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In recent years, smart city projects have drawn significant attention as 

initiatives for enhancing urban development and regeneration. Many studies 

have incorporated technical and non-technical enablers to better control the 

design, planning, and progress management of smart cities. However, despite 

considerable efforts and achievements, the direct and indirect effects of smart 

city enablers on urban performances have not been quantified comprehensively. 

Thus, due to this lack of in-depth quantification and understanding, urban leaders 

encounter difficulties in establishing proper strategies and policies for the 

successful development of smart cities. To address this issue, the present study 



 

 

has used Structural Equation Modeling (SEM) to identify the critical enablers of 

smart cities and to quantify their dynamic effects (i.e., direct and indirect effects) 

on the performances of such cities. More specifically, the authors applied SEM 

to test and estimate the relationships between four enabler clusters (i.e., 

technological infrastructure, open governance, intelligent community, and 

innovative economy) and four performance objectives (i.e., efficiency, 

sustainability, livability, and competitiveness) using the actual data of 50 smart 

cities. The statistical results demonstrated that non-technical enabler clusters (i.e., 

open governance, intelligent community, and innovative economy), as well as 

the technical drivers (i.e., technological infrastructure), have significant impacts 

on the performances of smart cities with their highly interrelated, synergetic 

dynamics. The high percentage of variance explained for performance objectives, 

which varied from about 71% to 91%, was indicative of good explanatory power. 

Based on those mathematical findings, urban leaders can enhance strategic 

planning for smart city transitions through proper policy management.  

 

Keywords: Smart City, Project Management, Urban Development, Urban 

Regeneration, Development Enablers, Performance Objectives, Structural 
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Chapter 1. Introduction 

 

1.1 Research Background 

 

In recent years, smart city projects have received considerable attention 

from urban leaders (Figure 1.1). Researchers have also paid high attention to 

smart city developments (Figure 1.2). This is because, with mass urbanization 

as the new normal, cities worldwide are under constant pressure to provide 

better quality services, revitalize economic opportunities, address social and 

environmental issues while reducing operational costs (Ahvenniemi et al., 2017; 

Silva et al., 2018). Metropolitan infrastructures and utilities are implacably 

being stretched to their breaking point (Maccani et al., 2013). As reported by 

the United Nations (2016), 67% of the worldôs population will be living in 

urban areas by 2050, against 50% back in 2008. These projections are 

increasingly urging urban authorities to engage in smart city projects. 

Figure 1.1 Growing Interest in Smart City 
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Figure 1.2 Academic Attention Devoted to Smart Cities  

(Adapted from Li, Wang, Luo, & Li, 2018) 

 

Even though the idea of smart cities was introduced in the early 1990s, 

there is still no universal agreement concerning how to define them (Albino et 

al., 2015; United Nations, 2016; Lin et al., 2019). From the beginning, urban 

thinkers agreed to characterize them as innovative platforms that improve urban 

performances, such as quality of life, the efficiency of urban functions, and 

economic competitiveness (Caragliu et al., 2011; Silva et al., 2018).  

However, despite numerous attempts, the definition has yet to be fully 

accepted. Due to the lack of in-depth acknowledgment of fundamental enablers 

and the unclarified influence of technology in smart cities (Chourabi et al., 2012; 

Hollands, 2008; Nam & Pardo, 2011a), there are numerous interpretations of 

smart cities and the debate remains particularly fragmented (Meijer & Bol²var, 

2016). In 2014, the International Telecommunication Union reported that 116 

definitions of smart cities were used in practice. For this reason, the difficulty 
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to implement and govern smart city programs has been generally acknowledged 

in academia (Neirotti, De Marco, Cagliano, Mangano, & Scorrano, 2014a; 

Ruhlandt, 2018). Thus, the leaders of smart cities encounter difficulties in 

enhancing urban regeneration in developed countries and urban development 

in developing countries (United Nations, 2016; Ruhlandt, 2018).  
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1.2 Problem Statement 

 

To harness the full potential of smart city initiatives through the 

development of coherent management strategies, it is essential to identify key 

enablers comprehensively (e.g., urban digitization, economic dynamism, 

human and social capital, and open governance) and quantify their dynamic 

effects (i.e., direct and indirect effects) on the performances of smart cities 

(United Nations, 2016; Maccani et al., 2013; Ruhlandt, 2018).  

However, since smart cities originated from technological advancements 

(e.g., smart grids and the Internet of Things can allow optimized energy use), 

early studies overlooked the importance of non-technical enablers and focused 

rather on the evaluation and planning of technology implementation (Aurigi, 

2006; Batty, 1997; Kitchin, 2014). For this reason, according to Nam and Pardo 

(2011), 85% of technology-driven public sector projects have not attained their 

objectives in practice. This indicates that a given smart digital solution (e.g., 

intelligent surveillance with video analytics) cannot be transplanted simply 

from one urban area to another without addressing the influences of local 

factors, such as urban policies and the levels of empowerment of the citizens 

(Nam & Pardo, 2011b; Neirotti et al., 2014; Stratigea et al., 2015).  

Therefore, in order to avoid the failure of smart city initiatives that can be 

caused by stakeholdersô resistance to change, many researchers have recently 

considered the effects of non-technical enablers that collaborate with 

technological drivers in their attempts to support the maturation of smart city 

policy management (Angelidou, 2015; Bibri et al., 2017; Calzada et al., 2015). 
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For example, in 2014, the British Standards Institution acknowledged the 

importance of integrating physical, digital, and human systems for successful 

smart city development. 

Despite the extensive efforts to understand the influences of various 

enablers, the previous methods did not fully quantify the direct and indirect 

effects of smart city enablers on urban performances. For example, the use of 

technology in smart cities (e.g., Internet of Things) leads directly to a higher 

quality of life (Braun et al., 2018; Jain et al., 2017), but it also can improve the 

living environment indirectly by first enhancing government initiatives (e.g., 

data generation and management). However, those effects have not been 

integrated for comprehensive quantification of enablersô effects on smart city 

performance objectives. Thus, it is still challenging to understand the 

development dynamics of smart city projects.  

Due to this lack of complete understanding, urban leaders face difficulties 

in establishing proper strategies for the successful development of smart cities. 
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1.3 Research Objective 

 

The primary objective of this paper is to quantify the dynamic effects (i.e., 

direct and indirect effects) of smart city enablers on urban performances by 

applying Structural Equation Modeling (SEM) technique. 

 

The specific objectives to achieve the primary objective are as follows: 

 

1. Identify a range of technology, policy, and society-related enablers that 

can control the key performances of smart cities.  

2. Collect corresponding urban data to create a dataset for model 

development. 

3. Develop an SEM-based quantification model to assess the dynamic 

effects of smart city enablers on urban performances. 

4. Evaluate the model and discuss the results for applications in smart 

city planning, design, and progress management. 

 

The developed assessment model is expected to provide practical insights 

(e.g., investment prioritization on smart city projects), which can help urban 

strategists manage the smart city policy implications in order to enhance their 

preparedness for the transitions to smart cities. This will allow smart cities to 

reach their target performance objectives through appropriate development 

strategies.  



