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ABSTRACT: This paper investigates the variation of critical vehicle speeds arising from damaged beam – 

moving oscillator interaction, especially in the presence of damage. The traversing speeds of the moving oscillator 

that result in local maxima of the vertical displacement, the velocity and the acceleration responses of the beam and 

the oscillator are termed the critical speeds. The variations of critical speeds of a two degree of freedom oscillator are 

observed for a wide range of damage location and extent for two different types of damage on a simply supported 

beam. Significant variation of critical speeds is observed due to the presence of damage in the beam. The nature of the 

variation of the critical speeds is observed to be dependent on the nature of damage. The findings are useful for 

engineers to identify vehicle speed regions of interest in relation with design, Structural Health Monitoring and 

response control of bridge-vehicle interaction process.  
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1. INTRODUCTION 

The problem of beam – moving oscillator 

interaction has been well-researched and is 

widely used by practicing engineers and 

researchers to model the interaction of bridges 

with moving vehicle traversing them. The 

absolute maximum values of the responses of the 

bridge and the vehicle expressed as a function of 

the traversing speed of the vehicle are considered 

to be a useful set of information obtained from 

the bridge – vehicle interaction process. A 

common representation of this information is the 

dynamic amplification factor (DAF) of the most 

critical point on the bridge versus the speed of 

the traversing vehicle. The absolute maximum 

values of the dynamic displacements and the 

dynamic stresses over a range of vehicle speeds 

is obtained as a result and frequency matching 

can also be isolated by identifying the local 

maxima values on the DAF versus vehicle speed 

curve. The global maximum value selected from 

the multiple local maxima is of special 

importance within the design speed range of the 

vehicles concerned since it relates to the absolute 

maximum values of the dynamic stresses under 

expected operating conditions of the bridge. 

The allowable speeds of vehicles, along 

with their weight, for bridges have risen 

significantly over years and there is a trend of 

opting for high speed trains and vehicle convoys 

([1]). As a result, the range of vehicle speeds 

used in a significant amount of ongoing and 

existing literature on bridge – vehicle interaction 

is high ([2]). Although dynamic deflection is a 

major marker for the bridge – vehicle interaction, 

additional features like the velocity and the 

acceleration responses of the bridge and the 

vehicle have been investigated and related with 

serviceability aspects like ride comfort ([3]) and 
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the possible stress increase on vehicle suspension 

([4]). Consequently, information on the critical 

speeds corresponding to the presence of the local 

maxima of the responses of the bridge and the 

vehicle over a range of vehicle speeds is deemed 

valuable. This information is also important from 

the point of view of a control engineer since 

passive and semi-active control of bridge – 

vehicle interaction is an active field ([5], [6], [7], 

[8]) of research. 

Investigations into the nature of the critical 

speeds are model-based for unsuitability and 

difficulty of experimental options. Although 

many two-dimensional ([9], [10], [11]) and 

three-dimensional models ([12], [13]) exist 

capturing various local aspects of the bridge – 

vehicle interaction dynamics, a beam – moving 

load interaction has often been found to be a 

good model for describing the global interaction 

to sufficient accuracy ([14]). In fact, as long as 

the dynamic deflection of the beam is of concern 

it is often not even necessary to include the 

inertial component of the moving force that 

renders the mass matrix of the combined bridge 

and vehicle system time dependent. The use of 

beam – moving oscillator interaction has also 

been validated successfully in a number of 

reported experiments ([10],[15]). Literature 

exists in terms of modelling the bridge – vehicle 

interaction, reduction of the numerical 

complexities involved in the modelling and 

parametric studies ([9]-[14]). Effects of potholes 

([16]), surface roughness ([17]) and entry and 

exit conditions ([18]) have also been looked at in 

considerable detail. 

However, it is important to note that the as-

built condition of the bridge can gradually and 

significantly change over time and may create a 

shift, drift or variation of the critical speeds 

associated with the responses of the bridge or the 

vehicle. Since structural information of a bridge 

is often not available after it is built, it is 

important to anticipate the envelope of these 

shifts or variations of the critical speeds 

conditions using numerical investigations. The 

effect of damage depends both on its extent and 

its position. Such information regarding the 

variation of critical speed, especially for vehicles 

can be relevant for drive-by Structural Health 

Monitoring (SHM) techniques.   

