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ABSTRACT: This paper proposes two computation schemes for efficient evaluation of sets of reliability 

analyses associated with different time intervals. The first approach is based on sequential solving the 

reliability analyses starting from the last time interval. It enables to use the solution of a time interval as 

a starting point and to efficiently solve the reliability problem of preceding time intervals. Its 

implementation combined with Subset Simulation (SuS) and Sequential Importance Sampling (SIS) is 

presented. The second proposed approach is centered around reformulating the limit state function in a 

way that the time to failure can be described. This allows to efficiently obtain the estimates of failure 

probabilities and corresponding time intervals by one run of SuS. The numerical verification 

demonstrates that the proposed methods are capable of obtaining accurate estimates of lifetime reliability 

with a substantially reduced computational cost. 

 

1. INTRODUCTION 

Exact calculation of lifetime reliability of 

deteriorating structures in the general case 

requires the computation of a first-passage 

probability (Rackwitz 1998; Andrieu-Renaud et al. 

2004; Lentz et al. 2004; Melchers and Beck 2018), 

which can be associated with significant 

computational cost. Under some circumstances, 

the problem can be approximated by transforming 

it into a series of time-invariant reliability 

problems associated with discretized time 

intervals, e.g.  yearly or monthly periods (e.g., Val 

and Melchers 1997; Schneider et al. 2017; Kim 

and Straub 2019). While these are conceptually 

easier and computationally cheaper to solve, they 

may still lead to significant computation cost 

because one needs to evaluate reliability problems 

for all time intervals; this motivates the use of 

efficient computation schemes. In particular, the 

similarity among failure events in different time 

intervals can be exploited to enhance the 

computational efficiency.  

This contribution presents two schemes for 

efficient evaluation of the series of reliability 

analyses associated with different time intervals. 

These are applicable to the lifetime reliability 

analysis of deteriorating structures whose 

resistance decreases monotonically and in which 

load effects can be modeled as a stationary 

process.  

The first approach is based on solving the 

reliability analyses sequentially, starting from the 

last time interval. By projecting the series of time-

invariant problems onto an equivalent outcome 

space, the solution at one time interval can be used 

as a starting point to solve the reliability problem 

at preceding time intervals. This strategy is 

particularly efficient when employing sequential 

sampling-based methods, and is here 

implemented with Subset Simulation (SuS) and 

Sequential Importance Sampling (SIS).  

The second proposed approach is centered 

around solving the limit state function for 𝑡. This 

allows for an efficient use of SuS, in which the 
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parameter 𝑡 takes the role of the threshold value 

defining the intermediate subsets.  

The performance of both approaches is 

investigated through a numerical example. 

2. SEQUENTIAL RELIABILITY ANALYSIS 

BASED ON BACKWARD 

CALCULATION 

2.1. Interval and cumulative failure events 

We discretize time in intervals 𝑗 = 1,2, … ,𝑀 

such that the 𝑗 th interval corresponds to 𝑡 ∈

(𝑡𝑗−1, 𝑡𝑗]. Failure in interval 𝑗 is only possible if 

the structure has not failed previously. For this 

reason, the computation of the probability of 

failure in interval 𝑗  must account for the entire 

history leading up to 𝑡𝑗−1. This is represented by 

the cumulative failure event, 𝐹(𝑡𝑗), which is: 

𝐹(𝑡𝑗) = { min
𝜏∈[0,𝑡𝑗]

𝑔(𝐗, 𝜏) ≤ 0} (1) 

wherein 𝐗  is the random vector that comprises 

uncertain variables affecting the failure. We call 

its probability Pr[𝐹(𝑡𝑗)]  the cumulative failure 

probability. 

