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Abstract

A Study on Energy Management Strategy

for Hybrid Electric Vehicles

based on Driving Information

Jaeuk Sim

Department of Mechanical and Aerospace Engineering

Seoul National University

In this thesis, an energy management strategy (EMS) using 

prediction model based on driving information is proposed to improve the 

fuel efficiency of hybrid electric vehicle (HEV).

HEV uses both an engine and a motor, and is a representative 

eco-friendly vehicle with high fuel efficiency. To improve the efficiency of 

a HEV, the EMS of the supervisory controller that controls various 

powertrain components is very important. An equivalent consumption 

minimization strategy (ECMS) used in this study is a real-time 

optimization-based strategy that considers equivalent energy consumption of 

fuel and battery. A ECMS is easy to develop and have good real-time 

applicability, but a performance is largely dependent on the equivalent factor 

that equalize between the two energies. As with most optimization-based 

control strategies, the optimal equivalent factor can be obtained only when 

the entire future driving profile is known.

In this thesis, a method of changing the equivalent factor at every 

specific time period is used, and a prediction model that predicts the factor 

of the next time window through the current driving information is 
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proposed. The prediction model receives the time series data of the current 

time window driving information and several feature values extracted from 

it, and predicts an optimized equivalent factor for the next time window. 

The model was developed based on recurrent neural network (RNN) using 

long short-term memory (LSTM) and multi-layer perceptron (MLP). In order 

to prepare the data for the training of the prediction model, the cumulative 

driving information is divided into specific time windows, and the optimal 

equivalent factors for each time window are obtained based on the 

simulation. After training the prediction model using the collected data and 

testing it on separate data, it is confirmed that there is a high correlation 

between the predicted factor and the optimal factor. For the verification of 

vehicle simulation, the prediction model is combined with the EMS model 

using the ECMS to construct predictive-ECMS, and the forward simulation 

is performed using the vehicle and the driver model. Simulation results for 

test cycle showed less energy use compared to existing rule-based strategy 

and were more similar to the global optimized factor case.

The control strategy proposed in this thesis is an optimization-based 

control strategy that can improve the energy efficiency by using prediction 

model based on driving information. It is expected that the optimization 

-based control strategy will be realized  through continuous research.

Keyword: Hybrid Electric Vehicle, Energy Management Strategy,

Equivalent Consumption Minimization Strategy,

Equivalent Factor Prediction, Driving Information

Student Number: 2017-28777
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Chapter 1. Introduction

1.1 Motivation

Over the past 100 years, the automobile industry has grown on the 

basis of fossil fuels, and most of the cars currently on the market are 

fueled by gasoline and diesel. However, the automotive industry has recently 

undergone a major change due to atmospheric environment issue. The 

number of vehicles in the world has greatly increased, and the 

environmental pollution problem caused by automobile exhaust gas is 

emerging. Major countries are actively pursuing efforts to curb emissions of 

pollutants in response to these atmospheric environmental problems. Figure 

1.1 shows the regulation of carbon dioxide emissions in major countries [1]. 

In most countries, the regulation of carbon dioxide emissions after 2020 is 

expected to reach half of the early 2000s.
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In the automobile industry, which is highly dependent on fossil 

fuels, it is necessary to develop eco-friendly vehicles that can reduce the 

consumption of fossil fuels beyond the existing emission reduction 

technologies in order to cope with such environmental problems. Hybrid 

electric vehicle (HEV) or plug-in hybrid electric vehicle (PHEV) is 

becoming more popular as representative eco-friendly vehicle. Figure 1.2 

shows the sales forecast of light duty vehicle according to BLUE Map 

scenario of international energy agency (IEA) [2]. According to the scenario, 

sales of HEVs and PHEVs will continue to increase from 2020 to 2040.
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Figure 1.2 Annual light duty vehicle sales by technology type,
International Energy Agency (IEA) BLUE Map scenario [2]

A hybrid vehicle is a vehicle that has two or more power sources 

for its operation. In general, a HEV is a vehicle equipped with an engine 

and a motor [3]. The HEV is more expensive than conventional vehicle due 

to various and complex powertrain components. The 48V mild hybrid 

powertrain is a good solution to this problem. HEVs are divided into mild 

hybrid, full hybrid and plug-in hybrid depending on the capacity of the 

battery and motor. The mild hybrid refers to a powertrain using a relatively 
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small battery and motor capacity. Especially, the mild hybrid powertrain 

using 48V component is a good system that can utilize the powertrain and 

chassis design of existing conventional vehicle as well as maximize the 

efficiency while reducing the increase of manufacturing cost.

The fuel economy of a HEV depends heavily on the supervisory 

energy management strategy (EMS), which controls the powertrain 

components such as the engine, transmission, motor, and battery. Therefore, 

researches for developing efficient EMS by applying various methods have 

been continuously carried out. Especially, in the case of mild HEV, it is 

essential to develop EMS that maximizes the hybridization effect compared 

to the conventional vehicle.
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1.2 Background Studies

The EMS of the HEV is divided into a rule-based strategy and an 

optimization based strategy [4]-[5]. The rule-based strategy refers to all 

strategies that control the vehicle based on pre-defined control rules. It is 

applied to all HEVs currently on sale because it is the simplest and easiest 

to implement in real-time. Typically, there are deterministic rule-based 

methods [6]-[8] and fuzzy rule-based methods [9]-[11]. However, using a 

rule-based strategy does not provide optimal fuel economy and requires 

expert parameter tuning to improve fuel economy.

A typical optimization based strategy is dynamic programming (DP) 

[12]-[14]. DP is effective only when the entire driving velocity profile of 

the vehicle is known in advance, and real-time application is relatively 

difficult. Therefore, the DP is used for research purposes such as estimating 

the global optimal performance of the HEV for a specific driving profile, or 

for parameter tuning of a rule-based strategy [15]-[17].

Pontryagin's minimum principle (PMP) is also one of the 

optimization based control strategies [18]-[21]. In the case of PMP, real-time 

implementation is possible, but as in the case of DP, this global optimal 

control can be realized only when the overall driving velocity profile of the 

vehicle is known in advance.