 

 

 

 

 

7 

1.4 Research Scope 

 

This study was conducted on a sample of 50 smart cities in 37 countries, 

as depicted in the geographical distribution in Figure 1.3. Those aspiring next-

generation cities, which are among the smartest cities in the world (Easy Park, 

2017), were selected for incorporating diverse demographic, geographic, and 

economic characteristics. For instance, according to the International Monetary 

Fundôs World Economic Outlook Database (October 2018), the scope 

comprises 12 cities in developing countries (e.g., Medellin in Colombia, Kuala 

Lumpur in Malaysia, and New Delhi in India) in which complete awareness of 

the smart city concept has yet to be established. Also, of the 50 cities, 21 are in 

Europe, 12 are in America, 9 are in Asia, 4 are in the Middle East, 3 are in 

Oceania, and 1 is in Africa. 

 

Figure 1.3 Cities Included in the Research Scope 



 

 

 

 

 

8 

1.5 Research Process 

 

The rest of the paper is structured as follows. Chapter 2 explores and 

reviews the existing studies that are relevant to both the identification of smart 

city development enablers and the quantification of their effects on urban 

performances. Next, the research framework that quantifies enablersô effects on 

smart city performances using Structural Equation Modeling (SEM) is 

described in Chapter 3. Then, Chapter 4 analyzes and discusses the 

experimental results of the SEM analysis, and model applications are presented 

in Chapter 5. Finally, Chapter 6 concludes the paper with contributions and 

future studies as well as the limitations of this study.  
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Chapter 2. Literature Review 

 

2.1 Identification of Smart City Enablers 

 

Smart city projects have unique characteristics with different development 

conditions and performance objectives. For this reason, the comprehensive 

identification and quantification of enablersô effects on the performances of 

smart cities are fundamentally important and essential for their coherent 

planning and development. Thus, many researchers and practitioners have 

attempted to identify the principal enablers of smart cities. 

In the early stages, the corporate sphere (e.g., Cisco, IBM) only focused 

on the significance and benefits of new disruptive Information and 

Communication Technologies (ICTs) to modernize urban infrastructures, as 

critiqued in Albino et al. (2015), Hollands (2008), and Simonofski et al. (2017).  

However, although technology is recognized as a central enabler of smart 

cities (Zygiaris, 2013), it should not be considered as exclusive (Nam & Pardo, 

2011a). In previous studies (Chourabi et al., 2012; Odendaal, 2003), it was even 

found that the impacts of ICTs on urban development and on the quality of the 

citizensô lives are unclear and questionable. It was also reported that, without 

careful preparation of urban contexts (e.g., democratic and inclusive 

governance), ICTs could increase information inequalities and amplify the 

digital divide. In practice, corporate-designed smart cities, such as Songdo in 

South Korea and Masdar City in the United Arab Emirates, have missed their 

growth objectives despite undeniable technological advances (e.g., telematics, 
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sensor networks, RFID systems, smart card applications and so on in Songdo) 

because they failed to consider the wider effects of culture, governance, and 

civic engagement (Albino et al., 2015; Calzada & Cobo, 2015).  

Based on those findings, researchers collectively acknowledged the 

importance of incorporating smart city enablers comprehensively including 

technical and non-technical drivers when planning and developing strategies 

for smart cities (Maccani et al., 2013; Nam & Pardo, 2011a; Simonofski et al., 

2017). The important roles of citizens as end-users (Braun et al., 2018; Oliveira 

& Campolargo, 2015; Simonofski et al., 2017) and the influences of urban 

management, policy, and innovation (Azevedo Guedes et al., 2018; Nam & 

Pardo, 2011b) especially were highlighted.  
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2.2 Quantification of Enablersô Direct Effects 

 

Recent studies have also paid greater attention to extracting quantifiable 

information from current trends in the development of smart cities. Researchers 

have made special efforts to quantify enablersô effects on the performances of 

smart cities in order to support the maturation of policy management for such 

cities.  

Recent studies have independently quantified the direct effects of technical 

and non-technical enablers on urban performances. For example, Tahir et al. 

(2016) used the Analytical Hierarchy Process (AHP) to quantify the relative 

importance of six dimensions that influences the performances of smart cities. 

A hierarchy between smart environmental practices, mobility, living, people, 

economy, and governance was found to incorporate the technologies that are 

required for making a smart city a reality (Tahir & Abdul Malek, 2016). Another 

approach, proposed by Caragliu et al. (2011), used statistical and graphical 

analyses to understand the direct influences of numerous factors (e.g., 

demographic and social variables) on the economic performance of smart cities 

in Europe. This study acknowledged the effects of non-technical enablers, such 

as creativity and the levels of education of the citizens. Neirotti et al. (2014) 

applied linear regression analysis to identify how contextual variables, such as 

geographical, urban, demographical, social, environmental, and technology-

related proxies, directly affect the deployment of smart city solutions. The 

results indicated that technology development alone is insufficient to build a 

successful smart city.  
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Recently, in line with the ñ100 Smart Cities Missionò launched by the 

Indian government (Arora, 2018), Kumar et al. (2019) quantified the relative 

importance of smart city development factors for use in planning an effective 

smart city. They used Total Interpretative Structural Modeling (TISM) to 

classify the selected factors (e.g., capital resources, socio-economic potential, 

multimodal accessibility, and public participation) based on their hierarchical 

interrelationships, and they used the findings for further analysis of smart city 

eligibility. Yadav et al. (2019) used hybrid Best Worst Method (BWM) ï 

Interpretative Structural Modeling (ISM) to identify the intensity of influences 

of smart city enablers and justify their interrelationships. The results revealed 

that sustainable resources management, development of smart buildings, 

advanced research, and intelligent transportation are the key enablers of the 

developed framework. The successful execution of the developed framework 

can assist smart city practitioners in developing countries (e.g., India and 

China). 
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2.3 Limitations of Quantification Strategies 

 

The existing studies have shown promising results in the quantification of 

the effects of smart city enablers for practical applications in policy 

management. However, despite remarkable findings, significant research 

questions must be addressed in order to comprehensively quantify the 

development dynamics within smart cities. 

One major issue is that researchers have mainly considered the effects of 

the individual relationships (i.e., direct relationships) of development enablers 

on the overall performance of smart cities without taking into account the 

complex dependencies (i.e., indirect effects) that result from the internal 

relations between the enabler clusters and between the performance objectives. 

For instance, government initiatives are often implemented to improve the 

living environment (i.e., direct effect). In smart cities, those initiatives can be 

enhanced by ICT (e.g., social media communities can allow more participative 

forms of governance and greater democracy) (Chourabi et al., 2012; Kitchin, 

2014). Therefore, technology indirectly influences the quality of life of citizens 

through open governance as the mediator (i.e., indirect effect). However, those 

dynamic effects (i.e., direct and indirect effects) have not been integrated for 

comprehensive quantification. This issue limits the practicality and 

applicability of the previous findings to the actual smart city policy 

management since the aforementioned indirect effects are vital for 

understanding the dynamics of smart city growth.  

Those limitations have led previous studies to make only partial 
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advancements in the formulation of a new policy agenda to better control the 

design and planning of smart cities. To fill this knowledge gap, this paper 

proposes an assessment model that incorporates the direct and indirect effects 

of the enablers of the development of smart cities.  
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Chapter 3. Quantification Model Development 

 

3.1 Research Overview 

 

Figure 3.1 shows the research framework that was built to mathematically 

investigate how enablers, directly and indirectly, influence the performances of 

smart cities. The framework comprises two main processes.  

First, the research model was established; the authors conducted an 

extensive literature review, specified the latent variables (LVs) of interest, and 

then established possible causal paths among the variables. In this study, the 

research team strategically distinguished two layers of LVs (i.e., (1) enabler 

clusters and (2) performance objectives) to further discriminate internal 

relationships (i.e., within a layer) and external relationships (i.e., between the 

two layers). 