To facilitate computation, we work with the 

interval failure event, 𝐹𝑗
∗ , which neglects the 

history, i.e. it describes a failure of the structure in 

the interval 𝑗 ignoring possible earlier failures (for 

details see Straub et al. 2019). It is 

𝐹𝑗
∗ = { min

𝜏∈(𝑡𝑗−1,𝑡𝑗]
𝑔(𝐗, 𝜏) ≤ 0} (2) 

The corresponding Pr(𝐹𝑗
∗) is the interval failure 

probability. When the loads 𝑆 and the capacity 𝑅 

are separable in 𝐗, it is possible to approximate it 

as 

Pr(𝐹𝑗
∗) ≈ Pr[𝑅(𝑡𝑗) ≤ 𝑆𝑚𝑎𝑥,𝑗] (3) 

wherein 𝑆𝑚𝑎𝑥,𝑗  is the maximum load effect in 

time interval 𝑗. Note that, in the general case, 𝐹𝑗
∗ 

is not a subset of 𝐹𝑗+1
∗ . However, when the load 

effect maxima 𝑆𝑚𝑎𝑥,𝑗  are iid random variables, 

which is at least approximately the case if the 

underlying load process is stationary and has a 

limited correlation length, the individual Pr(𝐹𝑗
∗) 

can be computed as 

Pr(𝐹𝑗
∗) ≈ Pr[𝑅(𝑡𝑗) ≤ 𝑆𝑚𝑎𝑥] (4) 

The only difference to Eq. (3) is that we replaced 

𝑆𝑚𝑎𝑥,𝑗 with 𝑆𝑚𝑎𝑥, which has the same distribution 

but is the same random variable for different time 

intervals. 

The cumulative failure probability Pr[𝐹(𝑡𝑗)] 

can be estimated by the probability of the union of 

the interval failure events up to 𝑡𝑗: 

Pr[𝐹(𝑡𝑗)] = Pr(𝐹1
∗ ∪ 𝐹2

∗ ∪ …∪ 𝐹𝑗
∗) (5) 

Its bounds are: 

max
𝑘∈[1,…,𝑗]

Pr(𝐹𝑘
∗) ≤ Pr[𝐹(𝑡𝑗)] ≤ 1 − ∏ [1 − Pr(𝐹𝑘

∗)]𝑗
𝑘=1  (6) 

It should be noted that the use of the same 𝑆𝑚𝑎𝑥 

in Eq. (4) is not correct in the context of 

evaluating Eq. (5). However, Straub et al. (2019) 

show how the results of Eq. (4) can be utilized to 

estimate Pr[𝐹(𝑡𝑗)] , by computing Pr(𝐹𝑗
∗)  and 

accounting for the dependence among the events 

𝐹𝑗
∗ . Hence, being able to evaluate Eq. (4) with 

computationally cheaper methods can be essential 

for an efficient computation of Pr[𝐹(𝑡𝑗)]. 

2.2. Dependence among interval failure events 

For the case that the capacity 𝑅(𝑡𝑗)  decreases 

monotonically over time, it holds that {𝑅(𝑡𝑗) ≤

𝑆𝑚𝑎𝑥} ⊆ {𝑅(𝑡𝑗+1) ≤ 𝑆𝑚𝑎𝑥}, i.e. failure domains 

of earlier time intervals are subsets of those in 

later intervals. Therefore, for the purpose of 

computing Pr(𝐹𝑗
∗)  following Eq. (4), we can 

postulate that the interval failure events are nested 

𝐹𝑗
∗ ⊆ 𝐹𝑗+1

∗ , as illustrated in Figure 1. In reality, the 

events are of course not nested, but that is not 

relevant when computing only the marginal 

Pr(𝐹𝑗
∗) . The Pr(𝐹𝑗

∗)  of later time intervals are 

larger and thus are cheaper to be evaluated by 

sampling-based approaches. This motivates a 

backward calculation scheme in which one 

evaluates Pr(𝐹𝑗
∗) in reverse time order from the 

last to the first time interval. 
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This strategy can be combined with most 

structural reliability methods, but is particularly 

well suited for sequential sampling methods. In 

the following, we describe its implementation 

coupled with SuS and SIS.  

 

Figure 1: The interval failure events 𝐹𝑗
∗ in selected 

time intervals, projected onto the same standard 

normal outcome space spanned by 𝑢𝑆𝑚𝑎𝑥
 and 𝑢𝐷. The 

upper right area of each curve indicates the interval 

failure domains, which are nested. 

