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Abstract

Background: In genome-wide association studies (GWASs), meta-analysis has been widely used to improve statistical
power by combining the results of different studies. Meta-analysis can detect phenotype associated variants that are
failed to be detected in single studies. Especially, in biomedical sciences, meta-analysis is often necessary not only for
improving statistical power, but also for reducing unavoidable limitation in data collection. As next-generation
sequencing (NGS) technology has been developed, meta-analysis of rare variants is proceeding briskly along with
meta-analysis of common variants in GWASs. However, meta-analysis on a single variant that is commonly used in
common variant association test is improper for rare variants. A sparse signal of rare variant undermines the association
signal and its large number causes multiple testing problem. To over-come these problems, we propose a meta-
analysis method at the gene-level rather than variant level.

Results: Among many methods that have been developed, we used the unified quadratic tests (Q-tests); Q-test is
more powerful than or as powerful as other tests such as Sequence Kernel Association Tests (SKAT). Since there are
three different versions of Q-test (QTest1, QTest2, QTest3), each assumes different relationships among multiple rare
variants, we extended them into meta-study accordingly. For meta-analysis, we consider two types of approaches, the
one is to combine regression coefficients and the other is to combine test statistics from each single study. We extend
the Q-test for meta-analysis, proposing Meta Quadratic Test (Meta-Qtest). Meta Q-test avoids the limitations of
MetaSKAT. It does not only consider genetic heterogeneity among studies as MetaSKAT but also reflects diverse real
situations; since we extend three different Q-tests into meta-analysis respectively, flexible Meta Q-test suggests way to
deal with gene-level rare variant meta-analysis efficiently From the results of real data analysis of blood pressure trait,
our meta-analysis could successfully discovered genes, KCNA5 and CABIN1 that are already well known for relevance
with hypertension disease and they are not detected in MetaSKAT.

Conclusion: As exemplified by an application to T2D Genes projects data set, Meta-Qtest more effectively identified
genes associated with hypertension disease than MetaSKAT did.
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Background
Genome-wide association studies (GWASs) have identi-
fied many loci that contributed to human complex traits.
As genotyping technologies such as next-generation
sequencing (NGS) technology evolve, we have been able
to gain larger data and more accurate information on
human genetics. Discovery of rare variants is one of the
most valuable crops of the NGS technologies [1]. The
subject of analysis naturally went over from common
variants to relatively less studied rare variants, because
GWASs on common variants could not entirely explain
genetic-heritability, only explains small portion of ex-
pected heritability. Such phenomenon, known as “miss-
ing heritability”, posed the necessity of analyzing rare
variant in human disease with a belief that rare variants
play an important role in association study [2].
Persisting on same methods in common variant ana-

lyses is not appropriate for dealing with the rare variants
[3]. Due to the fact that only few people share rare
variants, we need a larger sample size than in common
variant association test. Small sample size could mark-
edly lower the power of a statistical test. Besides, if each
variant effect is weak then single variant analysis has
lower power to detect true weak signal. Therefore, in
such situations instead of single variant association test,
gene level test that handles multiple variants in a gene
could be helpful in strengthening the signals by consid-
ering several weak ones at a time [4]. In addition to the
benefit of increasing the power, gene-based multi-
marker test mitigate the burden of multiple testing
correction and easily interpret biological functional
meaning of detected genes from the result of test. For
these reasons, gene-based test is often used for rare vari-
ants analysis.
Over the past few years, various statistical methods for

gene-level rare variant association test are developed.
From collapsing based methods such as Combined
Multivariate and Collapsing (CMC) and variable thresh-
olds test (VT test) to variance component tests such as
C-alpha and Sequence Kernel Association Tests (SKAT
or SKAT-O), each method performs well in different
situations [5–9]. CMC method is the one of most repre-
sentative burden type tests. It unifies collapsing tech-
nique and multivariate t-test, Hotelling’s T-test. Based
on variants’ minor allele frequency (MAF), variants are
divided into several sub-groups, then their genotype
values are summarized in 0 or 1. With collapsed geno-
type values, Hotelling’s T-test is conducted. Likewise,
CMC or VT test is also well used burden test, but it is
adaptive burden test. Compared to regular burden test
like CMC, VT test allows flexible MAF threshold. Since
appropriate threshold can impact on power, VT test can
increase the power by choosing the optimal threshold
that maximizes test statistic [6]. CMC and VT test are

powerful under the assumptions of high proportion of
causal variants and same direction of their effects on
certain disease; most single-nucleotide polymorphisms
(SNPs) in a gene are causal and they are all protective or
deleterious. When a small number of SNPs are causal
and some of causal are protective and others are dele-
terious in a gene, burden test loses the power, and
C-alpha or SKAT outperform them. Both C-alpha and
SKAT are variance component test that test the variance
components instead of means. C-alpha test is designed
for case-control studies without covariates. Under null
hypothesis that says that no variants are associated with
a phenotype, for case-control data, the distribution of al-
lele counts follows binomial distribution. It compares
the observed variance of counts with expected variance.
The test statistic for C-alpha includes squared terms that
are observed sample variances, thus C-alpha is robust
even in the presence of different directions of variants’
effects (because the signs of effects are canceled out and
only their effect sizes remain in the test statistic). Des-
pite of the advantage as noted earlier, C-alpha has some
disadvantages too. P value is computed using permuta-
tion that requires intensive computation and covariate
adjust is not available. The method proposed to solve
these problems is SKAT. SKAT is variance component
score test implemented in a regression framework. To test
the null hypothesis of zero regression coefficients effect
sizes of genetic variants in a gene, SKAT assumes that
each regression coefficient follows arbitrary distribution
with zero mean and the variance, product of weight and
variance component. Then, testing original null hypothesis
becomes the same as testing whether each variance com-
ponent is zero or not. Variance component score statistic
is employed in this process. Since SKAT is derived from
regression model, it can include covariate terms easily. P
value is calculated analytically and diverse kernel functions
that can explain genetic similarity between individuals are
introduced. Furthermore, optimal version of SKAT,
SKAT-O is proposed to achieve robust power regardless
of directions of variants. SKAT-O is combination of bur-
den test and SKAT, weighted average of burden and
SKAT. SKAT-O searches the optimal weight that is the
weight obtaining the minimum p value of test statistics.
However, even though robust power is substantially
attained by SKAT-O test, there is still no uniformly most
powerful test in all situations [10].
Gene-level Q-test is another powerful rare variant as-