As discussed above, various EMSs have been studied to improve 

the fuel efficiency of HEVs. However, all of these EMSs have tradeoffs 

between optimality and implementability, and all currently sold vehicles are 

using rule-based EMS that takes into account only implementability. 

Therefore, in this study, we try to develop EMS that can achieve high 

enough optimality while ensuring implementability.

The control strategy used in this study is based on an equivalent 
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consumption minimization strategy (ECMS) that belongs to an optimization 

based control strategy. A ECMS is an EMS using the relationship between 

fuel consumption and electric power consumption and was first introduced 

by G. Paganelli [22]-[23]. The underlying concept of ECMS is proved by 

PMP, and the theoretical background of ECMS is redefined in various 

studies [24]-[27]. As with the PMP, ECMS can achieve global optimal 

performance only when the overall driving velocity profile of the vehicle is 

known in advance. In this limited situation, the performance of the ECMS 

is almost identical to the global optimum using the DP [28]-[29].

Therefore, ECMS is a real-time implementation of PMP, and global 

optimal performance can be achieved if the driving profile of the future can 

be known in advance. However, since the driving velocity profile of the 

future can not be known in advance, adaptive ECMS (A-ECMS) that 

adaptively changes the control by utilizing only the current information has 

been studied. Research on A-ECMS using vehicle state information such as 

battery state of charge (SOC) has been conducted [28], [30]. In addition, a 

pattern recognition technique has been studied that derives a map of control 

through past accumulated data, recognizes the current driving pattern of the 

vehicle, and uses the control of the corresponding pattern from the map 

[31]-[33]. However, to realize the optimal performance of the ECMS, 

predicting the velocity profile is a more fundamental method. Although 

various studies have been carried out to predict the velocity profile of a 

vehicle directly using various prediction models, the reliability can be 

secured only for a very short time [34]-[37]. In the meantime, since it is 

difficult to predict driving information in the future with only the 

information inside the vehicle, researches have been conducted to utilize 

GPS, GIS, ITS, and other information gathered from outside the vehicle for 

ECMS control [38]-[40]. However, since information from outside the 
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vehicle is less reliable and resolution, research has been conducted through 

additional assumptions, and actual implementation at the current technology 

level is difficult.
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1.3 Contributions

Contribution of this paper is the development of EMS using 

predictive-ECMS based on driving information. First, an environment was 

developed that enables forward simulation of vehicle performance through 

vehicle modeling and ECMS based EMS controller modeling. Secondly, 

various prediction models were developed to predict the control value of 

ECMS. These models use only driving information generated within the 

vehicle up to the present time as input data. Also, the prediction model 

directly predicts future ECMS control values as real values. Lastly, the 

prediction model was trained through past accumulated data. The 

performance of the predictive-ECMS controller, which combines the 

prediction model and the ECMS model, was evaluated through forward 

simulation.

The predictive-ECMS developed in this paper has the following 

differences compared to the previous studies. First, it is stand-alone EMS 

that do not use any information from outside the vehicle at all. Secondly, it 

is EMS that can realize real-time implementation at current technology level. 

Finally, performance close to optimal performance is realized while 

satisfying the above two conditions.
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1.4 Thesis Outlines

The main body of this thesis composed of 5 chapters. Each chapter 

organizes as follows:

Chapter 2 describes the modeling and simulation environment of the 

vehicle. Modeling of powertrain component and vehicle architecture, and 

modeling of EMS based on ECMS. These models are combined to form a 

forward simulation environment.

Chapter 3 describes the development of prediction models. The 

method for obtaining the optimal control factor of the ECMS and the 

preprocessing of the historical cumulative data collected for the prediction 

model training are explained. Three different models of prediction were 

proposed using different techniques.

Chapter 4 describes the simulation analysis. This includes the 

comparison of the training results of three prediction models and the 

evaluation of the performance of the predictive-ECMS combined with the 

prediction model and ECMS.

Chapter 5 describes concluding remarks. Conclusion and future work 

of this thesis is presented.
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Chapter 2. Vehicle Model Development

2.1 Target Vehicle

The target vehicle used in this study is a parallel type mild HEV. 

In addition to the configuration of conventional vehicle, this vehicle is a P0 

type configuration in which the motor serving as an integrated 

starter-generator (ISG) is connected to the engine by a belt. Figure 2.1 

shows the configuration of the target vehicle. It is a mild hybrid type with 

a maximum engine power of 134kW and a maximum motor power of 

11kW. The motor is used only as a torque assist mode and regenerative 

power generation, and it is impossible to use the electric vehicle mode 

driven by the motor alone. Table 2.1 shows the target vehicle specifications. 

The powertrain component data was constructed with reference to the 

Autonomie vehicle system simulation tool of the Argonne National 

Laboratory.
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Vehicle Parameters Specification

Engine
Type CI 4-Cylinder Diesel

Maximum Power 134 kW
Maximum Torque 392 Nm

Motor
Maximum Power 11 kW
Maximum Torque 56 Nm

Battery Capacity 10 Ah
Transmission Type 6-Speed Automatic

Vehicle
Gross Weight 1495 kg

Air Drag 0.35
Frontal Area 2.61 m2

Tire
Rolling Resistance 0.008

Radius 0.34 m
Table 2.1 Target vehicle specification

Figure 2.1 Target vehicle configuration
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2.2 Vehicle Modeling

2.2.1 Engine Model

The engine used for the vehicle modeling is a four-cylinder diesel 

engine of compression ignition (CI) type. The maximum torque of the 

engine is 392Nm at 2500rpm and the maximum power is 134kW. The 

brake specific fuel consumption (BSFC) was modeled in the form of a map 

according to the engine torque and speed as expressed in (2.1). Therefore, 

the fuel consumption rate of the engine is expressed as a function of the 

engine torque and speed as shown in (2.2). Figure 2.2 shows the BSFC, 

maximum torque and optimal operating line (OOL) of the engine. The 

maximum efficiency range of the engine is located near the middle point of 

the operation speed and near the maximum load point.