2.3. Reverse SuS 

When 𝐹𝑗
∗ ⊆ 𝐹𝑗+1

∗ , Pr(𝐹𝑗
∗) can be expressed by 

Pr(𝐹𝑗
∗) = Pr(𝐹𝑗

∗|𝐹𝑗+1
∗ ) Pr(𝐹𝑗+1

∗ ) (7) 

We propose reverse SuS, in which Eq. (7) is 

solved sequentially using Subset Simulation (SuS) 

in reverse time order. Initially, the interval failure 

probability in the last time interval is computed 

using standard SuS. Following Eq. (7), the 

estimation reduces to Pr(𝐹𝑗
∗|𝐹𝑗+1

∗ )  in the 

preceding time intervals. In reverse SuS, the 

conditional probabilities are readily evaluated via 

MCS using the samples in 𝐹𝑗+1
∗  if the two adjacent 

interval failure domains are close, i.e. if the 

conditional probability is larger than a threshold, 

e.g. 10%. Otherwise, Pr(𝐹𝑗
∗|𝐹𝑗+1

∗ ) is estimated by 

performing a SuS step, in which the samples in 

𝐹𝑗+1
∗  are taken as seeds for MCMC.  

Figure 2 demonstrates reverse SuS applied to 

the numerical example in Section 4. In this 

example, the samples identified for Pr(𝐹30
∗ ) are 

readily used up to 𝑡24 without a need for MCMC. 

In total, only four subset levels are involved to 

estimate all Pr(𝐹𝑗
∗)  in all time intervals, 𝑗 =

30, 29,… , 1. 

 

Figure 2: An illustration of reverse SuS where the 

variation of colors (from dark to light) indicates its 

progress in reverse time order. The lines depict 𝐹𝑗
∗; 

at the solid ones (conditional) MCMC samples 

(circles) are obtained while at the dotted ones the 

already generated samples of the same color are used 

to estimate Pr(𝐹𝑗
∗|𝐹𝑗+1

∗ ).  

 

The reverse SuS algorithm is: 
Notation: 

𝑀: The index of the last time interval 

𝑛𝑠: The number of samples per subset level 

𝑝0: The fraction of accepted samples as seeds per 

subset level (typically 10%) 

𝐗𝑗: The samples in 𝐹𝑗
∗ 

𝑛𝑗: The number of samples in 𝐗𝑗 

 

1) Perform standard SuS to compute Pr(𝐹𝑀
∗ ) 

FOR 𝑗 = 𝑀 − 1:−1: 1 

2) Find samples 𝐗𝑗+1 among 𝐗𝑗  

  IF 𝑛𝑗 ≥ 𝑛𝑠 ⋅ 𝑝0, 

  3) Pr(𝐹𝑗
∗|𝐹𝑗+1

∗ ) =
𝑛𝑗

𝑛𝑗+1
  

  ELSE 

  4) Compute Pr(𝐹𝑗
∗|𝐹𝑗+1

∗ ) through standard SuS 

by taking as seeds the 𝐗𝑗+1  with the 𝑛𝑠 ⋅ 𝑝0 

smallest limit state function values 

ENDIF 

5) Compute the interval failure probability by  

Pr(𝐹𝑗
∗) = Pr(𝐹𝑗

∗|𝐹𝑗+1
∗ ) Pr(𝐹𝑗+1

∗ ) 

ENDFOR 
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The SuS parameters are selected as 𝑛𝑠 =
1000 and 𝑝0 = 0.1. The standard SuS and MCMC 

methods are here based on (Papaioannou et al. 

2015; Straub et al. 2016), but any available 

algorithm can be implemented.  

2.4. Reverse SIS 

The backward calculation scheme is combined 

with Sequential Importance Sampling (SIS) 

proposed in (Papaioannou et al. 2016).  

The proposed reverse SIS computes the 

interval failure probabilities using Eq. (4) also in 

reverse time order. Initially, the optimal 

Importance Sampling (IS) density is evaluated for 

the last time interval. For earlier time intervals, the 

algorithm checks if the IS density available from 

the later time interval is sufficiently close to the 

current interval failure domain. In that case, the 

interval failure probabilities are simply computed 

by evaluating the already generated samples from 

the IS density. Otherwise, the current IS density is 

taken as the initial proposal density and a new 

optimal IS density is sought following the 

standard SIS procedure. 