sociation test [11]. It also uses classical multiple linear
regression as well as SKAT, but it takes Wald test based
on an eigenvalue decomposition of regression coeffi-
cients. Quadratic form of test statistics in Q-test is effi-
ciently implemented in diverse scenarios which embrace
various cases in the relation of SNPs in a gene. First,
Q-test considers proportion and effect sizes of causal
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rare variants. Second, it considers the direction of causal
variant effects. Finally, it can be used even in the presence
of rare variants with common variants, together; this is
the major advantage of Q-test. In other words, Q-test
could achieve robust power in any case, and its exceeding
power was verified in enormous simulation studies.
Meta-analysis is a popular approach to increase the

power in GWASs [12]. Aggregated summary from diverse
studies recovers as much information as individual-level
data but without any exertion of pooling early stage data
sets. In this respect, meta-study has an advantage of
increasing the sample size and preserving computational
efficiency [13]. Meta-analysis is sometimes essential in in-
evitable circumstances where individual-level data cannot
be distributed although quickly advancing NGS technolo-
gies allow us to have sequencing data at smaller cost than
before, producing data still requires considerable time and
money. Not only because of this, but also because of re-
leasing personal data to public is a sensitive issue, not all
individual-level datasets are shared. Therefore, meta-ana-
lysis, which requires results only, becomes exceptionally
useful.
The recently proposed MetaSKAT is extended SKAT for

meta-analysis for gene-level rare variants. MetaSKAT ag-
gregates the score statistics of each variants in a gene
came from SKAT. Depending on the assumption of gen-
etic effect, homogeneity or heterogeneity of genetic effects
across studies, it aggregates the summary score statistics.
When genetic effects are homogeneous, summary statis-
tics are combined across the studies first and then com-
bined across the variants in a gene, but when genetic
effects are heterogeneous, the combining order is re-
versed. Optimal MetaSKAT that is weighted sum of test
statistic of MetaSKAT and its burden for meta-analysis is
also proposed to embrace the merits of burden and
non-burden test together. However, simulation results of
MetaSKAT show that type I error rates are somewhat un-
controlled. There is another limitation of MetaSKAT.
When cohort specific genes are detected by MetaSKAT, it
does not report that which cohort is highly associated with
a phenotype [14].
In this paper, we extend the Q-test for meta-analysis,

proposing Meta Quadratic Test (Meta-Qtest). Meta
Q-test avoids the limitations of MetaSKAT. It does not
only consider genetic heterogeneity among studies as
MetaSKAT but also reflects diverse real situations; since
we extend three different Q-tests into meta-analysis
respectively, flexible Meta Q-test suggests way to deal
with gene-level rare variant meta-analysis efficiently.

Materials and methods
Q-test for single study
Q-test is established in a multiple linear regression
framework for a quantitative trait.

yki ¼ βk0 þ
Xm
j¼1

βkjSkji þ γZki þ ϵki; ϵki � N 0; σ2k
� �

;

ð1Þ
where yki is the phenotype of the ith individual in the

kth study, Skji is the genotype value coded 0, 1 or 2
under an additive genotype model (dominant or reces-
sive model is also applicable), βk = (βk0,⋯, βkm)

, is the
vector of regression coefficients for genetic effects of m
SNPs, Zki is the covariate value, and γ is the correspond-
ing vector of regression coefficients. After fitting model,
using the estimated regression coefficients, βk, QTest1
creates the new variable, pooled coefficients, βpooled, k.
Then, the null hypothesis of interest is to test whether
pooled genetic effect exists or not:

H0 : βpooled;k ¼ 0:

However, for QTest2 we test the vector of regression
coefficients, βk, rather than pooled coefficient to allow
for considering bidirectional variants effect. Correspond-
ing null hypothesis is

H0 : βk ¼ 0 or βk0 ¼ βk1 ¼ … ¼ βkm ¼ 0:

To test the hypothesis, Q-test constructs a Wald-type
statistic which has the form of quadratic statistics. De-
pending on the different assumptions needed to collapse
the estimates of effects size parameters, there are three
versions of Q-test: QTest1, QTest2, and QTest3.

Burden Test: Quadratic Test1 (QTest1)
QTest1 is a burden type of test. A basic assumption is
that all of SNPs in a gene have the same direction of ef-
fects on the phenotype. That is, we assume that all vari-
ants within a region are all deleterious or protective. If
the assumption is true, the power of the burden test be-
comes higher by aggregated effects of each variant.
When combining variants, Qtest1 uses the inverse vari-
ance weighting method that gives more weight to SNPs
that have smaller variances,

αkj ¼
1= var β̂kj

� �
Xm
j¼1

1= var β̂kj
� �� � :

Also, like SKAT, QTest1 introduces MAF based
weight, wkj ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAF jð1−MAF jÞ

p
, proposed by Mad-

sen and Browning [15]. By using the MAF based weight,
our research focus on the rare SNPs is justified (rarer
variant has higher probability of being causal variant).
With these two different weights, aggregated effects are

expressed as β̂pooled;k ¼ αTk Wk β̂k ; where αk is the vector
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of each variant’s inverse variance weight and Wk is the
diagonal matrix of each variant’s MAF based weight,

Wk ¼
wk1

⋮
0

⋯
⋱
⋯

0
⋮

wkm

2
4

3
5:

β̂k is the vector of estimated coefficients of variants. In

the ordinal regression framework, β̂pooled;k follows a nor-

mal distribution with zero mean and αTk Wk varðβ̂kÞWk

αk variance. Based on the distribution of β̂pooled;k , the
Wald type of statistics QTest1 is given by

Q1 ¼ αTk Wk var β̂k
� �

Wkαk
� �−1

β̂pooled;k
2 � χ21:

Non-burden test: quadratic Test2 (QTest2)
In case of mixed variants in direction of effect, Qtest1
would work poorly. Thus, QTest2 assumes that some of
variants are protective, and the others are negative. In-
stead of aggregating the effects of variants, it directly

constructs Wald statistics for β̂k ,

QWald
2 ¼ β̂

T
k var β̂k

� �−1
β̂k � χ2m;

where m is the number of variants in a gene. However,
the number of rare SNPs in a gene is usually large, so a
large degree of freedom lowers the power. Thus, QTest2
proposes a gamma method that could lower the degree
of freedom [16].

