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Abstract

The convolutional neural network (CNN) works very well in many computer vi-

sion tasks including the face-related problems. However, in the case of age estimation

and facial expression recognition (FER), the accuracy provided by the CNN is still not

good enough to be used for the real-world problems. It seems that the CNN does not

well find the subtle differences in thickness and amount of wrinkles on the face, which

are the essential features for the age estimation and FER. Also, the face images in the

real world have many variations due to the face rotation and illumination, where the

CNN is not robust in finding the rotated objects when not every possible variation is

in the training data. Moreover, The Multi Task Learning (MTL) Based based meth-

ods can be much helpful to achieve the real-time visual understanding of a dynamic

scene, as they are able to perform several different perceptual tasks simultaneously

and efficiently. In the exemplary MTL methods, we need to consider constructing a

dataset that contains all the labels for different tasks together. However, as the target

task becomes multi-faceted and more complicated, sometimes unduly large dataset

with stronger labels is required. Hence, the cost of generating desired labeled data

for complicated learning tasks is often an obstacle, especially for multi-task learning.

Therefore, first to alleviate these problems, we first propose few methods in order to

improve single task baseline performance using gabor filters and Capsule Based Net-

works , Then We propose a new semi-supervised learning method on face-related tasks

based on Multi-Task Learning (MTL) and data distillation.

keywords: Face-related Tasks, Capsule Net, Data Distillation, Multi Task Learning,

Domain Adaptation

student number: 2017-26727
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Chapter 1

INTRODUCTION

1.1 Motivation

Researchers have applied convolutional neural networks (CNNs) to many image pro-

cessing and computer vision tasks, including the face-related problems that we focus

on in this paper. For example, the CNNs in [1, 2] are shown to provide better face detec-

tion performance than the conventional methods that use hand-crafted features [3, 4].

Recent researches on age estimation indicate that the CNN-based techniques [5, 6]

also yield more accurate results than the methods based on the hand-crafted features,

specifically the bio-inspired feature (BIF) [7] which is one of the best non-CNN ap-

proaches. In most CNN-based computer vision applications, we usually feed the CNN

with raw images (not the features) as the input. This is based on the belief that the

CNNs learn and extract the right features through the training with the image input.

However, in the face-related problems, we need to tell the subtle differences of facial

features such as the wrinkle, and also the differences in the positional relationship of

facial features that the plain CNNs cannot well detect and define. Hence we need more

efforts other than using plain CNNs with raw image input.

To be precise, the most important features in estimating the age are the amount and

thickness of wrinkles, and the sizes and relative distances of facial landmarks (eyes,
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eyebrow, ears, nose, mouth, etc), where it seems that the plain CNNs cannot well find

the subtle features. The other problem with the CNN is the use of max pooling in the

network. It was originally intended to reduce the data size and positional invariance,

but the spatial relationships between higher level features are lost due to the pooling.

Also, the CNNs do not well deal with different viewpoints, or they need a large amount

of data augmentation for the view-invariance.

In this thesis, we attempt to alleviate the above-stated problems in conducting the

face-related tasks. First, we show that feeding useful hand-crafted features to the CNN,

along with the input image, can enhance the performance of CNN for the age/gender

estimation and FER. In other words, we stimulate the CNN with the relevant hand-

crafted features, which helps the CNN to find the right features at the earlier layers

and thus increases the performance. Moreover, based on the Capsule Network (Cap-

sNet) [8] which is intended to alleviate the problems of the CNN-based architectures

(weakness in view-point change and loss of spatial relationship of features), we further

increase the accuracy of age/gender estimation and FER. Then, we use hand-crafted

features along with the CapsNet-based architecture, which is shown to outperform the

baseline CapsNets.