This paper presents a numerical study to on 

the variation of critical speeds related to the 

vehicle from a damaged beam – quarter car 

moving oscillator interaction. A simply 

supported beam with a lumped and a smeared 

crack has been considered for the studying the 

effects of varied models of damage. A wide 

range of damage locations and extents are 

considered for a range of vehicle speeds and the 

maximum responses of the displacement, 

velocity and the acceleration of the moving 

oscillator are obtained. The critical speeds 

corresponding to each of the responses are 

identified for the two different damage models 

and their distributions for a range of damage 

locations and extents are investigated.  

 

2. DAMAGE MODEL 

 

Lumped crack and smeared crack models for 

damage are used in this paper. The lumped crack 

model is more localized than the smeared crack 

model and a rotational spring analogy is used to 

model the lumped crack. This rotational spring 

analogy is a good substitute to other more 

detailed and sophisticated continuous crack 

models. This involves considering a simply 

supported beam of length L with an open crack 

located at a distance of ‘a’ from the left hand 

support of the beam as two uncracked beams 

connected through a rotational spring at the 

location of the crack. The crack depth is taken as 

‘c’ and the overall depth of the beam is ‘h’. The 

crack depth ratio (CDR) is defined as c/h and is a 

measure of the damage extent. The general 

solution of the modeshape ((.)) from the free 

vibration equation of the damaged beam can be 

expressed as  

 

ΦL = C1LSin(λx) + C2LCos(λx) +
C3LSinh(λx) + C4LCosh(λx)0 ≤ x < a   

                           (1.1) 
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and 

          ΦR = C1RSin(λx) + C2RCos(λx) +
C3RSinh(λx) + C4RCosh(λx)a ≤ x ≤ L  

                           (1.2)       

    

for the sub-beams on the left and the right side of 

the rotational spring respectively. The distance 

from the left-hand support of the beam is ‘x’. 

The terms C(.) are integration constants arising 

from the solution of the separated fourth order 

partial differential equation of free vibration of 

beam in space. The term  is expressed as 

 

                λ = (
ρAω2

EI
)1/4                           (2) 

 

where the natural frequency of the cracked 

beam is  The symbols A, E and I refer to the 

density of the material of the beam, the cross-

sectional area, the Young’s modulus of the 

material of the beam and the area moment of 

inertia of the beam respectively. Displacements 

and the moments at the two supports of the beam 

are zero and continuity in displacement, moment 

and shear at the location of crack exists. A slope 

discontinuity is present at the location of the 

crack location of the crack as        

 

  ΦR
′(a) − ΦL

′(a) = θLΦR
′′(a)                         (3) 

 

where  is the non-dimensional crack 

section flexibility dependent on CDR and can be 

expressed in terms of a polynomial ([19]). The 

boundary conditions, when substituted in the 

general modeshape equation, give rise to a set of 

necessary number of linear equations which can 

be used to determine the natural frequency of the 

system by setting the determinant of the linear 

equation system to zero.  

The smeared crack model assumes a 

reduction of the moment of inertia over an 

affected width. The damaged beam is analysed as 

an assembly of three sub-beams, the damaged 

sub-beam with reduced stiffness positioned in 

between the two undamaged ones. Continuity in 

deflection, slope, moment and shear are assumed 

on both left and right ends of the damaged zone. 

The modeshape thus consist of twelve 

coefficients. The coefficients and the natural 

frequency are found in the same way as of the 

lumped crack model. A more detailed summary 

of the models can be found in ([20]).  

 

3. DAMAGED-BEAM AND QUARTER CAR 

INTERACTION 

 

A simply supported beam with an open 

crack is traversed at a speed u0 by a vehicle 

modelled as a quarter car consisting of two 

degrees of freedom representing the vertical 

motions of the wheel and the body respectively. 

