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ABSTRACT: Geometric imperfections are the major part of thedisagreement between theoretically and
experimentally determined buckling loads of thin walled cylindrical shells. In a common probabilistic
approach the spatial varying imperfections are modeled as Gaussian random fields. Due to the
underlying uncertainties like a small sample size or imprecise measurements it is practically impossible
to define crisp input parameter for a random field representation, e.g., correlations. In this paper, the
classical probabilistic approach is therefore extended toa fuzzy stochastic approach by using a
polymorphic uncertainty model (fp-r) fromGraf et al.(2015). This allows to take into account natural
variability and incompleteness aiming to consider aleatory and epistemic uncertainties in a decision
making process.

1. INTRODUCTION

In the past, many researchers have discussed the
disagreement between theoretically and experimen-
tally determined buckling loads. The initial im-
perfections are mainly the reason for the wide ex-
perimental scatter. The uncertainty of their mag-
nitudes and shapes have a major influence on the
stability loads. Nowadays, several researches try
to represent imperfections as homogeneous Gaus-
sian or non-Gaussian random fields. Due to the
lack of measurements, random fields are mostly
assumed homogeneous and the correlation param-
eters are chosen to simulate a ’worst case’ sce-
nario. Especially, the correlation parameters have a
great influence on the imperfection shape, hence on
the scatter of the buckling loads.Lauterbach et al.
(2018) have investigated this influence quantita-
tively. Thus, a general statement about correlation
parameters, which is based only on a few mea-
surements is very risky. The aim of this paper

is the extension of the classical probabilistic ap-
proach to a fuzzy stochastic approach in cylindrical
shell design for a consideration of data uncertain-
ties. Therefore, the model ’fuzzy probability based
random variable (fp-r)’ fromGraf et al.(2015) is
used to consider variability and incompleteness. As
a first task, a correlation model is obtained from real
measurements using Delft’s imperfection data bank
from Arbocz and Abramovich(1979). Then, the
uncertain correlation functions, which are varying
from shell to shell are described by suitable func-
tions. The main idea is to define the corresponding
correlation parameters for this functions as fuzzy
variables. This leads to a representation of spatial
varying geometric imperfections as fuzzy random
fields. Finally, the statistical moments of the sta-
bility loads are presented as fuzzy sets for decision
making.
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2. CORRELATION MODEL
In the present paper, the need of a fuzzy
stochastic approach is shown on the evaluation
of an extensive imperfection data bank from
Arbocz and Abramovich(1979). Here, the A-shells
as one shell type of the data bank are chosen
to build a correlation model for a fuzzy stochas-
tic analysis. The seven A-shells are unstiffened,
isotropic copper shells, which are manufactured
by electroplating. The first task is the representa-
tion of geometric imperfections as half wave cosine
Fourier series, as given inArbocz and Abramovich
(1979). Averaged shell dimensions, material prop-
erties like the Young’s modulusE and the Pois-
son’s ratioν, the maximum evaluated amplitude
|w(x,y)| and the number of data pointsNC×NR for
the measurements are shown in Table1. The next

R [mm] 101.60
L [mm] 202.29
t [mm] 0.1160
max|w(x,y)| [mm] 0.3672
E [N/mm2] 104410
ν [−] 0.3
NC×NR 49x31

Table 1: Averaged geometry and material properties

step is to obtain the statistical properties like the
covariances from the given Fourier series. As an
efficient random field discretization technique the
EOLE-method (Expansion Optimal Linear Estima-
tion) fromLi and Kiureghian(1993) is used, which
allows to represent the random field with only a few
random variables by minimizing the variance error.
As a main advantage the covariance matrix is only
required on a sub-set of field nodes, the so-called
’random field mesh’. The series is given by

ŵ(xxx,θ) = µ(xxx)+

(

M

∑
i=1

ξi(θ)√
λi

ϕϕϕ i(xxx
S)

)