BSFC                                 (2.1)

BSFC×∙

BSFC×∙
 

                         (2.2)
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Figure 2.2 Engine BSFC map

2.2.2 Motor Model

The maximum torque of the motor used for the vehicle modeling is 

56Nm at 1870rpm and the maximum power is 11kW. The efficiency of the 

motor was modeled in the form of a map according to the motor torque 

and speed as expressed in (2.3). Therefore, the power of the battery is 

expressed as a function of the motor torque and speed as shown in (2.4). 

Figure 2.3 shows the efficiency and maximum torque of the motor. The 

motor exhibits a large torque even in the stationary region and the low 

speed region, and the distribution of the maximum efficiency region is wider 

than that of the engine.

In the vehicle powertrain structure, the motor is connected to the 

engine by a belt with the speed coupling ratio   as shown in (2.5). 

Therefore, the required wheel torque of the vehicle can be expressed as 

(2.7).

                                  (2.3)
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 

 
                                (2.4)

                                           (2.5)

                                         (2.6)




                       (2.7)
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Figure 2.3 Motor efficiency map

2.2.3 Battery Model

The maximum capacity of the battery used for the vehicle modeling 

is 10Ah. The internal resistance model was used as the battery model, as 

shown in Figure 2.4. It is a model of the battery as a series connection of 

source voltage and internal resistance. The open-circuit voltage and internal 

resistance are functions of battery SOC and temperature, and the influence 

of temperature is neglected in this study as in (2.8). A graph of each 

function is shown in Figure 2.5. Using the battery internal resistance model, 

the SOC derivative of the battery can be calculated as shown in (2.11).



14

 SOC                                (2.8)


                                      (2.9)

 


                                 (2.10)

SOC 










 

SOC  

                     (2.11)

Figure 2.4 Battery internal resistance model
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2.2.4 Vehicle Model

The vehicle dynamics model used in this study only considers 

longitudinal dynamics, as shown in Figure 2.6. The dynamic equation of the 

vehicle is (2.12), and the resistance values considered in the model are 

rolling friction resistance (2.13), aerodynamic drag resistance (2.14), and 

gradient resistance (2.15). Finally, the vehicle model shown in Figure 2.7 is 

completed by combining the engine model, motor model, battery model and 

vehicle dynamics model, as well as the transmission model, other accessories 

and final reduction gear.




                       (2.12)

  cos

cos
 




                      (2.13)

  




                                  (2.14)

 sin                                           (2.15)
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Figure 2.6 Longitudinal dynamics of vehicle

Figure 2.7 Vehicle modeling
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2.3 Energy Management Strategy

HEVs have the engine and motor as power sources, and they have 

very different characteristics. In addition, HEVs made up of a variety of 

subsystems with the addition of the motor, inverter and battery in addition 

to the conventional powertrain subsystems. Therefore, in order to efficiently 

control the HEV, it is necessary to consider the advantages and 

disadvantages of the engine and the motor, and to distribute the power and 

to integrally control the subsystems.

2.3.1 Rule-Based Strategy

The most basic EMS of HEV is rule-based strategy. A rule-based 

strategy consists of several state and transition rules between states, and 

pre-defined control logic for each state. Since the vehicle model used in this 

study has no motor alone mode, in most cases the engine is on and limited 

off by parameters such as required wheel torque. The transition rule for 

engine on-off is shown in Table 2.2. There are three modes for distribution 

the required power to the engine and motor. The transition and control rule 

for each state is shown in the Table 2.3.

State Transition

Engine Off

  Nm (more than 0.1s)

and  ms

and SOC

and APS

Engine On else
Table 2.2 Transition rule for engine on-off
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State
Transition

Control

Assist 
Mode

  

and SOC×

 


maxSOCmax

 




Charge 
Mode

   

and SOC×

 

SOC

 




Brake 
Mode

  

 

 minmax min 
Table 2.3 Transition and control rule for each power distribution mode

2.3.2 Equivalent Consumption Minimization Strategy

The EMS used in this study is developed based on ECMS. The 

ECMS is a control strategy that uses the total equivalent consumption 

energy as a cost function. The energy consumption rate of fuel and battery 

are as shown in (2.16) and (2.17). Equivalent to the energy consumption 

rate of the battery with the proportional constant, the total equivalent 

consumption energy is calculated as (2.18).
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 
∙                                       (2.16)

 ∙


SOC

                                        (2.17)




 SOC                                  (2.18)

The voltage of the battery was constantly treated, and the equivalent 

factor is expressed in . The final cost function of the ECMS is shown in 

(2.19). The main advantage of ECMS is that it reduces global optimization 

problem to an instantaneous optimization criterion, with a cost function 

dependent only on the system parameters at the current time.

  

  SOC

                                         (2.19)

  argmin                                  (2.20)

 










SOCSOC
SOCmin SOCSOCmax

min  max

min  max

2.3.3 Implementation of ECMS

The model of the ECMS controller was implemented as follows. 

When the required wheel torque   of next time step  is given 

from the driver, the torque of the engine and motor is distributed based on 

the vehicle parameters at the current time step  as follows. First, 

considering the specification of the motor, the candidate group of the motor 

power  at the next time step  is set as a vector of 1kW interval 
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from –11kW to 11kW. Considering (2.5) and (2.7), the candidate torque of 

the engine and motor are as follows.




                                 (2.21)







                  (2.22)

Next, considering (2.11), (2.4) and (2.2), the candidates for SOC 

derivative and fuel consumption rate are as follows.

SOCSOC  
SOC   

    (2.23)

                      (2.24)

Finally, considering (2.21) to (2.24), the cost candidate values of 

ECMS can be calculated, and the engine and motor torque that minimize 

the cost value are used as the torque of the next time step . 

Modeling the control implementation of ECMS using MATLAB Simulink is 

shown in Figure 2.8.

