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ABSTRACT: Geometric imperfections are the major part ofdisagreement between theoretically and
experimentally determined buckling loads of thin walletirayrical shells. In a common probabilistic
approach the spatial varying imperfections are modeledsas§dan random fields. Due to the
underlying uncertainties like a small sample size or imgemeasurements it is practically impossible
to define crisp input parameter for a random field representat.g., correlations. In this paper, the
classical probabilistic approach is therefore extendexftzy stochastic approach by using a
polymorphic uncertainty model (fp-r) fro@raf et al.(2015. This allows to take into account natural
variability and incompleteness aiming to consider algasmd epistemic uncertainties in a decision
making process.

1. INTRODUCTION is the extension of the classical probabilistic ap-
proach to a fuzzy stochastic approach in cylindrical
shell design for a consideration of data uncertain-
figs. Therefore, the model 'fuzzy probability based
random variable (fp-r)’ fromGraf et al. (2015 is
Used to consider variability and incompleteness. As
first task, a correlation model is obtained from real

hitudes and shapes have a major influence on gasurements using Delft’'s imperfection data bank

stability loads. Nowadays, several researches ¥m Arbocz and Abramovic1979. Then, the
to represent imperfections as homogeneous Gau Rcertain correlation functions, which are varying

sian or non-Gaussian random fields. Due to t

m shell to shell are described by suitable func-
lack of measurements, random fields are mostl
tions. The main idea is to define the corresponding

assumed homogeneous and the correlation param
g Pardilelation parameters for this functions as fuzzy

eters are chosen to simulate a 'worst case’ sc
v%rlables This leads to a representation of spatial
nario. Especially, the correlation parameters have

arying geometric imperfections as fuzzy random
great influence on the imperfection shape, hence ony 99 P y

: fiel Finally, th istical moments of th -
the scatter of the buckling loadtauterbach et al. elds. ally, the statistical moments of the sta
bility loads are presented as fuzzy sets for decision
(2018 have investigated this influence quantit

aking.
tively. Thus, a general statement about correlation g

parameters, which is based only on a few mea-
surements is very risky. The aim of this paper

In the past, many researchers have discussed
disagreement between theoretically and experim
tally determined buckling loads. The initial im-
perfections are mainly the reason for the wide e

perimental scatter. The uncertainty of their ma
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2. CORRELATION MODEL with the FE-nodes,

In the present paper, the need of a fuzzy

stochastic approach is shown on the evaluatiofX>.X) = (2)
of an extensive imperfection data bank fro COS,X1) ... COX3X)) ... COEXN) T
Arbocz and Abramovicll979. Here, the A-shells . .

as one shell type of the data bank are chos¢n
to build a correlation model for a fuzzy stochas
tic analysis. The seven A-shells are unstiffened, - : . :
isotropic copper shells, which are manufactured C(X§,X1) ... C(Xgy,Xj) ... C(Xg.Xn)
by electroplating. The first task is the representa- _ _
tion of geometric imperfections as half wave cosifig/lthermorei(6) is an uncorrelated Gaussian ran-
Fourier series, as given #rbocz and Abramovich dom variable with zero mean and unit standard

. . S i . .
(1979. Averaged shell dimensions, material propi€viation. ¢;(x°) and A; are the eigenfunctions
erties like the Young's moduluE and the Pois- and eigenvalues of a given autocovariance function

S .
son’s ratiov, the maximum evaluated amplitudg(xl's’xi> on the rgndom f'e_ld m_esh_. The expected
w(x,y)| and the number of data poirig x N for value u(x) of the imperfection field is set constant

the measurements are shown in TahleThe next (O zero. However, the separation of the coarser
random field mesh from the FE-mesh allows keep-

COEx) . COSX) ... COExn)

Rmmi 10160 ing the eigenvalue problem as small as possible.
L [mm 20229  This makes the EOLE-method very interesting in

t [mn] 0.1160  a fuzzy stochastic approach, where with a chang-
max |w(x,y)| [mmn] 0.3672  ing correlation structure the eigenvalue problem of
E [N/mn7] 104410  the covariance matrix must be solved several times.
v [-] 0.3 To get an autocovariance function from the mea-
Nc x NR 49x31  surements the following assumptions to the random

field and correlation structure have to be made:

Table 1: Averaged geometry and material properties e Gaussian

_ ' o o e Homogeneity
step is to obtain the statistical properties like the Separability

covariances from the given Fourier series. As an, Ergodicity

efficient random field discretization technique the 44dition to the assumption of Gaussian ran-
EOLE-method (Expansion Optimal Linear Estimayom fields and homogeneitgchenk and Schuéller

tion) fromLi and Kiureghian(1993 is used, which 003 proposed a fully separable correlation struc-
allows to represent the random field with only a fey . or geometric imperfections:

random variables by minimizing the variance error.