C(xxxS,xxx) ,

(1)

where the vectorxxxS= [xxx1 ... xxxS
i ... xxxS

M] contains the
M nodes of the random field andxxx= [xxx1 ... xxx j ... xxxN]
theN nodes in full space (e.g. FE-nodes). Conse-
quently,C(xxxS,xxx) leads to a covariance matrix con-
taining the covariances from random field nodes

with the FE-nodes,

C(xxxS,xxx) = (2)
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Furthermore,ξi(θ) is an uncorrelated Gaussian ran-
dom variable with zero mean and unit standard
deviation. ϕϕϕ i(xxx

S) and λi are the eigenfunctions
and eigenvalues of a given autocovariance function
C(xxxS

i ,xxx
S
j ) on the random field mesh. The expected

valueµ(xxx) of the imperfection field is set constant
to zero. However, the separation of the coarser
random field mesh from the FE-mesh allows keep-
ing the eigenvalue problem as small as possible.
This makes the EOLE-method very interesting in
a fuzzy stochastic approach, where with a chang-
ing correlation structure the eigenvalue problem of
the covariance matrix must be solved several times.
To get an autocovariance function from the mea-
surements the following assumptions to the random
field and correlation structure have to be made:
• Gaussian
• Homogeneity
• Separability
• Ergodicity .

In addition to the assumption of Gaussian ran-
dom fields and homogeneity,Schenk and Schuëller
(2003) proposed a fully separable correlation struc-
ture for geometric imperfections:

Cn(∆x,∆y) = σ2
n ρn(∆x) ρn(∆y) , (3)

whereρn(∆x) andρn(∆y) are the one-dimensional
autocorrelation functions along the axial and cir-
cumferential direction with the corresponding lags
∆x and ∆y. σ2

n is here the sample variance of an
imperfection field of thenth test shell defined by

σ̄2
n =

1
M

M

∑
k=1

(w(xxxk)− µ̄n)
2 , (4)

with µ̄n the sample mean of the full imperfection
field of one test shell andM is the number of
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random field nodes, holding the number of data
points M = NC × NR, see Table1. Following to
the assumption of separability the variation of im-
perfections describe independent one-dimensional
stochastic processesw(xr) in axial direction with
r = 1 ... NR observations andw(yc) in circumfer-
ential direction withc= 1 ... NC −1 observations,
where the seam nodes have to be deleted for a cylin-
der as a closed structure. Consequently, the sample
autocorrelation function with respect to axial lags
can be defined as:

ρc(ξ ∆x0) = (5)

1
NR

NR−ξ

∑
r=1

(w(xr +ξ ∆x0,yc)− µ̄n)(w(xr ,yc)− µ̄n) ,

with ξ = 0 ... NR−1 denoting the multiple of the
constant lag∆x0. Similarly, the autocorrelation
function respect to circumferential lags holds

ρr(η∆y0) =
1

NC−1
(6)

NC−1

∑
c=1

(w(xr ,yc+η∆y0)− µ̄n)(w(xr ,yc)− µ̄n) ,

with η = 0 ... NC − 1 times the constant lag∆y0.
Here, it should be noted, that the number of lags,
the upper sum limit, must be set constant toNC−1
for deleting the seam nodes. Finally, to get the sam-
ple autocorrelation function of one test shell, the
method of ensemble averaging is used, assuming
that each stochastic process is ergodic. This means
that one sample with its stochastic information rep-
resents the whole set. The assumption of ergodicity
is allowable if the stochastic process can be divided
into independent parts. The individual parts are the
variation of imperfections in axial and circumferen-
tial direction of each row of nodes. Thus, averaging
the autocorrelation function across the axial sam-
ples with