QWald
2 ¼ β̂

T
k var β̂k

� �−1
β̂k ¼ β̂

T
k UkΛ−1UT

k β̂k � χ2m;

where; var β̂k
� �

¼ UΛUTand Λ ¼ diag λkð Þ:

pkj ¼ 2 1−Φ uTkjβ̂k=
ffiffiffiffiffiffi
λkj

q� �� �
;

where ukj ¼ jth column of Uk :

The final form of Qtest2 statistics is

Q2 ¼
Xm

j¼1
G−1

a;1 1−pkj
� �

� 1=2χ22ma:

Optimal test (unified test): quadratic Test3 (QTest3)
Qtest3 is an optimal method, weighted average of bur-
den type (Qtest1) and non-burden type (Qtest2) statis-
tics. To combine two statistics that follow chi square
distributions with different degrees of freedoms, there is
a step for making Q2 has the same degree of freedom as
Q1 (df = 1). To summarize the steps, first we define the

new parameter, β̂
�
k that is independent with β̂pooled;k , and

based on the new defined β̂
�
k , we can get the Q2 statis-

tics, Q�
2j1 . Next step is to use a gamma method to make

Q�
2j1 has 1 degree of freedom (Q2 ∣ 1). Using final two sta-

tistics, Q1 and Q2 ∣ 1, we can get the optimal Qtest3 sta-
tistics through a grid search of weight. Final p value of
Q3 is calculated by empirically. Pre-calculated empirical
distributions are employed in the final step, so the com-
putational burden is reduced.
Since Qtest3 could accommodate both scenarios that

assume same or different direction of SNPs in a gene, its
result is usually robust. The followings are detailed steps
of Qtest3.

In step 1 in algorithm 1, we compute β̂
�
k to make β̂

�
k⊥

β̂pooled;k . In step 2, we compute Q�
2j1, where V �

k ¼ varðβ̂�k
Þ and U�

k consists of eigenvalue vectors of V �
k , and Λ�

k is
the diagonal matrix whose diagonal elements are eigen-
values of V �

k : By step 3, we could obtain Q2 ∣ 1 which fol-
lows χ21 distribution, where p2 ∣ 1 is obtained from Q�

2j1.

MetaQ-test for Meta analysis
Meta-analysis requires summary statistics from each sin-
gle study. P value and z-score have been conventional
summary statistics that could combine the results across
study, but in GWAS meta-analysis, the methods using p
value and z-score are generally inferior to the model
based meta-analysis; those methods cannot efficiently
take account of the between-data-set heterogeneity [17].
In model based meta-analysis, there are two different
approaches, fixed effect model and random effect model
[18]. Under the fixed effect model, effect sizes of all
studies are presumed to be same, in other case, to be dif-
ferent [19]. MetaQ-test considers both cases. Conse-
quently, each QTest has fixed and random versions of
meta-analysis.
Another significant feature in MetaQ-test is it is ex-

tended keeping the original statistical model structure,
structure of QTest. Qtest1 is burden type and Qtest2 is
non-burden type test. This fact is also applied to
MetaQ-test. MetaQtest1 is a burden and MetaQtest2 is
a non-burden type test. MetaQ-test keeps not only type
of statistics but also the process derived the statistics.
By doing that, it can consistently maximize merits of
test statistics.
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Summary statistics used and the way to synthesize
them are essence in meta-analysis [20]. Depending on
the type of model-based meat-analysis (fix or random)
and the type of test statistics (burden or non-burden),
meta-analysis requires different input values and takes
different approaches for combining those values.

Burden test: Meta quadratic Test1 (metaQtest1)
Meta-analysis assuming homogeneous genetic effects
across studies: Homo-meta-Q1

First, we extend Qtest1 to meta-analysis maintaining
burden type test. We assume that all variants in a gene
across studies are from one single study. In Qtest1, to

aggregate the effects of variants, β̂pooled;k ¼ αTk Wk β̂k is

introduced. Similarly, we introduce β̂pooled that adds up

all of variants throughout studies. The way of combining
each variant’s effect is exactly same as Qtest1, weighted
sum of effect sizes of all variants. When we suppose that
there are K studies, the estimated pooled effect size of

regression coefficients is β̂pooled ¼ αTW β̂ ¼ Pm
j¼1α jw jβ̂ j,

where j is the index for variants, β̂ is the column vector

composed of β̂ j , α is the column vector that includes αj
s (j = 1, 2…,m) as components, and W is the diagonal
matrix with wj s as diagonal elements.

β j ¼
XK

k¼1

nk
I1 � n1 þ I2 � n2 þ⋯þ IK � nK β̂kj; for j ¼ 1; 2;⋯;m;

β ¼ β̂1; β̂2;⋯; β̂m
� �T

;

α j ¼
XK

k¼1

nk
I1 � n1 þ I2 � n2 þ⋯þ IK � nK

� �2

αkj; for j ¼ 1; 2;⋯;m;

α ¼ α1; α2;⋯; αmð ÞT ;
w j ¼

XK

k¼1

nk
I1 � n1 þ I2 � n2 þ⋯þ IK � nK wkj; for j ¼ 1; 2;⋯;m;

W ¼
w1

⋮
0

⋯
⋱
⋯

0
⋮

wm

2
4

3
5:

It is natural that we collapse the variants in the same
locus with appropriate weights, such as sample size.
Testing hypothesis in this case is H0 : βpooled = 0. Since

under the null assumption, β̂pooled is normally distributed

with zero mean and variance αTWVWα, the Wald type
of test statistics is

Q hom−meta−q1 ¼ αTWvar β̂
� �

Wα
� �−1

β̂
2
pooled:

