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ABSTRACT: Remaining service life of infrastructure assets is governed by functionality and structural 

integrity, both deteriorate with time. In this paper, we propose a multivariate gamma process model to 

model the stochastically dependent deterioration phenomena that collectively define the asset life. The 

temporal uncertainty is characterized by nonstationary gamma processes with independent increments 

while dependence among degradation processes is characterized with a correlation matrix in the copula 

space. Parameter estimation is done by the maximum likelihood method. For the lifetime prediction, a 

component experiencing multiple degradation phenomena is said to fail based on a number of scenarios. 

So the remaining lifetime distribution will be based on the current state of the component as well as 

failure thresholds of all phenomena. The proposed methodology is illustrated with a case study of a 

highway pavement experiencing multiple degradation such as rutting, cracking, and surface smoothness. 

 

1. INTRODUCTION 

Degradation modeling is a core component of 

infrastructure asset management. In some 

previous studies, the focus has been on modeling 

different degradation phenomena individually 

with univariate stochastic processes. However, 

degradation phenomena observed in a physical 

system are often correlated and modeled together 

(Rodriguez-Picon, 2017). The observation may be 

due to the degradation phenomena being in close 

proximity to one another and having some shared 

underlying causes. Hence, an assumption of 

independence may underestimate lifetime 

prediction of such structures or components. 

The main contribution of this paper will be to 

demonstrate the use of the multivariate stochastic 

process model for competing degradation and 

lifetime prediction. The paper is arranged as 

follows. Section 2 deals with the literature review. 

The model and methodology are presented in 

section 3. Section 4 discusses a case study of 

multiple degradation in a flexible pavement. 

Section 5 concludes the paper. 

2. LITERATURE REVIEW 

Many previous research focused on modeling 

degradation phenomena as independent stochastic 

processes. However, in reality, many structures or 

components experience multiple degradation 

phenomena which are dependent on one another. 

There have been previous research on stochastic 

modeling of multiple degradation. In the early 

days of bivariate degradation modeling, 

Whitmore et al. (1998) proposed a two-

dimensional Wiener process to model 

degradation. Their model comprises two 

processes - the component, which is directly 

observable, is the marker while the other 

component, which is unobservable, determines 

the failure time. Both components are correlated 

and have a bivariate Gaussian distribution. More 

recently, Shemehsavar (2014) proposed a 

monotonically increasing bivariate gamma model 

with latent component and marker. In a similar 

vein, the latent process cannot be observed and 

determines the failure time while the second (i.e. 

the marker) can be observed. Both processes have 
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Kibble’s bivariate gamma distribution with the 

same positive shape parameter and a scale 

parameter of 1. Liu et al. (2014) proposed a model 

for multiple degradation processes with marginal 

inverse Gaussian process. In their model, copulas 

were used to characterize dependence among 

degradation processes. 

Wang et al. (2015) proposed a bivariate 

nonstationary gamma degradation process. Their 

model assumed that a product state could be 

described by two dependent performance 

characteristics whose degradation mechanisms 

both follow nonstationary gamma processes. 

Also, a copula function was used to characterize 

the dependence structure. An earlier paper by Pan 

and Balakrishnan (2011) proposed a bivariate 

stationary gamma degradation model for 

reliability analysis of products with two 

dependent performance characteristics. Caballé et 

al. (2015) and Castro et al. (2015) modeled 

multiple degradation growths and sudden shocks 

in a system using gamma processes with initiation 

times following a nonhomogeneous Poisson 

process. Both competing degradation growths and 

sudden shocks were treated as dependent but the 

degradation processes were assumed to be 

independent of one another. 

A major benefit derivable from degradation 

modeling of a structure is being able to estimate 

reliability and predict the lifetime of the structure. 