As a main advantage the covariance matrix is only Cn(BX,Ay) = G2 pn(AX) pn(Dy) | (3)
required on a sub-set of field nodes, the so-called
random field mesh’. The series is given by wherepn(Ax) and pn(Ay) are the one-dimensional

autocorrelation functions along the axial and cir-
W(X, 6) = H(X) + i ¢-(xS) C(xS X) cumferential direction with the corresponding lags
’ G VA "7 7 AxandAy. of is here the sample variance of an

(1) imperfection field of the'" test shell defined by

where the vectox® = [x; ... X° ... X§y] contains the 1 M _

M nodes of the random field amd= [X; ... X; ... Xn] 0n = M kzl(w<xk) — ) (4)
theN nodes in full space (e.g. FE-nodes). Conse- B

quently,C(x5,X) leads to a covariance matrix comnwith [, the sample mean of the full imperfection
taining the covariances from random field nodéeld of one test shell and/ is the number of
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random field nodes, holding the number of dalsads to an ensemble autocorrelation function of
pointsM = Nc x NR, see Tablel. Following to one test shell. The results of the estimated auto-
the assumption of separability the variation of intorrelation functions of the A-shells from measure-
perfections describe independent one-dimensiomants are depicted in Figl. Here, the functions
stochastic processeg(x;) in axial direction with

r =1 ... Nr observations and/(y¢) in circumfer-

ential direction withc =1 ... Nc — 1 observations, 1
where the seam nodes have to be deleted foracylin- 0.8
der as a closed structure. Consequently, the sample_. 0.6
autocorrelation function with respect to axial lags %‘i 04 |
can be defined as: Q 0.2

A-13 S
pc(fAXO) = (5) 0+ A-14 So-eo50
1 Mr—¢ B B —0.2 lAverage —— ‘ i
Ng 2, (WO&+ED%0,Ye) = Hn) (WX, Ye) — Hn) 0 L I 3L L
= lag Ax

with £ =0 ... Nr— 1 denoting the multiple of the
constant lagAxg. Similarly, the autocorrelation
function respect to circumferential lags holds

(6)

pr(NAyo) =

Ne—1
> (WX, Ye+NAYo) — Hn) (W(Xr,Ye) — Hn)
=1
with n =0 ... Nc — 1 times the constant lafyyo.
Here, it should be noted, that the number of lags,
the upper sum limit, must be set constanhgp— 1
for deleting the seam nodes. Finally, to get the sam- _ _ L
ple autocorrelation function of one test shell tdliégure 1: Estimated autocorrelation functions in axial
method of ensemble averaging is used, assum

I:;1ltéove) and circumferential direction (below)
that each stochastic process is ergodic. This means
o 2 . vary from shell to shell and show a large scatter.
that one sample with its stochastic information ree- . . .
urthermore, the autocorrelation functions in ax-

resents the whole set. The assumption of ergodicity ..~ . :
is allowable if the stochastic process can be divid'é"}?i/OIIreCtIon tending to zero for large lags. The

S L ircumferential functions have different wave num-
into independent parts. The individual parts are tfie . . .

L : : . . : ers, but all of these functions are symmetrical with
variation of imperfections in axial and circumferen-

e .regard to the half circumferential axis. This is due
tial direction of each row of nodes. Thus, averaglng . . : .
the fact that the circumferential distance is al-

Ne — 1

1
5TIR

lag Ay

. . . ]
:)r;gsavl;ittc;]correlatlon function across the axial SaWéys the shorter way around the cylinder. In addi-
tion, if a representative autocorrelation function of
the full test series is needed, an averaging across all
test shells is possible, illustrated by the 'Average’-

curve in Fig. 1. The proposed fuzzy approach

1 Nt
p(EAXg) = Ne—1 czl pc(éDx) . (7)

and across circumferential samples with

Nr

p(Nhyo) = NiR > pr(nbyo) (8)
r=1

requires a functional representation of the correla-
tion structure controlled by correlation parameters
or the so-called correlation lengths. The estimated
autocorrelation functions in Fig.1l allow to find
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representative functions for a data fitting. Seve@l Fuzzy STOCHASTIC APPROACH
functions have been tested, where the quadratic €ke present paper focuses on taking into account
ponential function gives a good fit for the axial ddifferent types of uncertainties in this context of

rection, cylindrical shells, namely aleatoric and epistemic
uncertainties. Aleatoric uncertainty is the natural