Since the statistics for meta-analysis is constructed
based on the preexisting result of individual level data

analysis, varðβ̂Þ cannot be estimated by the raw data.
However, if we assume the independence among studies,

we can define varðβ̂Þ as the block diagonal matrix that

has diagonal with varðβ̂kÞ,

V ¼ var β̂
� �

¼ var β̂1; β̂2;⋯; β̂m
� �T

� �

¼

XK

k¼1

nk
I1 � n1 þ⋯þ IK � nK

� �2

cov β̂k1; β̂k1
� �

⋯
XK

k¼1

nk
I1 � n1 þ⋯þ IK � nK

� �2

cov β̂k1; β̂km
� �

⋮ ⋱ ⋮XK

k¼1

nk
I1 � n1 þ⋯þ IK � nK

� �2

cov β̂km; β̂k1
� �

⋯
XK

k¼1

nk
I1 � n1 þþ⋯þ IK � nK

� �2

cov β̂km; β̂km
� �

2
66664

3
77775:

We can easily check that Qhom −meta − q1 follows
chi-square distribution with 1 degree of freedom, be-
cause it is the square of single standard normal random

variable, β̂pooled . To draw the statistics, Qhom −meta − q1,

we need estimated β̂kjs from each study, its variance and

MAF weights as inputs. Thus, we call this approach
beta-based approach, also because this is burden type, it
is like assuming homogeneous effect (same regression
coefficients) across the studies.

Meta-analysis assuming heterogeneous genetic effects
across studies: Het-meta-Q1
Assuming a variant may have a different effect across
studies, we can consider the case of heterogeneous ef-
fects over studies. This assumption is in accordance with
a meta model with random effects. Since we allow the
heterogeneity of effect, we can use the results of each
study’s regression fit. The model fittings were carried
out separately, so the test statistics for association are
made of different estimated regression coefficients. Ac-
cordingly, the outcome of model fitting in each study
that takes account of heterogeneity is appropriate for
summary statistics for meta-analysis.
The fact that Q1 follows the chi-square distribution

also makes us combine Q1 s easily. Thus, test statistics
of each study would be a naïve and handy summary stat-
istic for meta-analysis

Qhet−meta−q1 ¼
XK

k¼1
Q1 ¼

XK

k¼1
αTk Wk var β̂k

� �
Wkαk

� �−1
β̂pooled;k

2

However, Qhet −meta − q1 is a statistic for burden test in
respect of sum of single burden statistics. Wald type of
statistics for a single variant is distributed as the
chi-square distribution with one degrees of freedom.
When we assume the independence between studies,
then the sum of test statistics also follows a chi-square
distribution with K degree freedom, where K is the num-
ber of studies in meta-analysis, Qhet−meta−q1 � χ2K . In the

process of deriving Qhet −meta − q1, we only require the

test statistics. Therefore, we call this approach statistics

based meta.
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Non-burden test: Meta quadratic Test2 (metaQtest2)
Meta-analysis assuming homogeneous genetic effects
across studies: Homo-meta-Q2
We extend Qtest2 to meta-analysis in the same manner
as the Meta-Qtest1: fixed(homo) and random(hetero)
version of meta. However, the main difference between
Meta-Qtest1 is that we do not combine the effects of
different variants, we dose only collapse the same vari-
ants. The basic idea of Meta-Qtest2 is that we regard
SNPs on the same locus as the single SNP. For this reason,
this approach is different with burden meta-analysis.
It is possible to collapse variants of same locus, because

of the assumption of homogeneity in genetic effects size
throughout studies. In order to make representative gen-
etic effects size that combines SNPs on the same locus, we
use weighted sum. Weights are given as proportional to
sample size of study. Representative of regression coeffi-
cient of jth SNP is expressed as below,

β̂ j ¼
XK

k¼1

nk
I1 � n1 þ I2 � n2 þ⋯þ IK � nK β̂kj; for j ¼ 1; 2;⋯;m:

For the sake of simplicity, we assume that the num-
ber of variants in a gene is the same across the study,
m =m1 =m2 =⋯ =mK.
Since all populations do not share the same variants

commonly, some variants exit only in a specific popula-
tion. We thus put an indicator function in front of index
of sample size. To maintain the framework of Qtest2, we
also need variance-covariance matrix of estimated re-
gression coefficients. Under the independence assump-
tion of studies, we derive the variance-covariance

matrix, V, analogous to β̂ j using the sample size propor-

tional weights,

V ¼ var β̂
� �

¼ var β̂1; β̂2;⋯; β̂m
� �T

� �

¼

XK

k¼1

nk
I1 � n1 þ⋯ þ IK � nK

� �2

cov β̂k1; β̂k1
� �

⋯
XK

k¼1

nk
I1 � n1 þ⋯þ IK � nK

� �2

cov β̂k1; β̂km
� �

⋮ ⋱ ⋮XK

k¼1

nk
I1 � n1 þ⋯ þ IK � nK

� �2

cov β̂km; β̂k1
� �

⋯
XK

k¼1

nk
I1 � n1 þ⋯þ IK � nK

� �2

cov β̂km; β̂km
� �

2
66664

3
77775:

The following step is identical to QTest2. Using
eigen-decomposed V =UΛUT, we construct the Wald
type statistic,

QWald
2−meta ¼ β̂

T
V −1β̂ ¼ β̂

T
UΛ−1UT β̂ � χ2m;

where Λ ¼ diag λð Þ:

pj ¼ 2ð1−Φð u
T
j β̂ jffiffiffiffi
λ j

p ÞÞ ;

where uj ¼ jth column of U ;

Q hom−meta−q2 ¼
Xm

j¼1
G−1

a;1 1−pj

� �
� 1=2χ22ma:

Meta-analysis assuming heterogeneous genetic effects
across studies: Het-meta-Q2
For rare variant analysis, overlapped variants with other
studies are not many. Thus, the approach of
homo-meta-Q2 that aggregates the overlapped SNPs in
the same locus could not be appropriate for the rare
variant analysis; the estimate of variance-covariance
matrix is unstable. An easy alternative way is to assume
not homogeneity but heterogeneity of genetic effects. To
satisfy this assumption and to accommodate different
directional effects among variants in a region, we use
the result of single study.
Combining single study results using p value is con-

ventional, but this method has a limitation upon
achievement of heterogeneity among studies; it just as-
sumes independence among studies. Instead of p-value
based method, we combine test statistics of each study
for Qtest2. Q2 follows a mixture of chi-square distribu-
tions and the summation of the Q2 then also follows a
mixture of chi-square distributions.