Next, to test the hypothesized research model, the research team collected 

and processed the actual data of 50 smart cities for use in performing SEM 

analysis. After model estimation (e.g., estimation of path coefficients) was 

completed, fit assessments were conducted to identify any potential data-model 

inconsistencies among the LVs. The validation step, in which the model was 

modified and updated, was repeated until the data-model fit was good enough 

to represent the possible dynamics of smart city development (Aibinu & Al-

Lawati, 2010). 
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Figure 3.1 Research Overview 
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3.2 Latent Variables Specification 

 

In this section, the authors conducted a bibliographic analysis to identify 

two layers of central LVs in smart city development, i.e., enabler clusters and 

performance objectives. In SEM terminology, LVs are unobserved variables 

that are inferred from observed variables through correlational models. 

 

3.2.1 Smart City Enabler Clusters 

 

To understand and identify practical enablers of the development of a 

smart city, the research team conducted an extensive literature review. A 

commonly applied search engine, Scopus, was used to retrieve 155 scholarly 

peer-reviewed publications that provided relevant information. The search was 

limited to subject areas that were highly related to this research, such as 

engineering, project management, decision sciences, and social sciences. From 

the exploratory screening of titles and abstracts, the authors retained for further 

analysis 35 papers that discussed the desirable characteristics of smart cities. 

To identify smart city enablers, these papers mostly proceeded to comparative 

literature analysis and combined the findings of numerous prior studies (Gil-

Garcia, Pardo, & Nam, 2015). To detect redundancy of content (e.g., repetitive 

enablers) and reach information saturation, a selective reading was performed 

over the 35 papers (Azevedo Guedes et al., 2018). As a result, 21 articles that 

were aligned with the purpose of this research were read thoroughly, and, 

consequently, 17 potential smart city enablers were extracted. Since 
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dimensionality reduction was required to establish the upcoming structural 

modeling (Hair et al., 2017), the research team semantically linked 17 identified 

enablers to four principal latent variables that were developed by previous 

studies (Chourabi et al., 2012; Maccani et al., 2013; Silva et al., 2018). They 

were Technological Infrastructure, Open Governance, Intelligent Community, 

and Innovative Economy. 

The four principal constructs could be explained with the identified 

enablers, as summarized in Table 3.1. First, Technological Infrastructure was 

decomposed into the following five technical enablers, i.e., ICT availability, 

ICT performance, ICT affordability, ICT security, and ICT adoption. A United 

Nations report (2016) also supported our findings by arguing that urban 

digitization requires available, efficient, affordable, secure, and accessible 

Technological Infrastructure. Second, Open Governance, which refers to a 

governance model that actively engages citizens in government decision-

making (United Nations 2016), is built upon government transparency, 

administration efficiency, and stakeholder participation, as well as contextual 

strategies and perspectives (e.g., green and digital interests for smart city 

transition) (Ruhlandt, 2018; Silva et al., 2018). Third, Intelligent Community 

can be divided into five enablers, i.e., eco-consciousness, education, creativity, 

digital proficiency (i.e., digital skills and awareness), and social cohesion of 

citizens (Maccani et al., 2013). Fourth, Innovative Economy is characterized by 

the urban innovation ecosystem (e.g., regulatory framework for innovation) and 

the innovation changes brought in the industry by the fourth industrial 

revolution (e.g., digitization and artificial intelligence). The term innovation 
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refers to the capacity to exploit local creativity and social capital to enhance 

urban vitality and growth; it is noteworthy that technology itself does not make 

any contribution to innovation (Chourabi et al., 2012). 

 

Table 3.1 Smart City Development Enablers in Literature 
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2011 2013 2013 2014 2014 2015 2015 2015 2017 2018 

Technological 

Infrastructure  

1 ICT Availability ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ 

2 ICT Performance ǒ  ǒ  ǒ ǒ ǒ   ǒ 

3 ICT Affordability  ǒ ǒ        

4 ICT Security   ǒ ǒ ǒ    ǒ  

5 ICT Adoption ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ 

Open 

Governance 

6 Gov. Transparency ǒ ǒ ǒ ǒ  ǒ  ǒ ǒ ǒ 

7 Admin. Efficiency ǒ ǒ  ǒ ǒ ǒ ǒ ǒ ǒ ǒ 

8 Env. Interest   ǒ ǒ   ǒ    

9 Public Participation ǒ  ǒ  ǒ ǒ ǒ ǒ ǒ ǒ 

10 Digital Interest ǒ ǒ ǒ ǒ ǒ ǒ ǒ  ǒ ǒ 

Intelligent 

Community 

11 Eco Consciousness  ǒ ǒ     ǒ   

12 Education ǒ  ǒ ǒ ǒ ǒ ǒ  ǒ ǒ 

13 Creativity ǒ  ǒ ǒ ǒ ǒ ǒ ǒ ǒ  

14 Digital Proficiency ǒ ǒ ǒ ǒ ǒ ǒ   ǒ ǒ 

15 Social Cohesion ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ  ǒ 

Innovative 

Economy 

16 Innov. Ecosystem  ǒ    ǒ  ǒ ǒ ǒ 

17 4th Industrial Rev. ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ 
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3.2.2 Smart City Performance Objectives 

 

According to the European Investment Bank (2008), urban analysts faced 

difficulties in evaluating smart cities holistically because it is challenging to 

convert the benefits of a smart city into direct revenue streams. To ease the 

conceptualization and performance quantification, smart city performance can 

be decomposed into more quantifiable performance objectives. For instance, as 

remarked by Chourabi et al. (2012), it is intuitive to characterize a smart city as 

an icon of sustainability and livability.  

However, such reflection is not exhaustive. To identify the key 

performance objectives of a smart city extensively, the research team conducted 

a bibliometric analysis over 116 operational definitions of ósmart cityô extracted 

from academic and practical studies, consistent with the procedure above (i.e., 

using Scopus). Thereby, the authors were able to review and integrate the 

various perspectives of different stakeholders.  

As summarized in Table 3.2, it was observed that researchers mainly 

emphasized the need for Environmental Sustainability, Economic 

Competitiveness, Urban Livability, and Urban Efficiency in their 

conceptualization of the performance of a smart city. First, Environmental 

Sustainability is attained through wiser management of natural resources (e.g., 

low-carbon economy) (Antrobus, 2011). Second, Economic Competitiveness 

designates the urban capacity to thrive (e.g., job creation, increased productivity, 

and economic growth) (Lombardi, Giordano, Farouh, & Yousef, 2012). Third, 

Urban Livability characterizes the quality of life (e.g., affordable education, 
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healthcare, and housing) and the well-being of citizens in metropolitan areas 

(Lin et al., 2019). Fourth, Urban Efficiency comprises the performance of 

regular city operations (e.g., traffic flow and traffic safety) (Silva et al., 2018).  

Through this analysis, the research team was able to identify the 

performance objectives that primarily are targeted by urban leaders in smart 

cities. 