The quarter car comprises of masses 

corresponding to the lower and the upper degrees 

of freedom and these are represented as mw and 

mb respectively. A spring – damper assembly 

consisting of two sets of springs (kb, kw) and 

dampers (cb, cw) model the suspension system of 

vehicle while the angular movements of the 

vehicle are neglected. Contact loss, bouncing, 

impact effects and surface roughness are not 

taken into account to isolate the effects of 

damage alone. Figure 1 shows the schematic of a 

damaged beam – moving oscillator interaction.  

 
Figure 1. Schematic of Damaged Beam – Moving 

Oscillator Interaction 

 

Considering the dynamic equilibrium 

conditions for the degrees of freedom along the 

displacement directions yb and yw (representing 

the upper and the lower degrees of freedom 

respectively) the following equations are 

obtained 

 

( ) ( ) 0y y y y ycm kb bbb b w b w+ − + − =
         

(4) 
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( y) ( y) 0y y y ycm m kb w wwb w w w+ + + + + =    

             (5) 

 

where y is the dynamic displacement of the 

beam. The overdots in equations 1, 2 and 3 are 

the derivatives with respect to time. The equation 

for the forced vibration of the beam is 

 

  EI
∂4y(x,t)

∂x4
+ c̑

∂y(x,t)

∂t
+ ρA

∂2y(x,t)

∂t2
= FP(t)       (6)                        

 

where 

 

FP(t) = (mbÿb(t) + mwÿw(t) + (mb +

mw)g) δ̑(x − u0t)                                            (7)     

 

the acceleration due to gravity being g and 

𝛿̑ being the Dirac Delta function. The coefficient 

of damping of the beam is represented as 𝑐̑. The 

dynamic displacement of the beam can be 

resolved into a number of orthogonal 

modeshapes using the standard technique of 

separation of variables. Exploiting the 

orthogonality of the modeshapes ([21]) a second 

order differential equation in time is obtained 

corresponding to each modeshape as 

 

  j
2(t) 2 (t) (t) R (t)q q qjjj j jj

+ + =                  

(8) 

 

where j denotes the natural frequency and j 

denotes the damping ratio of the beam for jth 

mode. The forcing function Rj(t) is  

j j 0

1
R (t) {( ( )g} (u t)}y ym m m mw b w bw bAK

= + + + 


        (9) 

 

where the constant 𝐾̑ is defined as the integral of 

the squared modeshape over the length. The 

acceleration of the vehicle and the effects of 

damage both enter into the dynamic loading of 

the beam. The system of dynamic equations can 

be represented into a matrix form and solved for 

the responses of the various degrees of freedom. 

Closed form solutions for the response of the 

beam can be obtained with sufficient accuracy by 

considering a simplified beam – moving force 

interaction model. Consider a simply supported 

beam with an open crack being traversed 

simultaneously by n number of concentrated 

loads Pi (i from 1 to n) moving with a speed u0. 

The forced vibration equation is  

 

EI
∂4y(x,t)

∂x4
+ c̑

∂y(x,t)

∂t
+ ρA

∂2y(x,t)

∂t2
= ∑ Pi

n
i=1 δ̑(x −

u0t)            (10) 

 

The result for the first mode is shown as it 

contributes more significantly than the higher 

modes. Solutions involving higher modes are 

similar. Considering the first mode of the beam, 

by the method of separation of variables 

 

y(x, t) (x)q(t)=                                            (11) 

 

where q(t) is the temporal response of the beam. 

 By substituting equation 11 in equation 10, 

multiplying both sides by (x), integrating over 

the length and rearranging, gives 

 

q̈(t) + 2ξωq̇(t) + ω2q(t) = ∑
Pi

ρAK̑

n
i=1 Φ(u0t)(12) 

 

where                                                          

 
L

0

K (x). (x)dx=                                           (13) 

A term Dij  is defined as  

                                                                 

i j(.)

ij(.)

