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Abstract

A Study on Energy Management Strategy
for Hybrid Electric Vehicles

based on Driving Information

Jaeuk Sim
Department of Mechanical and Aerospace Engineering

Seoul National University

In this thesis, an energy management strategy (EMS) using
prediction model based on driving information is proposed to improve the
fuel efficiency of hybrid electric vehicle (HEV).

HEV uses both an engine and a motor, and is a representative
eco-friendly vehicle with high fuel efficiency. To improve the efficiency of
a HEV, the EMS of the supervisory controller that controls various
powertrain components is very important. An equivalent consumption
minimization strategy (ECMS) wused in this study is a real-time
optimization-based strategy that considers equivalent energy consumption of
fuel and battery. A ECMS is easy to develop and have good real-time
applicability, but a performance is largely dependent on the equivalent factor
that equalize between the two energies. As with most optimization-based
control strategies, the optimal equivalent factor can be obtained only when
the entire future driving profile is known.

In this thesis, a method of changing the equivalent factor at every
specific time period is used, and a prediction model that predicts the factor

of the next time window through the current driving information is



proposed. The prediction model receives the time series data of the current
time window driving information and several feature values extracted from
it, and predicts an optimized equivalent factor for the next time window.
The model was developed based on recurrent neural network (RNN) using
long short-term memory (LSTM) and multi-layer perceptron (MLP). In order
to prepare the data for the training of the prediction model, the cumulative
driving information is divided into specific time windows, and the optimal
equivalent factors for each time window are obtained based on the
simulation. After training the prediction model using the collected data and
testing it on separate data, it is confirmed that there is a high correlation
between the predicted factor and the optimal factor. For the verification of
vehicle simulation, the prediction model is combined with the EMS model
using the ECMS to construct predictive-ECMS, and the forward simulation
is performed using the vehicle and the driver model. Simulation results for
test cycle showed less energy use compared to existing rule-based strategy
and were more similar to the global optimized factor case.

The control strategy proposed in this thesis is an optimization-based
control strategy that can improve the energy efficiency by using prediction
model based on driving information. It is expected that the optimization

-based control strategy will be realized through continuous research.

Keyword: Hybrid Electric Vehicle, Energy Management Strategy,
Equivalent Consumption Minimization Strategy,
Equivalent Factor Prediction, Driving Information

Student Number: 2017-28777

1] .'-\.\."i _ -1



Contents

L@01) 11 1L N iii
LiSt Of FIGUIES...uueeeiiiiiiiissrnnereccssssssnnrsesscsssssssssssessssssssssssssssssssene \
LiSt Of TableS..cccovvvueriiecisssrrnnnriccssssssnnnnrescsssssssnsssssssssssssssssseses vii

Chapter 1. INtroducCtion.........cccccevereeccscssssnnnnercccssssnnsaresccssssonnanes |

1.1 MOtIVALION. ....etiiiiiieciie ettt ettt et e e teeesea e e e aeeeabeesbeeeabesesaeeeareeas 1
1.2 Background Studies........cccccoeviervieriiirciieeiieiieniesee e see e 4
1.3 COntriDULIONS. ...eetieitieieieeiie ettt st 7
1.4 ThesisS OULHNES. ...cccceririiiiiriieiieereeee ettt 8

Chapter 2. Vehicle Model Development...............ccceecueeeeeceeees9

2.1 Target VehiCle.....coocevieiiiiiieiicieciteteeeee e 9
2.2 Vehicle Modeling...........ccoevueeiiiiiiiniiiiiie et 11
2.2.1 Engine Model........cccccevviireiieciiiiieiieieeeee e 11
2.2.2 Motor Model.......ccoeiuieeiiieiieeeeseeee e 12
2.2.3 Battery Model.......cccooiiiininiiiiniiiieeeeeeee 13
2.2.4 Vehicle Model.......ccooiriiiiiieiieee e 15
2.3 Energy Management Strat€gy.......cccocceervieeniienieerniieenieenieeenieeenanes 17
2.3.1 Rule-Based Strategy.........ccccoceerierierverierieerieesieenivenineans 17
2.3.2 Equivalent Consumption Minimization Strategy.......... 18
2.3.3 Implementation of ECMS........c..cccoeviiniininniiiieeie s 19
2.4 Forward Simulation Environment...........cccoceeeieiinieneneenienieneenenns 22

Chapter 3. Prediction Model Development..............cccoeeeeeeeeec23

3.1 Problem Definition.........cooovviiiiiiiiiiiiiiii 23

iii



3.1.1 Optimal Equivalent Factor..........cccocoviriiinininienenennne. 23
3.1.2 Periodic Application of Optimal Equivalent Factor....26

3.1.3 Training Data Preprocessing............cccccceeveeveerverivennnnns 31
3.2 Prediction Model based on Driving Information............ccccueueun.ns 33
3.2.1 LSTM Model using Time Series Data...........ccceennee.. 33
3.2.2 MLP Model using Feature Data..........ccccervervrrvrnnnnns 35
3.2.3 LSTM-MLP Model using Multiple Data...................... 36
Chapter 4. Simulation AnalysiS......ccccccereececscssnnnercccsssscnnnsnnecs 38
4.1 Prediction Model Training.........ccceecvevieneeneenienienieeieeieeeeeeeeneens 38
4.1.1 LSTM Model using Time Series Data............cccvenee.. 38
4.1.2 MLP Model using Feature Data..........ccoceevirrirrennnen. 39
4.1.3 LSTM-MLP Model using Multiple Data...................... 41
4.2 Vehicle Simulation using Energy Management Strategy
based on Predictive ECMS........ccocoiiiiiiiiniiineeeee e 43
(@1 F:1 0175 G TR ©71) 1 T4l 11 £ 11) 1 FOS N 53
5.1 CONCIUSION. ..coutitieiiiieeiieie ettt ettt st 53
5.2 Future Work....ooooiiiiiiiiee et 55
Bibliography.......ccccovvuereicicisssssnnriiccsssssssnnnnneccssssssnsssssescsssssnssanes 56

T B B B eeeeeeseeeseessesssesensssensensssensensnssnssassseness 02



List of Figures

Chapter 1

Figure 1.1 Historical fleet CO2 emissions performance and

current standards for pasSENEEr CarS........cc..cceoceeviierieerieerieenieerieeninenns 1