ρ(ξ ∆x0) =
1

NC−1

NC−1

∑
c=1

ρc(ξ ∆x0) , (7)

and across circumferential samples with

ρ(η∆y0) =
1

NR

NR

∑
r=1

ρr(η∆y0) , (8)

leads to an ensemble autocorrelation function of
one test shell. The results of the estimated auto-
correlation functions of the A-shells from measure-
ments are depicted in Fig.1. Here, the functions
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Figure 1: Estimated autocorrelation functions in axial
(above) and circumferential direction (below)

vary from shell to shell and show a large scatter.
Furthermore, the autocorrelation functions in ax-
ial direction tending to zero for large lags∆x. The
circumferential functions have different wave num-
bers, but all of these functions are symmetrical with
regard to the half circumferential axis. This is due
to the fact that the circumferential distance is al-
ways the shorter way around the cylinder. In addi-
tion, if a representative autocorrelation function of
the full test series is needed, an averaging across all
test shells is possible, illustrated by the ’Average’-
curve in Fig. 1. The proposed fuzzy approach
requires a functional representation of the correla-
tion structure controlled by correlation parameters
or the so-called correlation lengths. The estimated
autocorrelation functions in Fig.1 allow to find
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representative functions for a data fitting. Several
functions have been tested, where the quadratic ex-
ponential function gives a good fit for the axial di-
rection,

ρ(∆x, lc,h) = exp

(

−∆x2

lc,h

)

, (9)

with the correlation lengthlc,h. As a good fit for
the circumferential direction, a linear-cosine form
is chosen:

ρ(∆y, lc,u,T) =

(

1− ∆y
lc,u

)

·cos

(

2π∆y
T

)

,

(10)

with the correlation lengthlc,u and the period length
T. The parameterslc,h and lc,u are regarded as fit-
ting parameters and the period lengthT is kept con-
stant for each shell type to minimize later the num-
ber of fuzzy input variables. The unknown fitting
parameters appear nonlinearly in a fitting model,
hence the nonlinear least square method (NLLSQ)
is used. In this case the definition of the NLLSQ
is to find a minimizerlc,h or lc,u, where the middle
nonlinear problem is solved by the Gauss-Newton
method. The circumferential correlation functions
are fitted on the half function∆y∈ [0,πR] and are
then mirrored at∆y= πR. The results of the fitting
of the correlation functions and sample variance are
presented in Table2. The period length is obtained

shell
σ̄2

[mm]
lc,h
[mm]

lc,u
[mm]

T=const.
[mm]

A-7 0.0070 9234 210 217
A-8 0.0100 2744 180 217
A-9 0.0035 7179 199 217
A-10 0.0029 8630 327 217
A-12 0.0070 4211 307 217
A-13 0.0113 11862 234 217
A-14 0.0041 7733 187 217

Table 2: Fitting results and sample variance

from the fitting of the average correlation curve, but
has been taken equal for all shells in the series.

3. FUZZY STOCHASTIC APPROACH

The present paper focuses on taking into account
different types of uncertainties in this context of
cylindrical shells, namely aleatoric and epistemic
uncertainties. Aleatoric uncertainty is the natural
variability and is mostly modeled with a classi-
cal stochastic approach. It is clear that this type
of uncertainty cannot be reduced. This means
that a manufacturing process of a shell is a ran-
dom process itself with unavoidable uncertainties.
Epistemic uncertainty includes incompleteness and
impreciseness of available data and can be mod-
eled by fuzzy approaches. In contrast to aleatoric
uncertainty, incompleteness and impreciseness is
due to the lack of knowledge and can be reduced,
e.g., by collecting more data or defining stricter
tolerance values for the manufacturing process.
Graf et al.(2015) introduced the concept of ’poly-
morphic uncertainty modeling’, which describes
different models considering more than one un-
certainty characteristic: natural variability, incom-
pleteness and impreciseness. Here, the model of
fuzzy probability based randomness (fp-r) is used.
This model allows taking into account variabil-
ity and incompleteness in the uncertain correlation
structure for geometric imperfections. It is based
on random variables and fuzzy sets. The theoret-
ical background of fuzzy sets and their numerical
treatment is given for example inMöller and Beer
(2004). A normalized fuzzy set̃A is fully defined
as follows:

Ã= {(x,µA(x)) | x∈ R} , (11)

µA(x) : R→ [0,1] ,

where µA(x) is the membership function, which
maps a fundamental setR onto the interval
[0,1]. The numerical treatment requires theα-
discretization, where the membership function is
discretized intor α-levels:

Aαk = {x∈ R | µA(x)≥ αk}, k= 1, ..., r ,
(12)

which are crisp subsets of the supportS(Ã) defined
by

S(Ã) = {x∈ R | µA(x)> 0} . (13)
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Following the definition of fuzzy sets, the here used
fuzzy triangular number can be expressed as fol-
lows:

ã= 〈xl ,xm,xr〉 , (14)

defined by the smallest and largest valuexl andxr

as well as the valuexm related to the membership
µA(x) = 1, also referred to as ’trend value’. The
specification of such a fuzzy number is called fuzzi-
fication and is often based on a histogram as a first
point of reference, where the sample size is poten-
tially small. The main idea of the proposed ap-
proach is to transform the correlation structure in
Eq. (3) to a fuzzy stochastic correlation model:

C̃(∆x,∆y) = σ̃2 ρ̃(∆x) ρ̃(∆y) , (15)

by representing the variancẽσ2 and the correlation
parameters̃lc,h in ρ(∆x) and l̃c,u in ρ(∆y) as fuzzy
triangular numbers. This introduction of fuzziness
extends the common random field representation to
a fuzzy random field definition. A fuzzy random
field is here a collection of fuzzy probability based
random variables (fp-r):

{w̃(xxx,θ) : xxx∈ Ω,θ ∈ Θ} , (16)

wherexxx contains the shell surface coordinates and
Ω denotes the set of all possible outcomesθ . A
fuzzy probability based random variables (fp-r) de-
scribes the probability measure of a random number
with a set of probability functions, seeGraf et al.
(2015). In case of ’fuzzy random geometric im-
perfections’, this means that for the fuzzy correla-
tion structure, defined in Eq. (15), the probability
measure of the event ’geometric imperfection’ has
a fuzzy characteristic. Thus, every event at a loca-
tion xxx0 is represented by the fuzzy valuesσ̃2, l̃c,h
and l̃c,u. The so-called bunch parameter represen-
tation has proven to be beneficial for the numerical
implementation, where the fuzzy random field de-
scribes in a parametric form a function bunch, see,
e.g.,Möller and Beer(2004)

w̃(xxx,θ) = w(s̃ss,xxx,θ) , (17)

where the fuzziness is concentrated in the bunch pa-
rameters̃ss, which contains the three defined fuzzy
numbers:

s̃ss= {σ̃2, l̃c,h, l̃c,u} . (18)

3.1. Fuzzification of the input parameters
For the so-called fuzzification process the fitted re-
sults of the correlation parameterslc,h, lc,u and the
varianceσ̄2 from Table2 are presented in a his-
togram as a first design aid, see Fig.2. In this pa-
per only convex fuzzy triangular numbers with lin-
ear branches are used. It is up to the shell designer
to form the fuzzy numbers. They can be modified
with the aid of expert knowledge or collecting more
data to adopt the membership function for an output
with less uncertainty for a more economical design.
Here, all samples lie in the support set with a con-
servative overhanging of the membership function.
The result of the fuzzification in form of fuzzy tri-
angular numbers is given by

σ̃2 = 〈0.002,0.007,0.012〉 (19)

l̃c,h = 〈1000,9000,14000〉
l̃c,u = 〈175,225,400〉 .