Qhet−meta−q2 ¼
XK

k¼1
Q2 ¼

Xm

j¼1
G−1

a;1 1−pkj
� �

� 1=2 � 1=2χ22maK :

In Homo/Hetero-meta-Q2, the value of a determines
the shape of the mixture of chi-square distribution and
this value depends on the gene size (number of SNPs in
a gene). Therefore, the choice of a should be careful.

Optimal test (unified test): Meta quadratic Test3
(MetaQtest3)
We develop an optimal quadratic meta-analysis for ro-
bust power gain. A burden type test is known to be
more powerful when most variants in a region are causal
and their effect directions are the same, but a
non-burden type is opposite to this case. Therefore, ap-
plying one of the two tests can lose the power to detect
the associated variants with a phenotype, if every single
gene dose not satisfy the same assumption. A unified ap-
proach is to use a weighted average of burden and
non-burden test. Since this approach allows two con-
flicted assumptions about direction among variants (bur-
den or non-burden), an optimal test usually achieves the
robust power regardless of directional assumptions.

Meta-analysis assuming homogeneous genetic effects
across studies: Homo-meta-Q3
When studies are homogeneous, we suggest Qhom −meta

− q3 that is weighted average of Qhom −meta − q1 and Qhom

−meta − q2. We build a test for meta with an adjustment
for homogeneous case. The following are steps for
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constructing Qhom −meta − q3. The steps are identical to

Qtest3 but for substituting collapsed variables, (β̂, β̂pooled

, α, W,V) instead of vector of variables from each study,

( β̂k , β̂pooled;k , αk, Wk, Vk). The collapsed variables are

defined in homo MetaQ-test. Like Qtest3, the empirical
distribution of suggested test statistic is calculated from
pre-calculated distribution in the step 5.

Meta-analysis Assuming Heterogeneous Genetic Effects
across Studies: Het-meta-Q3.
When studies are heterogeneous, we suggest Qhet −

meta − q3 that is weighted average of Qhet −meta − q1 and
Qhet −meta − q2. The following are steps for Qhet −meta − q3.
The steps are similar to Qtest3 and MetaQTest3 but, in
step 2 we use the sum of Wald type statistics, Q�

2j1 from

each study. For the sake of simplicity, we assume that
the number of variants in a gene is the same across the
study, thus the degree of freedom is just multiplication
K by m.

Numerical simulations
To evaluate the properties of the proposed methods, we
performed the simulation study. We generated the geno-
type data using COSI program that implements coalescent
model, and we obtained both length 200 kb and 10,000
European-like haplotypes and African-American-like hap-
lotypes [21]. By randomly mating with haplotypes, we
could obtain genotype data for analysis. The 3 kb regions
are also randomly selected for each gene and rare variants
under the threshold are analyzed [22]. We filtered out

common variants with the threshold of MAF larger than
0.03 and singleton SNPs. Left figures consider MAF < 0.05
and right figures consider MAF < 0.01. In European popu-
lation, 82.93% variants have MAF < 0.01 and 67.51% vari-
ants have MAF < 0.001, this frequency is different from
that of generated simulation data set in MetaSKAT (86
and 76% respectively). Since COSI program gives random-
ness in generating haplotypes, this difference could hap-
pen even using the same input parameters. Table 1 shows
the simulation study settings which we borrowed the basic
idea of them in MetaSKAT. For precise comparison of our
methods with MetaSKAT, we brought their setting here
and tried to prove better performance of MetaQ-test even
in the setting for MetaSKAT. Giving variety to kind of
population such as sample size and number of covariates,
we considered six different scenarios like MetaSKAT.
Using COSI program, MetaSKAT generated genotype data
set for different populations and created 3 single studies.
The number of different scenarios of simulation that they
considered is 6, and half of them have the same study
sample size and rest of them have different sample size.
To give heterogeneity among the studies, in addition to
different size, they also allocated different population
groups and different number of covariates to each study.
We compared the proposed methods with other exist-
ing meta-analysis methods. Meta-analysis methods
that we considered are as follows: MetaQ-test (Hom--
meta-Q1, Het-meta-Q1, Hom-meta-Q2, Het-meta-Q2,
Hom-meta-Q3, Het-meta-Q3), MetaSKAT (Hom-me-
ta-SKAT, Het-meta-SKAT, Hom-meta-SKAT-O, Het-
meta-SKAT-O), Meta-Burden, Fisher’s combined
probability test and Stouffer’s Z-score method [23, 24].

Type I error and power simulations
For type I error simulations, we generated 100 phe-
notypes for 100 each gene under the null hypothesis;
there is no association between a gene and a
phenotype.

yki ¼ 0:5Xk1i þ⋯þ 0:5Xkqki þ εki; εki � N 0; 1ð Þ;
ð2Þ

As the type I error simulation of MetaSKAT, Xk1i is
the covariate taking 0 or 1 value with equal probabil-
ity 0.5. The rest of covariates, from Xk2i to Xkqk i are
taken from a standard normal distribution. The infor-
mation of covariates for each study is in the Table 1.
The index, qk indicates the number of covariates for
kth study. Since we generated 100 genes and 100
phenotypes, we carried out 10,000 times association
tests, and the level of significance, we gave α = 0.01
and 0.001.
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Unlike type I error simulations, we generated 1000
genotype datasets and made phenotypes using the below
model for power simulations,