Figure 1.2 Annual light duty vehicle sales by technology type,

International Energy Agency (IEA) BLUE Map scenario............... 2
Chapter 2
Figure 2.1 Target vehicle configuration.........ccoccoeveeviieiienienienienieeieeeeeeeen 10
Figure 2.2 Engine BSFC map......ccocoiiiiiiiiiiieee e 12
Figure 2.3 Motor efficiency map........ccceviieeciieniieciieeie et 13
Figure 2.4 Battery internal resistance model..........coccooiniiiininiinininiininenen, 14
Figure 2.5 Battery specification Map........cccccceerveeieerieerieeneeneesiesreereeveeseenens 14
Figure 2.6 Longitudinal dynamics of vehicle.........cccooviirniiniiniiniiiiiiiiieieen, 16
Figure 2.7 Vehicle modeling..........ccccoririroieniniiiiiieee e 16
Figure 2.8 ECMS control modeling..........ccooveeriiiiiiiiiiiieiieiiesieeeeeeeeeeeen 21
Figure 2.9 Forward simulation environment............c..cooceveevenereeneenereeneneene. 22
Chapter 3
Figure 3.1 SOC trajectory according to the equivalent factor......................... 24
Figure 3.2 Energy consumption comparison between
optimal ECMS and rule-based strategy...........cccccevvverevrrcrencreenreennn 26
Figure 3.3 Pseudo code for obtaining optimal equivalent factor..................... 28
Figure 3.4 Equivalent factor and relative SOC difference during iteration....29
Figure 3.5 SOC trajectory during iteration...........c.cccceeveeriereesvesveevesrveerseesnes 29
Figure 3.6 Energy consumption comparison according to window size......... 31
Figure 3.7 Collected data and augmentation ProcCess...........cccoccererererercveerveereens 32
Figure 3.8 LSTM unit cell and model structure...........cccceeveeiieniiniinieeeenen. 34
\% :'H'-'i: L



Figure 3.9 MLP model StIUCTUIE.......ccccevuirieriiniieieiieieie e 36

Figure 3.10 LSTM-MLP model Structure..........cccereeienereeesienieeieeeeeeeeee e 37
Chapter 4

Figure 4.1 LSTM model test result........ccccoviimiiriiniiiniieieieceeeie e 39
Figure 4.2 LSTM model test result........cccccerviriciiriiiiiieriieniieniesienre e eveereennens 39
Figure 4.3 MLP model test result.........ccooooiiiiiiniiiiiiiiieeee e 40
Figure 4.4 MLP model test reSulf........cccooeriniiiininiiiiiieeeeceeeeeeeee 40
Figure 4.5 LSTM-MLP model test result.........coccomimiiiinieieniiieeeeeeeee 41
Figure 4.6 LSTM-MLP model test result......c..ccccovimiinininnininieninenicneneenee, 42
Figure 4.7 LSTM-MLP model training log..........cccecvveviievriervenrenrenrenreeneenens 42
Figure 4.8 Control flow schematic diagram...........ccccovcieiieniiinieniinniinieeeeen, 43

Figure 4.9 Energy consumption comparison between
optimal ECMS, predictive-ECMS and rule-based strategy............ 46

Figure 4.10 SOC sustain performance comparison between

optimal ECMS, predictive-ECMS and rule-based strategy.......... 46

Figure 4.11 Simulation results of Inrets Road cycle........ccoovniininiiiniinnnnnen. 48
Figure 4.12 Simulation results of WLTC cycle.......cccoevevienienciiniiciieieeieenen, 50
Figure 4.13 Simulation results of Inrets Highway cycle.......cocooviieiiiiiennnnen. 52
vi 3'—-'; o I



List of Tables

Chapter 2
Table 2.1 Target vehicle SPeCIfiCation........ccccvvvevierciieciieiieiieeeree e 10
Table 2.2 Transition rule for engine on-off...........cccoccoiiiiiiiiiiiiiiniiniiieeee 17

Chapter 3

Table 3.1 Performance comparison between

optimal ECMS and rule-based strategy...........ccccceeveeveeneeneerennnens 25
Table 3.2 Energy consumption comparison
according to window size (Average value of 7 cycles)................. 30
Chapter 4
Table 4.1 Performance comparison between
optimal ECMS, predictive-ECMS and rule-based strategy.............. 45
il 1

vii A1 =TH



Chapter 1. Introduction

1.1 Motivation

Over the past 100 years, the automobile industry has grown on the
basis of fossil fuels, and most of the cars currently on the market are
fueled by gasoline and diesel. However, the automotive industry has recently
undergone a major change due to atmospheric environment issue. The
number of vehicles in the world has greatly increased, and the
environmental pollution problem caused by automobile exhaust gas is
emerging. Major countries are actively pursuing efforts to curb emissions of
pollutants in response to these atmospheric environmental problems. Figure
1.1 shows the regulation of carbon dioxide emissions in major countries [1].
In most countries, the regulation of carbon dioxide emissions after 2020 is

expected to reach half of the early 2000s.
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Figure 1.1 Historical fleet CO2 emissions performance and
current standards for passenger cars [1]
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In the automobile industry, which is highly dependent on fossil
fuels, it is necessary to develop eco-friendly vehicles that can reduce the
consumption of fossil fuels beyond the existing emission reduction
technologies in order to cope with such environmental problems. Hybrid
electric vehicle (HEV) or plug-in hybrid electric vehicle (PHEV) is
becoming more popular as representative eco-friendly vehicle. Figure 1.2
shows the sales forecast of light duty vehicle according to BLUE Map
scenario of international energy agency (IEA) [2]. According to the scenario,

sales of HEVs and PHEVs will continue to increase from 2020 to 2040.

200 B FCEV
180 BEV

160 B PHEV
140 = HEV
120 m CNG/LPG

B Diesel

60 i

PassengerLDV sales (millions)

40 |

2010 2015 2020 2025 2030 2035 2040 2045 2050

Figure 1.2 Annual light duty vehicle sales by technology type,
International Energy Agency (IEA) BLUE Map scenario [2]

A hybrid vehicle is a vehicle that has two or more power sources
for its operation. In general, a HEV is a vehicle equipped with an engine
and a motor [3]. The HEV is more expensive than conventional vehicle due
to various and complex powertrain components. The 48V mild hybrid
powertrain is a good solution to this problem. HEVs are divided into mild
hybrid, full hybrid and plug-in hybrid depending on the capacity of the

battery and motor. The mild hybrid refers to a powertrain using a relatively
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small battery and motor capacity. Especially, the mild hybrid powertrain
using 48V component is a good system that can utilize the powertrain and
chassis design of existing conventional vehicle as well as maximize the
efficiency while reducing the increase of manufacturing cost.

The fuel economy of a HEV depends heavily on the supervisory
energy management strategy (EMS), which controls the powertrain
components such as the engine, transmission, motor, and battery. Therefore,
researches for developing efficient EMS by applying various methods have
been continuously carried out. Especially, in the case of mild HEV, it is
essential to develop EMS that maximizes the hybridization effect compared

to the conventional vehicle.



1.2 Background Studies

The EMS of the HEV is divided into a rule-based strategy and an
optimization based strategy [4]-[5]. The rule-based strategy refers to all
strategies that control the vehicle based on pre-defined control rules. It is
applied to all HEVs currently on sale because it is the simplest and easiest
to implement in real-time. Typically, there are deterministic rule-based
methods [6]-[8] and fuzzy rule-based methods [9]-[11]. However, using a
rule-based strategy does not provide optimal fuel economy and requires
expert parameter tuning to improve fuel economy.