Figure 3 illustrates the interval failure events 

and the associated sequential IS densities 

identified by reverse SIS. 

 

Figure 3: An illustration of reverse SIS where the 

variation of colors (from dark to light) reflects the 

sequence in reverse time order. The lines depict 𝐹𝑗
∗; 

at the solid ones, the optimal IS densities (contours) 

are identified through MCMC while at the dotted 

ones the already identified IS densities are utilized. 

 

The algorithm is summarized below. It is 

formulated with the standard normal 𝐔, i.e. for the 

problem transformed from 𝑔(𝐗)  to 𝐺(𝐔) =
𝑔[𝑇−1(𝐔)] , wherein 𝑇  is a suitable 

transformation from 𝐗 to 𝐔, and 𝑇−1 is its inverse. 

 
Notation 

𝑀: The index of the last time interval 

𝜂𝑗: The optimal IS density found in 𝑡𝑗 

𝐮𝑗: The samples generated with 𝜂𝑗 

𝑃̂𝑗: The normalizing constant of 𝜂𝑗 

𝐺(⋅) : The interval failure limit state function in 

standard normal space 

 

1) Perform standard SIS to compute Pr(𝐹𝑀
∗ ) 

 

FOR 𝑗 = 𝑀 − 1:−1: 1 

4) Check convergence of 𝜂𝑗+1 to 𝐹𝑗
∗ 

  IF convergence, 

  5) Estimate the interval failure probability by 

Pr(𝐹𝑗
∗) = 𝑃̂𝑗+1 ⋅ 𝐸 [𝐼[𝐺(𝐮𝑗+1, 𝑡𝑗) ≤ 0] ⋅

𝜑(𝐮𝑗+1)

𝜂𝑗+1(𝐮𝑗+1, 𝑡𝑗)
] 

  6) Accept samples, parameters and IS density 

𝐮𝑗 = 𝐮𝑗+1, 𝑃̂𝑗 = 𝑃̂𝑗+1, 𝜂𝑗 = 𝜂𝑗+1 

  ELSE,  

  7) Perform standard SIS to identify 𝜂𝑗 from 𝜂𝑗+1 

  8) Compute the interval failure probability by  

Pr(𝐹𝑗
∗) = 𝑃̂𝑗 ⋅ 𝐸 [𝐼[𝐺(𝐮𝑗, 𝑡𝑗) ≤ 0] ⋅

𝜑(𝐮𝑗)

𝜂𝑗(𝐮𝑗 , 𝑡𝑗)
] 

  ENDIF 

ENDFOR 

3. FAILURE LIMIT STATE FUNCTION 

REFORMULATED FOR TIME TO 

FAILURE 

In this section, we propose a method that we 

denote SuS for 𝑡.  
In some instances, it is possible and 

convenient to reformulate the interval failure 

event 𝐹𝑗
∗ in a way that the time to failure can be 

described explicitly in function of 𝑡, such that: 

𝐹𝑗
∗ ≈ {𝑔(𝐗, 𝑡𝑗) ≤ 0} = {ℎ(𝐗) ≤ 𝑓𝑡(𝑡𝑗)} (8) 

wherein ℎ is the reformulated limit state function 

independent of time, and 𝑓𝑡  is a function 

involving no random variables but only the time 

parameter 𝑡𝑗. In the simplest case it is 𝑓𝑡(𝑡𝑗) = 𝑡𝑗.  
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Standard SuS is employed to compute the 

interval failure probability for the first interval, 

Pr(𝐹1
∗), in which the probability is lowest. The 

probabilities of all other intervals can then be 

obtained as a side product without any further 

limit state function calls. To this end, the 

intermediate thresholds of the SuS computations 

are compared with 𝑓𝑡(𝑡). At a given subset level 

𝑘 , with associated probability 𝑝𝑘  (e.g. 10−1 , 

10−2, …) and threshold 𝑏𝑘 , the corresponding 𝑡 
is found by setting  

𝑓𝑡(𝑡) = 𝑓𝑡(𝑡1) + 𝑏𝑘  (9) 

The resulting 𝑡 is the time value at which the 

interval failure probability reaches 𝑝𝑘 . The 

interval failure probabilities at 𝑡𝑗 , e.g. yearly 

values, can be estimated by interpolating the 

obtained values.  