A structure, component or system is considered to 

have failed when the cumulative degradation in it 

reaches a predetermined failure threshold 𝜁. This 

means that failure does not have to be 

catastrophic. The failure is characterized by a 

lifetime distribution which basically is a 

probability density function defined over a range 

of time. Its cumulative distribution function 

(CDF) 𝐹(𝑡) is the probability that the component 

fails before or at time 𝑡. The CDF is defined as 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 𝑃(𝑋(𝑡) ≥ 𝜁) . For more 

information on lifetime distribution, see Van 

Noortwijk (2007) and Yu et al. (2008). 

Gamma process has been used to model 

degradation, predict reliability, and compute 

lifetime and remaining lifetime distribution of 

components (Yuan, 2007).  Also, Wei and Xu 

(2014) presented a method to estimate remaining 

useful life of components using a gamma process. 

In their paper, Monte Carlo simulation was used 

to obtain lifetime distribution. Nystad et al. (2012) 

proposed a nonstationary gamma process to 

model a degradation phenomenon with gamma-

distributed failure threshold. The remaining 

useful life was estimated by taking the integral of 

a function, while taking into account degradation 

state of the component.  

3. MULTIVARIATE GAMMA PROCESS 

The purpose of this chapter is to present a model 

suitable for modeling competing degradation 

phenomenon.  

3.1. Definition 

We formally define the process below.  An 𝑛-

dimensional multivariate gamma process 𝑋(𝑡) =
{𝑋1(𝑡), … , 𝑋𝑛(𝑡)}  with 𝑡 ≥ 0  satisfies the 

following conditions: 

1. 𝑋𝑗(0) = 0  almost surely for all 𝑗 = 1, … , 𝑛. 

2. For any time 𝑡 ≥ 0, 𝑋𝑗(𝑡) is a nonstationary 

gamma process with increments that follow 

a gamma distribution with shape 𝛼𝑗(𝑡) and 

scale 𝛽𝑗, i.e., 𝛥𝑋𝑗(𝑡)~𝐺𝑎(𝛼𝑗(𝑡), 𝛽𝑗). 

3. For any times 0 ≤ 𝑡1 < 𝑡2, the increments 

𝑋𝑗(𝑡2) − 𝑋𝑗(𝑡1)  follow a multivariate 

gamma distribution that is defined as Eq. (1) 

below with 𝛼𝑗  and 𝛽𝑗  for 𝑗 = 1, … , 𝑛 , and 

the correlation coefficient is defined as 

correlation between two stochastic 

processes. 

𝑔𝑛(𝒙) =
1

(2𝜋)𝑛/2|𝐑|1/2 exp (−
1

2
𝒛𝑇𝐑−1𝒛) ∏  

𝑔(𝑥𝑗;𝛼𝑗,𝛽𝑗)

𝜙(𝑧𝑗)
 

𝑛
𝑗=1  (1) 

where 𝜙(𝑧𝑗)  denotes the probability density 

function (PDF) of a standard normal distribution;  

𝐑  is an 𝑛 by 𝑛 correlation matrix; 𝑧𝑗 = Φ−1(𝑢𝑗); 

𝑢𝑗 = 𝐺(𝑥𝑗; 𝛼𝑗 , 𝛽𝑗) , and Φ−1(𝑢)  denotes the 

inverse of the standard normal cumulative 

distribution function (CDF) at probability 𝑢. 

The gamma distribution mentioned in the 

second condition is a two-parameter continuous 

probability distribution whose PDF and CDF are  



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 

Seoul, South Korea, May 26-30, 2019 

 3 

 𝑔(𝑥; 𝛼,  𝛽) =
𝑥𝛼−1 

𝑒
−

𝑥
𝛽

𝛽𝛼Γ(𝛼)
 (2) 

 𝐺(𝑥; 𝛼, 𝛽) =
Γ(𝛼,𝑥 𝛽⁄ )

Γ(𝛼)
 (3) 

for 𝑥 ≥ 0, where 𝛼 > 0 and 𝛽 > 0 are the shape 

and scale parameters, respectively, and  Γ(𝑝, 𝑞) =

∫ 𝑥𝑝−1𝑒−𝑥d𝑢
𝑞

0
  is called the lower incomplete 

gamma function, and Γ(𝑝) = Γ(𝑝, ∞)  the 

complete gamma function. The cumulative 

distribution function (CDF) is expressed as a ratio 

of two gamma functions. 