yki ¼ 0:5Xk1i þ⋯þ 0:5Xkqk i þ G0
ki;causalβk;causal þ εki; εki � N 0; 1ð Þ

ð3Þ

Gki, causal is a vector of causal variants in a gene, and
βk, causal is their effect size. For the proportion of causal
variants, we set four cases, 10, 20, 30 and 50% of vari-
ants are causal like in MetaSKAT. To illustrate the effect
of burden or non-burden type test, we also assumed that
all variants are positive or 80% are positive and rest of
20% are negative. Since the number of causal variants or
positive variants could not be integer in some cases
because of small number of variants in a gene, we gener-
ated number of causal variants in Bernoulli distribution.
The regression coefficient of genetic effect is given same
as the MetaSKAT, βk, causal = c|log10(MAF)|. However,
we used study specific MAF rather than population
MAF, because in reality we hardly get the population
MAF even in Meta-analysis. Defining the coefficient in
this way reflects the assumption of rare variant study;
the rarer SNPs have the larger effects on the phenotype.
We set c = 0.475 in 5% of causal variants, 0.375 for 10%,
0.25 for 20%, and 0.175 for 50% of causal variants re-
spectively. Since the effect size of regression coefficient
depends on the MAF, the case for different MAF across
the studies assumes heterogeneous effect and the case
for the same MAF assumes homogeneous effect. These
assumptions rely on the belief that different populations
could have different MAF, and this phenomenon is
called population stratification. In the simulation work,
there are some differences with MetaSKAT. First, we
used haplotypes that have different distribution of allele
frequencies with that of MetaSKAT and second, we used
study specific MAF rather than population MAF that
was used in simulation of MetaSKAT. Finally, we used
Bernoulli distribution to assign causal variants rather
than exact given proportion percentages. We expected
that the differences might cause the slightly different

power results of MetaSKAT calculated here with MetaS-
KAT paper.

Materials
Meta-analysis for gene-level rare variants association
studies
We analyzed whole exome sequencing data from Type 2
Diabetes Genetic Exploration by Next-generation
sequencing in multi-Ethnic Samples (T2D-GENES) con-
sortium. Sequencing was performed at the Broad Insti-
tute with Agilent v2 capture reagent on HiSeq platform.
The consortia have exome sequencing data of 13,000
individuals from 5 different ancestry groups: African
Americans (AJ, AW), American Hispanics (HA, HS),
East Asian (EK, ES), South Asians (SL, SS), and
European (UA, UF, UG, US, and UB). The words in par-
enthesis stand for the populations in the ancestry group.
For meta-analysis, we selected East Asian ancestry
group, EK from Korean samples and ES from Singapor-
ean samples. Total number of samples in EK is 1086 and
in ES is 1078. The primary goal of two consortia is to
identify novel type 2 diabetes (T2D) related genetic fac-
tors, but data also includes several diabetes-related
quantitative traits such as lipid and blood pressure traits.
We applied the proposed meta methods to lipid and
blood pressure traits: total cholesterol (CHOL), HDL
cholesterol (HDL), LDL cholesterol (LDL), triglycerides
(TG), systolic blood pressure (SBP) and diastolic blood
pressure (DBP). Subjects having medication that might
affect the traits were excluded for the analysis. Sample
sizes considered missing count and medication are
described in Table 2. For covariates, we used age, sex in-
formation (BMI information was used only for blood
pressure phenotypes).

Results
Type I error
Empirical type I error rates under the setting of Scenario
1 and 2 are calculated. Since first scenario consider
homogeneous case and second scenario considers het-
erogeneous case, we only calculate type I error in these
two scenarios. The rates are calculated under each

Table 1 Simulation study settings

Scenario Population Sample Size Covariates

Study 1 Study 2 Study 3 Study 1 Study 2 Study 3

1 EUR 1600 2200 3200 (x1, x2) (x1, x2) (x1,x2)

2 EUR 1600 2200 3200 (x1) (x1, x2) (x1,x2,x3)

3 EUR + AA 1600 2200 3200 (x1) (x1, x2) (x1,x2,x3)

4 EUR 2400 2400 2400 (x1, x2) (x1, x2) (x1,x2)

5 EUR 2400 2400 2400 (x1) (x1, x2) (x1,x2,x3)

6 EUR + AA 2400 2400 2400 (x1) (x1, x2) (x1,x2,x3)

EUR + AA denotes that population of first and second study is European and the population of Study3 is African-American
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significant level, 0.01 and 0.001. Empirical type I error
rates under the setting of Scenario 1 are given in Table 3.
For both MetaQTest and MetaSKAT, type I error rates
were well controlled, but in Het-meta-SKAT-O, type I
error rate was somewhat inflated. Empirical type I error
rates under the setting of Scenario 2 are given in Table 4.
For both MetaQ and MetaSKAT, type I error rates were
also well controlled, but in Hom-meta-Q2, type I error
rate was somewhat inflated.

Power
To compare the power, we performed the simulation
work. First, we compared power of our meta method
with those of joint analysis to check efficiency of meta
method. When meta-analysis yields highly comparable
results with joint analysis, the meta method serves well
as an alternative of joint analysis. Since joint-analysis
cannot handle heterogeneity between studies such as
different number of covariates directly, we only per-
formed joint-analysis in homogeneous scenario settings
(scenario 1 and 4). In Fig. 1, the blue 8 dots indicate
each case for senario1 (causal 5 to 50% and all same dir-
ection of variants to different direction) and the pink
dots are for scenario 4. Joint-analysis is consistently
powerful, but Hom-meta-Q also achieves highly compar-
able power compared with joint-analysis. Especially, for
scenario 1, our meta methods recovers almost power of
joint-analysis.
Figure 2 shows power comparisons of eight different

meta methods when all causal variants are risk increas-
ing. In the figure, first 4 bars indicate our proposed
methods, Hom-meta-Q2, Hom-meta-Q3, Het-meta-Q2
and Het-meta-Q3 in order. The next 4 bars indicate
competing MetaSKAT methods, Hom-meta-SKAT,
Hom-meta-SKAT-O, Het-meta-SKAT and Het-meta-
SKAT-O. In the first scenarios, since we assume homo-
geneous genetic effects, Hom-meta-Q are more powerful
than Het-meta-Q. Up to 20% causal, Hom-meta-Q2 is
the most powerful but in 50% causal case, as the power