 

Figure 4: An illustration of the SuS for 𝑡 method 

where the variation of colors (from dark to light) 

indicates the advance of subset levels. The curves 

depict 𝐹𝑗
∗ where the solid ones involve new subset 

levels while the dotted ones are readily identified 

based on samples from the existing subset levels. The 

circles are the generated samples, whose colors 

correspond to the associated 𝐹𝑗
∗. 

 

To enhance the accuracy of Pr(𝐹𝑗
∗) estimates, 

we identify further intermediate threshold values 

that correspond to probabilities in between 

standard subset levels; e.g. at 9 ⋅ 10−2 , 8 ⋅
10−2 ,…, 2 ⋅ 10−2  probability. This does not 

require any additional evaluation of limit state 

functions, hence the additional computational 

costs are negligible.  

Figure 4 illustrates the proposed method by 

showing the samples and the associated 𝐹𝑗
∗, which 

are identified subsequently through one run of 

SuS. Figure 5 shows how the obtained 

probabilities are used to approximate Pr(𝐹𝑗
∗) in 

yearly interval. 

 

Figure 5: The interval failure probability estimated 

by the SuS for 𝑡 method. The circles of the same color 

are found at each subset level while only the bigger 

ones involve new subset levels. The blue x-points are 

the interpolated values on yearly basis. 

4. NUMERICAL INVESTIGATION 

4.1. Problem definition 

We consider a generic structure subject to 

deterioration and time-varying load effects. Its 

interval failure event is represented by a time-

invariant limit state function 𝑔: 

𝑔(𝐷, 𝑆𝑚𝑎𝑥,𝑗, 𝑡𝑗) = 𝑟0 − 𝑘1 ⋅ 𝐷 ⋅ 𝑡𝑗
𝑘2 − 𝑆𝑚𝑎𝑥,𝑗 (10) 

𝑟0  is the (unitless and normalized) initial 

structural capacity assumed to be deterministic. 

The second term models the degradation of 

structural capacity over time; 𝑘1 indicates the rate 

of deterioration, 𝑘2  determines the shape of 

deterioration curve, and 𝐷 represents the 

uncertainty of 𝑘1 . Time is discretized in yearly 

intervals, with 𝑡𝑗 = 𝑗, 𝑗 = 1, 2, … , 30. We set 𝑘1 

and 𝑘2 such that the expected remaining capacity 

in the last time interval becomes 60% of its initial 
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value. 𝑆𝑚𝑎𝑥,𝑗  are the (unitless and normalized) 

annual maxima of load effects, which are assumed 

iid. The chosen parameter values are summarized 

in Table 1.  

 
Table 1: Model parameters. 

Parameter Type Value 

𝑟0 Deterministic 100 

𝐷 Lognormal 𝜇𝐷 = 1, 𝜎𝐶 = 0.4 

𝑆𝑚𝑎𝑥,𝑗 Lognormal 𝜇𝑆 = 50, 𝜎𝑆 = 10 

𝑘1 Deterministic 0.7 
𝑘2 Deterministic 1.2 

4.2. Lifetime reliability 

The target structure is analyzed with five methods; 

standard SuS, reverse SuS, standard SIS, reverse 

SIS, and SuS for 𝑡. 1000 samples are generated at 

each subset level and at each iteration of SIS. The 

interval failure probabilities Pr(𝐹𝑗
∗) obtained by 

these methods are used to estimate the cumulative 

failure probability Pr[𝐹(𝑡𝑗)] following (Straub et 

al. 2019). That requires estimates of the 

correlations among interval failure margins, 

which are available from all investigated methods. 

For each method, computations are repeated 100 

times to obtain estimates of the coefficient of 

variations of the results.  

In Figure 6, we show the mean estimates of 

Pr[𝐹(𝑡𝑗)] evaluated by standard SuS, along with 

its upper and lower bounds computed by Eq. (6). 