A typical optimization based strategy is dynamic programming (DP)
[12]-[14]. DP is effective only when the entire driving velocity profile of
the vehicle is known in advance, and real-time application is relatively
difficult. Therefore, the DP is used for research purposes such as estimating
the global optimal performance of the HEV for a specific driving profile, or
for parameter tuning of a rule-based strategy [15]-[17].

Pontryagin's minimum principle (PMP) is also one of the
optimization based control strategies [18]-[21]. In the case of PMP, real-time
implementation is possible, but as in the case of DP, this global optimal
control can be realized only when the overall driving velocity profile of the
vehicle is known in advance.

As discussed above, various EMSs have been studied to improve
the fuel efficiency of HEVs. However, all of these EMSs have tradeoffs
between optimality and implementability, and all currently sold vehicles are
using rule-based EMS that takes into account only implementability.
Therefore, in this study, we try to develop EMS that can achieve high
enough optimality while ensuring implementability.

The control strategy used in this study is based on an equivalent



consumption minimization strategy (ECMS) that belongs to an optimization
based control strategy. A ECMS is an EMS using the relationship between
fuel consumption and electric power consumption and was first introduced
by G. Paganelli [22]-[23]. The underlying concept of ECMS is proved by
PMP, and the theoretical background of ECMS is redefined in wvarious
studies [24]-[27]. As with the PMP, ECMS can achieve global optimal
performance only when the overall driving velocity profile of the vehicle is
known in advance. In this limited situation, the performance of the ECMS
is almost identical to the global optimum using the DP [28]-[29].

Therefore, ECMS is a real-time implementation of PMP, and global
optimal performance can be achieved if the driving profile of the future can
be known in advance. However, since the driving velocity profile of the
future can not be known in advance, adaptive ECMS (A-ECMS) that
adaptively changes the control by utilizing only the current information has
been studied. Research on A-ECMS using vehicle state information such as
battery state of charge (SOC) has been conducted [28], [30]. In addition, a
pattern recognition technique has been studied that derives a map of control
through past accumulated data, recognizes the current driving pattern of the
vehicle, and uses the control of the corresponding pattern from the map
[31]-[33]. However, to realize the optimal performance of the ECMS,
predicting the velocity profile is a more fundamental method. Although
various studies have been carried out to predict the velocity profile of a
vehicle directly using various prediction models, the reliability can be
secured only for a very short time [34]-[37]. In the meantime, since it is
difficult to predict driving information in the future with only the
information inside the wvehicle, researches have been conducted to utilize
GPS, GIS, ITS, and other information gathered from outside the vehicle for

ECMS control [38]-[40]. However, since information from outside the



vehicle is less reliable and resolution, research has been conducted through
additional assumptions, and actual implementation at the current technology

level is difficult.
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1.3 Contributions

Contribution of this paper is the development of EMS using
predictive-ECMS based on driving information. First, an environment was
developed that enables forward simulation of vehicle performance through
vehicle modeling and ECMS based EMS controller modeling. Secondly,
various prediction models were developed to predict the control value of
ECMS. These models use only driving information generated within the
vehicle up to the present time as input data. Also, the prediction model
directly predicts future ECMS control values as real values. Lastly, the
prediction model was trained through past accumulated data. The
performance of the predictive-ECMS controller, which combines the
prediction model and the ECMS model, was evaluated through forward
simulation.

The predictive-ECMS developed in this paper has the following
differences compared to the previous studies. First, it is stand-alone EMS
that do not use any information from outside the vehicle at all. Secondly, it
is EMS that can realize real-time implementation at current technology level.
Finally, performance close to optimal performance is realized while

satisfying the above two conditions.



1.4 Thesis Outlines

The main body of this thesis composed of 5 chapters. Each chapter
organizes as follows:

Chapter 2 describes the modeling and simulation environment of the
vehicle. Modeling of powertrain component and vehicle architecture, and
modeling of EMS based on ECMS. These models are combined to form a
forward simulation environment.

Chapter 3 describes the development of prediction models. The
method for obtaining the optimal control factor of the ECMS and the
preprocessing of the historical cumulative data collected for the prediction
model training are explained. Three different models of prediction were
proposed using different techniques.

Chapter 4 describes the simulation analysis. This includes the
comparison of the training results of three prediction models and the
evaluation of the performance of the predictive-ECMS combined with the
prediction model and ECMS.

Chapter 5 describes concluding remarks. Conclusion and future work

of this thesis is presented.



Chapter 2. Vehicle Model Development

2.1 Target Vehicle

The target vehicle used in this study is a parallel type mild HEV.
In addition to the configuration of conventional vehicle, this vehicle is a PO
type configuration in which the motor serving as an integrated
starter-generator (ISG) is connected to the engine by a belt. Figure 2.1
shows the configuration of the target vehicle. It is a mild hybrid type with
a maximum engine power of 134kW and a maximum motor power of
11kW. The motor is used only as a torque assist mode and regenerative
power generation, and it is impossible to use the electric vehicle mode
driven by the motor alone. Table 2.1 shows the target vehicle specifications.
The powertrain component data was constructed with reference to the
Autonomie vehicle system simulation tool of the Argonne National

Laboratory.



Vehicle Parameters Specification
Type CI 4-Cylinder Diesel
Engine Maximum Power 134 kW
Maximum Torque 392 Nm
Maximum Power 11 kW
Motor -
Maximum Torque 56 Nm
Battery Capacity 10 Ah
Transmission Type 6-Speed Automatic
Gross Weight 1495 kg
Vehicle Air Drag 0.35
Frontal Area 2.61 m’
. Rolling Resistance 0.008
Tire -
Radius 0.34 m

4

Clutch

Table 2.1 Target vehicle specification

Wheel

Final Drive

Wheel

Figure 2.1 Target vehicle configuration
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2.2 Vehicle Modeling

2.2.1 Engine Model

The engine used for the vehicle modeling is a four-cylinder diesel
engine of compression ignition (CI) type. The maximum torque of the
engine is 392Nm at 2500rpm and the maximum power is 134kW. The
brake specific fuel consumption (BSFC) was modeled in the form of a map
according to the engine torque and speed as expressed in (2.1). Therefore,
the fuel consumption rate of the engine is expressed as a function of the
engine torque and speed as shown in (2.2). Figure 2.2 shows the BSFC,
maximum torque and optimal operating line (OOL) of the engine. The
maximum efficiency range of the engine is located near the middle point of

the operation speed and near the maximum load point.

