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ABSTRACT: In performance-based design, design targets are established based on the performance 
needs of the buildings. However, buildings are seen in isolation and their interactions are oftentimes 
neglected in the design. In order to reduce the impact from future disasters, a more comprehensive 
planning of the built environment on a community level is needed, which should address the aspects of 
hazard preparedness and recovery from the disaster. Optimizing seismic designs of the inventory of 
buildings in a region based on community resilience would be an example of such effort. This paper 
intends to provide a simple and viable framework for resilience-based design optimization of 
interdependent buildings. Regional economic loss is used as a community-level objective in this study, 
where the functional interdependencies between different buildings in a community is explicitly 
considered. Artificial neural networks are used to approximate the seismic response of buildings for 
reducing the computational time in the optimization process. The framework has been illustrated with a 
case study of the design optimization of office and hospital buildings. 

 

1. INTRODUCTION 
Exposure of the built environment to natural 
hazards such as earthquakes, can cause significant 
damage, which can impair the normal 
functionality of a community and makes it 
difficult to recover. Communities have incurred 
significant economic losses despite being 
designed according to the code provisions. An 
important reason for this consequence is that 
codes have focused on life safety aspect but not 
much on the socio-economic consequences from 
the damage. To lower the disaster impact, 
comprehensively planning of the built 
environment from a community perspective is 
needed. Hence, impact of damage should be 
considered both at an individual level and a 
community level. Such an approach can be called 
as resilience-based approach where the aspects of 

hazard preparedness and recovery from disaster 
are addressed (NIST 2015).  

Estimating the community resilience 
involves careful consideration of losses from the 
hazard. Indirect losses in addition to direct losses 
due to building damage must be accounted for in 
the decision-making process. Indirect losses can 
be disproportionately high compared to the direct 
losses. It is therefore appropriate to mitigate such 
consequences by choosing a more resilient design. 
A crucial component in estimating community 
losses is to identify and account for 
interdependencies among different buildings in a 
community. While substantial effort has been 
invested to identify specific actions, policies or 
scenarios to lower the losses, very few methods 
exist in the literature that can quantify the losses 
including interdependencies among different 
buildings (Koliou et. al., 2018). A theoretical 
framework was developed by Mieler et al. (2015) 
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to obtain individual design targets based on 
community resilience goals. Lin et al. (2016) 
came up with the mathematical formulation of this 
framework and demonstrated to residential 
building inventory.  

In this paper, we propose a framework to 
optimize building designs based on community-
level objectives including the interdependencies. 
Computation issues in implementing the 
framework and tools to overcome them will be 
discussed. Finally, the proposed framework is 
illustrated with optimizing the design of hospital 
and office building in a community. The 
framework is explained for seismic hazards.  
However, the formulations and concepts are 
applicable to other types of hazards. 

2. SEISMIC DESIGN OPTIMIZATION 
FRAMEWORK FOR INTERDEPENDENT 
BUILDINGS 

To properly manage risk, design optimization 
should be performed for the buildings in a region 
simultaneously using a community-level 
objective like minimizing total loss of a region in 
a reference time period (Lin et. al. 2016, Feng et. 
al. 2017). As a result, limited financial resources 
can be allocated efficiently to meet the 
community goals. In this section, a framework to 
achieve community resilience goals by optimizing 
the seismic design of multiple buildings 
simultaneously is presented. For implementation 
of the developed framework, artificial neural 
networks for the structural response prediction 
and genetic algorithm for optimization are used.  

