝚺𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗  is the 
element of the covariance matrix, 𝚺𝚺𝑝𝑝𝑝𝑝, which can 
be represented as (Wang and Shafieezadeh, 
2019), 
 

𝚺𝚺𝑝𝑝𝑝𝑝 =

�
𝜎𝜎𝑏𝑏2(𝒙𝒙1) ⋯ 𝜌𝜌1,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝜎𝜎𝑏𝑏(𝒙𝒙1)𝜎𝜎𝑏𝑏�𝒙𝒙𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀�

⋮ ⋱ ⋮
𝜌𝜌𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀,1𝜎𝜎𝑏𝑏�𝒙𝒙𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀�𝜎𝜎𝑏𝑏(𝒙𝒙1) ⋯ 𝜎𝜎𝑏𝑏2�𝒙𝒙𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀�

� , (15) 

 
According to the normal distribution, the 
Confidence Interval (CI) of 𝑁𝑁�𝑓𝑓

𝑝𝑝𝑝𝑝 can be calculated 
as: 
 
𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝  ∈ �𝜇𝜇𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝 −  𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝 ,   𝜇𝜇𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝 + 𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝� , (16) 

 
where  𝛾𝛾𝑐𝑐𝑐𝑐 = 1.96  in this paper, which 
corresponds to α = 0.05. According to Eq. (10) 
and (16), the CI of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 can be obtained by:  
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𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝~ �

𝜇𝜇𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝 −  𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
,   
𝜇𝜇𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝 + 𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑐𝑐

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
� ,

 α = 0.05,  𝛾𝛾𝑐𝑐𝑐𝑐 = 1.96. (17)
 

 
Note that the uncertainty of the estimated failure 
probability 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝  can be reflected in the variance 
𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝
2  in Eq. (14), which is the summation of each 

elements of the covariance matrix in Eq. (15). The 
standard deviations 𝜎𝜎𝑏𝑏(𝒙𝒙𝑖𝑖)and 𝜎𝜎𝑏𝑏�𝒙𝒙𝑗𝑗� in Eq. (15) 
will be reduced when new training points are 
added, which indicates that the variance  𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝

2  will 

also decrease. Hence, to maximally reduce the 
uncertainty of the estimated failure probability 
𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝,  the optimal learning strategy can be defined 

as: 

𝒙𝒙𝑡𝑡𝑡𝑡∗ = arg max  
�𝒙𝒙{1},𝒙𝒙{2},…𝒙𝒙{𝑝𝑝𝑝𝑝}�∈S

�𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛� (18) 

 
where 𝒙𝒙𝑡𝑡𝑡𝑡∗ = �𝒙𝒙𝑡𝑡𝑡𝑡

{1},𝒙𝒙𝑡𝑡𝑡𝑡
{2}, …𝒙𝒙𝑡𝑡𝑡𝑡

{𝑝𝑝𝑝𝑝}� are the selected 
best training samples,  𝑝𝑝𝑝𝑝 denotes the number of  
𝒙𝒙𝑡𝑡𝑡𝑡∗ , 𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  denote the standard 

deviation, 𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝, at the current and next learning 
iteration, respectively. Method for the proposed 
parallel learning strategy is summarized in 
Algorithm 1. 
 
4. NUMERICAL STUDIES 
In this section, the performance of the proposed 
parallel learning strategy along with EFF and U 
learning function are investigated. The stopping 
criterion for learning is set as: 

𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 ≅ 𝑃𝑃𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 

𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝

𝜇𝜇𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝
≤ 10−3 (19) 

where 𝜎𝜎𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝  and 𝜇𝜇𝑁𝑁�𝑓𝑓𝑝𝑝𝑝𝑝  are two parameters in Eq. 
(14). A non-linear four-branch series system 
problem has been investigated in many studies 
(Echard, Gayton, and Lemaire 2011; Wang and 
Shafieezadeh 2019). Random variables 𝑥𝑥1 and 𝑥𝑥2 
for this problem all follow mutually independent 
standard normal distributions (e.g. mean of 0 and 

standard deviation of 1). The performance 
function, 𝑔𝑔(𝒙𝒙) is defined as: 