AX? variability and is mostly modeled with a classi-
P(BXlep) = EXp(_E) ’ 9) cal stochastic approach. It is clear that this type

of uncertainty cannot be reduced. This means
with the correlation lengtii.p. As a good fit for that a manufacturing process of a shell is a ran-
the circumferential direction, a linear-cosine foridom process itself with unavoidable uncertainties.

is chosen: Epistemic uncertainty includes incompleteness and
impreciseness of available data and can be mod-

_ Ay 2niiy eled by fuzzy approaches. In contrast to aleatoric

p(Ay7|CU7 )_ 1-—)-cos{ — 5 . . . . .
cu T uncertainty, incompleteness and impreciseness is

(10) due to the lack of knowledge and can be reduced,
e.g., by collecting more data or defining stricter

with the correlation length, , and the period lengthtolerance values for the manufacturing process.
T. The parameterk , andlc are regarded as fit-Graf et al.(2019 introduced the concept of 'poly-
ting parameters and the period lendtis kept con- morphic uncertainty modeling’, which describes
stant for each shell type to minimize later the nurdifferent models considering more than one un-
ber of fuzzy input variables. The unknown fittingertainty characteristic: natural variability, incom-
parameters appear nonlinearly in a fitting modgleteness and impreciseness. Here, the model of
hence the nonlinear least square method (NLLSfQ}zy probability based randomness (fp-r) is used.
is used. In this case the definition of the NLLS@his model allows taking into account variabil-
is to find a minimizel¢p or Iy, where the middle ity and incompleteness in the uncertain correlation
nonlinear problem is solved by the Gauss-Newtstructure for geometric imperfections. It is based
method. The circumferential correlation functionsn random variables and fuzzy sets. The theoret-
are fitted on the half functioAy € [0, R] and are ical background of fuzzy sets and their numerical
then mirrored af\y = 11R. The results of the fitting treatment is given for example Moller and Beer
of the correlation functions and sample variance g8904. A normalized fuzzy sed is fully defined
presented in Tabl2. The period length is obtainedas follows:

- - A={(xpa(x) [xER} (11)
shell 9 lon o lou - TECOMS A R = [0,1]

(mnj  [mnj  [mnj  [mn
A-7 00070 9234 210 217 where La(X) is the membership function, which
A-8 00100 2744 180 217 maps a fundamental seR onto the interval
A-9 00035 7179 199 217 [0,1]. The numerical treatment requires the
A-10 00029 8630 327 217 discretization, where the membership function is
A-12 00070 4211 307 217 discretized inta a-levels:
A-13 00113 11862 234 217 —XER | pa(¥) > oy}, k=1,...r
A-14 00041 7733 187 217

(12)

Table 2: Fitting results and sample variance which are crisp subsets of the Suppﬁ(nﬁ) defined

by
from the fitting of the average correlation curve, but ~
has been taken equal for all shells in the series. S(A) ={xeR | pa(x) >0} . (13)
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Following the definition of fuzzy sets, the here us&il. Fuzzification of the input parameters
fuzzy triangular number can be expressed as fébr the so-called fuzzification process the fitted re-
lows: sults of the correlation parametdgs,, lcy and the

~ varianced? from Table2 are presented in a his-

a= X, xmX%) (14) 0 . : . . )

gram as a first design aid, see F&).In this pa

defined by the smallest and largest vaxw@ndx; per only convex fuzzy triangular numbers with lin-
as well as the valugn, related to the membershigar branches are used. It is up to the shell designer
Ua(X) = 1, also referred to as 'trend value’. The form the fuzzy numbers. They can be modified
specification of such a fuzzy number is called fuzajith the aid of expert knowledge or collecting more
fication and is often based on a histogram as a figsita to adopt the membership function for an output
point of reference, where the sample size is pot&fith less uncertainty for a more economical design.
tially small. The main idea of the proposed apdere, all samples lie in the support set with a con-
proach is to transform the correlation structure gervative overhanging of the membership function.
Eqg. @) to a fuzzy stochastic correlation model:  The result of the fuzzification in form of fuzzy tri-