 

Table 3.2 Smart City Performance Objectives in Literature 
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1 Sustainability ǒ ǒ ǒ ǒ ǒ  ǒ ǒ  ǒ  ǒ ǒ ǒ 

2 Competitiveness  ǒ   ǒ  ǒ ǒ  ǒ  ǒ ǒ ǒ 

3 Livability  ǒ ǒ ǒ ǒ  ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ 

4 Efficiency  ǒ ǒ ǒ
 

    ǒ  ǒ  ǒ ǒ 
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3.3 Hypothetical Model Establishment 

 

In order to integrate both the direct (i.e., unmediated) and indirect (i.e., 

mediated) effects of enabler clusters on performance objectives, it is essential 

to identify the causal relationships between the eight aforementioned LVs (i.e., 

four enabler clusters and four performance objectives). Thus, in this study, 28 

direct relationships labeled from H1 to H28, were hypothesized; the path 

diagram in Figure 3.2 graphically displays such a priori influences with straight 

arrows. Specifically, the research hypotheses include three types of 

relationships as follows: (1) 16 external effects directed from enabler clusters 

to smart city performance objectives, (2) 8 internal effects among smart city 

enabler clusters, and (3) 8 internal influences among performance objectives.  

By definition, it is believed that enablers have a positive influence on the 

attainment of smart city performance objectives. Therefore, it was legitimate to 

establish 16 external causal relationships (i.e., H1 to H16 in Figure 3.2) oriented 

from the four enabler clusters towards the four performance objectives.  

Then, a comprehensive literature review was conducted to capture the 

directions of the six internal effects between enabler clusters (i.e., H17 to H22) 

selectively. For instance, Paskaleva (2009) posited that the use of technology 

(e.g., open data, e-governance) creates a progressive, transparent, and 

participatory government-public partnership (H17). The use of technology 

(e.g., e-learning) also empowers citizens by establishing an environment that 

improves cognitive skills and abilities to learn (H18) and to innovate (H19) 

(Komninos, 2006). Then, the policy context that is derived from open 
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governance creates conditions that enable innovative urban development (H20) 

(Ruhlandt, 2018). In addition, a smart city can be characterized as a platform in 

which the creativity and intelligence of citizens can drive open governance 

(H21) (Kitchin, 2014), and a cityôs ability to raise innovation is based mainly 

on knowledgeable and creative human capital (H22) (Zygiaris, 2013).  

It is believed that the six remaining internal effects among smart city 

performance objectives can be classified as common sense (i.e., H23 to H28). 

For example, citizens normally expect to live better in a city with efficient 

functions (e.g., transportation system) (H24), sustainable living environment 

(H26), and dynamic economy (H28). Smart city programs can also 

simultaneously pursue conflicting goals; cities around the world encounter 

difficulties in reconciling the needs of immediate competitiveness with long-

term sustainable development (Monfaredzadeh & Berardi, 2015). In this regard, 

a negative influence can be assumed (H27). 

To represent the indirect effects, both internal and external effects must be 

constructed and integrated into the model. The indirect effect of an enabler 

cluster A to a performance objective B is equal to the sum of the effects of the 

pathways that connect A to B by involving at least one mediator variable (i.e., 

the direct effect is excluded). The effect of each contributing pathway is 

computed by multiplying the path coefficients along that pathway. For instance, 

the indirect effect of Technological Infrastructure to Urban Efficiency is 

calculated by summing effects of the following paths, i.e., H17 - H5, H17 - H20 

- H13, H18 - H9, H18 - H22 - H13, H18 - H21 - H5, and H19 - H13 while, the 

direct effect is simply represented by H1 (Figure 3.2).  
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Figure 3.2 Hypothesized Structural Research Model 
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3.4 Structural Equation Modeling (SEM) 

 

Since the eight LVs shown in Figure 3.2 are LVs rather than observed 

variables, SEM was used in this study to test the proposed model. In this chapter, 

the research team reviews the general approach to SEM and then describes the 

specific SEM strategy implemented in this research, i.e., the Partial Least 

Squares (PLS-SEM) iterative algorithm. 

 

3.4.1 SEM Process 

 

In recent years, SEM has become increasingly popular in project 

management and engineering research (Aibinu & Al-Lawati, 2010) as a 

statistical process used for quantifying relationships hypothesized between 

various unobserved LVs that can be inferred from measurable variables. 

Initially developed by sociologists and psychologists, SEM is a powerful 

statistical method that has been acknowledged particularly for its ability to 

quantify complex effects among multiple variables and to address measurement 

errors effectively (Molwus et al., 2017; Qureshi et al., 2015).  

By definition, the parameters in SEM are (1) factor weights to measure 

unobserved variables (LVs) from measurement variables and (2) path 

coefficients to indicate the direct effect of an LV assumed to be the cause of 

another LV assumed to be an effect. Those parameters are computed using the 

collected data through an alternative application of confirmatory factor analysis 

(CFA) and path analysis respectively, on two sub-models (i.e., the measurement 

model and the structural model, Figure 3.3), until convergence is achieved.  
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Figure 3.3 Simplistic SEM Process 

The measurement model (also referred to as the outer model) computes the 

scores of LVs by linear combinations between computed weights, ʖ , and 

standardized data of reflective measurement variables. In this framework, the 

scores of the eight LVs is iteratively estimated for each city. For example, the 

score of Technological Infrastructure (TI) was initially estimated based on the 

weights of 11 sub-enablers from TI1 to TI11 (Table 4.1). And, the structural (or 

inner) model quantifies the strengths of relationships (i.e., path coefficients ɼ) 

among the LV scores through path analysis.  

It is noteworthy that SEM does not provide unquestionable proof of 

influences among LVs; rather, it mathematically supports or disconfirms the 

propensity of such influences. Hypothesized relationships can be rejected as 

being good approximations of reality, but they cannot be confirmed as being 

the exclusive representation of the actual underlying processes. One of the 

strengths of SEM is its disconfirmatory power (Mueller, 1999; Qureshi et al., 

2015).  
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3.4.2 SEM Strategy 

 

In this paper, the SEM technique called Partial Least Squares (PLS-SEM) 

was chosen for analyzing the hypothesized model using SmartPLS 3.2.8 

application software. To be specific, PLS-SEM was selected because it has both 

confirmatory and exploratory abilities; i.e., it can both confirm a theory-based 

model and develop a new theory (Hair et al., 2017).  

In PLS-SEM (Figure 3.4), the idea is to first construct each LV based on 

its measurement variables using initialized weights. Then, using the structural 

model, each LV is reconstructed by means of its predicting LVs. Next, in the 

measurement model, the best linear combination to express these LV scores 

through their measurements variables (MVs) is calculated; the coefficients are 

referred to as outer weights. Finally, each LV is constructed as such weighted 

sum of its MVs. The loop is repeated until the relative change of all weights 

from one iteration to the next become smaller than a predefined tolerance 

(Equation (1)). Then the algorithm stops and the last estimation of LV scores 

computed is taken to be definitive (Monecke & Leisch, 2012).  

ύ ύ

ύ
 ὸέὰὩὶὥὲὧὩ (1) 

where ύ  is the weight of the kth measurement variable of the gth LV at 

the ith iteration.  

Otherwise, it is required to go back to the inner calculation (i.e. structural 

model). In the experiments, the tolerance was set to 10-7 and the maximum 

number of iterations to 300.  
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Moreover, PLS-SEM allows the user to apply three structural model 

weighting schemes: (1) centroid, (2) factor, and (3) path weighting schemes. 

While the results differ little for the alternative weighting schemes, path 

weighting was applied in this study. Indeed, this weighting scheme provides the 

highest R2 value for endogenous variables. 