BSFC= function(ﬂng, weng) 2.1
my=BSFCx P, /(3600 « 10°) (2.2)
=BSFCX 1,,,,,,,/(3600 « 10°)
= function(]l,ng, Wepg
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2.2.2 Motor Model

The maximum torque of the motor used for the vehicle modeling is
56Nm at 1870rpm and the maximum power is 11kW. The efficiency of the
motor was modeled in the form of a map according to the motor torque
and speed as expressed in (2.3). Therefore, the power of the battery is
expressed as a function of the motor torque and speed as shown in (2.4).
Figure 2.3 shows the efficiency and maximum torque of the motor. The
motor exhibits a large torque even in the stationary region and the low
speed region, and the distribution of the maximum efficiency region is wider
than that of the engine.

In the vehicle powertrain structure, the motor is connected to the
engine by a belt with the speed coupling ratio 7, =2.5 as shown in (2.5).
Therefore, the required wheel torque of the vehicle can be expressed as

Q.7).

nmot = functzon( T;noﬁ wmat) (23)
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Pbat = Mot Tmotwmot (24)

= fum:tzon( ijot’ wmot)

Winot — Vbeltweng (25)
R‘eq = Peng +Pmot (26)
T
req,wheel o
wcng - Zgngwc77,g + Tmot Voelt u)eng (27)
’der)/gb
5 ~—
Z = -
) S
5’ _
o
5 i
g =
‘ <=> Motor efficiency [%]
Maximum torque

/ . . i i
0 2000 4000 6000 8000 10000 12000 14000 16000
Motor speed [rpm]

Figure 2.3 Motor efficiency map

2.2.3 Battery Model

The maximum capacity of the battery used for the vehicle modeling
is 10Ah. The internal resistance model was used as the battery model, as
shown in Figure 2.4. It is a model of the battery as a series connection of
source voltage and internal resistance. The open-circuit voltage and internal
resistance are functions of battery SOC and temperature, and the influence
of temperature is neglected in this study as in (2.8). A graph of each
function is shown in Figure 2.5. Using the battery internal resistance model,

the SOC derivative of the battery can be calculated as shown in (2.11).
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Figure 2.4 Battery internal resistance model
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2.2.4 Vehicle Model

The vehicle dynamics model used in this study only considers
longitudinal dynamics, as shown in Figure 2.6. The dynamic equation of the
vehicle is (2.12), and the resistance values considered in the model are
rolling friction resistance (2.13), aerodynamic drag resistance (2.14), and
gradient resistance (2.15). Finally, the vehicle model shown in Figure 2.7 is
completed by combining the engine model, motor model, battery model and
vehicle dynamics model, as well as the transmission model, other accessories

and final reduction gear.

daVv

M= (Fyt B )= (B + B, + F+ F) (2.12)
F,.=Wf, = Mgcosa f, (2.13)
1% 2.5

:Mgcosoz(f0+fs(1—00) )
F, = % pACp(V+V,)? (2.14)
F, = Mgsina (2.15)
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Figure 2.6 Longitudinal dynamics of vehicle
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2.3 Energy Management Strategy

HEVs have the engine and motor as power sources, and they have
very different characteristics. In addition, HEVs made up of a variety of
subsystems with the addition of the motor, inverter and battery in addition
to the conventional powertrain subsystems. Therefore, in order to efficiently
control the HEV, it is necessary to consider the advantages and
disadvantages of the engine and the motor, and to distribute the power and

to integrally control the subsystems.

2.3.1 Rule-Based Strategy

The most basic EMS of HEV is rule-based strategy. A rule-based
strategy consists of several state and transition rules between states, and
pre-defined control logic for each state. Since the vehicle model used in this
study has no motor alone mode, in most cases the engine is on and limited
off by parameters such as required wheel torque. The transition rule for
engine on-off is shown in Table 2.2. There are three modes for distribution
the required power to the engine and motor. The transition and control rule

for each state is shown in the Table 2.3.

State Transition
T eqwheer < —20Nm (more than 0.1s)
and V,_, <0.1m/s
Engine Off veh
and SOC> 0.45
and APS<0.8
Engine On else

Table 2.2 Transition rule for engine on-off

s I =
17 % b gl



Transition

State
Control
];eq,wheel >0
and SOC>0.6x1.01
Assist T;Pq wheel
=——(1404(V . SOC)— -7
Mode mot yf’dPng ( ( asszst,max( ) V)) eng,max
];n _ req,wheel ~T.
g ’}/fd’ygb t Ibelt
];eq, wheel >0
and SOC< 0.6><0.99
Charge I Pbat,chargc(SOC)_ Pacc,elec
Mode met Winot
_ ﬂeq,w/zeel . 5
eng ,de’}/gb mot lbelt

T

Teq,wheel <0

Brake T =0

mot
Mode
j:ang = mln(ﬂﬂg,max’ Téng.,min + ]:J,cc,mech(weng»

Table 2.3 Transition and control rule for each power distribution mode
2.3.2 Equivalent Consumption Minimization Strategy

The EMS used in this study is developed based on ECMS. The
ECMS is a control strategy that uses the total equivalent consumption
energy as a cost function. The energy consumption rate of fuel and battery
are as shown in (2.16) and (2.17). Equivalent to the energy consumption
rate of the battery with the proportional constant, the total equivalent

consumption energy is calculated as (2.18).

18 M =T



Py =my, « LHV (2.16)

P,=Vel (2.17)
=1VQ,,S0C

. V@, -

M= my k= SOC (2.18)

The voltage of the battery was constantly treated, and the equivalent
factor is expressed in A. The final cost function of the ECMS is shown in
(2.19). The main advantage of ECMS is that it reduces global optimization
problem to an instantaneous optimization criterion, with a cost function

dependent only on the system parameters at the current time.

J=m,, (2.19)
=m;+AS0C
[ ]:e'n,g’ I;not] = argmin(J) (220)

SOC(tO): SOC(tf)
, SOC,,i, <SOC<SOC,, .«
subject toy p T <7

eng,min eng eng,max

T <7 .<T

mot,min mot mot,max
2.3.3 Implementation of ECMS

The model of the ECMS controller was implemented as follows.
When the required wheel torque 7)., .., Of next time step (t+1) is given
from the driver, the torque of the engine and motor is distributed based on
the wvehicle parameters at the current time step (t) as follows. First,
considering the specification of the motor, the candidate group of the motor

power P, . at the next time step (t+1) is set as a vector of 1kW interval

1 ;
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from —11kW to 11kW. Considering (2.5) and (2.7), the candidate torque of

the engine and motor are as follows.

P (t+1)
T (t+1)= "0 221
o Voelt wcng <t) ( )
T;"(’ whee (t+1) Pmo (t+1)
T,,, (¢ +1)= —ture — ot (2.22)
' Vfdrygb(t) weng (t)

Next, considering (2.11), (2.4) and (2.2), the candidates for SOC

derivative and fuel consumption rate are as follows.

SOC(t+1)= function(SOC(t), Py, (t+1), Q) (2.23)
= function(SOC(t), Tmat(t—i- 1), YoertWen g(t), Qbat)
my(t+1)= function(T,,,(t+1), w,,,(t)) (2.24)

Finally, considering (2.21) to (2.24), the cost candidate values of
ECMS can be calculated, and the engine and motor torque that minimize
the cost value are used as the torque of the next time step (¢+1).
Modeling the control implementation of ECMS using MATLAB Simulink is

shown in Figure 2.8.