Then as we mentioned, in order to achieve more generalized and realistic infor-

mation, we can use multi-task networks, however the cost of generating desired la-

beled data for complicated multi tasks learning network is too high. Therefore, studies

on semi/self/omni-supervised learning are getting attention recently because they can

obviate such strong labeling. In the most semi-supervised learning methods, they ex-

ploits part of annotated data and considers the rest as unlabeled [70, 71]. Recently a

new regime of semi-supervised learning has been proposed called as omni-supervised

learning [64]. In the omni-supervised learning, the learner uses as much labeled data

as possible and also uses an unlimited amount of unannotated data from other sources.

In this thesis, we propose a data distillation framework on weakly labeled datasets

to help to improve the multi-task learning on facial expression recognition. Previous
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works on distillation adopted omni-supervised learning methods [64] which used un-

labeled auxiliary datasets. However, we argue that instead of feeding the network with

unlabeled images for providing a new target labeled dataset, we can use datasets from

other related tasks as weakly labeled images. By doing so, we can train the network in

the manner of multi-task learning (MTL) and then use the trained network to produce

the target labels for the related tasks’ datasets. Then, similar to [52, 64], we retrain

the network in a single task manner with the union of the original and the newly la-

beled datasets. By doing so, we can benefit from making the network familiar with the

features of the new datasets and having a more powerful teacher for data distillation.

Moreover, In the exemplary MTL methods, we need to consider constructing a

dataset that contains all the labels for different tasks together. Without such a dataset,

training the multi-task network in a common approach will result in a negative effect

due to the cross-dataset distribution shift. To the best of our knowledge, the first work

which mentioned this problem is StarGAN [49] proposed by Choi et al.. Their model

can simultaneously be trained on different datasets by alternating between different

datasets. However, the alternating scheme still has the cross-dataset distribution shift

problem, and the network cannot be applied to datasets with different domains. Re-

cently, Guosheng Hu et al. [55] addressed this issue by proposing the trace norm-based

knowledge sharing. In their method, multiple networks, one for each task, are stacked

horizontally together to form a one-order higher tensor. Then, by using a tensor trace

norm regularizer, they share knowledge between these networks. In comparison with

[55], our method is simpler, easier to implement, and more efficient in both aspects of

memory and computation.
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1.2 Background

1.2.1 Age and Gender Estimation

Aging depends on several factors such as living habit, race, genetics, etc. Hence, pre-

dicting a person’s age from a single image is one of the hardest tasks both for human

and machines. Researches on age estimation are mainly following two paths: design-

ing age-related features [7, 9] or using the CNN. Researches without using the CNN

are well summarized in Zafeiriou et al.’s survey [10]. Recent works are mostly based

on the CNN, for examples, Levi and Hassner’s work [5] was the first to adopt the

CNN for age/gender estimation and Xing et al. [6] considered the influence of race

and gender by proposing a multi-task network.

1.2.2 Facial Expression Recognition (FER)

The FER is a relatively complicated task among many face-related works. Since the

FER plays an important role in human-machine interaction, many researches have also

been conducted on this subject. Li and Deng [61] published a survey on the deep facial

expression recognition methods. Recently. For some examples of conventional meth-

ods, Georgescu et al. used the support vector machine (SVM) to improve the Bag of

Visual words (BOW) approach [11], and Hassani et al. used the advantage of facial

landmarks along with CNNs [12]. More recent studies are focused on using the CNNs

for the FER [13, 14, 15, 16]. acial Expression Recognition (FER) has also attained

increasing attention recently. Yang et al. [78] proposed to recognize facial expres-

sions by extracting information of the expressive component through a de-expression

learning procedure, called De-expression Residue Learning (DeRL). Zhang et al. [82]

proposed joint pose and expression modeling by disentangling the expression and pose

from the facial images and produce images with arbitrary expressions and poses using

a new discriminator and a content-similarity loss for generative adversarial networks.

Zeng et al. [81] addressed the inconsistency between FER datasets for the first time by
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proposing an Inconsistent Pseudo Annotations to Latent Truth (IPA2LT) framework to

train a FER model from multiple inconsistently labeled datasets and large-scale unla-

beled data. Our method can be considered a generalization of this work because we

can use datasets with inconsistent labels instead of datasets with different-task labels.