   SOC

   
(2.25)

 argmin                  (2.26)
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Figure 2.8 ECMS control modeling
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2.4 Forward Simulation Environment

In this study, the forward simulation method was applied to 

simulate the fuel consumption of the vehicle. Generally, the fuel efficiency 

of a vehicle is evaluated by running a predetermined test cycle velocity 

profile. The forward simulation method has a virtual driver model. The 

driver model compares the test cycle with the current vehicle velocity and 

manipulates the accelerator pedal and the brake pedal to follow the test 

cycle velocity. The supervisory controller model distributes the power 

appropriately based on pedal signal using the EMS, and the vehicle model 

simulates the powertrain and dynamics of the vehicle based on control 

commands. As a result, this forward simulation method is an effective way 

to simulate the actual vehicle driving through the driver model. Figure 2.9 

shows the configuration of the forward simulation environment based on the 

controller model and vehicle model.

Figure 2.9 Forward simulation environment
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Chapter 3. Prediction Model Development

3.1 Problem Definition

3.1.1 Optimal Equivalent Factor

In the ECMS control mentioned above, the equivalent factor of 

equalizing the energy consumption of the engine and the battery is the most 

important value. The ECMS control shows a large difference in the fuel 

consumption performance and the SOC sustaining performance depending on 

the equivalent factor. If the velocity profile of the vehicle is known in 

advance, an optimal value of the equivalent factor corresponding to the 

velocity profile can be obtained by iteration of the forward simulation. 

Figure 3.1 shows the simulation results of various equivalent factor for the 

WLTC cycle. The SOC trajectory was highly dependent on the equivalent 

factor. The SOC was sustained only when the optimal equivalent factor was 

used, and the vehicle achieve optimal performance.
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Figure 3.1 SOC trajectory according to the equivalent factor

To find out the potential maximum performance of the ECMS, the 

optimal equivalent factor for each fuel consumption measurement cycle was 

obtained. The optimal equivalent factor was obtained by iteration of forward 

simulation and iteration was performed until the difference between the final 

SOC and the initial SOC reached ±0.0001.

The simulation using the existing rule-based control strategy was 

simulated as a comparative group. Since the final SOC may be different 

from the initial SOC when the rule-based control strategy is applied, the 

equivalent energy consumption  was calculated for the performance 

comparison of the two control strategies. Equivalent energy consumption 

is calculated as (3.1).

  

 

 








∙

(3.1)
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The simulation results for the equivalent energy consumption  

and SOC difference SOC for both control strategies are shown in Table 

3.1, and the relative  value of the optimal ECMS case for rule-based 

of each cycle is shown in Figure 3.2. The optimal ECMS consumed an 

average of 10.31kWh of energy and 10.50kWh in the case of rule-based 

strategy. The energy consumption of the two strategies showed an average 

difference of 2.549% and maximum 5.556% for each cycle.

Optimal ECMS Rule-based
  [kWh]   [kWh] SOC

EUDC 3.451 3.565 0.096 
HWFET 7.236 7.279 0.039 

Inrets Highway 29.46 29.70 0.034 
Inrets Road 6.497 6.720 0.026 

NEDC 5.474 5.796 0.096 
UDDS 6.394 6.569 0.002 
WLTC 13.65 13.89 0.064 

Average 10.31 10.50 0.051
Table 3.1 Performance comparison

between optimal ECMS and rule-based strategy
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Figure 3.2 Energy consumption comparison
between optimal ECMS and rule-based strategy

3.1.2 Periodic Application of Optimal Equivalent Factor

On the other hand, since the optimal equivalent factor of ECMS is 

dependent on the velocity profile, the potential maximum performance of 

ECMS can be realized only if entire future driving cycle is known in 

advance. However, in the actual situation, the optimal equivalent factor can 

not be known because the future driving cycle is not known. Therefore, the 

equivalent factor should be predicted through an appropriate prediction 

model. The global optimal equivalent factor for entire future driving cycle is 

very difficult to predict because it is dependent on the entire future driving 

cycle.

Therefore, in this study, a method of predicting the optimal 

equivalent factor periodically with a certain time window length is proposed. 

It is very important to select the appropriate window size in this method. 

The larger window size, the closer to the globally optimized energy 

consumption, but the predictability of equivalent factor becomes more 

difficult because the equivalent factor depends on the information of a far 

future. The smaller window size, the easier it is to predict the equivalent 
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factor, but the energy consumption is no different from the rule-based 

strategy. Therefore, an appropriate window size should be selected to 

achieve a performance similar to the globally optimized energy consumption 

performance with a suitably short window size.

If the driving cycle is equally divided according to the window 

size, each micro trip becomes a short driving cycle with the non-zero initial 

velocity. Forward simulation is generally difficult to simulate in such a 

micro trip, so the following method was used to find the optimal equivalent 

factor for a short driving cycle that does not start from a stop state.

In order to start from the stop state, the stop section, the constant 

acceleration section and the constant velocity section were added at the front 

of the micro trip for 10 seconds each. The iterative simulation was 

performed by changing the initial SOC SOC  and equivalent factor  for 

modified micro trip, and the iteration was repeated until the difference 

between the SOC at the time of 30 seconds and the final SOC is within ±

0.001. The pseudo-code for the process of obtaining the optimal equivalent 

factor through iteration is shown in Figure 3.3.
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iteration for SOC 

   iteration for 
      run forward simulator with SOC  

      SOC   SOC  SOC 

      SOC   SOC  SOC 

      SOC   SOC    SOC 

      if SOC    

            SOC

SOC  




      else if SOC    

            SOC

SOC  




      else
         break
   end
   if SOC    & SOC   

      break
   else
      SOC   SOC   SOC 

end
Figure 3.3 Pseudo code for obtaining optimal equivalent factor

The example of changing the equivalent factor and relative SOC 

difference SOC  during the iteration process is shown in Figure 3.4. In 

general, these two variables have a s-curve like the dotted line. Figure 3.5 

shows the variation of the SOC trajectory in the iteration process.
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Figure 3.4 Equivalent factor and relative SOC difference during iteration
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Figure 3.5 SOC trajectory during iteration

By applying this iteration method, the optimal equivalent factor for 

micro trip can be obtained, and iterative simulation was performed on 

various window sizes to find an appropriate window size. The case of using 

equivalent factor based on divided cycle with specific window size, the case 

of using global optimal equivalent factor and the case of using the 

rule-based strategy were compared. The window size was set to 20 to 320 

seconds divided by 20 seconds. Equivalent energy consumption  was 
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calculated for the performance comparison and the relative value for energy 

consumption of optimal ECMS case was used.