Jt+1) =my,(t+1)+AS0C(t+1) (2.25)
= funtion(X, qu’wh%l(t +1), P,,,,(t+1), current states)
[7,,,(t+1), T, ,(t+1)]= argmin (At +1)) (2.26)
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Figure 2.8 ECMS control modeling
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2.4 Forward Simulation Environment

In this study, the forward simulation method was applied to
simulate the fuel consumption of the vehicle. Generally, the fuel efficiency
of a vehicle is evaluated by running a predetermined test cycle velocity
profile. The forward simulation method has a wvirtual driver model. The
driver model compares the test cycle with the current vehicle velocity and
manipulates the accelerator pedal and the brake pedal to follow the test
cycle velocity. The supervisory controller model distributes the power
appropriately based on pedal signal using the EMS, and the vehicle model
simulates the powertrain and dynamics of the vehicle based on control
commands. As a result, this forward simulation method is an effective way
to simulate the actual vehicle driving through the driver model. Figure 2.9
shows the configuration of the forward simulation environment based on the

controller model and vehicle model.

rest Cucle 1 Target Velocit et Model Moo oo e Current Velocity __ _
b S () river Model < Q ’

1

1

1

1

1

. 1
Driver Command i
1

1

1

1

1

(APS, BPS)
v Control

o 1], Command W ® W =

==lre — ) (Tengvaot'-"): - - - k=i :
z ° < ._ - - B 1
_| Vehicle Data - - Ei-

Tz R =

EMS Controller Model Vehicle Model

Figure 2.9 Forward simulation environment
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Chapter 3. Prediction Model Development

3.1 Problem Definition

3.1.1 Optimal Equivalent Factor

In the ECMS control mentioned above, the equivalent factor of
equalizing the energy consumption of the engine and the battery is the most
important value. The ECMS control shows a large difference in the fuel
consumption performance and the SOC sustaining performance depending on
the equivalent factor. If the velocity profile of the vehicle is known in
advance, an optimal value of the equivalent factor corresponding to the
velocity profile can be obtained by iteration of the forward simulation.
Figure 3.1 shows the simulation results of various equivalent factor for the
WLTC cycle. The SOC trajectory was highly dependent on the equivalent
factor. The SOC was sustained only when the optimal equivalent factor was

used, and the vehicle achieve optimal performance.
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Figure 3.1 SOC trajectory according to the equivalent factor

To find out the potential maximum performance of the ECMS, the
optimal equivalent factor for each fuel consumption measurement cycle was
obtained. The optimal equivalent factor was obtained by iteration of forward
simulation and iteration was performed until the difference between the final
SOC and the initial SOC reached £0.0001.

The simulation using the existing rule-based control strategy was
simulated as a comparative group. Since the final SOC may be different
from the initial SOC when the rule-based control strategy is applied, the

equivalent energy consumption £ was calculated for the performance

sum
comparison of the two control strategies. Equivalent energy consumption

£, ,..is calculated as (3.1).

sum

E Efuel + Ebat dis bat char (3 1)

(LHV / mdi+ / Vol dt— / oLy )/(3600 . 10°)
ty t,
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The simulation results for the equivalent energy consumption £

sum

and SOC difference SOC,., for both control strategies are shown in Table

3.1, and the relative FE

wum Vvalue of the optimal ECMS case for rule-based
of each cycle is shown in Figure 3.2. The optimal ECMS consumed an
average of 10.31kWh of energy and 10.50kWh in the case of rule-based
strategy. The energy consumption of the two strategies showed an average

difference of 2.549% and maximum 5.556% for each cycle.

Optimal ECMS Rule-based
Eym [kWh] Eyym [kWh] SOCeita

EUDC 3.451 3.565 0.096
HWFET 7.236 7.279 0.039
Inrets Highway 29.46 29.70 0.034
Inrets Road 6.497 6.720 0.026
NEDC 5.474 5.796 0.096
UDDS 6.394 6.569 0.002
WLTC 13.65 13.89 0.064
Average 10.31 10.50 0.051

Table 3.1 Performance comparison
between optimal ECMS and rule-based strategy
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Figure 3.2 Energy consumption comparison
between optimal ECMS and rule-based strategy

3.1.2 Periodic Application of Optimal Equivalent Factor

On the other hand, since the optimal equivalent factor of ECMS is
dependent on the wvelocity profile, the potential maximum performance of
ECMS can be realized only if entire future driving cycle is known in
advance. However, in the actual situation, the optimal equivalent factor can
not be known because the future driving cycle is not known. Therefore, the
equivalent factor should be predicted through an appropriate prediction
model. The global optimal equivalent factor for entire future driving cycle is
very difficult to predict because it is dependent on the entire future driving
cycle.

Therefore, in this study, a method of predicting the optimal
equivalent factor periodically with a certain time window length is proposed.
It is very important to select the appropriate window size in this method.
The larger window size, the closer to the globally optimized energy
consumption, but the predictability of equivalent factor becomes more
difficult because the equivalent factor depends on the information of a far

future. The smaller window size, the easier it is to predict the equivalent
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factor, but the energy consumption is no different from the rule-based
strategy. Therefore, an appropriate window size should be selected to
achieve a performance similar to the globally optimized energy consumption
performance with a suitably short window size.

If the driving cycle is equally divided according to the window
size, each micro trip becomes a short driving cycle with the non-zero initial
velocity. Forward simulation is generally difficult to simulate in such a
micro trip, so the following method was used to find the optimal equivalent
factor for a short driving cycle that does not start from a stop state.

In order to start from the stop state, the stop section, the constant
acceleration section and the constant velocity section were added at the front
of the micro trip for 10 seconds each. The iterative simulation was

performed by changing the initial SOC SOC,,; and equivalent factor A for

modified micro trip, and the iteration was repeated until the difference
between the SOC at the time of 30 seconds and the final SOC is within =+
0.001. The pseudo-code for the process of obtaining the optimal equivalent

factor through iteration is shown in Figure 3.3.
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iteration for SOC,,;

iteration for )\

run forward simulator with (SOC,,;, A)
SOCid, deta = SOCrnig —SO Conid,target
SOCfm,dezm = Socfm _Socfin.,target
SOC,cr, detta = Socﬁn,dezza —SOCnid. deita
if SOC.ei, gerra > 0-001
SOC fin, deita )ZA

SOC i

else if SOC, ¢ gera < 0-001

Azu—uw(

SOC fin, detra |’
A:G+0m(&&mn)A
else
break
end
if [SOC,et, detta | < 0-001 & [SOC ia, detra | < 0-001
break
else

SOCimt = SOszf - SO Cmid,dclta

end

Figure 3.3 Pseudo code for obtaining optimal equivalent factor

The example of changing the equivalent factor and relative SOC

difference SOC,.; 411, during the iteration process is shown in Figure 3.4. In

general, these two variables have a s-curve like the dotted line. Figure 3.5

shows the variation of the SOC trajectory in the iteration process.