of burden test increases, Hom-meta-Q3, optimal type,
becomes the most powerful. In these scenarios, our
methods outperform in 5%~ 20% percentages of causal
variants. However, when a causal percentage reaches
50%, then MetaSKAT (Hom-meta-SKAT-O) overtakes
the power (Hom-meta-Q3: 74.2% and Hom-meta-
SKAT-O: 76.4%). The reversal occurs, because
Hom-meta-Q1 works poorly even Hom-meta-Q2 is
more powerful than Hom-meta-SKAT when it is ex-
pected to outperform in a case of high causal percent-
age. But, the power differences are not so big, about 2%
difference. Inscenario 2, we gave heterogeneity between
studies by giving different number of covariates. The
powers of Het-meta-Q are higher than those of
Hom-meta-Q and their power differences are clearly dif-
ferent, about twice higher in 5% of causal variants.
Het-meta-Q outperform except in the case of 50% of
casual variants and this trend also appears in the rest of
scenarios: as the number of causal variants increases,
MetaSKAT is more powerful than our method. The rea-
son why this trend is maintained is that our burden type
test has lower power than Meta-Burden and even our
non-burden type test when burden type test should have
the highest power is more powerful. In scenario 3, popu-
lation of studies is different and the number of covariate
is also different. In this more heterogeneous case,
Het-meta-Q has higher power than Hom-meta-Q, and
the value of power itself is higher than in scenario 2.
Our method outperform up to 20% of causal variants.
As the percentage of casual variants increases the power
of our method becomes lower than MetaSKAT. One of
the distinguishable features of our method is that the
power of our methods varies sensitively depending on
the range of heterogeneity. The gap of power differences
of homo and heterogeneous cases are larger than those
of MetaSKAT. All methods in MetaSKAT have the ro-
bust power but in 50% of casual variants. Thus, when
there are information about heterogeneity prior to ana-
lysis and the percentage of causal variants is expected to
be lower, then our method is more powerful than
MetaSKAT. For the rest of scenarios, we gained similar
power results with previous scenarios; only in the case
of 50% causal variants, MetaSKAT has higher power
than MetaQ, but in scenario 4, our methods outper-
formed regardless of causal variants percentages and in
scenario 6, in the case of 20% causal variants with 50%
causal, MetaSKAT outperforms.

Table 2 Sample Size of Asian Population Groups for Seven
Quantitative Traits

Traits CHOL HDL LDL TG SBP DBP

EK (1086) 1078 1078 1031 1078 1086 1086

ES (1078) 627 628 621 627 1077 1077

Missing samples and samples who receive medication are excluded

Table 3 Type I Error Rates Estimates at in Scenario 1

α Hom-meta-
Q1

Het-meta-
Q1

Hom-meta-
Q2

Het-meta-
Q2

Hom-meta-
Q3

Het-meta-
Q3

Hom-meta-
SKAT

Het-meta-
SKAT

Hom-meta-
SKAT-O

Het-meta-
SKAT-O

10−2 9.30E-03 9.00E-03 1.13E-02 1.26E-02 1.13E-02 1.21E-02 1.51E-02 1.05E-02 1.38E-02 1.23E-02

10−3 1.30E-03 1.10E-03 1.10E-03 1.30E-03 1.30E-03 9.00E-04 1.60E-03 1.00E-03 2.10E-03 1.80E-03
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Figure 3 shows power comparisons of meta methods
when 20% of causal variants are risk decreasing and 80%
are risk increasing. In scenario 1, Hom-meta-Q have
higher power than MetaSKAT regardless of percentage
of causal variants. However, the power differences be-
come smaller as casual percentage increases. Compared
to the case of all risk causal variants, in 50% of causal
variants our method still have higher power because
power loss of burden type is not large. In scenario 2 and
3, Het-meta-Q have higher power than MetaSKAT. Our
methods show significant difference between Hom-
meta-Q and Het-meta-Q, but MetaSKAT has little dif-
ference between their methods. In scenario 5, up to 20%
causal, our best method is powerful than MetaSKAT, but
when causal variants are 50%, then MetaSKAT outper-
forms. Moreover, in scenario 6, in only 20% causal,
MetaSKAT outperforms, but the power differences

between our proposed methods and MetaSKAT are
smaller than those observed in the previous, because in
this setting non-burden type test is more powerful than
burden, so our burden type test that is less powerful is
less involved here. The reason why our burden type test,
Hom-meta-Q, have little power in heterogeneous case is
that the assumption used in burden type test is not kept
well in heterogeneous case. In heterogeneous case, we
can hardly say that all of variants in a gene across the
different population groups are detected in any popu-
lation and have same direction. Thus, we do not in-
clude the result of Hom-meta-Q in simulation and real
data analysis.

Real data analysis results
We applied suggested methods to the real lipid and
blood pressure data. All considered meta methods did

Table 4 Type I Error Rates Estimates at in Scenario 2

α Hom-meta-
Q1

Het-meta-
Q1

Hom-meta-
Q2

Het-meta-
Q2

Hom-meta-
Q3

Het-meta-
Q3

Hom-meta-
SKAT

Het-meta-
SKAT

Hom-meta-
SKAT-O

Het-meta-
SKAT-O

10−2 1.08E-02 9.90E-03 1.05E-02 9.80E-03 9.80E-03 1.00E-02 9.80E-03 1.03E-02 9.80E-03 1.04E-02

10−3 1.40E-03 9.00E-04 1.40E-03 1.10E-03 9.00E-04 1.10E-03 1.00E-03 9.00E-04 1.10E-03 1.20E-03

Fig. 1 Power comparisons between joint-analysis and Hom-MetaQ. Blue dots indicate power percentages in 8 cases of scenario 1 and pink dots
for scenario 4
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not detect any significant genes for lipid traits. But, for
blood pressure traits we gained the different association
results with lipid traits. Before analysis, we filtered com-
mon SNPs. Thus, remaining number of genes for the
analysis of SBP is 9303 and SNPs in each gene have
MAF < 0.05 and MAC > 4. Unlike MetaSKAT methods
that failed to detect any significant genes as well in the

lipid traits analysis (at the bonferroni’s significant level
and arbitrary level, 1.00e-04), MetaQ-test detected
PCDHA9 gene in Het-meta-Q2 (p value = 4.75e-05) at
the bonferroni’s significant level (α = 5.37e-06), but this
gene is also not known to be related with blood pressure.
According to GO annotations, it is involved in calcium
ion binding. However, the gene that has the second

Fig. 2 Power comparisons of the eight meta methods when all Causal Variants in a Region are Deleterious
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smallest p value in both Het-meta-Q2 (p value = 1.19e-05)
and Het-meta-Q3 (p value = 2.41e-05) is KCNA5 and this
gene is already known for having strong relevance to
hypertension [25, 26]. Table 5 shows that p values of genes
that were detected at the threshold, 1.00e-04 have the
smallest value in MetaQ-test. Moreover, we compared our
meta method results with that of single QTest analysis to

verify the improved power of meta methods. Table 6
shows that PCDHA9 gene is also detected in QTest2 in
EK single study analysis and its p value (p value =
8.22e-07) is smaller than in Het-meta-Q2. However, its
p value in ES single study analysis has very small value, so
p value from MetaQ-test is the compromised these two
p values from EK and ES single QTest analysis. But,