𝑔𝑔(𝑥𝑥1, 𝑥𝑥2) = min

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧3 + 0.1(𝑥𝑥1 − 𝑥𝑥2)2 − (𝑥𝑥1 + 𝑥𝑥2)

√2

3 + 0.1(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑥𝑥1 + 𝑥𝑥2)
√2

(𝑥𝑥1 − 𝑥𝑥2) + 6
√2

−(𝑥𝑥1 − 𝑥𝑥2) + 6
√2

(20) 

 
As suggested in (Echard, Gayton, and Lemaire 
2011), (𝑛𝑛𝑑𝑑+1)(𝑛𝑛𝑑𝑑+2)

2
  initial training points are 

sufficient, where 𝑛𝑛𝑑𝑑 is the number of dimensions 
(e.g. 𝑛𝑛𝑑𝑑 = 2). The performance of these strategies 
is compared in terms of the number of calls to the 
performance function, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , the number of 
iterations, 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 , estimated probability of 
failure, 𝑃𝑃�𝑓𝑓  and the true error, 𝜖𝜖 . Table 1 shows 
reliability analysis results with different learning 
strategies (e.g. single training point selection via 
EFF and U and multiple training point selection 
with different numbers of parallel trainings). For 
this example, the number of candidate design 
samples is set to 1 × 105 so that the coefficient of 
variation of failure probability, 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑓𝑓, is smaller 
than 0.05. In this comparison, the same set of 
candidate design samples and initial training 
points are used for all methods in order to remain 
consistent in failure probability estimation.  
 
As shown in Table 1, the number of iterations with 
parallel learning strategy is significantly reduced 
compared to the approach via single training 
point-based enrichment. For details,  𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖  for 
parallel learning strategies with 𝑝𝑝𝑝𝑝 = 3, 𝑝𝑝𝑝𝑝 = 5,
𝑝𝑝𝑝𝑝 = 8  and 𝑝𝑝𝑝𝑝 = 10  training points-based 
enrichment only need 24, 15, 11 and 13 iterations. 
With 6 initial training samples,  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 through the 
proposed method (𝑝𝑝𝑝𝑝 = 3, 𝑝𝑝𝑝𝑝 = 5, 𝑝𝑝𝑝𝑝 = 8 and 
𝑝𝑝𝑝𝑝 = 10) are 78, 81, 94 and 136, respectively. 
Furthermore,  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 through single training point-
based enrichment with EFF and U learning 
function are 76 and 65.  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  through the 
proposed parallel learning strategy with 𝑝𝑝𝑝𝑝 = 3 
and 𝑝𝑝𝑝𝑝 = 5 training point-based enrichment (e.g. 
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 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 78 and  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 81) are very close to the 
approach estimated through single training point-
based learning strategy with EFF learning 
function. However,  𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖  is only 24 and 15 for 
parallel learning strategies with 3 and 5 training 
points enrichment. The proposed parallel learning 
strategy estimates failure probability through 
adaptive Kriging more efficiently. For examples, 
if 8 computational units are available, the total 
number of iterations are only 11. Importantly, 
more computational units cannot guarantee fewer 
iterations. For example,  𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖  is 13 for parallel 
learning strategy with 10 training points 
enrichment, which, however, is even more than 
the approach with 8 training points. It can be 

inferred that large number of training points for 
each iteration is unnecessary since extra training 
points make insignificant contributions to the 
construction of the Kriging model. Hence, the 
appropriate number of multiple training point 
enrichment for parallel learning strategies is about 
5 for this example. The process of parallel 
learning strategy with 5 training point enrichment 
is illustrated in Fig. 1 for different periods of 
training with  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 36 ,  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 51 ,  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
66  and  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 81 . Fig. 1 indicates that new 
training points 𝒙𝒙𝑡𝑡𝑡𝑡∗  (blue cross dots) are all located 
in the vicinity of the limit state and are distant 
from each other in different regions.  