: LEE]



0.25 : . .
. —e—50C,,=0617421 | |
0.15 \ R
0.1+ \\
\
0.05 <

0

rel,delta

soC

-0.05 -

0.1 *
\
0415 | \
\
02 N
0.25 :
0.25 02 015 0.1 005

Equivalent factor
Figure 3.4 Equivalent factor and relative SOC difference during iteration

Optimal equivalent factor case M

0.66 - clor case )
/

0.64

062 S N
058

o
o

a\%
- 7 NS
§ N S MYV

/7

§ 056 | Y = g

5" AR N

054+ A, ‘
VST Al AN
0.52 WWCJ/W 4 g
05 1
048 W\‘ A
0 20 40 60 8 100 120 140 160 180
Time [s]

Figure 3.5 SOC trajectory during iteration

By applying this iteration method, the optimal equivalent factor for
micro trip can be obtained, and iterative simulation was performed on
various window sizes to find an appropriate window size. The case of using
equivalent factor based on divided cycle with specific window size, the case
of using global optimal equivalent factor and the case of using the
rule-based strategy were compared. The window size was set to 20 to 320

seconds divided by 20 seconds. Equivalent energy consumption £/ was

sum
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calculated for the performance comparison and the relative value for energy
consumption of optimal ECMS case was used.

The simulated average values for each of the 10 driving cycles are
shown in Table 3.1 and Figure 3.6. As expected, the shorter the window
size, the more energy was consumed and increased to a similar value to the
case of rule-based. Also, as the window size increases, the energy
consumption decreased to a value similar to that of the optimal ECMS case.
It can be seen that the decreases of the energy consumption due to the
increase of the window size was almost converged when the window size
was 160 seconds. When the window size was 160 seconds, the energy
consumption was only 0.316% difference from the optimal ECMS. Based on

these results, the rest of the study is conducted with a window size of 160

seconds.

Window size [s] E,,, [kWh] Window size [s] E,m [KWh]

(Optimal ECMS) 10.3095 160 10.3325
320 10.3197 140 10.3389
300 10.3280 120 10.3287
280 10.3268 100 10.3377
260 10.3208 80 10.3426
240 10.3173 60 10.3478
220 10.3296 40 10.3584
200 10.3253 20 10.4062
180 10.3288 (Rule-based) 10.5027

Table 3.2 Energy consumption comparison according to window size
(Average value of 7 cycles)
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Figure 3.6 Energy consumption comparison according to window size

3.1.3 Training Data Preprocessing

A training data set is needed to train the prediction model that
predicts the optimal equivalent factor. The data for training was collected.
Among the publicly known fuel efficiency measurement cycles widely used
in the world, the cycle suitable for passenger sedans was used as the data
for training. The collected driving cycle was 97,946 seconds, which was
divided into 160 seconds to construct a micro trip. In addition, since the
number of training data sets is insufficient, the training data was augmented
by shifting the whole driving cycle. The data augmentation was carried out
30 times, resulting in a total of 18,363 micro trips. The collected driving
cycles and data augmentation process are shown in Figure 3.7. For each of
these micro trips, the optimal equivalent factor of individual micro trips
were calculated in advance by the iteration method described above. The

standard deviation of the obtained optimal equivalent factor was 0.00710.
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3.2 Prediction Model based on Driving Information

3.2.1 LSTM Model using Time Series Data

Various studies have been carried out to predict the future driving
environment, but most of them have been predicted through additional
information from the outside of the vehicle. In particular, there are a
number of studies conducted on the assumption that vehicle know
information that can not be obtained at the present level of technology.
However, these prediction models have a fatal drawback that they are overly
dependent on traffic information systems and can not operate offline. The
prediction model proposed in this study uses only the information obtained
from the vehicle.

The driving data generated by the vehicle are basically time series
data. A suitable model for this time series data processing is a recurrent
neural network (RNN) model. Among the deep learning supervised models,
the RNN model shows great performance in time series data processing. In
general, sigmoid function and hyperbolic tangent function are used as the
activation function of the RNN. However, in the case of these RNN cell,
there is a limitation in expressing the dependency over time of the time
series data due to the gradient vanishing problem or the gradient exploding
problem in the back propagation process over time.

As a solution to this problem, a long short-term memory (LSTM)
cell which extends an existing RNN cell has been introduced. The LSTM
cell shows high performance over long time dependency using input gate,
forget gate, memory cell and output gate. A total of four gates and memory
cells each are a kind of feed forward network, each having a weight and

bias. The LSTM learning process consists of training these weight and bias
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through back propagation. The operation formulas for output values in each
gate and cell in one LSTM cell unit are as follows, and the form of the

cell in LSTM unit and total LSTM model structure is shown in Figure 3.8.

i :a(wi . [ht_l,xt]—i-bi) : input gate (3.2)
¢, =tanh(w, * [h,_ 2,]+b,) : input gate (3.3)
/i Za(wf . [ht,l,xt]+bf) : forget gate (3.4)
o, Za(wo . [ht,l,xt]+bo) : output gate (3.5
¢, =f ¢ t+i o c~t : update cell state (3.6)
Yy, =h, =0, ° tanh(q) : update hidden state (3.7)

v, @)y

v, a),

®
Y
he

Figure 3.8 LSTM unit cell and model structure

< H

For the training data of the LSTM model, the velocity and
acceleration time series data for 160 seconds at 1 second interval were used,
and the target data was the optimal equivalent factor for the next time
window 160 seconds later. The LSTM model consisted of two LSTM
layers, the dimension of the cell state and hidden state of the first layer
was set to 128 and the second layer was 64. The output value from the
last cell of the second layer passes through the fully connected layer and

becomes the final output.
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3.2.2 MLP Model using Feature Data

In the case of the above-mentioned LSTM model, the prediction
model was trained only by the raw data of the driving information including
the vehicle velocity and the acceleration. In general, however, feature values
such as average velocity or average acceleration are used for driving
information analysis rather than raw data. The LSTM model only allows the
model to find the most relevant value among the various features by
inputting the raw data intact. Therefore, it is necessary to extract the
features manually from the raw data, and to train the prediction model with
these features.