 

Figure 3.4 PLS-SEM Algorithm 

 

Also, the authors preferred PLS-SEM over covariance-based SEM 

algorithms due to its high statistical power with relatively small sample sizes 
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(i.e., 100 or fewer observations as reported in Table 3.3) (Hair et al., 2017; 

Raymond & Bergeron, 2008). Despite its having this ability, the research team 

conducted oversampling using a bootstrapping technique to ensure the stability 

of results (Aibinu & Al-Lawati, 2010). Bootstrapping is a statistical method of 

inference about a population using sample data. This method relies on random 

sampling with replacement from sample data.  

Given the limited number of observations (i.e., 50 cities) considering the 

large number of variables, 1,000 bias-corrected and accelerated (BCa) bootstrap 

subsamples were generated to validate the estimated model and to determine 

the confidence interval of the modelôs parameters. 
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Table 3.3 Rules of Thumb for Choosing SEM Method 

(J. Hair et al., 2017) 

No. Criteria PLS-SEM CB-SEM 

1 Philosophy Exploratory/Confirmatory Confirmatory 

2 Objective Prediction Oriented Parameter Oriented 

3 Methodology Variance-based Covariance-based 

4 Sample Size Small (30-100 Cases) High (100-800 Cases) 

5 
Model 

Complexity 

Complex Models 

(Many LVs=6+ and many 

Indicators=50+) 

Simple Models 

(5 or fewer LVs and 50 of 

fewer indicators) 

6 
LVs 

Construction 
Reflective or Formative Reflective 

7 
Data 

Distribution 
Non-Parametric Normal Distribution 

8 
Preferred 

Sub-model 
Measurement Model Structural Model 

9 Validation 
RĮ ; Significance, value, and 

sign of path coefficients 

GFI1, AGFI2, RMSEA3, 

NNFI4, NFI5, CFI6 

10 
Available 

Software 

SmartPLS, PLS-Graph, 

XLSTAT 
LISREL, AMOS, SAS, EQS 

N.B. 1GFI: Goodness-of-Fit Index. 2AGFI: Adjusted Goodness-of-Fit Index. 3RMSEA: Root Mean 

Square Error of Approximation. 4NNFI: Non-Normed Fit Index. 5NFI: Normed-Fit Index. 6CFI: 
Comparative Fit Index. 
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Chapter 4. Model Testing and Results 

 

4.1 Data Collection and Preparation 

 

4.1.1 Data Collection 

 

The data collection for the 50 smart cities identified in Figure 1.3 was 

methodically organized through open-data portals (Tenenhaus et al., 2009). The 

interested reader is directed to Appendix A and Appendix B for a detailed 

description of data sources.  

First, the 17 smart city enablers extracted in Table 3.1 were measured by 

subdividing them into several accurate measurement variables, which were 

referred to as sub-enablers, as detailed in Table 4.1. For example, the 

performance of public technological infrastructure was assessed through two 

sub-enablers, i.e., broadband latency (in milliseconds) (TI4) and network 

bandwidth (in megabits per second) (TI5).  

Similar work was conducted to quantify the performances of smart cities. 

Each performance objective was assessed based on the measurement variables, 

which are referred to as sub-objectives in this paper, as shown in Table 4.2. For 

instance, Economic Competitiveness was measured through manifest 

performance sub-objectives, such as urban wealth (i.e., GDP per capita) (C2) 

and average salary (C6) (Lombardi et al., 2012).  

The four principal enabler clusters were assessed through 40 sub-enablers 

and the four performance objectives were evaluated through 20 sub-objectives. 
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Table 4.1 Results of CFA - Smart City Sub-Enablers 

Enabler Cluster 
Code 

Measurement 

Sub-Enabler 

Loading VIFa Cronbachôs Ŭ CRb AVEc 

No. Enabler Fig. 4.1 (<5) (>0.7) (>0.7) (>0.5) 

Technological Infrastructure (TI) 0.890 0.916 0.650 

1 
ICT 

Availability 

TI1 Public Wi-Fi Coverage -0.180     

TI2 Fiber Coverage 0.185     

*TI3 ICT Sophistication 0.919 4.565    

2 
ICT 

Performance 

*TI4 Broadband Latency 0.841 3.049    

*TI5 Network Bandwidth 0.752 2.057    

3 
ICT 

Affordability 

TI6 Local Call Tariff -0.397     

TI7 Internet Tariff -0.376     

4 ICT Security 
*TI8 Internet Security 0.684 1.531    

TI9 Cyber Security Effort 0.534     

5 ICT Adoption 
*TI10 Internet Usage 0.872 3.584    

*TI11 Smartphone Penetration 0.742 1.804    

Open Governance (OG) 0.885 0.917 0.692 

6 
Government 

Transparency 

OG1 Government Honesty 0.972 20.935    

*OG2 Government Stability 0.832 2.511    

7 
Admin. 

Efficiency 

OG3 Bureaucratic Quality 0.964 15.669    

*OG4 Urban Policies 0.837 2.756    

OG5 E-Governance 0.630     

8 
Environment 
Interests 

OG6 Pollution Control Policy -0.117     

*OG7 Green Policies 0.764 2.026    

9 
Public 

Participation 

OG8 Civic Activism 0.348     

OG9 Citizen Participation 0.365     

*OG10 E-Participation 0.813 2.899    

10 
Digital 
Interests 

OG11 Data Privacy Policy 0.681     

*OG12 ICT Regulations 0.911 3.638    

Intelligent Community (IC) 0.908 0.930 0.690 

11 
Eco 

Conscious. 

IC1 Water per capita -0.111     

IC2 Electricity Per Capita -0.683     

*IC3 Energy Savings 0.755 2.212    

12 Education 
*IC4 Affinity for Studies 0.855 3.129    

IC5 Students' Abilities 0.677     

13 Creativity 
*IC6 Creative Ideas  0.837 2.551    

*IC7 Scientific Creativity 0.887 3.703    

14 
Digital 

Proficiency 

*IC8 Digital Skills 0.837 2.470    

*IC9 Cyber-Vigilance 0.799 2.299    

15 
Social 

Cohesion 

IC10 Social Equality 0.618     

IC11 Ethnic Diversity 0.415     

IC12 Elderly People -0.692     

Innovative Economy (IE) 0.849 0.900 0.698 

16 
Innovation 

Ecosystem 

*IE1 Public R&D Investment 0.799 2.293    

*IE2 Regulatory Environment 0.756 1.851    

*IE3 Start-Up Ecosystem 0.822 2.105    

17 
4th Industrial 
Revolution 

*IE4 Smart Factories 0.949 4.900    

IE5 Business Intelligence 0.935 8.730    
a VIF: Variance Inflation Factor. b CR: Composite Reliability. c AVE: Average Variance Extracted 

* These sub-enablers were retained selectively [i.e., Loading satisfies the selection criteria (Figure 4.1) and 

VIF<5]. 
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Table 4.2 Results of CFA ï Smart City Sub-Objectives 

Performance Objective Load VIF 
Weight 

(%) 

Cronbachôs 

Ŭ 
CR AVE 

Code Sub-Objective Fig. 4.1  (<5) - (>0.7) (>0.7) (>0.5) 