2.1. Design optimization framework for 
interdependent buildings 

The proposed optimization framework is outlined 
in Figure 1 and introduced below. An objective 
function at the regional level is chosen first. For 
the assessment of regional-level objective 
function, building inventory information is 
obtained. The asset portfolio is divided into two 
groups: first is the new buildings of which designs 
need to be optimized and second is the existing 
buildings in the region. The existing building 
portfolio can be obtained from government 

agencies or online databases administered by the 
county administration to classify the structures 
into categories considering key features like 
material type (steel, concrete) and occupancy type 
(residential, office). For each of the buildings that 
need to be optimized, structural responses should 
be calculated for evaluating the objective 
function. A neural network is developed for the 
response estimation for each building, using the 
input design variables and the input seismic 
intensity measures. For the rest of the buildings in 
the community, the responses are mapped with 
seismic fragility functions obtained from 
available databases such as HAZUS-MH database 
(FEMA, 2003), to support the analysis herein. The 
objective function is evaluated by integrating the 
probabilistic seismic hazard information with the 
damage consequences of the assets based on their 

 
Figure 1: Flowchart of the design optimization 

framework 

Define objective functions (e.g. minimizing 
regional loss) 

Obtain building portfolio information of the region 

Divide the buildings into different categories (e.g. 
based on occupancy type, structural system) 

Develop neural 
network for each 

building that needs to 
be optimized 

Obtain the fragility 
information for the 
existing buildings 

(e.g. HAZUS) 

Predict the response of all the buildings for possible 
hazard scenarios 

Integrate the probabilistic hazard information with 
the damage consequences of the seismic response 

Optimize the designs of buildings based on the 
objective functions using Genetic Algorithms 
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estimated responses. The damage consequences 
can include any functional dependencies. Finally, 
optimal member sizes for several buildings are 
obtained based on the objective functions using 
genetic algorithms.   

2.2. Response Prediction using Neural Networks 
Combined optimization of the designs of the 
multiple buildings toward a community resilience 
goal is a complex problem as several design 
options of multiple building structures should be 
considered and analyzed. Structural responses to 
potential hazards should be estimated in this 
process. To achieve a good accuracy, this task is 
computationally demanding, which makes it 
difficult to implement the optimization process 
into seismic design (Moller et al. 2015). Instead of 
such time-consuming structural analyses, it is 
useful to develop a tool for estimating the 
response and subsequently the damage to the 
structure.  

Neural networks can model the complex non-
linear relationship between the output and the 
input variables and has been used to predict 
maximum structural response such as interstory 
drift for moment-resisting frame buildings of steel 
buildings (Kaveh et al., 2015). A neural network 
consists of several elements called neurons 
arranged in three layers: input layer, hidden layers 
and output layer. Figure 2 shows the general 
procedure for developing the neural network for 

 
Figure 2: Neural network development procedure 

 
 each new building. Design variables and ground 
motion intensity measures form the inputs to the 
neural network while response variables form the 
outputs for this study. The neural network is 
trained through a small database of known input-
output samples. An independent data set is used to 
test the generalization power of the trained 
network model. Details of the neural network 
development are provided elsewhere (Haykin 
1999, Rumelhart, Hinton and Williams, 1986).  

2.3. Multi-objective optimization 
Objectives vary from community to community 
and defining them involves bringing together 
relevant stakeholders. To address various 
considerations of the decision makers, several 
objective functions need to be optimized 
(minimized or maximized) simultaneously, 
leading to a multi-objective problem. For 
instance, in community planning, apart from 
developing a resilient design which targets at 
minimizing the damage consequences, initial 
construction cost is also an important 
consideration in decision making due to limited 
availability of funds. These objectives are 
conflicting objectives that needs a tradeoff. 
Therefore, there is no single optimal design. 
Instead, there is a set of optimal designs known as 
Pareto optimal solutions. They represent a set of 
solutions that are non-dominant to each other but 
are superior to the rest of solutions in the search 
space (Safikhani et. al. 2011). Evolutionary 
algorithms such as genetic algorithms are 
especially applicable to multi-objective 
optimization problems with parameters that can 
only take discrete values. In this paper, a well-
known non-domination-based genetic algorithm 
for multi-objective optimization, namely, NSGA 
II (Deb et. al. 2002) is used. 