Generally, multi-layer perceptron (MLP) models have shown high
performance in this training. The perceptron is an artificial neuron and it
has a structure that multiplies the input values by weight and then combines
all with bias to pass a specific activation function. The MLP model is a
kind of feed forward network in which these perceptrons are arranged in
parallel and stacked in layers. The structure of the MLP model is shown in

Figure 3.9.
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W
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‘

Figure 3.9 MLP model structure

As the training data of the MLP model, nine features extracted
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from the 160 second driving data were used, and the target data was the
optimal equivalent factor of the next time window. The nine features are the
distance, average velocity, maximum velocity, average acceleration, maximum
acceleration, average deceleration, maximum deceleration, aggressiveness and
degressiveness for 160 seconds respectively. Each layer of the MLP model
consisted of 100 perceptron respectively and 10 layers were stacked. The
rectified linear unit (ReLU) was used as the activation function. The output
values of the last layer pass through the fully connected layer and become

the final output.
3.2.3 LSTM-MLP Model using Multiple Data

The two proposed prediction models use raw driving information
and manually extracted features as input data respectively. Since these input
data have their own advantages, a multiple input prediction model using
both input data is proposed. In this specially designed prediction model, the
output of the LSTM model is transferred through a fully connected layer to
an input of the MLP model. This means that the output value of the LSTM
model is used as the tenth feature in the MLP structure. Figure 3.10 shows
the structure of the merged LSTM-MLP model. The training data of the
LSTM-MLP model used 160 seconds of time series data and nine extracted
features from time series data as multiple inputs. The target data was

likewise the optimal equivalent factor of the next time window.
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Figure 3.10 LSTM-MLP model structure
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Chapter 4. Simulation Analysis

4.1 Prediction Model Training

The data used for the training of the prediction model was 18,363
dataset mentioned above. Each dataset consisted of 160 seconds of driving
information as input data, and the optimal equivalent factor for the next 160
seconds obtained by iteration as the target data. The driving information
means the velocity and acceleration time series data for 160 seconds and the
nine features extracted from it. The time series dana and features used as
input data were standardized with their respective mean and standard
deviation. Only 80% of the data were used for training, 10% for validation
and the remaining 10% for testing. The prediction model was constructed

using python TensorFlow.
4.1.1 LSTM Model using Time Series Data

The LSTM Model used only time series data as input data as
mentioned in the previous chapter. The predicted results of the equivalent
factor and the correct answer value for a test set are shown in Figure 4.1.
The average of the distribution was similar, but the precision was somewhat
lower, and in particular, the region where the low value was the target was
not predicted at all. This is because the feature was not manually extracted
and used as input data, but only time series data was used as raw data. In
other words, the LSTM model alone can not detect the high level feature
that is related to the optimal equivalent factor of the future. The distribution

of the predicted and target values is shown in Figure 4.2, the root mean
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squared error (RMSE) was 0.00406 and correlation coefficient was 0.665.
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Figure 4.1 LSTM model test result
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Figure 4.2 LSTM model test result
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4.1.2 MLP Model using Feature Data
The MLP Model used only feature data as input data as mentioned

in the previous chapter. The predicted results of the equivalent factor and

the correct answer value for a test set are shown in Figure 4.3. The
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accuracy of the predicted factor of the MLP model was much better than
that of the LSTM model, and precisely predicted a region with a
particularly low target value. This is probably due to the use of manually
extracted feature data as input. The distribution of the predicted and target
values is shown in Figure 4.4, the RMSE was reduced to 0.00376 and

correlation coefficient was 0.751.
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4.1.3 LSTM-MLP Model using Multiple Data

The LSTM-MLP model used both time series data and feature data
as input data. The predicted results of the equivalent factor and the correct
answer value for a test set are shown in Figure 4.5. The prediction accuracy
in the section with a small equivalent factor value was relatively accurate
and the prediction accuracy around —0.075, which is a factor value mainly,
was much higher than the MLP model. It can be seen that the prediction
error was much lower when the two models were used in combination as
compared with when the LSTM model or the MLP model alone was used.
The distribution of the predicted and target values is shown in Figure 4.6,
the RMSE was reduced to 0.00308 and correlation coefficient was 0.829.
Figure 4.7 shows the decrease of the loss value in the training process of
the LSTM-MLP model. The decrease trend of the loss for validation set
was continuously monitored and training was terminated when the loss

converged.
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Figure 4.5 LSTM-MLP model test result
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4.2 Vehicle Simulation using Energy Management Strategy
based on Predictive ECMS

The schematic diagram of EMS using ECMS based on prediction
model is shown in Figure 4.8. The control flow is divided into an offline
calculation part outside the vehicle and an online calculation part of the
vehicle in real-time control. In the offline calculation part, the historical
cumulative driving data is used, and through the data preprocessing, the
iteration of the equivalent factor optimizer finds the optimal factor and
trained by the predictor. The trained predictor is transferred to the wvehicle,
which is used in online calculation section to control the vehicle based on
the ECMS. Also, the driving data collected while driving are stored in the
memory of the vehicle, and then transferred to offline calculator to be used

for retraining the predictor.

Data Memory i .
- i S Data Memory
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Cumulative
Driving Data [