The shape parameter is assumed to follow a 

power law 𝛼𝑗(𝑡) = 𝑎𝑗𝑡𝑐𝑗  for 𝑗 = 1, … , 𝑛  and 

𝑎𝑗 , 𝑐𝑗 > 0 . This implies  𝛼𝑗(0) = 0 . When 0 <

𝑐 < 1, the rate of increase of the shape parameter 

decreases with time. On the other hand, when 𝑐 >
1 , the rate of increase of the shape parameter 

increases with time. In both scenarios, the 

stochastic process is nonstationary. However, the 

stochastic process is said to be stationary when the 

shape parameter is linear with time i.e. 𝑐 = 1. 

In the context of degradation modeling, we 

consider 𝑋𝑗(𝑡)  to be a degradation process that 

represents the cumulative amount of deterioration 

observed in a component. 

3.2. Simulation 

Sample paths of a multivariate gamma process 

can be simulated by the procedure described in 

this section. The procedure involves generating 

multivariate Gaussian variates and then 

transforming them to multivariate random 

variates with gamma-distributed marginals via 

copula. Suppose we are interested in simulating a 

multivariate gamma process whose dimension is 

four over a specified planning horizon. Random 

variates from the multivariate normal distribution 

𝒛  of dimension  𝑛 = 4 , with zero mean and a 

positive definite correlation matrix 𝑹 , are 

generated. This is followed by a double 

transformation of the zero-mean multivariate 

Gaussian variates to multivariate gamma variates. 

Basically, the transformation involves calculating 

the standard normal CDF 𝑢𝑗  at each value of 𝒛 

and setting 𝑥𝑗 = 𝐹𝑗
−1(𝑢𝑗)  where 𝑗 = 1, … , 𝑛  and 

𝐹𝑗
−1 is the inverse univariate gamma cumulative 

distribution function with shape and scale 

parameters 𝛼𝑗𝛥𝑡  and 𝛽𝑗  respectively. For 

illustration, see Figure 1. 

 
Figure 1: Simulated degradation paths for a 

multivariate gamma process ( 𝑐𝑗 = 1 for 𝑗 = 1, … ,4; 

{𝜌12 = 0.7, 𝜌13 = 0.5, 𝜌14 = 0.7, 𝜌23 = 0.4, 𝜌24 =
0.6, 𝜌34 = 0.5}).  

3.3. Parameter Estimation 

Suppose there exists datasets from 𝑚 inspection 

outages of a component experiencing 𝑛 number 

of competing degradation phenomena. It is also 

assumed that all degradation phenomena have 

common inspection times 𝑡0, 𝑡1, … , 𝑡𝑚 , where 𝑡0 

is the time the component was put into service. 

Considering the initial state of the component 

𝑥0𝑗 , where 𝑗 = 1, … , 𝑛 , there will be 𝑚 

increments for each degradation phenomenon. An 

increment is defined as ∆𝑥𝑖𝑗 = 𝑥𝑖𝑗 − 𝑥𝑖−1,𝑗; 1 ≤

𝑖 ≤ 𝑚  for a fixed 𝑗 . In other words, the 

degradation data are 𝑋1(𝑡) =
[𝑥01 𝑥11 … 𝑥𝑚1], … , 𝑋𝑛(𝑡) = [𝑥0𝑛 𝑥1𝑛 … 𝑥𝑚𝑛] 
while the increments are  𝛥𝑋1(𝑡) =
[𝛥𝑥11 𝛥𝑥21 … 𝛥𝑥𝑚1], … , 𝛥𝑋𝑛(𝑡) =
[𝛥𝑥1𝑛 𝛥𝑥2𝑛 … 𝛥𝑥𝑚𝑛] . For any two consecutive 

inspection outages, the joint PDF of the 

multivariate gamma distribution (Eq.(4)) is 

expressed as 

  
𝑔𝑛(𝜟𝒙) =

1

(2𝜋)𝑛/2|𝐑|1/2 exp (−
1

2
𝒛𝑇𝐑−1𝒛) ∏  

𝑔(𝛥𝑥𝑖𝑗;𝑎,𝛽𝑗,𝑐𝑗)