3. ILLUSTRATION OF THE FRAMEWORK 
For illustrating the regional seismic design 
optimization framework described in the previous 
sections, the designs of a hospital and an office 
building located in a community in downtown Los 
Angeles, CA are optimized based on regional 

Identify possible designs in the entire design 
space (e.g. with varying beam/column size) 

Identify seismic intensity measures that represent 
the time history input (e.g. Sa(T1), PGA) 

Perform time history analyses for selected 
designs to develop a database of structural 
response (e.g. max. interstory drift ratio) 

Develop a neural network with the design 
and intensity variables as inputs and 

structural response parameters as outputs 
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economic loss objective. The losses considered in 
this study includes direct damage costs (such as 
repair cost aftermath of earthquake and cost due 
to loss of contents), indirect damage cost (such as 
relocation cost, loss of income due to disruption 
of the building use, and loss of rent), and social 
loss (cost of injury and cost due to human fatality). 
The losses are initially evaluated for individual 
events, then aggregated together to obtain life 
time loss in present value. For this study, a life 
time of 50 years and an annual discount rate of 5% 
are used in calculating the losses. Initial 
construction cost is considered as another 
objective to account for a decision maker 
preferring a design with lower initial construction 
cost and be willing to accept a greater risk of 
future loss. The initial costs for different possible 
designs for both the office and hospital buildings 
were calculated per the building construction cost 
data by RS Means (2016). 

3.1. Buildings description 
The hospital and office buildings are four-stories 
each. The lateral force resisting frames of the 
hospital and office building comprises of special 
steel moment-resisting frames with reduced beam 
sections (RBS). For the office building, four 
different members constitute the resisting frame 
as shown in Figure 3. The beams of the 1st and 
2nd story have same cross section; 3rd and 4th 
story beams have same sections; and the columns 
change at the splicing location on the third story 
as shown in Figure 3. In addition, both interior and 
exterior columns of the resisting frame in a story 
are assumed to be the same. The resisting frame 
of the hospital building is similar to the office 
building, except that the beams in the internal bay 
are different from the external bays, resulting in 
eight different member sections as shown in 
Figure 4. The lighter sections represent the gravity 
members. 

 
 

Figure 3:Office Building 

 
Figure 4: Hospital Building 

 

3.2. Design options for each building 
For the possible designs, the cross-section of each 
of the members of the lateral resisting frame is 
selected from a commercially available database 
of W-shape sections ranging from W4X13 to 
W44X335 with a total of 273 different sections. 
The sections are chosen such that the design is 
code-compliant (ASCE 7, AISC 341, AISC 358 
and AISC 360). A total of about 10,000 and 
35,000 such possible designs are obtained that 
satisfy the strength requirements for office and 
hospital buildings, respectively. 

3.3. Input-output sample generation using non-
linear time history analysis  

For the neural network development, the input-
output samples should be used. Since the neural 
network is to estimate dynamic responses of the 
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buildings, input-output samples are generated by 
performing non-linear time history analysis for a 
selected design variables and seismic intensity 
measures. Only a small number of designs are 
selected for the non-linear time history analysis. 
Designs are chosen such that it adequately covers 
the entire range of design and intensity input 
variables. As a result, 141 designs for office 
building and 244 designs for hospital building are 
selected. The non-linear behavior of the steel 
moment-resisting frames of various designs is 
evaluated in terms of response such as maximum 
drift ratio.  

For the structural analysis, a 2D finite 
element model in Opensees is considered, where 
the steel moment frames are modeled using elastic 
beam-column elements which are connected by 
rotational springs at the ends that account for the 
non-linear behavior of the members. Material 
model of the rotational springs are based on 
Modified Ibarra-Krawinkler Deterioration Model 
(Lignos and Krawinkler, 2011) with the backbone 
curve having a trilinear behavior. For simplicity, 
cyclic deterioration is ignored in the analysis. P-
Delta effects are also accounted using leaning 
columns.  

A suite of 25 ground motion time histories 
has been selected from the list of 60 ground 
motion time histories generated for the 
FEMA/SAC project (Somerville et al. 1997) for 
Los Angeles area. The records were chosen such 
that the PGA of the records was distributed 
throughout the entire range. A total of 25 
earthquake records are used for the non-linear 
time history analysis of each design.  

