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ABSTRACT: In order to address the issue of uncertainty analysis of large scale structures with high-

dimensional input variables in the engineering, a hybrid dimensional reduction method (H-DRM) is pro-

posed in this work. The method can be seen as an improvement on the multiplicative dimensional reduc-

tion method (M-DRM). First, the original response function is approximated by the univariate M-DRM, 

based on which the variance contribution to the output variance can be estimated by three point estimate. 

The significant variables are thereby identified and further extended to the bivariate M-DRM. The final 

approximation of the original response function can be seen as a hybrid combination of univariate M-

DRM of all variables and bivariate M-DRM of significant variables. The proposed H-DRM is then used 

for the calculation of moments and structural reliability, with the help of three point estimate. The pro-

posed method can adaptively achieve the balance of computational efficiency and accuracy, and is able 

to avoid the “curse of dimension” when using three point estimate. Several examples are studied to 

demonstrate the feasibility of the proposed method. 

1. INTRODUCTION 

In the past few decades, scholars have done a lot 

of research on the representation and decomposi-

tion of high-dimensional problems. Rabitz et al. 

have done a lot of research on the input-output re-

lationship of physical systems with multiple input 

variables, and proposed a high-dimensional 

model representation (HDMR), and deduced a cut 

high-dimensional model representation (Cut-

HDMR) based on HDMR[1]. The Cut-HDMR as-

sumes that the univariate or the low-order correl-

ative terms of the input variable have major influ-

ence on the system output, while the effect of the 

high-order correlative terms are negligible. Sob-

ol's research suggests that inappropriate reference 

points can produce poor approximation accuracy 

and gives recommendations for reference point 

selection[2]. Rahman and Xu considered the re-

quirements of structural probability analysis, and 

obtained a structural response function approxi-

mation model with only univariate function (uni-

variate decomposition approximation)[3]. In fact, 

Zhao did the same work at first, but he did not 

continue to pay attention to high-order related 

items[4]. Xu and Rahman extended the results of 

univariate research to bivariate functions (bivari-

ate decomposition approximation) and s-dimen-
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sional function (s<n, s-variate decomposition ap-

proximation), and obtained similar results with 

Rabitz et al[5]. Li et al. extended the definitions 

of HDMR component functions to systems of 

which input variables may not be independent, 

and proposed new orthonormal polynomial ap-

proximation formulas for the random sampling-

high dimensional model representation (RS-

HDMR) component functions that preserve the 

orthogonality property[6]. Subsequently, Rahman 

and his collaborators extended the application of 

dimensional decomposition methods to structural 

reliability analysis[7], reliability-based design op-

timization[8], stochastic sensitivity analysis[9], 

and probabilistic fracture mechanics[10]. Re-

cently, Zhang et al. proposed a multiplicative di-

mensional reduction method (M-DRM) to ap-

proximate the original high-dimensional func-

tions[11]. That method has a significant ad-

vantage in calculating the statistical moment of 

the response function. However, for high-dimen-

sional complex engineering problems, the uni-

variate M-DRM may be not accurate enough to 

obtain acceptable results, and the bivariate de-

composition may lead to too much computational 

cost. A new method has therefore been proposed 

in this paper to overcome the disadvantages of the 

univariate M-DRM and bivariate M-DRM. 

This paper summarizes the previous develop-

ment of the dimensional reduction method and 

proposes an efficient method for uncertainty anal-

ysis based on multiplicative dimensional reduc-

tion method. The multiplicative dimensional re-

duction method approximates the original high-

dimensional performance function as the product 

of a series of functions increasing dimensions, and 

it is an efficient method for calculating fractional 

moments of performance function. 

2. REVIEW OF THE MULTIPLICATIVE DI 

MENSIONAL REDUCTION METHOD 

According to the high-dimensional model repre-

sentation, a high-dimensional function can be ex-

pressed as a sum of functions of lower order in an 

increasing hierarchy as, 
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where  
T

1 2= , , , nx x xx  is the vector of input 

variables and 0g  denotes the constant term of the 

multidimensional function , which is calculated at 

the cut-point  
T

1 2, , , nc c cc . The function 

 i ig x  represents the output of the system when 

only the i-th variable ix  acts independently on the 

system, the function  ,ij i jg x x  describes the ef-

fect of the correlated terms of the i-th variable ix  

and the j-th variable jx  on the system output. The 

meaning of the rest terms can be deduced by anal-

ogy. 