𝜙(𝑧𝑖𝑗)
 

𝑛
𝑗=1  (4) 
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Consequently, the likelihood function for the 

joint distribution function is the product of 

independent multivariate gamma densities of the 

increments 

  
𝐿 (𝒂𝒋 

, 𝜷𝒋 
, 𝒄𝒋|𝛥𝑥11, … , 𝛥𝑥𝑚𝑛) =  ∏ 𝑔𝑛 (𝜟𝒙𝒊𝒋, 𝒂𝒋 

, 𝜷𝒋 
, 𝒄𝒋)𝑚

𝑖=1
 
 (5) 

The maximum likelihood estimates of 𝒂,𝜷 

and 𝒄  are obtained by numerically maximizing 

the likelihood function. This is equivalent to 

computing the first partial derivatives of the 

likelihood function with respect to each of the 

parameters of the multivariate gamma process. 

It is always mathematically convenient to 

take the logarithm of the likelihood function 

during parameter estimation. The parameter 

estimation was done in MATLAB using fmincon. 

To ensure that the correlation matrix 𝑹 remained 

positive definite at every iteration during the 

parameter estimation, the Cholesky 

decomposition of  𝑹 was used in the likelihood 

function. After the solution converged, the 

correlation matrix was reassembled i.e. 𝑹 = 𝑳𝑳𝑇, 

where 𝑳 is a lower triangular matrix. 

4. CASE STUDY 

Flexible pavements experience multiple 

degradation over time as a result of normal wear 

and tear. Other contributing factors to pavement 

material breakdown are construction failure and 

prolonged exposure to atmospheric substances 

such as rain and sunlight. Examples of common 

degradation phenomena in pavement include 

cracking and rutting. 

4.1. Multiple Degradation Modeling in Highway 

Pavement 

In this case study, three measures of pavement 

degradation are considered. These are rutting, 

International Roughness Index (IRI) and Distress 

Management Index (DMI). Rutting is a permanent 

deformation along the wheel path on the road 

surface and increases over time. A newly 

constructed road, for instance, has a zero rut 

depth. The IRI is a dimensionless measure of road 

roughness. It increases over time until there is an 

intervention in terms of maintenance. Ideally, a 

newly-built road is expected to have a zero IRI, 

but this is hardly the case. DMI refers to the sum 

of all distresses and is a measure of overall service 

damage for the road section. Its value, however, 

decreases with time. 

For the case study, the assumptions are: 

1. The road section is subjected to multiple 

degradation processes 𝑋𝑗(𝑡) , where  𝑗 =

1, 2, 3 and these processes are assumed to be 

dependent. Each {𝑋𝑗(𝑡), 𝑡 ≥ 0}  is a non-

stationary gamma process with shape and 

scale parameters 𝛼𝑗(𝑡) and 𝛽𝑗 respectively. 

2. Contrary to the first condition in the 

definition of the multivariate gamma process, 

degradation phenomena do not necessarily 

start from zero, so  𝑋𝑗(𝑡) = 𝑥0𝑗 ±

𝐺𝑎(𝛼𝑗(𝑡), 𝛽𝑗) where 𝑥0 is the initial measure 

of the degradation. 

 

Table 1 presents the degradation data for a 

section of a flexible pavement road. The table 

shows the measurements of DMI, rut depths and 

IRI covering a 7-year period with measurements 

taken on a yearly basis. To incorporate the DMI 

values in the increasing gamma process, the 

absolute values of the changes are used in the 

parameter estimation. Measurement error in the 

observed data is not accounted for in the model.  

  
Table 1: Degradation data for a road section in 

Ontario. 