Note that the upper bound corresponds to the case 

when uncertainty on the demand 𝑆𝑚𝑎𝑥,𝑗  governs 

the reliability and thus all 𝐹𝑗
∗  are mutually 

independent. In contrast, the lower bound, which 

is identical to Pr(𝐹𝑗
∗) , implies the case when 

uncertainty on the resistance 𝑅(𝑡𝑗)  governs the 

reliability that all 𝐹𝑗
∗  are fully dependent. The 

results of Figure 6 indicate that relying on interval 

failure probabilities and simple bounds does not 

allow to evaluate accurate lifetime reliability 

estimates over the entire lifespan.  

The mean estimates of Pr[𝐹(𝑡𝑗)] obtained by 

the five methods are compared in Figure 7. All 

methods give similar estimates with minor 

discrepancies that can be explained by sampling 

uncertainty.  

 

Figure 6: Cumulative failure probability (black solid 

line with circles) together with the upper and lower 

bounds (red dashed lines). 

 

Figure 7: Cumulative failure probability estimated 

with different methods; red solid line by standard 

SuS, blue solid line by standard SIS, red dashed line 

with circles by reverse SuS, blue dashed line with 

asterisks by reverse SIS, green dashed line with 

triangles by SuS for t method.  

4.3. Computational efficiency 

The number of function evaluations (NFE) is used 

to measure the computational cost of the different 

methods. In Figure 8, we present the mean NFE 

spent in each time interval, evaluated as the 

average of 100 repeated analyses. The results of 

SuS for 𝑡 are not shown here because with this 

method it is not meaning to assign the NFE to 

yearly time intervals.  
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Figure 8: The NFE estimated in each time interval.  

 

Figure 9 shows the mean total NFE required 

to compute the reliability over the entire lifespan. 

Implementing the proposed methods reduces the 

cumulative NFE substantially; by around 80% for 

reverse SuS and around 65% for reverse SIS. SuS 

for 𝑡 method exhibits the best performance, with 

a cumulative NEF of only about 4%~5% of those 

required by standard SuS and SIS.  

 

Figure 9: Cumulative NFE by each method. 

4.4. Accuracy 

We compare the accuracy of the implemented 

methods. Figure 10 shows 95% credible intervals 

(CI) of the cumulative failure probabilities 

evaluated from the 100 repeated runs. In general, 

the proposed methods lead to slightly larger 

credible intervals compared to the corresponding 

standard methods. This implies that the sequential 

and conditional sampling steps lead to an 

additional (and undesired) correlation among the 

samples generated in different time intervals.  

  
Figure 10: 95% credible interval of Pr[𝐹(𝑡𝑗)]. 

5. SUMMARY AND CONCLUSION 

In this contribution, we proposed two 

computational schemes for efficient computation 

of the lifetime reliability of deteriorating 

structures. The first scheme solves sets of time-

invariant reliability problems sequentially and in 

reverse time order, which facilitates to evaluate 

the nested interval failure domains efficiently. 

This scheme was implemented through Subset 

Simulation (SuS) and Sequential Importance 

Sampling (SIS), but other sequential sampling 

methods may be considered, e.g. Cross-entropy-

based adaptive importance sampling (Wang and 

Song 2016; Geyer et al. 2019). The second 

scheme is based on reformulating the failure limit 

state function such that the time to failure (or a 

function thereof) can be treated as a threshold, 

which can be exploited in SuS. In this way, a 

series of interval failure probabilities are obtained 

by one standard run of SuS. The numerical 

investigations showed that the proposed methods 

are able to obtain accurate estimates of failure 

probability with substantially reduced 

computational efforts, with slightly reduced 

accuracy. The proposed methods can also be 

applied to reliability updating, particularly when 

applying Bayesian Updating with Structural 

reliability methods (BUS) (Straub and 

Papaioannou 2015). The effectiveness of reverse 

SuS in solving such Bayesian updating problems 
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have been demonstrated for the reliability analysis 

of a ship cross-section subject to spatially variable 

corrosion in (Kim and Straub 2019). 
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