Data
Preprocessor

Input Dataset

Predictor

(Time series data, Driving Data
feature data) EF Optimizer
Target Dataset Control
(Optimal EF) A 4
~~~~~ Vehicle
------------
Offline Calculation Online Calculation

Figure 4.8 Control flow schematic diagram

The performance evaluation of the strategy was performed using the
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forward simulation described above. The predictor was constructed using the
LSTM-MLP model among the above three prediction models. In predictor,
the equivalent factor for the first time window immediately after the
departure without previous driving information was set to the average of the
optimal factor used in the prediction model training. From the next time
window, the predicted equivalent factor was used through the pre learned
prediction model, using the driving information from the previous time
window driving.

The results of the forward simulation of predictive-ECMS using the
LSTM-MLP prediction model are summarized in Table 4.1. Equivalent

energy consumption £ and SOC difference SOC,, results were

compared with optimal ECMS and rule-based cases, respectively. The

relative £ value of the optimal ECMS case and predictive-ECMS for

rule-based of each cycle is shown in Figure 4.9.

The predictive-ECMS consumed an average of 10.35kWh of energy,
which is 2.01% less than the 10.50kWh of the rule-based case. The optimal
ECMS consumed an average of 10.31 kWh of energy, which is 2.55% less
than the rule-based case. In other words, predictive-ECMS showed 0.54%p
difference compared to optimal case and showed almost close performance.
This tendency was the same for all driving cycles used in the simulation.

Therefore, it can be said that the case of the predictive-ECMS
using only the prediction model without knowing the future information was
close to the case of the optimal ECMS assuming that the entire information
is all known in advance. This suboptimal performance was also
demonstrated reliably regardless of the driving cycle. Since the target vehicle
was a mild HEV, the energy savings were not dramatic, but they were
significantly more energy efficient than the well-tuned rule-based and were

close to optimal case.
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On the other hand, in case of SOC sustain performance, the
variation of SOC was changed by 5.1%p on average compared to 60% of
initial SOC at the beginning of driving in case of rule-based. However, in
the case of predictive-ECMS, the variation of SOC was 3.9%p, which
means that SOC was better maintained. In particular, SOC sustain
performance of predictive-ECMS was always better than rule-based except

for two driving cycles.

Optimal o
o Predictive-ECMS Rule-based
Foun T S0Cku ™ SOCu
[kWh] [kWh] [kWh]
EUDC 3.451 3.487 0.046 3.565 0.096
HWFET 7.236 7.265 0.025 7.279 0.039
Inrets Highway 29.46 29.50 0.029 29.70 0.034
Inrets Road 6.497 6.526 0.008 6.720 0.026
NEDC 5.474 5.545 0.116 5.796 0.096
UDDS 6.394 6.403 0.007 6.569 0.002
WLTC 13.65 13.71 0.045 13.89 0.064
Average 10.31 10.35 0.039 10.50 0.051

Table 4.1 Performance comparison
between optimal ECMS, predictive-ECMS and rule-based strategy
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Figure 4.11 is a graph comparing the simulation results for the
Inrets Road cycle, which is a middle speed test cycle. The prediction of the
equivalent factor through the prediction model predicted a value that almost
matches the target value except for the first window and the last window.
In the case of the first window, the error was generated because the data
was not yet collected and the default value was output. In the case of the

last window, it was an error that occurs because model did not know that
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the driving will end in the middle of the window and factor was predicted
for complete 160 seconds driving. Therefore, it can be said that the
prediction accuracy was very high except for these two windows which can
not be predicted correctly.

Comparing the SOC trajectory, the initial and final SOCs were
fixed at the reference value of 60% in the case of the optimal ECMS, and
the battery power was used in a very fluid manner. Predictive-ECMS tried
to reach the SOC value to the reference value of 60% at each time window
boundary, and the battery power was used fluidly within each window.
Although the initial equivalent factor can not be predicted, and the SOC at
the end of the first window was lower than reference value, but it tends to
recover as time goes by. Also the SOC sustain result after the end of the
driving of the predictive-ECMS case was better than rule-based case.

Overall, the predictive-ECMS did not use SOC as freely as the
optimal ECMS, but it was relatively fluid rather than rule-based, resulting in
a tendency to use the trajectory closer to optimal SOC trajectory than

rule-based.
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Figure 4.12 is a graph comparing the simulation results for the
WLTC cycle, which is a combined test cycle of urban and high speed
driving. As a result of the prediction of the equivalent factor through the
prediction model, it can be seen that the predicted value was estimated
similar to the target value except for the first window and the last window.
Therefore, except for these two windows which can not be predicted, the
prediction accuracy was relatively high.

Comparing the SOC trajectory, the optimal ECMS used the battery
power very freely as a whole. The predictive-ECMS showed a tendency to
reach the reference value for the period of the time window, but was
relatively fluid. On the other hand, in the case of rule-based, it tried very
strongly to maintain the reference value of 60%. Also the result of the SOC
sustain after the end of the driving of predictive-ECMS was batter than that
of rule-based case.

As a result, predictive-ECMS was less fluid than optimal ECMS,
but more free than rule-based case in using SOC. In particular, the SOC
trajectory of the predictive-ECMS showed a similar increase or decrease in
the shape of the optimal ECMS trajectory as if it were reduced to the 60%

baseline direction.
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Figure 4.13 compares the simulation results for the Inrets Highway
cycle, which is a high speed driving test cycle. The predicted result of the
equivalent factor through the prediction model showed that the prediction of
the target value was similar to that of the target value except for the first
window and the last window. Therefore, except for these two windows
which can not be predicted, the prediction accuracy was relatively high.

Comparing the SOC trajectory, the optimal ECMS used the battery
power as a whole. Especially, it was shown that the motor was driven in
the high speed travel region and the SOC was charged again in the
acceleration and deceleration region at the end of the cycle. The
predictive-ECMS showed a tendency to keep the SOC close to the reference
value at high speed region. This was because it was not known in advance
that SOC charging was possible in the acceleration and deceleration region
at the end of the cycle. On the other hand, in the case of rule-based, the
engine was used instead of the motor in the initial acceleration and
deceleration section, and the surplus SOC was gradually decreased, resulting
in a somewhat inefficient trajectory. Similarly, the SOC sustain result after
the end of the driving was better than when the predictive-ECMS was
rule-based.

As a result, due to the characteristics of high speed driving, the
improvement of fuel efficiency was smaller than the wurban driving,
predictive-ECMS showed limited SOC usage than optimal ECMS, but still
achieved better fuel economy than rule-based using inefficient SOC

trajectory.
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Chapter 5. Conclusion

5.1 Conclusion

In this thesis, the predictive-ECMS EMS based on driving
information for HEV was developed. For this, mild HEV and ECMS based
EMS were modeled and three types of prediction model were developed.
Driving information datasets for model training were collected and
appropriately preprocessed. Training datasets were used to train each of the
three prediction models and compared the test results. The predictive-ECMS
using prediction model with the best prediction performance was simulated
by HEV modeling and the results were analyzed.

The prediction performance of the LSTM model using time series
data, which is raw data of driving information, was insufficient. However,
MLP model using features that extracted manually from driving information
had relatively good prediction performance. The LSTM-MLP model, in
which one output of the LSTM model was added to MLP model as a new
feature, increased prediction accuracy even further.

The forward simulation results of the predictive-ECMS EMS using
the LSTM-MLP prediction model are as follows. Compared to optimal
ECMS assuming that all future information is known in advance, the
predictive-ECMS showed near energy usage. Compared with rule-based EMS
applied to existing vehicles, much less energy was used. Also, the SOC
sustain performance comparing the SOC at the beginning and the end of the
driving was also better than the predictive-ECMS than the rule-based EMS.
In particular, the above performance improvements were consistent for most

test driving cycles.
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The mild HEV that maximizes the fuel efficiency of conventional
vehicles requires adequate EMS because of the relatively small battery and
motor capacity. Rule-based EMS, which has been applied to existing
vehicles, is not enough to draw the potential of mild HEVs. However,
optimization based EMS is hard to implement because it requires future
information. It is expected that commercialization of optimization based EMS
will be made if research on EMS based on the prediction model like this

thesis is continuously performed.
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5.2 Future Work

This thesis proposed a supervisory EMS of a hybrid using a unique
prediction model. There are some additional works that need to be addressed
to improve the completeness of the proposed EMS.

First, it is necessary to verify the robustness of the prediction
model. In this study, only stable conditions were verified rather than actual
driving conditions. The battery SOC was operated only within a reasonable
range and was verified only for highly refined driving situations. For real
implementation of prediction based EMS, it is necessary to verify various
fault conditions by external factors.

Second, it is problem of adaptability to real driving data. In this
study, the prediction model was trained by using the driving cycle for
authorized fuel consumption measurement. This is an example of a
prediction model corresponding to the initial shipment of the vehicle.
However, after the vehicle has been shipped, the prediction model must be
retrained using actual driving cumulative data. There is a need to analyze
the performance of the trained model with actual driving data and to
identify the problems.

It is expected that the above mentioned additional studies will

enhance the completeness of developed EMS.
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