(f(Ax,Ay) _ 52 B(OX) B(Dy) | (15) angular numbers is given by
by representing the variané& and the correlation % = (0.002 0.007,0.012) (19)
parameters., in p(Ax) andlcy in p(Ay) as fuzzy |~C’h = (1000900Q 14000

triangular numbers. This introduction of fuzziness
extends the common random field representation to
a fuzzy random field definition. A fuzzy randon3.2. Fuzzy structural analysis with a HDMR-
field is here a collection of fuzzy probability based metamodel

leu = (175225400

random variables (fp-r): The main task in this paper is the following map-
{W(x,0):x€Q,0c0} |, (16) PINY:
wherex contains the shell surface coordinates and wW(§x,6) — per(6) (20)

Q denotes the set of all possible outcontes A L
fuzzy probability based random variables (fp-r) dta_lklng into account the advantageous fuzzy bunch

scribes the probability measure of a random num arameter representation, where the fuzzy and
'tfl'l - set gf rob:';llbyl't p nl(J:t'ons <e@raf et :I dchastic parts can be decoupled. The numerical

Wi P 1||y unctions, . ._treatment is therefore a combination ofLevel-

(2015. In case of 'fuzzy random geometric im-

. ) Optimization (ALO) and Monte Carlo simulation
perfections’, this means that for the fuzzy correl iy ( )

. : . . , ively. The M ' f
tion structure, defined in Eq.19), the probability ?MCS) respectively € MCS estimates for a

- . iven configuration of bunch parametegsa de-
measure of the event ‘geometric imperfection’ has g P e

. ired stochastic output, e.g., the sample mean value
a fuzzy characteristic. Thus, every event at a lo

Ca- .. . e . .
tion xq is represented by the fuzzy valuég, |~C7h Stthe critical buckling loady (s = Sp). Consider

~ ing a specifica-level ai, the fuzzy bunch parame-
andlcy. The so-called bunch parameter represetg9 P k y P

) L rs are then limited by the-level boundaries
tation has proven to be beneficial for the numerical y

implementation, where the fuzzy random field de- S€ [Sa 1, Sar] = {Sa} - (21)
scribes in a parametric form a function bunch, see, _ .
e.g.,Méller and Beel(2004) The corresponding-level boundaries of the exem-

plary fuzzy output variabl@c, are given by the ex-
(17) treme value problems
where the fuzziness is concentrated in the bunch pa-

W(x,0) =w(§,x,0)

rameter$, which contains the three defined fuzzy Per,ay,| = SGF?Siglk} [Per(S)] (22)
bers: B B
R v Perayr = Max [Per(S)] (23)
§: {527 IC,h? IC,U} . (18) SG{Sak}
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A-shells: membership, = ;2 A-shells: membership, = iy, A-shells: membershig; =
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Figure 2: Fuzzification of the correlation structure parateies from Table2: variance (left), correlation parame-
ter in axial direction (middle) and circumferential diréah (right)

which are here not performed on the original funtew, using as many elements as necessary, selecting
tion pcr(S), but on a previously generated meta fast solver and efficient storage technique.

model
4. NUMERICAL RESULTS
—MM

MM (s) ~ per(s), seS®) (24) 4.1. Buckling analysis with a nonlinear finite ele-
ment model

~ The FE-model of the cylinder as used in this study
on the suppor§(s) of the fuzzy bunch parameters, depicted in Fig.3. The dimensions and mate-

A combined approach of a high-dimensional mod8l
representation (HDMR) of second order and Least-
Square polynomial approximation is used. Basics
of HDMR can be found irRabitz and Alig(1999.

For the metamodel 61 exact MCS for the desired
stochastic output are performed. Therefore, a di-
rect Monte Carlo simulation approach is used with
500 simulations per evaluation point. The complete
analysis builds with the metamodel a three-loop
computational model. The characteristic of this . §
modelis that the outer loop forms the fuzzy analysis | | v
and the MCS forms the stochastic analysis (middle Z P
loop). The fundamental solution represented here 5

by the numerical buckling analysis (inner loop) is

based on a nonlinear FE-model. Besides, the acEigure 3: FE-model of the axially loaded cylinder

racy of the stochastic model depending mostly on

the sample size, the quality of the FE-model haal properties of the isotropic shells are the aver-
a great influence on the quality of the fuzzy outpwdged values from Table Furthermore, a geometric
which is here the fuzzy sample mepg 6f the criti- nonlinear quadrilateral shell element with moder-
cal buckling load. 6 500= 30500 buckling prob- ate rotations fronwagner and Gruttman{2005 is
lems are solved to get the fuzzy mean value of theed. Itis based on linear shape functions using the
critical buckling load. Due to the fact that the FEsoparametric concept. Additionally, to avoid shear
calculation must be repeated several times it is aleoking, the assumed natural strain method (ANS)
worthwhile to optimize the FE-model for speeds implemented. The geometric imperfection are
e.g., keeping the number of load/displacement stepsdeled as nodal deviation in the—direction.