1.2.3 Capsule networks (CapsNet)

Hinton et al. [18] proposed a new method for robust unsupervised learning called cap-

sules. The capsules are the group of neurons to recognize the presence of a visual

entity within a limited range of viewing condition and deformation. A group of cap-

sules makes a capsule-layer, where the outputs of the capsule-layers are vectors in-

stead of scalars. The length of the capsule expresses the probability of the entity being

present, and the orientation of capsule represents the abstraction of parameters of en-

tity. Afterward, Sabour et al. [19] made capsules feasible as CapsNet which uses a

routing-by-agreement mechanism. In this mechanism, an active-capsule at each level

(layer L) actives capsules by using a transformation matrix to predict the presence of

parameters of capsules in the higher level (Layer L+ 1), and the higher level capsules

become active if several of those predictions agree. Later on, Hinton et al. [8] proposed

CapsNet with expectation maximization (EM) routing structure that uses matrix cap-

sules, which produces a logistic unit (activation) and a 4 × 4 matrix (pose matrix) to

represent the presence of a visual entity and relationship between that entity and the

pose respectively.

1.2.4 Semi-Supervised Learning.

Zhuet al. [84] and Sheikhpour et al. [71] have done comprehensive surveys on semi-

supervised learning methods. The first trial on self semi-supervised learning was based

on the soft self-training technique [70], which is to predict labels of unannotated data.

Then those labels are used to train itself, which is known as one of the simplest and

commonly used approaches in semi-supervised learning. Recently, many approaches
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attempt designing deep learning based semi-supervised frameworks [58, 64, 65]. Ras-

mus et al. [65] proposed the Ladder network-based method, by exploiting unsuper-

vised auxiliary tasks. Laine et al.[58] annotate unlabeled data using the outputs of the

network-in-training under different conditions such as regularization input augmen-

tation. In Omni-supervised method [64], they use knowledge distillation from larger

data, in the other word their model generates annotations on unlabeled data using a

model trained on large amounts of labeled data. Then, they retrain the model using the

extra generated annotations.

1.2.5 Multi-Task Learning.

Multi-task learning has demonstrated performance improvement in several computer

vision applications such as facial landmark detection [83] and human pose estima-

tion [62]. The primary intuition behind Multi-Task Learning (MTL) is how humans

apply their knowledge and skills obtained from other tasks on more complicated tasks.

There are different methods to exploit MTL: joint learning, parallel multi-task learn-

ing with auxiliary tasks, and continual learning are a few examples of MTL based

methods. The parallel multi-task based methods integrated different tasks contempo-

raneously, which has been widely deployed in face-related tasks [55, 75].

1.2.6 Knowledge and data distillation.

There are a large number of researches attempt to transfer knowledge from a teacher

model to a student model. Romero et al. [68] proposed FitNets, a two-stage strategy

to train networks by providing hint from the teacher middle layers. Knowledge Distil-

lation (KD) proposed by Hinton et al. [54] leverage the predictions of a larger model

as the soft target to better training of a smaller model. After that, Chen et al. [46]

improved the efficiency and the accuracy of an object detector by transferring the

knowledge from a powerful teacher in case of model architecture or the input data

resolution to a weaker student. Zagoruyko et al. [80] proposed several ways to transfer

6



the attention from a teacher network to a student. Polino et al. [63] proposed quantized

distillation to compress a network in terms of depth by using knowledge distillation.

Furlanello et al. [52] used knowledge distillation on a student the same as the teacher

to improve the performance of the networks by teaching selves.

Inspired by knowledge distillation, Radosavovic et al. [64] proposed data distilla-

tion to tackle omni-supervised learning. They generate annotations for unlabeled data

by using a trained model on a labeled dataset and then retrain the model on the union

of these two datasets to improve the accuracy. There are also other works trying to use

unlabeled data to retrain the model [47, 58, 60, 79]. Gupta et al.[53] proposed a method

to transfer supervision between different modalities which needs unlabeled paired im-

ages. Laine and Aila [58] proposed to use ensemble from different checkpoints with

different regularizations and input augmentations.