3.2. Fuzzy structural analysis with a HDMR-
metamodel

The main task in this paper is the following map-
ping:

w(s̃ss,xxx,θ) → p̃cr(θ) , (20)

taking into account the advantageous fuzzy bunch
parameter representation, where the fuzzy and
stochastic parts can be decoupled. The numerical
treatment is therefore a combination ofα-Level-
Optimization (ALO) and Monte Carlo simulation
(MCS), respectively. The MCS estimates for a
given configuration of bunch parameterssss0 a de-
sired stochastic output, e.g., the sample mean value
of the critical buckling load ¯pcr(sss= sss0). Consider-
ing a specificα-level αk, the fuzzy bunch parame-
ters are then limited by theα-level boundaries

sss∈ [sssαk,l ,sssαk,r ] = {sssαk} . (21)

The correspondingα-level boundaries of the exem-
plary fuzzy output variable ˜pcr are given by the ex-
treme value problems

p̄cr,αk,l = min
sss∈{sssαk}

[p̄cr(sss)] , (22)

p̄cr,αk,r = max
sss∈{sssαk}

[p̄cr(sss)] , (23)
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Figure 2: Fuzzification of the correlation structure parameters from Table2: variance (left), correlation parame-
ter in axial direction (middle) and circumferential direction (right)

which are here not performed on the original func-
tion p̄cr(sss), but on a previously generated meta-
model

p̄MM
cr (sss) ≈ p̄cr(sss), sss∈ S(s̃ss) (24)

on the supportS(s̃ss) of the fuzzy bunch parameters.
A combined approach of a high-dimensional model
representation (HDMR) of second order and Least-
Square polynomial approximation is used. Basics
of HDMR can be found inRabitz and Aliş(1999).
For the metamodel 61 exact MCS for the desired
stochastic output are performed. Therefore, a di-
rect Monte Carlo simulation approach is used with
500 simulations per evaluation point. The complete
analysis builds with the metamodel a three-loop
computational model. The characteristic of this
model is that the outer loop forms the fuzzy analysis
and the MCS forms the stochastic analysis (middle
loop). The fundamental solution represented here
by the numerical buckling analysis (inner loop) is
based on a nonlinear FE-model. Besides, the accu-
racy of the stochastic model depending mostly on
the sample size, the quality of the FE-model has
a great influence on the quality of the fuzzy output,
which is here the fuzzy sample mean ˜pcr of the criti-
cal buckling load. 61×500= 30500 buckling prob-
lems are solved to get the fuzzy mean value of the
critical buckling load. Due to the fact that the FE-
calculation must be repeated several times it is also
worthwhile to optimize the FE-model for speed,
e.g., keeping the number of load/displacement steps

low, using as many elements as necessary, selecting
a fast solver and efficient storage technique.

4. NUMERICAL RESULTS

4.1. Buckling analysis with a nonlinear finite ele-
ment model

The FE-model of the cylinder as used in this study
is depicted in Fig.3. The dimensions and mate-

Figure 3: FE-model of the axially loaded cylinder

rial properties of the isotropic shells are the aver-
aged values from Table1. Furthermore, a geometric
nonlinear quadrilateral shell element with moder-
ate rotations fromWagner and Gruttmann(2005) is
used. It is based on linear shape functions using the
isoparametric concept. Additionally, to avoid shear
locking, the assumed natural strain method (ANS)
is implemented. The geometric imperfection are
modeled as nodal deviation in thew−direction.
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Since the imperfections alter the coordinates of the
FE nodes warping has to be taken into account in
terms of axial loading. The cylindrical shell is sim-
ply supported on both edges, where the so-called
SS-3 boundary condition holds at the lower edge:
u = v = w = 0, ϕx 6= 0,ϕy 6= 0 and at the upper
edge: u = ∆u, v = w = 0, ϕx 6= 0,ϕy 6= 0. The
cylinder is loaded by displacement control until the
stability point is reached, where the reaction forces
at the bottom are summed to calculate the critical
buckling load. In this paper, if one sign of diag-
onal elements of the tangent stiffness matrix will
become negative the load state is saved and then
the calculation is aborted by ’task killing’ within
the parallelized Monte Carlo loop. All stability
loadsPcr,imp are then normalized by the critical load
Pcr,per f = 5073N of the perfect shell by