6
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Since the imperfections alter the coordinates of the
FE nodes warping has to be taken into account in

terms of axial loading. The cylindrical shell is sim- 1 ! ex! eri}nenlt ! 7
ply supported on both edges, where the so-called 08 | Foueier impf. e 16
SS-3 boundary condition holds at the lower edge:q ™ - pgo__{cr; — /l 15
u=v=w=0, ¢x# 0,9y # 0 and at the upper G ;. modifiedp(acr) —— é‘
edge: u=Au, v=w=0, ¢x # 0,6y #0. The & 149
cylinder is loaded by displacement control until the g 0.4 139
stability point is reached, where the reaction forcesg | Z\t
at the bottom are summed to calculate the critical @2 |

buckling load. In this paper, if one sign of diag- /HTW—H I 11
onal elements of the tangent stiffness matrix will 0 [ ANIRIINN 0
become negative the load state is saved and then 0.3 04 05 06 07 08 09 1 11
the calculation is aborted by 'task killing’ within normalized buckling factoa,

the parallelized Monte Carlo loop. All stability N

Per.perf = 5073N of the perfect shell by buckling load factor
I:)cr,imp . . .
Gor=p "~ (25) is due to a little extrapolation error of the HDMR-
cr, per

metamodel. But in fact, there are no fundamen-

wherea, is denoted as the critical load factor. Thigl solutions larger than the perfect buckling load
FE-mesh consists of 200 finite elements in circurperf- Furthermore, the figure also includes a his-
ferential direction and 100 elements in axial direfQgram plot of the normalized experimental results
tion. Beside the FE-mesh, another important poff@M Delft's imperfection data bank. However, it
is the definition of a random field mesh. Here, tifgould be considered that the experimental shells
number of random field pointsc x Ng is given by contain not only geometrical imperfections as devi-
the number of measuring points from Delft's imation of the shell surface, but also boundary, load or
perfection data bank. Care must be taken to ensfii@terial imperfections. The fuzzy output shows a
that the random field properties can be represent@@e support. This is a hint for large uncertainties

by the selected 'stochastic mesh’. and it can be worthwhile to reduce the uncertainties
of the input. In other words, it is perhaps possible
4.2. Fuzzy result and decision making for the shell designer to get a smaller support of the

The results of the fuzzy stochastic analysis are pReitPut with a little effort by narrowing the input,
sented as fuzzy numbers of the critical bucklify9- testing just a few more shells to identify out-

load factor, particularly the fuzzy result mean valjigrs- For demonstration how it can work in practice
Qe is evaluated, see Fig. In addition to the fuzzy fictional shells are added for a modified fuzzifica-

results, critical loads of the original shells, whef¥n Process, see Fig. This leads to a narrowed

the measured imperfections are applied as Foufl&2Y InPut:
series on the FE-model are also presented in his-

togram form, labeled as 'Fourier impf.". The trend G2 = (0.005,0.007,0.011) (26)
value of the membership function correlates very . = (30009000 13000
well with the critical loads referred to Fourier im- -

lcu = (175225325

perfections. The fuzzy result shows a value greater
than one for the normalized buckling load factor,
which means there are buckling loads greater th#ime result is that the modified fuzzy outguac;)
the critical perfect load. This is not realistic anoh Fig. 4 shows a smaller support.

7
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A-shells: membership, = ;2 A-shells: membership, = iy, A-shells: membershig; =

1 P 5 1 R 5 1 5
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13 3 13
12 2 ! 12
11 1 11
. ﬂﬂj R - ( W I
0.005 0.011 3000 9000 13000 175 325
a2 [mni len [mn le.u [Mn

Figure 5: Modified fuzzification of the correlation struatyparameters: variance (left), correlation parameter in
axial direction (middle) and circumferential directionight)
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