PC
D

AK
=


                                                  (14) 

 

where Cj(.) are coefficients of the modeshapes 

obtained from the rotational or the smeared crack 

model. The force of excitation F(t) is  

 

F(t) = Di1(.)Sinλ(u0t) + Di2(.)Cosλ(u0t) +

Di3(.)Sinhλ(u0t) + Di4(.)Coshλ(u0t)              (15) 
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where  is defined as before. Choosing the 

solution to be  

  q(t) = Gi1(.)Sinλ(u0t) + Gi2(.)Cosλ(u0t) +

Gi3(.)Sinhλ(u0t) + Gi4(.)Coshλ(u0t)              (16) 

 

and substituting in equation 12, we obtain 

                              

[
 
 
 
 
ω2 − λ

2u0
2 −2ξωλu0 0 0

2ξωλu0 ω2 − λ
2u0

2 0 0

0 0 ω2 + λ
2u0

2 2ξωλu0

0 0 2ξωλu0 ω2 + λ
2u0

2]
 
 
 
 

× 

{
 

 
Gi1(.)
Gi2(.)
Gi3(.)
Gi4(.)}

 

 

=

{
 
 

 
 Di1(.)
Di2(.)
Di3(.)
Di4(.)}

 
 

 
 

                      (17) 

 

The terms Gij(.) are solved as 

 

Gi1(.) =
(ω2−λ

2u0
2)Di1(.)+(2ξωλu0)Di2(.)

(ω2−λ
2u0

2)2+(2ξωλu0)2
                 (18) 

 

Gi2(.) =
−(2ξωλu0)Di1(.)+(ω

2−λ
2u0

2)Di2(.)

(ω2−λ
2u0

2)2+(2ξωλu0)2
               (19)  

  

Gi3(.) =
(ω2+λ

2u0
2)Di3(.)−(2ξωλu0)Di4(.)

(ω2+λ
2u0

2)2−(2ξωλu0)2
                 (20) 

 

Gi4(.) =
−(2ξωλu0)Di3(.)+(ω

2+λ
2u0

2)Di4(.)

(ω2+λ
2u0

2)2−(2ξωλu0)2
               (21) 

 

Such closed form solutions are only for the 

beam response for special cases and often it is 

more appropriate to obtain the response of the 

beam and the quarter car numerically. The 

inertial component in the forcing term can 

produce several local maxima in the lower speed 

regions and it is required to find out how the 

presence of damage affects the spread if those 

speeds corresponding to the local maxima. This 

effect cannot be captured by a closed form 

response ignoring the inertial effects. Since 

hyperbolic terms enter into the modeshape 

equation, it is apparent that the locations of the  

local maxima can shift in the critical speed 

versus beam or oscillator response curves. The 

shift of the critical speeds cannot be ascertained 

through sensitivity analyses employed by 

relating small changes in natural frequency due 

to small changes in damage due to the presence 

of these new terms.   

 

4. RESULTS 

 

The damaged beam – moving oscillator 

interaction is simulated up to a velocity range of 

300 km/hr with an increment of 0.1 km/hr. 

Damage conditions in terms of crack depth ratio 

(0-0.35) and position (fourteen equally spaced 

locations from the support to midspan) are 

considered in this regard for both rotational 

spring and smeared crack models. 

  
Table 1. Values of parameters of beam and moving 

oscillator. 

 

The details of the values of various parameters 

involved are provided is Table 1. The width of 

the smeared crack is assumed to be 1% of the 

length of the beam. The beam and the two 

degrees of the freedom of the oscillator are 

assumed have zero initial conditions. 

 The normalized responses for the lower 

degree of freedom of the oscillator are presented 

in Figure 2 where the amplification of the 

responses is comparatively more pronounced 

than those for the beam and a range of variation 

exists.  The nature of the responses of the beam 

and the oscillator is dependent on the type of 

damage present in the beam.  

Figure 3 presents the histograms of the variation 

of the critical speeds associated with the vertical 

displacement, velocity and acceleration 

responses of the beam and the two degrees of 

freedom of the moving oscillator for a rotational 

spring model considering the entire damage 

range.  

Oscillator mb=5000 

kg 

mw=35000 

kg 

cb=6x104 N-

s/m 

cw=6x104 

N-s/m 

kb=5.1x106 

N/m 

kw=9.6x106 

N/m 

Beam A=9.22 m2 

I=1.5 m4 

L=45m 

=2x103 

kg/m3 

E=35x109 

N/m2 

j = 3% 
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Figure 2. Normalized Responses of Lower Mass of the 

Moving Oscillator for a Range of Damage Conditions 

(Rotational Spring Model) versus the Speed of the 

Traversing Oscillator 

   

Figure 4 presents the same histograms as has 

been presented in Figure 3, but for a smeared 

crack model of damage. The significant variation 

of critical speeds for both cases is apparent. 