The simulated average values for each of the 10 driving cycles are 

shown in Table 3.1 and Figure 3.6. As expected, the shorter the window 

size, the more energy was consumed and increased to a similar value to the 

case of rule-based. Also, as the window size increases, the energy 

consumption decreased to a value similar to that of the optimal ECMS case. 

It can be seen that the decreases of the energy consumption due to the 

increase of the window size was almost converged when the window size 

was 160 seconds. When the window size was 160 seconds, the energy 

consumption was only 0.316% difference from the optimal ECMS. Based on 

these results, the rest of the study is conducted with a window size of 160 

seconds.

Window size [s]   [kWh] Window size [s]   [kWh]

(Optimal ECMS) 10.3095 160 10.3325 
320 10.3197 140 10.3389 
300 10.3280 120 10.3287 
280 10.3268 100 10.3377 
260 10.3208 80 10.3426 
240 10.3173 60 10.3478 
220 10.3296 40 10.3584 
200 10.3253 20 10.4062 
180 10.3288 (Rule-based) 10.5027 

Table 3.2 Energy consumption comparison according to window size
(Average value of 7 cycles)
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Figure 3.6 Energy consumption comparison according to window size

3.1.3 Training Data Preprocessing

A training data set is needed to train the prediction model that 

predicts the optimal equivalent factor. The data for training was collected. 

Among the publicly known fuel efficiency measurement cycles widely used 

in the world, the cycle suitable for passenger sedans was used as the data 

for training. The collected driving cycle was 97,946 seconds, which was 

divided into 160 seconds to construct a micro trip. In addition, since the 

number of training data sets is insufficient, the training data was augmented 

by shifting the whole driving cycle. The data augmentation was carried out 

30 times, resulting in a total of 18,363 micro trips. The collected driving 

cycles and data augmentation process are shown in Figure 3.7. For each of 

these micro trips, the optimal equivalent factor of individual micro trips 

were calculated in advance by the iteration method described above. The 

standard deviation of the obtained optimal equivalent factor was 0.00710.
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Figure 3.7 Collected data and augmentation process
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3.2 Prediction Model based on Driving Information

3.2.1 LSTM Model using Time Series Data

Various studies have been carried out to predict the future driving 

environment, but most of them have been predicted through additional 

information from the outside of the vehicle. In particular, there are a 

number of studies conducted on the assumption that vehicle know 

information that can not be obtained at the present level of technology. 

However, these prediction models have a fatal drawback that they are overly 

dependent on traffic information systems and can not operate offline. The 

prediction model proposed in this study uses only the information obtained 

from the vehicle.

The driving data generated by the vehicle are basically time series 

data. A suitable model for this time series data processing is a recurrent 

neural network (RNN) model. Among the deep learning supervised models, 

the RNN model shows great performance in time series data processing. In 

general, sigmoid function and hyperbolic tangent function are used as the 

activation function of the RNN. However, in the case of these RNN cell, 

there is a limitation in expressing the dependency over time of the time 

series data due to the gradient vanishing problem or the gradient exploding 

problem in the back propagation process over time.

As a solution to this problem, a long short-term memory (LSTM) 

cell which extends an existing RNN cell has been introduced. The LSTM 

cell shows high performance over long time dependency using input gate, 

forget gate, memory cell and output gate. A total of four gates and memory 

cells each are a kind of feed forward network, each having a weight and 

bias. The LSTM learning process consists of training these weight and bias 
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through back propagation. The operation formulas for output values in each 

gate and cell in one LSTM cell unit are as follows, and the form of the 

cell in LSTM unit and total LSTM model structure is shown in Figure 3.8.

 ∙      : input gate                      (3.2)

  tanh∙      : input gate                   (3.3)

 ∙      : forget gate                     (3.4)

  ∙      : output gate                     (3.5)

  ∘   ∘
  : update cell state                    (3.6)

   ∘tanh : update hidden state                 (3.7)

Figure 3.8 LSTM unit cell and model structure

For the training data of the LSTM model, the velocity and 

acceleration time series data for 160 seconds at 1 second interval were used, 

and the target data was the optimal equivalent factor for the next time 

window 160 seconds later. The LSTM model consisted of two LSTM 

layers, the dimension of the cell state and hidden state of the first layer 

was set to 128 and the second layer was 64. The output value from the 

last cell of the second layer passes through the fully connected layer and 

becomes the final output.
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3.2.2 MLP Model using Feature Data

In the case of the above-mentioned LSTM model, the prediction 

model was trained only by the raw data of the driving information including 

the vehicle velocity and the acceleration. In general, however, feature values 

such as average velocity or average acceleration are used for driving 

information analysis rather than raw data. The LSTM model only allows the 

model to find the most relevant value among the various features by 

inputting the raw data intact. Therefore, it is necessary to extract the 

features manually from the raw data, and to train the prediction model with 

these features.

Generally, multi-layer perceptron (MLP) models have shown high 

performance in this training. The perceptron is an artificial neuron and it 

has a structure that multiplies the input values by weight and then combines 

all with bias to pass a specific activation function. The MLP model is a 

kind of feed forward network in which these perceptrons are arranged in 

parallel and stacked in layers. The structure of the MLP model is shown in 

Figure 3.9.

Figure 3.9 MLP model structure

As the training data of the MLP model, nine features extracted 
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from the 160 second driving data were used, and the target data was the 

optimal equivalent factor of the next time window. The nine features are the 

distance, average velocity, maximum velocity, average acceleration, maximum 

acceleration, average deceleration, maximum deceleration, aggressiveness and 

degressiveness for 160 seconds respectively. Each layer of the MLP model 

consisted of 100 perceptron respectively and 10 layers were stacked. The 

rectified linear unit (ReLU) was used as the activation function. The output 

values of the last layer pass through the fully connected layer and become 

the final output.