We should note that: 
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Univariate Cut-HDMR is obtained by retain-

ing only the first two terms in Eq.(1), and the per-

formance function is given as: 

 

       1 1 1 1

1

ˆ , , , , , , 1
n

i i i n

i

g g c c x c c n g 



  x c  

 (3) 

If the high-order terms have significant im-

pact on the response function, the bivariate Cut-

HDMR is obtained by retaining the first three 

terms in Eq.(1): 
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In general, the s-variate Cut-HDMR of origi-

nal performance function is derived as: 
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where sth and low-order correlated contribution 

of all input variables are considered. 

By applying logarithmic transformation of 

the response function, we can obtain: 

      ln lny g     x x   (6) 

Substituting Eq.(3) into Eq.(6), the approxi-

mation of   x  can be rewritten as 
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Exponential transformation is inverted into 

Eq.(7) to achieve that: 
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Substituting Eq.(6) and Eq.(8) into Eq.(9), 

the response function can be rewritten as 
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Substituting Eq.(4) into Eq.(6), and follow-

ing the procedures in Eq.(7) to Eq.(9), the bivari-

ate M-DRM can be easily derived as: 
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In general, following the same procedure, the s-

variate M-DRM is achieved as: 
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3. THE PROPOSED METHOD 

In this section, the univariate M-DRM introduced 

in the previous section is utilized to approximate 

the original input-output relationship. In order to 

estimate the first four moments of response func-

tion, three-point estimation method is intro-

duced[13]. The basic idea of the three-point esti-

mation method is to use selected points and corre-

sponding weights to approximate the integral of 

the function. The original n-dimensional response 

function is approximated as the product of n one-

dimensional functions, so the original n-dimen-

sional integral is approximated by employing n 

one-dimensional integrals. Then the first four in-

teger moments of response function can be esti-

mated via the following relation 

    dgM E Y g f


      x x x   (13) 

where gM   indicates the first four integer mo-

ments of response function  g x , =1,2,3,4 , 

 f x  is the joint probabilistic density function.  

Then, the three-point estimation method is 

used to calculate the above integrals. ijp and ijl  are 

corresponding weight point and nominal value of 

ix  and the weight points and nominal values can 

be calculated by the following equations, 
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where jx  denotes the first four moments of ix , 

1,2,3,4j  , i.e. mean, standard deviation, skew-

ness, kurtosis of ix , which can be easily estimated 

if the distribution type of ix  is given. 

The relationship between the central moment 

and the integer moment is given by: 
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In the above formula, g  is the mean of perfor-

mance function, g  is the standard deviation of 

performance function, 3,g  and 4,g  are the coef-

ficient of the skewness and the coefficient of kur-

tosis of performance function, respectively. 

From the discussion in the previous sections, 

it can be seen that the univeriate M-DRM method 

may be not accurate enough and the bivariate M-

DRM method is too complex in the cases of some 

high-dimensional engineering problems. For im-

proving computational efficiency and accuracy, 

we propose to perform bivariate decomposition 

only on important variables. In order to measure 

the importance of input variables, the main sensi-

tivity index proposed by Sobol is introduced as: 
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where  iV E Y X 
   denotes the average reduc-

tion in the variance of the performance function 

when fixing iX  over its full distribution range, 

 V Y  is the unconditional variance of the perfor-

mance function. The sensitivity index iS  can esti-

mate the influence of individual variable iX  on 

the model output and can be used to identify the 

importance of input variables. 

According to the derivation of Zhang[14], 

the Eq.(19) can be rewritten as: 
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As can be seen from Eq.(20), the main sensi-

tivity index is represented by a combination of the 

first and second moments of a series of univariate 

functions. After m important input variables are 

identified, we consider the influence of the sec-

ond-order correlated contribution of them on the 

response function. In the third term of Eq.(1), only 

retaining the second-order correlation terms of 

those m variables, the univariate-bivariate hybrid 

Cut-HDMR can be determined as 
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where  
T

1 2= , , , my y yy  indicates the important 

variables in the input variables. 