Urban Efficiency (E)  0.774 0.865 0.691 

*E1 Smart Parking 0.911 2.293 0.379    

*E2 Car Sharing Services 0.682 1.435 0.208    

E3 Public Transport Reliability 0.609      

E4 Public Transport Use 0.429      

E5 Traffic Flow 0.487      

*E6 Traffic Safety 0.888 1.910 0.414    

Environmental Sustainability (S)  0.802 0.884 0.720 

S1 Renewable Energy 0.136      

*S2 Energy-Efficiency 0.864 3.071 0.307    

*S3 Waste Recycling 0.897 3.339 0.319    

*S4 Clean Air 0.789 1.342 0.374    

Urban Livability (L)  0.865 0.918 0.791 

*L1 Quality of Social Services 0.919 2.979 0.350    

*L2 Happiness 0.857 1.848 0.343    

*L3 Feeling of Security 0.888 2.658 0.307    

L4 Public Safety 0.907 5.093     

Economic Competitiveness (C)  0.899 0.937 0.833 

*C1 Business Competition 0.941 3.945 0.337    

*C2 Urban Wealth 0.873 2.293 0.303    

C3 Employment 0.585      

C4 Attractiveness 0.574      

C5 Diplomatic Power 0.133      

*C6 Average Salary 0.924 3.299 0.359    

N.B. *These sub-enablers were retained selectively [i.e., Loading satisfies the selection criteria 

(Figure 4.1) and VIF<5]. 
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4.1.2 Data Preparation 

 

General data processing was performed to prepare the raw data for SEM 

analysis; i.e., missing values were handled and standardization was conducted. 

Statistical analysts are repeatedly confronted with dealing with missing 

data, e.g., the absence or unavailability of one or more variables for one or more 

cities. To address this issue, the process of replacing missing data with 

substituted values was considered by applying two types of imputations, i.e., 

hot-deck imputation and regression imputation (Ericsson, 2014). If the data 

were not available at the city level (e.g., government transparency), the data 

were collected from a larger region that includes the city, such as a region or 

country (i.e., hot-deck imputation). Also, when the variables showed 

correlation with other variables, this relationship was used to obtain an estimate 

of the missing value (i.e., regression imputation). For instance, since the affinity 

for studies in smart cities (IC4 in Table 4.1), calculated using the city population 

mean years of schooling, is correlated strongly with urban wealth (C2 in Table 

4.2) (Caragliu et al., 2011), linear regression was used when inputting the 

missing data. 

Next, the research team standardized the data (Table 4.3) using the Z-

scoring technique as follows. For measurement variables that are correlated 

positively to the latent variable, Equation (2) was used to standardize the data 

to represent better outcomes with higher scores (e.g., digital skills, IC8). 

However, some variables have an undesirable effect on the related latent 

variable; for example, the lower the latency of ICT broadband network (TI4), 
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the more performant the Technology Infrastructure. In that case, Equation (3) 

was used. 

Depending on the raw data ὼ, the standard score ᾀ was calculated by 

using the appropriate equation: 

ᾀ
ὼ ‘

„
 (2) 

ᾀ
‘ ὼ

„
 (3) 

where ᾀ is the standardized score, ὼ is the original raw data, and ‘ and 

„ are the mean and standard deviation of the sample, respectively. The 

standardized data were used to perform the SEM analysis. 

 

Table 4.3 Details of Data Standardization 

Code Sub-Enabler (Unit)  

Raw Data Standardized Data 

Mean StDev Mean StDev Min  Max 

TI4 Broadband Latency (ms) 67.59 18.90 0.00 1.00 -2.68 1.41 

TI5 Network Bandwidth (Mbps) 22.87 9.42 0.00 1.00 -1.80 2.75 

TI10 Internet Users (%) 80.09 14.25 0.00 1.00 -3.55 1.22 

TI11 Smartphone Penetration (%) 64.30 24.70 0.00 1.00 -1.95 1.45 
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4.2 SEM Analysis 

 

4.2.1 Measurement Model 

 

To ensure that the LVs are within an acceptable level of error, it is 

imperative to evaluate and validate the reflective measurement model. First, the 

authors performed reliability analyses for all individual measurement variables 

(i.e., unidimensionality and collinearity tests). Such analyses can detect the 

propensity for multiple items to reflect the exact score of LVs. Internal 

consistency tests of the LVs were then conducted, including construct reliability, 

convergent validity, and discriminant validity (Gºtz et al., 2010). 

The standardized loadings and the variance inflation factors of the sub-

enablers and sub-objectives were calculated, and they are reported in Table 4.1 

and Table 4.2, respectively. Data unidimensionality is usually satisfied by 

retaining items that have factor loadings greater than 0.7 (Fornell et al., 1981), 

but the selection process can be extended, as shown in Figure 4.1. The loadings 

computed from CFA indicated the level of variance that was shared with their 

related LV. The variance inflation factor (VIF) was also computed to quantify 

the severity of multicollinearity. Given a set of predictors, for the kth predictor: 

ὠὍὊ 
ρ

ρ Ὑ
 (4) 

where Ὑ is the R2 value obtained by regressing the kth predictor on the 

remaining predictors (Hair et al., 2017). Gºtz et al. (2010) suggested that if an 

itemôs VIF is below 5.0, the absence of redundant information could be 

assumed in the set of predictors. 
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Since the SEM results were initially not satisfactory in terms of internal 

consistency, the authors modified and adjusted the research model by 

eliminating offending variables until the aforementioned conditions were met. 

First, 13 of the 60 measurement variables with loadings less than 0.50 were 

eliminated. For instance, TI2 (fiber coverage) was removed because of its 

loading value of 0.185. Next, 12 out of the 47 selected measurement variables 

had loadings between 0.50 and 0.70, but only two of them (i.e.,TI8 and E2 with 

loadings of 0.684 and 0.682) were retained based on the decision-making 

process described in Figure 4.1. At this stage, 37 sub-enablers were selected. 

The authors then eliminated four out of the 37 remaining items whose VIFs 

exceeded 5.0; OG1, OG3, IE5, and L4 did not meet such standards because 

their VIF values, calculated using Equation (4), were 20.9, 15.7, 8.7, and 5.1. 

 

Figure 4.1 CFA-Based Variable Selection Process  

(Adapted from Hair et al., 2016) 



 

 

 

 

 

38 

After the reliability of 33 out of 60 initial measurement variables has been 

guaranteed, it is necessary to evaluate the internal reliability, convergent 

validity, and discriminant validity of the LVs to ensure that there are no 

additional consistency issues. Those tests were implemented by using IBM 

SPSS Statistics 23.0 and SmartPLS 3.2.8 application software.  

The Cronbach alpha test was conducted for each LV to confirm the internal 

reliability of the extracted variables. Similarly, composite reliability (CR) was 

also used to check the reliability of the LVs. Cronbachôs alpha and CR values 

should be greater than 0.7 (Nunnally et al., 1967). In this study, the minimum 

Cronbachôs alpha was 0.774, and the CR systematically exceeded 0.865. In 

addition, the results provided evidence of the convergence validity of the LVs, 

since their average variance extracted (AVE) ranged from 0.650 to 0.833. The 

cutoff point for AVE must be greater than 0.5 (Bagozzi et al., 1988; Fornell et 

al., 1981). Last, the discriminant validity of LVs was established because the 

Heterotrait-Monotrait Ratio of Correlations (HTMT) between LVs was 

systematically less than 0.9 (Hair et al., 2017). Equations (5) and (6) were used 

to compute the LVsô CR and AVE values, respectively. 