3.2.3 LSTM-MLP Model using Multiple Data

The two proposed prediction models use raw driving information 

and manually extracted features as input data respectively. Since these input 

data have their own advantages, a multiple input prediction model using 

both input data is proposed. In this specially designed prediction model, the 

output of the LSTM model is transferred through a fully connected layer to 

an input of the MLP model. This means that the output value of the LSTM 

model is used as the tenth feature in the MLP structure. Figure 3.10 shows 

the structure of the merged LSTM-MLP model. The training data of the 

LSTM-MLP model used 160 seconds of time series data and nine extracted 

features from time series data as multiple inputs. The target data was 

likewise the optimal equivalent factor of the next time window.
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Figure 3.10 LSTM-MLP model structure
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Chapter 4. Simulation Analysis

4.1 Prediction Model Training

The data used for the training of the prediction model was 18,363 

dataset mentioned above. Each dataset consisted of 160 seconds of driving 

information as input data, and the optimal equivalent factor for the next 160 

seconds obtained by iteration as the target data. The driving information 

means the velocity and acceleration time series data for 160 seconds and the 

nine features extracted from it. The time series dana and features used as 

input data were standardized with their respective mean and standard 

deviation. Only 80% of the data were used for training, 10% for validation 

and the remaining 10% for testing. The prediction model was constructed 

using python TensorFlow.

4.1.1 LSTM Model using Time Series Data

The LSTM Model used only time series data as input data as 

mentioned in the previous chapter. The predicted results of the equivalent 

factor and the correct answer value for a test set are shown in Figure 4.1. 

The average of the distribution was similar, but the precision was somewhat 

lower, and in particular, the region where the low value was the target was 

not predicted at all. This is because the feature was not manually extracted 

and used as input data, but only time series data was used as raw data. In 

other words, the LSTM model alone can not detect the high level feature 

that is related to the optimal equivalent factor of the future. The distribution 

of the predicted and target values is shown in Figure 4.2, the root mean 
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squared error (RMSE) was 0.00406 and correlation coefficient was 0.665.
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Figure 4.1 LSTM model test result
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Figure 4.2 LSTM model test result

4.1.2 MLP Model using Feature Data

The MLP Model used only feature data as input data as mentioned 

in the previous chapter. The predicted results of the equivalent factor and 

the correct answer value for a test set are shown in Figure 4.3. The 
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accuracy of the predicted factor of the MLP model was much better than 

that of the LSTM model, and precisely predicted a region with a 

particularly low target value. This is probably due to the use of manually 

extracted feature data as input. The distribution of the predicted and target 

values is shown in Figure 4.4, the RMSE was reduced to 0.00376 and 

correlation coefficient was 0.751.
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Figure 4.3 MLP model test result
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Figure 4.4 MLP model test result
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4.1.3 LSTM-MLP Model using Multiple Data

The LSTM-MLP model used both time series data and feature data 

as input data. The predicted results of the equivalent factor and the correct 

answer value for a test set are shown in Figure 4.5. The prediction accuracy 

in the section with a small equivalent factor value was relatively accurate 

and the prediction accuracy around –0.075, which is a factor value mainly, 

was much higher than the MLP model. It can be seen that the prediction 

error was much lower when the two models were used in combination as 

compared with when the LSTM model or the MLP model alone was used. 

The distribution of the predicted and target values is shown in Figure 4.6, 

the RMSE was reduced to 0.00308 and correlation coefficient was 0.829. 

Figure 4.7 shows the decrease of the loss value in the training process of 

the LSTM-MLP model. The decrease trend of the loss for validation set 

was continuously monitored and training was terminated when the loss 

converged.

0 10 20 30 40 50 60 70 80 90 100
Window

-0.1

-0.095

-0.09

-0.085

-0.08

-0.075

-0.07

-0.065

E
qu

iv
el

en
t f

ac
to

r

Target equivelent factor
Predicted equivelent factor

Figure 4.5 LSTM-MLP model test result
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Figure 4.6 LSTM-MLP model test result
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Figure 4.7 LSTM-MLP model training log
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4.2 Vehicle Simulation using Energy Management Strategy 

based on Predictive ECMS

The schematic diagram of EMS using ECMS based on prediction 

model is shown in Figure 4.8. The control flow is divided into an offline 

calculation part outside the vehicle and an online calculation part of the 

vehicle in real-time control. In the offline calculation part, the historical 

cumulative driving data is used, and through the data preprocessing, the 

iteration of the equivalent factor optimizer finds the optimal factor and 

trained by the predictor. The trained predictor is transferred to the vehicle, 

which is used in online calculation section to control the vehicle based on 

the ECMS. Also, the driving data collected while driving are stored in the 

memory of the vehicle, and then transferred to offline calculator to be used 

for retraining the predictor.

Figure 4.8 Control flow schematic diagram

The performance evaluation of the strategy was performed using the 
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forward simulation described above. The predictor was constructed using the 

LSTM-MLP model among the above three prediction models. In predictor, 

the equivalent factor for the first time window immediately after the 

departure without previous driving information was set to the average of the 

optimal factor used in the prediction model training. From the next time 

window, the predicted equivalent factor was used through the pre learned 

prediction model, using the driving information from the previous time 

window driving.

The results of the forward simulation of predictive-ECMS using the 

LSTM-MLP prediction model are summarized in Table 4.1. Equivalent 

energy consumption  and SOC difference SOC results were 

compared with optimal ECMS and rule-based cases, respectively. The 

relative  value of the optimal ECMS case and predictive-ECMS for 

rule-based of each cycle is shown in Figure 4.9.

The predictive-ECMS consumed an average of 10.35kWh of energy, 

which is 2.01% less than the 10.50kWh of the rule-based case. The optimal 

ECMS consumed an average of 10.31 kWh of energy, which is 2.55% less 

than the rule-based case. In other words, predictive-ECMS showed 0.54%p 

difference compared to optimal case and showed almost close performance. 