Year DMI IRI Rut depth 

2005 9.49 1.12 3.49 

2006 9.03 1.21 4.56 

2007 8.73 1.29 4.85 

2008 8.54 1.35 5.44 

2009 7.83 1.44 5.76 

2010 7.51 1.54 5.99 

2011 7.02 1.68 6.61 

 

The procedure described in section 2.3 was 

used to estimate the parameters of the multivariate 

gamma process model. The objective function 

was found to have several local minima. 

Therefore, the fmincon solver was run repeatedly 
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in an attempt to find a global minimum. The 

estimated parameters from the solution that has 

the lowest objective function value are shown in 

Table 2. Table 3 shows the correlation 

coefficients between the stochastic processes. 
 

Table 2: Estimated shape and scale parameters of the 

multivariate gamma process. 

Parameter DMI IRI Rut depth 

𝛼̂ 5.89 15.1 12.8 

𝑐̂ 1.01 1.10 0.65 

𝛽̂ 0.07 0.01 0.08 

 
Table 3: Estimated correlation coefficients of the 

multivariate gamma process. 

Parameter DMI IRI Rut depth 

DMI 1 0.59 0.08 

IRI sym. 1 0.32 

Rut depth  1 

 

Table 2 reveals that the power term, 𝑐̂ of the 

shape parameters is less than 1 for rut depth. This 

confirms the initial assumption of nonstationarity 

i.e. the mean rates of the degradation phenomena 

are not linear with time. However, the mean rate 

of increase of the DMI and IRI are close to 1. The 

correlation coefficients shown in Table 3 shows 

positive correlations among DMI, IRI and rut 

depth. 

To study the effect of modeling the stochastic 

processes as dependent as against individual 

monovariate stochastic processes, the parameters 

of individual nonstationary gamma processes 

were estimated by numerically maximizing the 

likelihood function in Eq.(6). 

  
𝐿(𝑎  

, 𝛽  
, 𝑐 |𝛥𝑥1𝑗, … , 𝛥𝑥𝑚𝑗)

 
=

∏  
𝛥𝑥

𝑖𝑗

(𝑎(𝑡𝑖
𝑐−𝑡𝑖−1

𝑐 )−1)
exp(−𝛥𝑥𝑖𝑗/𝛽)

𝛽
(𝑎(𝑡𝑖

𝑐−𝑡𝑖−1
𝑐 ))

𝛤(𝑎(𝑡𝑖
𝑐−𝑡𝑖−1

𝑐 ))
 

𝑚
𝑖=1  (6) 

  The parameters in Table 2 are compared 

with corresponding parameters of individual 

nonstationary gamma processes shown in Table 4. 

Both tables reveal that shape parameters for the 

multivariate gamma process model are greater 

than the shape parameters from corresponding 

individual gamma process models. Meanwhile, 

the tables suggest that the scale parameters and the 

power term in both multivariate and individual 

gamma process models are comparable. 

 
Table 4: Estimated parameters of nonstationary 

gamma processes. 

Parameter DMI IRI Rut depth 

𝛼̂ 5.87 14.7 13.2 

𝑐̂ 1.02 1.12 0.64 

𝛽̂ 0.07 0.01 0.08 

   

4.2. Remaining Lifetime Prediction 

Generally, failure is said to occur in engineering 

when degradation exceeds the threshold specified 

in the code(s). In pavement engineering, however, 

the definition of failure is dependent on what 

really matters to the planner. For example, a 

pavement experiencing multiple degradation 

phenomena may be said to fail when any 

individual degradation process 𝑋𝑗 (t) reaches its 

critical threshold  𝜁𝑗 . In other words, each 

degradation process determines the failure of the 

component. Mathematically, the probability of 

failure is defined in Eq. (7) as 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 1 − 𝑃(𝑋1(𝑡) < 𝜁1, … , 𝑋𝑛(𝑡) < 𝜁𝑛) (7) 

The other extreme is when failure is defined 

as when degradation phenomena all reach their 

respective thresholds (Eq. (8)). 

 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 𝑃(𝑋1(𝑡) ≥ 𝜁1, … , 𝑋𝑛(𝑡) ≥ 𝜁𝑛) (8) 

Alternatively, a pavement subjected to 

multiple degradation processes may be said to 

have failed when a process reaches its failure 

threshold, two specific processes both reach their 

thresholds, any two processes both reach their 

thresholds or any combination thereof. 