3.4. Neural network models 
Maximum inter-story drift ratio is considered as 
the damage index in this study, which is used as 
output for a neural network model. Maximum 
floor acceleration is also included to account for 
modeling the damage of acceleration sensitive 
components such as HVAC system. For moment 
resisting frames, the drift is governed primarily by 
the stiffness of the members. So, a set of input 
variables considered are: moment of inertia of the 
different sections (4 for office building and 8 for 

hospital building), PGA of the ground motion 
record and the yield strength of steel. As such, the 
neural network model for office building has 6 
input variables and another model for hospital 
building has 10 input variables.  

Among all the data samples, 90% of the data 
is used for training the neural network and 10% 
for testing its generalization power. Several 
network architectures have been examined. Two 
hidden layers with 20 neurons in each layer had 
performance with reasonable accuracy as can be 
seen from the regression plots of Figure 5. The R2 
value for the training and testing data for both the 
models are above 0.95. 
 

 
Figure 5: Regression plot between the predicted 

responses from neural network and the responses 
from time-history analyses for office building  

3.5. Regional performance evaluation 
Regional performance measures should 
encompass different dimensions of resilience such 
as economic, social, organizational and technical 
(Bruneau et al. 2003). An important aspect in the 
evaluation of a resilience is to account for the 
interdependencies among the buildings (Feng et. 
al. 2017). The resilience metrics considered in this 
study is the regional economic loss. 

Regional economic loss is defined as the 
monetary loss for the whole community. It is 
widely used metrics for estimating the impact of a 
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hazard at a community level. It depends on the 
damage to each building and their interdependent 
functionalities. Cascading effects of one building 
failure on the community can be modeled through 
these interdependencies, which are highly 
complex in nature (ATC-13 1985). For example, 
damage to a hospital building affects disaster 
relief efforts, leading to increased injury and 
fatalities. In this study, the expected regional 
economic loss (REL) in the event of an earthquake 
is computed as:  

[ ]
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where [.]E  is the expectation, rEL  is the 
economic loss from building category r and cN  is 
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economic loss in building category, r is evaluated 
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where 1

,i rEL  is the component of economic loss to 
a community from damage of building i  in 
isolation which corresponds to the building loss 
without considering any interdependencies with 
other buildings; 2

,i rEL  is the component of 
economic loss from damage of building i  which 
is dependent on the DS  of building j  and is 
attributed to interdependency on 1 building; 

,DS j r
f  

is the PDF of DS of building j , and rN is the 
number of buildings in building category, r. The 
interdependency component, 2EL , is divided into 
two terms, the first corresponding to the 
interdependent losses in the same category and the 

second term corresponds to interdependent losses 
among different categories.  

In many loss assessment studies (e.g. Wen 
and Kang, 2001; Liu et. al.,2003), injuries from 
building damage in a community are assumed to 
be timely treated with the underlying assumption 
that the hospital is fully operational which is not 
necessarily the case. The advantage of the 
proposed framework is that the dependency 
effects such as the reduction in operational 
efficiency due to damage to a hospital building 
can be considered through the dependency term 

2EL  of Eq. 2. In the current study 2EL is modeled 
through increase in the injury level as a function 
of the damage to the hospital building. For 
illustration purposes, a simple quadratic model is 
assumed to relate this increased injury rate to that 
of damage ratio in this study. However, 
complicated models to accurately model such 
interdependencies can also be incorporated such 
as a metamodel which includes the arrival rate of 
the patients at the hospital and the percentage of 
number of patients requiring an operating room 
developed by Paul et. al. (2006).  