The lower speed range of the oscillator is 

observed to be generating a nearly continuous 

region of interest due to the formation of closely 

spaced maxima values. The generation of closely 

spaced maxima values is chiefly due to the 

inertial component of the oscillator excitation. 

Thus, for lower speed regions of the traversing 

oscillator, the definition of critical speed 

corresponding to maxima values of bridge or 

oscillator responses is not helpful. For such 

range of traversing speeds, it is more important 

to set a preselected limiting value for the 

response and then consider the traversing speed 

range of the oscillator corresponding to all 

responses exceeding that preselected response 

value to be of region of interest. The choice of 

the model does not significantly affect the region 

of interest under these circumstances. The low 

traversing speed region must be interpreted as a 

relative value with respect to the speed 

corresponding to the global maximum of the 

responses. The critical speed range 

corresponding to the absolute global maximum 

responses is clustered separate from those 

corresponding to low traversing speeds of the 

oscillator. 

 

 

 
Figure 3. Histogram of Variation of Critical Speeds for 

Smeared Crack Model 

 

 
Figure 4. Histogram of Variation of Critical Speeds for 

Rotational Spring Model 

 

They are observed to be varying significantly. As 

a result, the speeds that produce the absolute 

maximum dynamic stresses vary significantly. 

These clusters are narrow and well defined. 

Consequently, the definition of critical speeds 

related with the identification of a maximum of 

the response is valid. The clusters of critical 

speed zones are observed to have been formed 

for different responses and damage models. The 

location of these clusters shift according to the 
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type of response and the damage models. When 

no information is available regarding the 

anticipated type of damage, a pooled set of 

simulations can be used. Under these 

circumstances relatively narrower bands (with 

respect to the continuous band in the low 

traversing speed range) of critical velocities are 

formed with well-defined clustering. The choice 

for a vibration control system for the suppression 

of the global response would then be directed 

towards suppressing those clustered critical 

speed ranges. Since the spread of the critical 

speeds are significant potential robust control 

systems should cater for the anticipated spread. 

When information regarding the anticipated type 

of damage is known or agreed upon, certain 

damage mechanisms or models, and 

subsequently certain clusters of interest can be 

ignored. Figures 3 and 4 are thus observed to be 

useful as a guideline of velocity regions of 

interest based on the degree of freedom, the type 

of region and the type of damage considered. 

The figures also illustrate the importance of the 

variable definition of critical speeds in the high 

and low speed regions of the traversing 

oscillator. 

 

5. CONCLUSIONS 

 

The variation of critical vehicle speeds for a 

damaged beam – moving oscillator interaction is 

studied in this paper. It is observed, that damage 

introduces variation of critical speeds. The 

critical speeds corresponding to the absolute 

global maxima of responses form well defined 

clusters of their own in the high traversing speed 

range and undergo significant variation due to 

the presence of damage. The histograms of 

critical speed variation indicate that the nature 

and the extent of the variations over a given 

domain of vehicle speeds are dependent on the 

nature of damage present in the beam. In the low 

traversing speed region, a wide range of speeds 

correspond to local maxima values of responses 

due to inertial effects of the moving oscillator. 

Under such conditions, the definition of critical 

speed, or the critical speed region of interest 

should not be related to the formation of a local 

maximum of a response. Rather, the exceedence 

of a preselected value of a response for a 

traversing speed range should be considered as 

critical. This duality of definition is important 

since many bridge structures are traversed by 

vehicles below a certain maximum allowable 

speed.  The findings are potentially useful in 

terms of identifying anticipated velocity regions 

of interest for a bridge – vehicle interaction 

problem where information of the as built 

condition of the bridge over a long time is 

usually limited. It is also valuable in terms of 

identifying potential velocity bands for vibration 

suppression and the choice of control methods to 

reduce the responses of the bridge or the vehicle. 
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