Substituting Eq.(21) into Eq.(6), and follow-

ing the procedures in Eq.(7) to Eq.(9), the re-

sponse function can be rewritten as 
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This approximate model of original perfor-

mance function is referred to as the hybrid multi-

plicative dimension-reduction method (H-M-

DRM) in this work. It can be seen that the original 

input-output relation is approximated as the prod-

uct of univariate and bivariate functions. When 

adopting the proposed method, the number of 

function evaluations in the moment calculation is 

 21 3 3 1 2n m m   . In engineering applica-

tions, we usually set m equal to 2 or 3. Compared 

with the bivariate M-DRM in high-dimensional 

problems, the proposed method is apparently 

more efficient. But this method may not show its 

advantage in some cases, for example, when low-

dimensional problems are tested or the high-order 

correlation terms of the high-dimensional prob-

lems can be ignored. 

4. EXAMPLES 

The numerical example is a ten-dimensional com-

putational model, which is given as follows: 

 

  3 3 7 8
1 2 3 4 5 6

9 10

3 4sin 2
X X

g X X X X X X
X X

     X   

where  1 2 10, , ,X X XX  is the vector of ran-

dom input variables following the normal distri-

bution. The distribution information of the input 

variables is listed in Table 1. 

The first four central moments of the re-

sponse function are calculated by the univariate 

M-DRM, the proposed hybrid M-DRM and the 

Monte Carlo simulation method, respectively. Ac-

cording to the criteria for identifying important 

variables proposed in Section 3, we choose the 

two most important variables for bivariate decom-

position, i.e. m=2. The calculation results are 

listed in the Table 2. The moments calculated by 

the univariate M-DRM and the proposed hybrid 

M-DRM method using three-point estimation, 

and the Monte Carlo simulation with 
510  samples. 

The results of the Monte Carlo simulation are con-

sidered to be exact solutions and used to compare 

with the other two methods. 

 
Table 1 Distribution parameters for input random 

variables 

Variables 
Distribu-

tion 
Mean 

Standard 

deviation 

X1 Normal 2 0.1 

X2 Normal 2 0.2 

X3 Normal 3 0.3 

X4 Normal 2 0.2 

X5 Normal 3 0.3 

X6 Normal 4 0.1 

X7 Normal 5 0.1 

X8 Normal 6 0.2 

X9 Normal 6 0.1 

X10 Normal 6 0.3 

 
Table 2 First four central moments 

Method g  g
 3,g

 4,g
 

MCS 

method 
113.4066 35.2197 0.6803 3.7810 

Univariate 

M-DRM 
113.2698 35.2098 0.6739 3.4020 

Hybrid M-

DRM 
113.2698 35.2165 0.6769 3.4086 

 

As can be seen from Table 2, the results ob-

tained by univariate M-DRM method and the pro-

posed method are all in good agreement with that 

estimated by the MCS procedure, but the pro-

posed method is more accurate. In addition, for 

this high-dimensional problem involving 10 input 

variables, the number of functional evaluations of 

univariate M-DRM method is 31 and that of pro-

posed method is 40, while that of MCS method is 
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105. Compared with MCS method, these two 

methods are very efficient. But if using bivariate 

M-DRM method, the number of functional evalu-

ations will be 436, which is larger than the pro-

posed method. That is to say, on the basis of guar-

anteeing accuracy, the proposed method is more 

accurate than the univariate M-DRM method and 

more efficient than the bivariate M-DRM method. 

5. CONCLUSION 

In this work, we propose a hybrid multiplicative 

dimension-reduction method. Then the proposed 

method and three-point estimation are employed 

to calculate statistical moments of the perfor-

mance function. In the end, three examples with 

multivariate are studied to verify the accuracy and 

efficiency of the proposed method in comparison 

to the Monte Carlo simulation method. The results 

show that the proposed method can obtain more 

accurate results than the univariate M-DRM 

method, but the calculation amount only increase 

a little. And especially for high-dimensional prob-

lems where high-order terms make the significant 

contribution to the response function, the pro-

posed method is more efficient than the bivariate 

M-DRM method. In summary, the proposed 

method provides an alternative and efficient 

method to analyze the high-dimensional structural 

reliability problems. 
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