 
 
 

Algorithm 1. Adaptive Kriging-based Reliability Analysis with Parallel Learning Strategy 
1. Generate initial candidate design samples S with Latin Hypercube Sampling (LHS)  
2. Randomly select initial training samples 𝒙𝒙𝑡𝑡𝑡𝑡 from S and evaluate their responses 𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡) 
3. Construct the Kriging model 𝑔𝑔�(𝒙𝒙) based on 𝒙𝒙𝑡𝑡𝑡𝑡 and 𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡) 
4. Estimate the mean 𝜎𝜎𝑔𝑔�(𝒙𝒙), standard deviation 𝜎𝜎𝑔𝑔�(𝒙𝒙), 𝚺𝚺 and 𝚺𝚺𝑝𝑝𝑝𝑝  𝑃𝑃�𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 for S with 𝑔𝑔�(𝒙𝒙) 
5. Use the parallel learning strategy to search for 𝑝𝑝𝑝𝑝 multiple training points: 

(a). Search for the training points �𝒙𝒙𝑡𝑡𝑡𝑡
{2}, …𝒙𝒙𝑡𝑡𝑡𝑡

{𝑝𝑝𝑝𝑝}� according to Eq. (18) 
6. Check if the stopping criterion (e.g. Eq.(19)) is satisfied or not: 

 (a). If satisfied, go to step 7. 
 (b). If not satisfied, estimate the response 𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡∗ ) for 𝒙𝒙𝑡𝑡𝑡𝑡∗  and go back to Step 3. 

7. Output 𝑃𝑃�𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 
 
 
 
    Table 1. Reliability analysis results with different learning strategies for the example. 

Learning strategy  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 𝜖𝜖 

MCS 1 × 105 - 4.4 × 10−3 - 
EFF 6 + 70 70 4.4 × 10−3 0 
U 6 + 59 59 4.4 × 10−3 0 

Proposed method (𝑝𝑝𝑝𝑝 = 3) 6 + 72 24 4.4 × 10−3 0 
Proposed method (𝑝𝑝𝑝𝑝 = 5) 6 + 75 15 4.4 × 10−3 0 
Proposed method (𝑝𝑝𝑝𝑝 = 8) 6 + 88 11 4.4 × 10−3 0 

Proposed method (𝑝𝑝𝑝𝑝 = 10) 6 + 130 13 4.4 × 10−3 0 
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          (a)           (b) 

  
          (c)           (d) 

  
Fig. 1. Illustration of parallel learning strategy (𝑝𝑝𝑝𝑝 = 5 ) for the example in section 4 with  

(a)  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 36, (b)  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 51,  (c)  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 66,  and  (d)  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 81.  

5. CONCLUSIONS 
This paper proposes a systematic parallel learning 
strategy to enable the process of enriching 
multiple training points in each iteration for 
adaptive Kriging-based reliability analysis. To 
explore the optimal learning strategy, uncertainty 
of the failure probability estimated through 
adaptive Kriging-based reliability methods is 
derived by the fact that the total number of failure 
points estimated through probabilistic 
classification-based Monte Carlo simulation 
follows a Poisson Binomial distribution. 
Afterwards, by realizing that the best learning 
strategy is to maximally reduce the uncertainty of 
the estimated failure probability, optimal learning 
strategy in theory is implicitly represented in this 
article. To overcome the computational  
inefficiency in implementing the optimal learning  

 
strategy, a pseudo optimal learning strategy is 
proposed. The efficiencies and in general the 
advancements offered by the proposed parallel 
learning strategy are explored by investigating 
two benchmark reliability problems. Results 
showcase that the total number of evaluations to 
the performance function through the proposed 
parallel learning strategy can be close to the 
nonparallel approach. 
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