Fig. 3 Power comparisons of the eight meta methods when 20% causal variants in a region are protectious and 80% are deleterious
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p values of KCNA5 from each single QTest are both larger
than p value from MetaQ-test. This fact can say that
KCNA5 which is known for one of causal genes of hyper-
tension arterial was only detected by MetaQ-test and
MetaQ-test improved the statistical power of QTest.
For the analysis of DBP, after filtering common vari-

ants, the number of genes is 10,528 and SNPs in each
gene have MAF < 0.05 and MAC > 3. In the meta-ana-
lysis of DBP, two genes, DTYMK and PCCA were de-
tected at the Bonferroni’s significant level (α = 4.75e-06).
Table 7 shows that Meta-Analysis results for testing the
rare variants effects on DBP. DTYMK was detected in
Het-meta-Q3 (p value = 1.17e-06) and PCCA was de-
tected in Hom-meta-SKAT-O (p value = 3.18e-06).
DTYMK, however, is only found in EK samples, thus
MetaQ-test result is only stemmed from EK QTest re-
sult (Table 8 shows that p values of QTest are the same
with that of MetaQ-test). When a gene exists in a single
study, then our MetaQ-test result reflects the result of
single study. DTYMK is not currently identified as
related with blood pressure, but as related with thymidy-
late kinase activity. Another detected gene in MetaSKAT,

PCCA is not known to be associated with blood pressure
function, but it is related with propionic academia and
pcca-related propionic academia.
PCCA gene was also detected using QTest1 of ES

sample analysis (p value = 2.76e-06, Table 8). But EK
QTest results offset the results of MetaQ-test, so
MetaQ-test could not detect this gene.
Although CABIN1 gene was not discovered at the Bon-

ferroni’s significant level, but it is discovered at the FDR
adjusted p value. CABIN1 which was detected using
Het-meta-Q2 and Het-meta-Q3 (p value = 8.67e-06 and
6.91e-06 respectively) is known to be associated hyperten-
sion arterial and purpura thrombotic thrombocytopenic
that is closely related blood pressure. Table 8 shows that
QTest results of EK and ES population groups. CABIN1
was not detected using single QTest.

Discussion and conclusion
We propose MetaQ-test for meta-analysis of gene-level rare
variant association studies. The basis of MetaQ-test is pre-
serving the prior phase of association studies that is Q-test.
MetaQ-test retains the relationship among multiple vari-
ants in a region. Further, MetaQ-test considers whether the
genetic effects on the phenotype are same across studies or
not. Assuming same effects corresponds to fixed effect
meta-analysis model or else random effect model. By con-
sidering direction of variant effects and their equivalence in
effect size at the same time, MetaQ-test can cover broad
range of realistic meta-analysis cases.
We investigated the performance of MetaQ-test

through simulation and real data analysis. Simulation
studies showed that type I error rates were controlled
well and MetaQ-test, particularly Het-meta-Q achieved
the higher than or as powerful as MetaSKAT in various
scenarios. However, when causal variants are over than
50%, then our methods are not powerful as MetaSKAT.

Table 6 Single QTest Analysis Results for Testing the Rare
Variants Effects on Systolic Blood Pressure

Single QTest GENE

Population Test type PCDHA9 (CHR 5) KCNA5 (CHR 12)

EK EK-Q1 6.82E-01 6.66E-01

EK-Q2 8.22E-07 1.83E-03

EK-Q3 1.33E-06 1.53E-03

ES ES-Q1 3.73E-01 3.68E-02

ES-Q2 2.48E-01 4.69E-04

ES-Q3 3.97E-01 1.43E-03

EK GWAS significant level is α = 6.30e-06 and ES GWAS significant level
is α = 6.82e-06
Bonferroni corrected significant level for Meta-analysis is α = 6.82e-06

Table 5 Meta-Analysis Results for Testing the Rare Variants Effects on Systolic Blood Pressure

Meta-Analysis GENE

Method Test type PCDHA9 (CHR 5) KCNA5 (CHR 12)

meta Q tests Het-meta-Q1 6.18E-01 1.03E-01

Het-meta-Q2 4.75E-06 1.19E-05

Het-meta-Q3 7.34E-06 2.41E-05

meta SKAT Hom-meta-SKAT 3.93E-03 5.03E-04

Het-meta-SKAT 3.72E-03 1.68E-04

Hom-meta-SKAT-O 7.65E-03 1.13E-03

Het-meta-SKAT-O 7.60E-03 4.67E-04

Other methods Meta-burden 7.97E-01 2.59E-01

Fisher’s method (Q3) 8.18E-06 3.06E-05

Score method (Q3) 2.23E-04 1.31E-05

Bonferroni corrected significant level for Meta-analysis is α = 6.82e-06
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Thus, when there are small percentage of causal vari-
ants, our method is more powerful in all scenario set-
tings. Since Hom-meta test uses estimating regression
coefficients, satisfaction of model assumption affects the
power of MetaQ-test sensitively. If there are no many
overlapped variants in a gene across single studies, the
assumption of Hom-meta is broken and Hom-meta-Q
hardly perform well. For this reason, in the result of real
data analysis (EK and ES sample have the small propor-
tion of shared SNPs in a gene), Hom-meta-Q have in-
flated p values and we thought that most of them are
false positive. Thus, in the result of real data analysis, we
excluded the Hom-meta-Q results. Therefore, we expect
that the prior test of heterogeneity of genetic effects can
help us to determine appropriate model. In real data
analysis, we have shown that Het-meta-Q searched out
some known genes associated blood pressure trait. How-
ever, it also discovered some novel genes that are not at
known to be associated with blood pressure at least for
now, thus to validate biological relationship between
them, more research and experiment in biology field are

needed. For the future research, we can combine adap-
tive test that can determine degree of heterogeneity of
genetic effects to improve the power further.
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