This tendency was the same for all driving cycles used in the simulation.

Therefore, it can be said that the case of the predictive-ECMS 

using only the prediction model without knowing the future information was 

close to the case of the optimal ECMS assuming that the entire information 

is all known in advance. This suboptimal performance was also 

demonstrated reliably regardless of the driving cycle. Since the target vehicle 

was a mild HEV, the energy savings were not dramatic, but they were 

significantly more energy efficient than the well-tuned rule-based and were 

close to optimal case.
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On the other hand, in case of SOC sustain performance, the 

variation of SOC was changed by 5.1%p on average compared to 60% of 

initial SOC at the beginning of driving in case of rule-based. However, in 

the case of predictive-ECMS, the variation of SOC was 3.9%p, which 

means that SOC was better maintained. In particular, SOC sustain 

performance of predictive-ECMS was always better than rule-based except 

for two driving cycles.

Optimal 
ECMS

Predictive-ECMS Rule-based

  

[kWh]

  

[kWh]
SOC

  

[kWh]
SOC

EUDC 3.451 3.487 0.046 3.565 0.096 
HWFET 7.236 7.265 0.025 7.279 0.039 

Inrets Highway 29.46 29.50 0.029 29.70 0.034 
Inrets Road 6.497 6.526 0.008 6.720 0.026 

NEDC 5.474 5.545 0.116 5.796 0.096 
UDDS 6.394 6.403 0.007 6.569 0.002 
WLTC 13.65 13.71 0.045 13.89 0.064 

Average 10.31 10.35 0.039 10.50 0.051
Table 4.1 Performance comparison

between optimal ECMS, predictive-ECMS and rule-based strategy
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Figure 4.9 Energy consumption comparison
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Figure 4.10 SOC sustain performance comparison
between optimal ECMS, predictive-ECMS and rule-based strategy

Figure 4.11 is a graph comparing the simulation results for the 

Inrets Road cycle, which is a middle speed test cycle. The prediction of the 

equivalent factor through the prediction model predicted a value that almost 

matches the target value except for the first window and the last window. 

In the case of the first window, the error was generated because the data 

was not yet collected and the default value was output. In the case of the 

last window, it was an error that occurs because model did not know that 
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the driving will end in the middle of the window and factor was predicted 

for complete 160 seconds driving. Therefore, it can be said that the 

prediction accuracy was very high except for these two windows which can 

not be predicted correctly.

Comparing the SOC trajectory, the initial and final SOCs were 

fixed at the reference value of 60% in the case of the optimal ECMS, and 

the battery power was used in a very fluid manner. Predictive-ECMS tried 

to reach the SOC value to the reference value of 60% at each time window 

boundary, and the battery power was used fluidly within each window. 

Although the initial equivalent factor can not be predicted, and the SOC at 

the end of the first window was lower than reference value, but it tends to 

recover as time goes by. Also the SOC sustain result after the end of the 

driving of the predictive-ECMS case was better than rule-based case.

Overall, the predictive-ECMS did not use SOC as freely as the 

optimal ECMS, but it was relatively fluid rather than rule-based, resulting in 

a tendency to use the trajectory closer to optimal SOC trajectory than 

rule-based.
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Figure 4.11 Simulation results of Inrets Road cycle
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Figure 4.12 is a graph comparing the simulation results for the 

WLTC cycle, which is a combined test cycle of urban and high speed 

driving. As a result of the prediction of the equivalent factor through the 

prediction model, it can be seen that the predicted value was estimated 

similar to the target value except for the first window and the last window. 

Therefore, except for these two windows which can not be predicted, the 

prediction accuracy was relatively high.

Comparing the SOC trajectory, the optimal ECMS used the battery 

power very freely as a whole. The predictive-ECMS showed a tendency to 

reach the reference value for the period of the time window, but was 

relatively fluid. On the other hand, in the case of rule-based, it tried very 

strongly to maintain the reference value of 60%. Also the result of the SOC 

sustain after the end of the driving of predictive-ECMS was batter than that 

of rule-based case.

As a result, predictive-ECMS was less fluid than optimal ECMS, 

but more free than rule-based case in using SOC. In particular, the SOC 

trajectory of the predictive-ECMS showed a similar increase or decrease in 

the shape of the optimal ECMS trajectory as if it were reduced to the 60% 

baseline direction.
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Figure 4.12 Simulation results of WLTC cycle
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Figure 4.13 compares the simulation results for the Inrets Highway 

cycle, which is a high speed driving test cycle. The predicted result of the 

equivalent factor through the prediction model showed that the prediction of 

the target value was similar to that of the target value except for the first 

window and the last window. Therefore, except for these two windows 

which can not be predicted, the prediction accuracy was relatively high.

Comparing the SOC trajectory, the optimal ECMS used the battery 

power as a whole. Especially, it was shown that the motor was driven in 

the high speed travel region and the SOC was charged again in the 

acceleration and deceleration region at the end of the cycle. The 

predictive-ECMS showed a tendency to keep the SOC close to the reference 

value at high speed region. This was because it was not known in advance 

that SOC charging was possible in the acceleration and deceleration region 

at the end of the cycle. On the other hand, in the case of rule-based, the 

engine was used instead of the motor in the initial acceleration and 

deceleration section, and the surplus SOC was gradually decreased, resulting 

in a somewhat inefficient trajectory. Similarly, the SOC sustain result after 

the end of the driving was better than when the predictive-ECMS was 

rule-based.

As a result, due to the characteristics of high speed driving, the 

improvement of fuel efficiency was smaller than the urban driving, 

predictive-ECMS showed limited SOC usage than optimal ECMS, but still 

achieved better fuel economy than rule-based using inefficient SOC 

trajectory.
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Figure 4.13 Simulation results of Inrets Highway cycle
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Chapter 5. Conclusion

5.1 Conclusion

In this thesis, the predictive-ECMS EMS based on driving 

information for HEV was developed. For this, mild HEV and ECMS based 

EMS were modeled and three types of prediction model were developed. 