 ὅὙ 
В‗

В‗ Вρ ‗
 (5) 

 ὃὠὉ  
ρ

ὲ
‗  (6) 

where Î is the number of indicators used to measure the LV, and ‗ is 

the factor loading of the ith measurement variable (Raymond & Bergeron, 2008). 
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4.2.2 Structural Model 

 

After confirming the robustness of the measurement model, the reliability 

of the structural model was evaluated. The structural model includes 28 causal 

relationships between the eight aforementioned LVs. However, contrary to 

covariance-based SEM, consensual goodness-of-fit metrics are still missing 

when the PLS-SEM method is used (Aibinu & Al-Lawati, 2010; Raymond & 

Bergeron, 2008).  

Therefore, PLS-SEM practitioners prefer to test the research hypotheses 

by analyzing the reliability of the measurement model (c.f. section 4.2.1) and 

the squared multiple correlations (R2) of endogenous constructs (Breiman & 

Friedman, 1985; Raymond & Bergeron, 2008). As reported by Hair et al. (2016), 

PLS-SEM aims at maximizing the R2 values of the endogenous LVs; while the 

correct interpretation of the R2 values depends on the particularities of the 

model and the research discipline, the R2 values of 0.75, 0.50, and 0.25 

generally explain substantial, moderate, and weak constructions, respectively. 

Also, it is essential to consider the statistical significance (i.e., p-value), value, 

and signs of the paths coefficients when analyzing the structural model 

(Raymond & Bergeron, 2008). 

In this paper, the high percentage of variance explained for each 

endogenous LV (R2), which varied from 70.6% for Environmental 

Sustainability to 91.2% for Economic Competitiveness, was indicative of a 

good fit by the model. Moreover, the hypothesized relationships were 

considered supported based on the significance level of 0.10 that is generally 



 

 

 

 

 

40 

recommended for exploratory research (Garson, 2016).  

Figure 4.2 shows the results, and they are justified mathematically in Table 

4.4; 15 of the 28 hypothesized paths were confirmed statistically. For instance, 

according to the mathematical model (Figure 4.2), the Economic 

Competitiveness in smart cities is significantly enhanced by Open Governance 

(ɓH8 = +0.318), Intelligent Community (ɓH12 = +0.513), and Innovative 

Economy (ɓH16 = +0.447); it is noteworthy that the higher the path coefficient 

(indexed as ɓ in this paper) becomes, the stronger the direct effect becomes on 

the endogenous construct. Notably, the structural model emphasizes the large 

internal effects of Technological Infrastructure on Intelligent Community (ɓH18 

= +0.896) and of Intelligent Community on Innovative Economy (ɓH22 = 

+0.836). As emphasized by Zygiaris (2013), a cityôs innovation power depends 

significantly on the creativity and intelligence of the citizens.  

All significant paths are positive except the one that connects Innovative 

Economy to Urban Livability (ɓH15 = -0.588); this negative influence is due to 

the drawbacks and threats of the fourth industrial revolution. The quantified 

effects derived from the 28 relations are discussed in the next section. 
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Table 4.4 Results of Hypothesis Testing 

Hypothesized 

Relationship 

Path 

Coefficient 

(ɓ) 

Standard 

Error 

Critical 

Ratio  

(Ó 1.6) 

P-

value 
Interpretation 

External Effects Enabler Cluster Ÿ Performance Objective 

H1: TI Ÿ E +0.192 0.238 0.809 0.419 Not Supported 

H2: TI Ÿ S +0.219 0.224 0.837 0.403 Not Supported 

H3: TI Ÿ L +0.280 0.175 1.600 0.091 Supported 

H4: TI Ÿ C -0.204 0.155 1.314 0.189 Not Supported 

H5: OG Ÿ E -0.175 0.211 0.832 0.406 Not Supported 

H6: OG Ÿ S +0.277 0.217 1.277 0.202 Not Supported 

H7: OG Ÿ L +0.307 0.152 2.023 0.043 Supported 

H8: OG Ÿ C +0.318 0.141 2.257 0.024 Supported 

H9: IC Ÿ E +0.397 0.292 1.359 0.174 Not Supported 

H10: IC Ÿ S -0.000 0.248 0.001 0.999 Not Supported 

H11: IC Ÿ L +0.495 0.272 1.824 0.005 Supported 

H12: IC Ÿ C +0.513 0.198 2.588 0.010 Supported 

H13: IE Ÿ E +0.449 0.189 2.372 0.018 Supported 

H14: IE Ÿ S +0.151 0.179 0.842 0.400 Not Supported 

H15: IE Ÿ L -0.588 0.211 2.786 0.005 Supported 

H16: IE Ÿ C +0.447 0.137 3.273 0.001 Supported 

Internal Effects Enabler Cluster Ÿ Enabler Cluster 

H17: TI Ÿ OG +0.556 0.118 4.728 ***  Supported 

H18: TI Ÿ IC +0.896 0.020 44.162 ***  Supported 

H19: TI Ÿ IE -0.047 0.224 0.210 0.834 Not Supported 

H20: OG Ÿ IE +0.107 0.156 0.689 0.491 Not Supported 

H21: IC Ÿ OG +0.376 0.124 3.019 0.003 Supported 

H22: IC Ÿ IE +0.836 0.168 4.979 ***  Supported 

Internal Effects Performance Objective Ÿ Performance Objective 

H23: E Ÿ S +0.248 0.153 1.628 0.098 Supported 

H24: E Ÿ L +0.240 0.146 1.645 0.100 Supported 

H25: E Ÿ C -0.191 0.121 1.581 0.114 Not Supported 

H26: S Ÿ L +0.294 0.112 2.624 0.009 Supported 

H27: S Ÿ C +0.079 0.081 0.974 0.330 Not Supported 

H28: C Ÿ L -0.096 0.160 0.599 0.549 Not Supported 

N.B. *** p-value < 0.001 
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Figure 4.2 Results of the Best Fitting Developed SEM 
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4.3 Results and Discussions 

 

The proposed model was validated with acceptable performance criteria 

(c.f. R2 in Figure 4.2) to quantify how enabler clusters (i.e., Technological 

Infrastructure (TI), Open Governance (OG), Intelligent Community (IC), and 

Innovative Economy (IE)) structurally influence the four performance 

objectives of smart cities, i.e., Urban Efficiency (E), Environmental 

Sustainability (S), Urban Livability (L), and Economic Competitiveness (C). 

 

4.3.1 Findings from the Measurement Model 

 

The results derived from the measurement model indicated that the 

developed framework was capable of extracting the priority of smart city sub-

enablers for practical applications (i.e., strategic smart city planning and 

development).  

More specifically, the measurement model can explain how the potential 

of enabler clusters can be improved strategically. To this end, Table 4.5 

summarizes the CFA standardized weights, labeled as ʖ, of selected sub-

enablers. The distributed weights show the relative importance of sub-enablers 

for each enabler cluster. In detail, all measurement variables within an enabler 

cluster must be considered, but special attention should be paid to the critical 

ones (i.e., above average) that are marked with an asterisk in Table 4.5. For 

example, the impact of TI in smart cities is influenced mostly by technology 

sophistication (e.g., Internet of Things, cloud computing, and ubiquitous sensor 
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network) (ɤTI3 = 0.207) and followed by ICT adoption (ɤTI10 = 0.186). As 

mentioned by Braun et al. (2018), if citizens are reluctant to use the 

technological infrastructure, the smart city becomes obsolete. Therefore, to 

make investments in technology smart and sustainable, it is important to build 

socio-technical complementarities using the following results. An appropriate 

OG in smart cities is developed primarily by promoting the transformational 

impacts of ICT integration (ɤOG12 = 0.220) to deliver better service to citizens. 