3.6. Optimization results 
In order to investigate the optimal designs for 

the office and hospital buildings, conflicting 
objective of initial cost and regional loss are 
considered. NSGA II genetic algorithm is used to 
accomplish the evolutionary process of the multi-
objective optimization. Figure 6 depicts the 
obtained non-dominated optimum design points 
as a Pareto front. Each of the points in Figure 6 
corresponds to cost and loss evaluation from a 
combination of designs for office and hospital 
buildings. For illustration purpose, four of the 
optimal design points, namely, P1, P2, P3 and P4 
are chosen as indicated in Figure 6. The designs 
for these points are listed in Table 1. Points P1 and 
P4 are the extremes with the maximum losses for 
point P1 estimated to be about $130 million and 
minimum losses for point P4 to be around $33 
million. Among designs P1 and P2, although P1 
has a lower initial cost it may not be very 
appealing to a decision maker to choose P1 
because of the huge difference in the potential 
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losses of about $67 million compared to P2 and 
very little gain from savings in initial costs of 
about $35,000. Pareto plot like that of Figure 6 
can assist decision makers to choose an 
appropriate insurance policy for the buildings 
based on the expected losses. 

A rational approach to achieve the best 
tradeoff point from the Pareto front is through the 
weighted sum method where the values of each of 
the objective functions of the Pareto front can be 
normalized using Eq. (3). 

 
Figure 6: Regional loss versus initial cost optimal 

points at the Pareto front 
 
Table 1: Members of representative designs 

Building  Design P1 Design P2 Design P3 Design P4 

Office 
Building 

W14X109 W21X93 W24X117 W33X118 
W21X93 W18X283 W14X665 W24X279 
W18X130 W24X131 W24X192 W36X170 
W24X131 W33X201 W36X302 W36X231 

Hospital 
Building 

W24X68 W21X132 W30X124 W30X124 
W18X158 W30X148 W36X170 W36X170 
W27X94 W24X162 W30X191 W30X191 
W24X162 W36X182 W33X263 W33X263 
W27X114 W33X130 W30X235 W33X201 
W14X283 W24X250 W27X307 W14X665 
W33X141 W36X194 W36X262 W36X262 
W18X311 W30X292 W36X330 W36X330 

min.

max. min.
normalized

O O
O

O O

−
=

−
  (3) 

where O  is the objective value, max.O and min.O ,   
are the maximum and minimum values of the 
objective function for the Pareto optimal set. 
Depending on the weights assigned to each 

objective and a multitude of tradeoff points could 
be obtained. The weighted sums are presented in 
Table 2 for a case with 75% weight to the initial 
cost objective and 25% weight to the loss 
objective. Design point P2 is found to be the most 
desirable point in this case. Note that compared to 
the case when Total Cost (IC + RL) is used as the 
objective, the optimal design for hospital 
remained the same but for the office building it 
resulted in a stronger and costly design.   
 
 

Table 2: Values of objective functions and 
normalized weighted sum 

Point Initial Cost 
(million $) 

Regional 
Loss  

(million $) 

0.75*ICnorm+ 
0.25*RLnorm 

P1 44.22 129.37 0.25 
P2 44.59 62.39 0.12 
P3 47.04 38.93 0.38 
P4 50.04 33.30 0.75 

 
On a computer with Intel Core i7 @ 3.4GHz 
processor and 8 GB of RAM, without the neural 
network and genetic algorithm tools, approximate 
computation time for evaluating all the possible 
design alternatives would be approximately 2000 
days. This makes it impractical to achieve an 
optimal design. On the contrary, the 
computational time for 25-time history analyses 
of 141 office designs and 244 hospital designs, 
required to develop the neural networks is around 
90 hrs each and for optimization using the neural 
network is 2hrs, which is a substantial reduction 
of the computation time. 

4. CONCLUSIONS 
In the recent years, the aspect of community 
resilience has attracted great attention in the risk 
management community. In the near future, it is 
most likely that the community resilience or other 
community-level objectives would become an 
integral part of the design codes and regulations. 
To advocate such a change, this paper presented a 
simple and viable framework for resilience-based 
design optimization of multiple buildings 
subjected to seismic hazard. A key aspect of this 
framework is the comprehensive and efficient 
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assessment of disaster impact in a region. The 
framework was illustrated with a simple example 
of determining optimal seismic designs of two 
interdependent buildings simultaneously based on 
the regional loss and construction cost. The 
general framework can be used for other building 
types and hazard types and with other community-
level objectives.  
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