Driving information datasets for model training were collected and 

appropriately preprocessed. Training datasets were used to train each of the 

three prediction models and compared the test results. The predictive-ECMS 

using prediction model with the best prediction performance was simulated 

by HEV modeling and the results were analyzed.

The prediction performance of the LSTM model using time series 

data, which is raw data of driving information, was insufficient. However, 

MLP model using features that extracted manually from driving information 

had relatively good prediction performance. The LSTM-MLP model, in 

which one output of the LSTM model was added to MLP model as a new 

feature, increased prediction accuracy even further.

The forward simulation results of the predictive-ECMS EMS using 

the LSTM-MLP prediction model are as follows. Compared to optimal 

ECMS assuming that all future information is known in advance, the 

predictive-ECMS showed near energy usage. Compared with rule-based EMS 

applied to existing vehicles, much less energy was used. Also, the SOC 

sustain performance comparing the SOC at the beginning and the end of the 

driving was also better than the predictive-ECMS than the rule-based EMS. 

In particular, the above performance improvements were consistent for most 

test driving cycles.
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The mild HEV that maximizes the fuel efficiency of conventional 

vehicles requires adequate EMS because of the relatively small battery and 

motor capacity. Rule-based EMS, which has been applied to existing 

vehicles, is not enough to draw the potential of mild HEVs. However, 

optimization based EMS is hard to implement because it requires future 

information. It is expected that commercialization of optimization based EMS 

will be made if research on EMS based on the prediction model like this 

thesis is continuously performed.
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5.2 Future Work

This thesis proposed a supervisory EMS of a hybrid using a unique 

prediction model. There are some additional works that need to be addressed 

to improve the completeness of the proposed EMS.

First, it is necessary to verify the robustness of the prediction 

model. In this study, only stable conditions were verified rather than actual 

driving conditions. The battery SOC was operated only within a reasonable 

range and was verified only for highly refined driving situations. For real 

implementation of prediction based EMS, it is necessary to verify various 

fault conditions by external factors.

Second, it is problem of adaptability to real driving data. In this 

study, the prediction model was trained by using the driving cycle for 

authorized fuel consumption measurement. This is an example of a 

prediction model corresponding to the initial shipment of the vehicle. 

However, after the vehicle has been shipped, the prediction model must be 

retrained using actual driving cumulative data. There is a need to analyze 

the performance of the trained model with actual driving data and to 

identify the problems.

It is expected that the above mentioned additional studies will 

enhance the completeness of developed EMS.
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국 문 초 록

하이브리드 차량의 주행 정보 기반

에너지 관리 전략에 대한 연구

서울대학교 대학원

기계항공공학부

심 재 욱

본 논문에서는 하이브리드 차량의 연비 향상을 위해 주행 정보 

기반 예측 모델을 활용한 에너지 관리 전략을 제안하였다.

하이브리드 차량은 엔진과 모터를 동시에 사용하는 차량으로, 기

존의 내연기관 차량에 비해 연비와 효율이 높은 대표적인 친환경 차량이

다. 이러한 하이브리드 차량의 효율 향상을 위해서는 엔진과 모터를 포

함한 다양한 파워트레인 구성요소를 제어하는 상위제어기의 에너지 관리 

전략이 매우 중요하다. 본 연구에 사용된 등가 소모 최소화 전략은 연료

의 소모량과 배터리의 전기에너지 소모량을 등가화한 등가 에너지를 고

려한 실시간 최적화 기반 제어 전략이다. 등가 소모 최소화 전략은 개발

이 용이하고 실시간 적용성이 좋은 편이지만, 두 에너지간의 등가화를 

조정하는 등가 계수에 의해 성능이 크게 좌우된다. 특히 대부분의 최적

화 기반 제어 전략과 마찬가지로, 미래의 전체 주행속도 프로파일을 알

고 있을 때만이 전역 최적화된 등가계수를 알 수 있다.

본 논문에서는 특정 시간주기별로 등가계수를 변화시키는 방법

을 사용하였으며, 현재시점의 주행 정보를 통해 다음 시간주기의 등가계

수를 예측하는 예측 모델을 제안하였다. 예측 모델은 현재시점 주행 정

보의 시계열 데이터와 이로부터 추출된 몇 개의 특성 값들을 입력받아, 

다음 시간주기에 대해 최적화된 등가계수를 예측한다. 모델은 장단기 기
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억 순환 신경망과 다층 신경망을 기반으로 개발되었다. 예측 모델의 학

습을 위한 데이터 준비를 위해, 누적된 대량의 주행 정보를 특정 시간주

기별로 나누어 각 시간주기에 대한 최적 등가계수를 시뮬레이션 기반으

로 수집하였다. 수집된 데이터를 사용하여 예측모델을 학습한 후 별도의 

데이터에 대하여 시험해본 결과, 예측된 계수와 최적 계수 간에 높은 상

관관계가 있음을 확인하였다. 차량 시뮬레이션 검증을 위하여 학습된 예

측 모델을 등가 소모 최소화 전략을 이용한 에너지 관리 전략 제어 모델

과 결합하고, 차량 모델과 운전자 모델을 사용하여 전방향 시뮬레이션을 

수행하였다. 연비 시험 사이클에 대한 시뮬레이션 결과 기존의 규칙기반 

제어전략 대비 감소된 에너지 사용량을 보였으며, 전역 최적화된 등가계

수를 사용한 경우에 보다 가까운 결과를 나타내었다.

본 논문에서 연구된 제어 전략은 주행 정보 기반의 예측모델을 

활용하여 에너지 효율을 향상 시킬 수 있는 최적화 기반 제어 전략이다. 

지속적인 연구를 통해 최적화 기반 제어 전략의 상용화가 가능할 것으로 

기대된다.

주요어: 하이브리드 차량, 에너지 관리 전략, 등가 소모 최소화 전략,

등가 계수 예측, 주행 정보

학 번: 2017-28777
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