It can be achieved through the enactment of a legal framework that facilitates 

ICT pervasiveness. In contrast, poorly designed ICT related-regulations can 

create inequalities and widen the digital divide. The transparency (ɤOG2 = 

0.209) (e.g., through open data) and efficiency (ɤOG4 = 0.205) of government 

activities also influence the potential of OG. Next, IC is established mainly via 

the development of digital competences (ɤIC8 = 0.188), creative abilities (ɤIC6 = 

0.172 and ɤIC7 = 0.180), and lifelong learning skills (ɤIC4=0.170) of the 

population. Last, the integration of the latest computing innovations in the 

industry (ɤIE4 = 0.297) controlled with proper regulations (ɤIE2 = 0.253) is very 

important to foster innovation capacities and lay the groundwork for an IE.  

As a result, based on those findings, urban strategists can formulate a new 

policy agenda to prioritize their investments and enhance preparedness for 

smart city transition. 
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Table 4.5 Sub-Enablers Ranked by CFA Weights 

Technological Infrastructure (TI)  Intelligent Community (IC)  

Code Sub-Enabler Weight (%) Code Sub-Enabler Weight (%) 

TI3*  ICT Sophistication 20.7 IC8*  Digital Skills 18.8 

TI10*  Internet Usage 18.6 IC7*  Scientific Creativity 18.0 

TI8 Internet Security 15.9 IC6*  Creative Ideas 17.2 

TI4 Broadband Latency 15.8 IC4*  Affinity for Studies 17.0 

TI11 Smartphone Penetration 15.4 IC9 Cyber Vigilance 14.9 

TI5 Broadband Speed 13.7 IC3 Energy Savings 14.2 

Open Governance (OG) Innovative Economy (IE) 

Code Sub-Enabler Weight (%) Code Sub-Enabler Weight (%)  

OG12* ICT Regulations 22.0 IE4*  Smart Factories 29.7 

OG2* Government Stability 20.9 IE2*  Regulatory Environment. 25.3 

OG4* Urban Policies 20.5 IE1 Public R&D Investment 22.9 

OG10 E-Participation 19.0 IE3 Start-up Ecosystem 22.1 

OG7 Green Policies 17.5 N.B. * Critical Smart City Sub-Enablers 
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4.3.2 Findings from the Structural Model 

 

The structural model identified the direct and indirect effects of enabler 

clusters on performances objectives. Then, the integration of these paths (i.e., 

total effects) was used to provide public decision-makers with practical 

indications, including counterintuitive findings to reach each performance 

objective individually. 

The results demonstrated the statistical significance and decisive 

contributions of both direct and indirect effects. Figure 4.2 shows the 

significant direct effects of the enabler clusters on urban performances (e.g., 

H3, H7, and H8), and it also enables the visualization of complex indirect paths 

(e.g., H17 - H7). Quantitatively, it was confirmed that the use of technology 

(e.g., Internet of Things) directly improves citizensô quality of life (e.g., public 

safety, health) (ɓH3 = +0.280) in line with the findings of previous studies 

(Braun et al., 2018; Jain et al., 2017). Next, in a strong OG-oriented city, the 

voice of citizens is listened to attentively by policy-makers in a non-

confrontational manner. Therefore, OG directly influences the attainment of 

three performance objectives (i.e., S, L, and C) since citizens generally expect 

to live in sustainable, livable, and competitive environments. Furthermore, IC 

(through H11 and H12) and IE (through H13, H15, and H16) also contribute 

directly to the performances of smart city programs. A city with highly 

educated, intelligent, and aware citizens (i.e., IC) and strong IE is more likely 

to satisfy its performance objectives.  
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In addition to the direct effects, it was also possible to highlight the 

important participation of enabler clustersô indirect effects on smart city 

performances. The internal effects among enabler clusters, including, but not 

limited to, H17, H18, H21, and H22, are the starting points for those indirect 

effects. For instance, as stated by Chourabi et al. (2012), TI can be characterized 

as a meta-enabler since it also directly influences other enabler clusters (i.e., 

internal effects) like OG (ɓH17 = +0.556) and IC (ɓH18 = +0.896). As a result, 

through sequential paths involving mediator variables, such as OG (ɓTIŸOGŸL 

= +0.171) and IC (ɓTIŸICŸL = +0.443), TI indirectly influences L. In the 

scenario TIŸL, the indirect effects supported by Kitchin (2014) explain 67.3% 

of total influence. Table 4.6 shows that the results demonstrated the substantial 

impacts of indirect effects, especially for TI and IC, in the attainment of smart 

city performances. The decompositions of direct, indirect, and total effects are 

shown in Table 4.6. The main contribution of this study is the integration of 

direct and indirect effects, which provides opportunities to gain a 

comprehensive understanding of the development dynamics of a smart city. 
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Table 4.6 Direct, Indirect, and Total Effects of Enabler Clusters 

 

Technological 

Infrastructure (TI) 

Open Governance 

(OG) 

Intelligent 

Community (IC) 

Innovative Economy 

(IE) 

Dir. Ind. Tot. Dir. Ind. Tot. Dir. Ind. Tot. Dir. Ind. Tot. 

E 

+0.19 +0.56* +0.75** -0.18 +0.05 -0.13 +0.40 +0.33* +0.73** +0.45* - +0.45* 

25.6% 74.4% 78.5% 21.5% 54.8% 45.2% 100.0% 0.0% 

S 

+0.22 +0.55* +0.77** +0.28 -0.02 +0.26 -0.00 +0.42** +0.42* +0.15 +0.11 +0.26* 

28.4% 71.6% 94.9% 5.1% 0.0% 100% 57.6% 42.4% 

L 

+0.28* +0.58** +0.86** +0.31* -0.06 +0.25 +0.50* -0.192 +0.30* -0.59** +0.15 -0.44* 

32.7% 67.3% 84.6% 15.4% 72.1% 27.9% 79.9% 20.1% 

C 

-0.20 +1.02** +0.81** +0.32* +0.09 +0.41** +0.51** +0.41** +0.92** +0.45** -0.07 +0.38** 

16.7% 83.3% 77.4% 22.6% 55.9% 44.1% 87.3% 12.7% 

N.B. The percentages indicate the proportion of a total given effect explained by direct and 

indirect effects respectively. 

* p-value < 0.1 ; ** p-value < 0.01 

 

Based on the integration of direct and indirect effects (i.e., total effects), it 

was also possible to extract appropriate synergies to improve urban 

performances individually. For example, Table 4.6 and Figure 4.3 indicate that 

TI exhibits the strongest total effects for each performance objective except for 

C, where IC slightly predominates over TI.  

However, even though TI is obviously fundamental in smart city 

development, the results confirmed the insufficient necessity of technological 

development for the future success of smart city initiatives (Aina, 2017; Nam 

& Pardo, 2011b). The authors believe that synergetic dynamics involving OG, 

IC, and IE collectively, can best exploit the potential of TI in order to enhance 

the attainment of smart city performance objectives. Such quantitative results 
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and analyses can help urban leaders make project-control decisions such as 

consistent policy management to enhance smart city performances. 

 

 

Figure 4.3 Integration of Direct and Indirect Effects 

 

However, several challenges remain to be addressed to appropriately 

manage the development of smart cities (Figure 4.3).  

First, the research team observed that the total effect of OG on E is 

negative (ɓTotal: OGŸE = -0.127). The efforts of central and local governments to 

invigorate public participation (OG) can have undesirable effects. Through the 

consideration of citizensô demands and related possible conflicting interests, 