As the state of each degradation process can 

be observed, the probability density function takes 

into account this information. Suppose the 

degradation processes are last observed at 

surviving time  𝑠 , then at future time 𝑡 the 

probability of a degradation increment of  𝜁𝑗 −
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𝑋𝑗(𝑠) is an updated PDF 𝑓𝑋𝑗(𝑡)−𝑋𝑗(𝑠). To estimate 

the remaining lifetime distribution, growth of 

each process over time has to be predicted based 

on the updated PDF. So, Eq. (9) shows future 

degradation process as  

𝑋𝑗(𝑡) = 𝑋𝑗(𝑠) + 𝛥𝑋𝑗(𝑡 − 𝑠) (9) 

where  𝛥𝑋𝑗(𝑡 − 𝑠)  is the addition of all future 

increments up to time 𝑡. Monte Carlo simulation 

is used to generate one million sample paths and 

failure probability evaluated by dividing the 

number of times 𝑋𝑗(𝑡)  exceeds  𝜁𝑗  by the total 

number of simulation runs. The simulation uses 

the parameters shown in Table 2 and Table 3 in 

the previous section together with failure 

thresholds in Table 5. 

 
Table 5: Failure thresholds for degradation 

phenomena. 

Phenomenon 𝜁 

DMI 6 

IRI 2.17 

Rut depth 9.5 

 

 

 
Figure 2: Remaining lifetime distribution for 3 

scenarios.  

Figure 2 shows the remaining lifetime 

distribution based on current state of the pavement 

section. Three scenarios are considered namely 

when failure is defined as any degradation 

phenomenon reaching its failure threshold, any 2 

phenomena both reaching their thresholds and all 

three reaching their thresholds. Figure 2 reveals 

that as the definition of failure is relaxed, the 

distribution of remaining lifetime shifts to the 

right as expected. Furthermore, the mean of the 

distribution for each scenario estimated 

numerically is shown in Table 6. The means are 

estimated to be 2.63, 4.99 and 6.02 years, 

respectively. 

 

 
Figure 3: Remaining lifetime distribution for specific 

pairs of degradation phenomena.  

 

Figure 3 shows another three scenarios as 

well. These are when failure is defined as when 

DMI (𝑋1) and IRI (𝑋2) both reach their failure 

thresholds, DMI (𝑋1)  and rut depth (𝑋3)  both 

reach their thresholds and IRI (𝑋2) and rut depth 

(𝑋3)  both reach their thresholds. Numerical 

estimation of the expectations of these 

distributions are presented in Table 6. 

 

 
Figure 4: Remaining lifetime distribution when only 

one phenomenon matters.  
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In Figure 4, it is assumed that failure occurs 

when a specific stochastic process exceeds its 

failure threshold. The resulting three scenarios are 

presented in the figure while corresponding 

means of the distributions are shown in Table 6. 

 
Table 6: Remaining lifetime means based on different 

failure criteria. 

Scenario Lifetime mean 

(years) 

any 1 2.63 

any 2 4.99 

All 6.02 

𝑋1&𝑋2 5.44 

𝑋1&𝑋3 5.58 

𝑋2&𝑋3 6.02 

𝑋1 2.64 

𝑋2 5.44 

𝑋3 5.57 

 

5. CONCLUSIONS 

This paper presents a multivariate nonstationary 

gamma process model suitable for modeling 

multiple degradation phenomena in civil 

infrastructure such as a highway pavement 

section. The estimated parameters of the model 

were compared with parameters of independent 

stochastic processes. In addition, the parameters 

were used to generate realizations of future 

degradation paths which are subsequently used to 

evaluate the remaining lifetime distribution based 

on a number of failure scenarios. 

The results from the multivariate gamma 

process modeling serve as an input for a 

condition-based inspection and maintenance 

optimization. Work on this is ongoing and will be 

presented in a future publication. 
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