αcr =
Pcr,imp

Pcr,per f
, (25)

whereαcr is denoted as the critical load factor. The
FE-mesh consists of 200 finite elements in circum-
ferential direction and 100 elements in axial direc-
tion. Beside the FE-mesh, another important point
is the definition of a random field mesh. Here, the
number of random field pointsNC×NR is given by
the number of measuring points from Delft’s im-
perfection data bank. Care must be taken to ensure
that the random field properties can be represented
by the selected ’stochastic mesh’.

4.2. Fuzzy result and decision making
The results of the fuzzy stochastic analysis are pre-
sented as fuzzy numbers of the critical buckling
load factor, particularly the fuzzy result mean value
ᾱcr is evaluated, see Fig.4. In addition to the fuzzy
results, critical loads of the original shells, where
the measured imperfections are applied as Fourier
series on the FE-model are also presented in his-
togram form, labeled as ’Fourier impf.’. The trend
value of the membership function correlates very
well with the critical loads referred to Fourier im-
perfections. The fuzzy result shows a value greater
than one for the normalized buckling load factor,
which means there are buckling loads greater than
the critical perfect load. This is not realistic and
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Figure 4: Fuzzy results of the mean value of the critical
buckling load factor

is due to a little extrapolation error of the HDMR-
metamodel. But in fact, there are no fundamen-
tal solutions larger than the perfect buckling load
Pcr,per f. Furthermore, the figure also includes a his-
togram plot of the normalized experimental results
from Delft’s imperfection data bank. However, it
should be considered that the experimental shells
contain not only geometrical imperfections as devi-
ation of the shell surface, but also boundary, load or
material imperfections. The fuzzy output shows a
large support. This is a hint for large uncertainties
and it can be worthwhile to reduce the uncertainties
of the input. In other words, it is perhaps possible
for the shell designer to get a smaller support of the
output with a little effort by narrowing the input,
e.g., testing just a few more shells to identify out-
liers. For demonstration how it can work in practice
fictional shells are added for a modified fuzzifica-
tion process, see Fig.5. This leads to a narrowed
fuzzy input:

σ̃2 = 〈0.005,0.007,0.011〉 (26)

l̃c,h = 〈3000,9000,13000〉
l̃c,u = 〈175,225,325〉 .

The result is that the modified fuzzy outputµ(ᾱcr)
in Fig. 4 shows a smaller support.
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Figure 5: Modified fuzzification of the correlation structure parameters: variance (left), correlation parameter in
axial direction (middle) and circumferential direction (right)

5. CONCLUSIONS

The presented approach aims to consider imprecise
data to the decision making process in cylindrical
shell design, where worst case studies still result
in too conservative designs. Therefore, a fuzzy
stochastic analysis is introduced for the simulation
of the geometric imperfections. More exactly, the
polymorphic uncertainty model of fuzzy probabil-
ity based randomness (fp-r) fromGraf et al.(2015)
is used to take into account the natural variability
and incompleteness. The procedure can be summa-
rized in a possible fuzzy design concept for cylin-
drical shells:

• Representation of measured geometric imper-
fections as Fourier series

• Evaluation of correlation functions for a ran-
dom field representation

• Fitting of the estimated correlation function
• Fuzzification of the correlation parameters:

s̃ss= {σ̃2, l̃c,h, l̃c,u}
• Fuzzy analysis with the aid of a metamodel
• Decision making based on fuzzy output vari-

ables, e.g., the sample mean ˜pcr

This approach still needs improvement by taking
into account all imperfection types, e.g., boundary,
load or material imperfections. Furthermore, the
dependencies of the different input parameters have
to be investigated. For example, the correlation pa-
rameter with the greatest influence on the buckling
load should be identified, which cannot be seen in
the presented fuzzy output.
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