1.2.7 Domain Adaptation.

Saenko et al. [69] was one of the first researchers who proposed a method to solve the

domain shift problem. More recent works are based on deep neural network aiming to

align features by minimizing domain gaps using some distance function [66, 74]. In

these methods, domain discriminator trains to distinguish different domains while the

generator tries to fool discriminator through the learning of more general representa-

tion and features.
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1.3 Datasets

We consider 7 facial related datasets to evaluate our method.

CK+ [41] is one of the constrained datasets widely used for FER. It contains 593

video sequences from 123 persons. The sequences start from neutral faces and shift

to one of anger, contempt, disgust, fear, happiness, sadness, and surprise expressions

peak. Among these 593 sequences, only 327 sequences from 118 persons are labeled

to those seven expressions.

Oulu Casia [44] contains 2,880 sequences of 180 subjects, in six different expressions

(anger, disgust, fear, happiness, sadness, and surprise) per subject. Similar to CK+ each

sequence starts from a neutral face and gradually shows the expression. Following

other researches, we also use only images under visible light and strong illumination

condition.

FER2013 [40] is annotated with seven basic facial expressions (0=Angry, 1=Disgust,

2=Fear, 3=Happy, 4=Sad, 5=Surprise, and 6=Neutral), which contains about 32K im-

ages, 28.5K for training and 3.5K for the test. All pictures in this dataset are collected

automatically by the Google image search API which is one of the frequently used

unconstrained datasets.

MORPHII [32] is one of the most popular large-scale age estimation datasets created

by the Face Aging Group at the University of North Carolina. It contains 55,134 im-

ages of 13,000 subjects with about three images per subject, age ranging from 16 to

77 year. The images in this dataset are mainly frontal.

Adience [29] compared to MORPHII which contains frontal and constrained images,

has been captured from Flicker.com albums. Hence, they are totally unconstrained and

no manual filtering has been applied, which makes them a good representation of the

real world. It consists of 26K facial images of 2,284 identities.

Gallagher [30] consists of images from flickr.com, including pictures with large vari-

ations in pose, appearance, lighting condition, unusual facial expressions, etc. It has

5K images with 28K labeled faces, divided into 7 classes (0-2, 3-7,8-12, 13-19, 20-36,

8



37-65, 66+).

FG-Net [33] which contains 1002 images of 82 subjects (age-range from 0 to 69 and

has more frontal pictures, and there are several pictures of the same person in different

years, which makes the dataset a suitable benchmark for age regression.
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Chapter 2

GF-CapsNet: Using Gabor Jet and Capsule Networks

for Face-Related Tasks

2.1 Feeding CNN with Hand-Crafted Features

2.1.1 Preparation of Input

Nobel prize winners Hubel and Wiesel discovered that there are simple cells in the

primary visual cortex, where its receptive field is divided into subregions which are

the layers covering the whole field [20]. Petkov [21] proposed the Gabor filter, as

a suitable approximation of mammal’s visual cortex receptive field. The 2D Gabor

filter is a Gaussian kernel function adjusted by a sinusoidal wave, consisting of both

imaginary and real parts, where the real part can be described as:

gλ,θ,σ,γ(x, y) = exp

(
−x
′ + γy′2

2σ2

)
cos

(
2π
x′

λ
+ φ

)
(2.1)

where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ, and λ, θ, φ, γ and σ are the

wavelength of the real part of Gabor filter kernel, the orientation of the normal to the

stripes of function, phase offset, spatial ratio and standard deviation of the Gaussian

envelope representatives respectively. Fig. 2.1 is an example of Gabor filter responses

to a face image, which shows that they find the textures that correspond to the given θ
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θ = 0°

θ =45°

θ =90°

θ =135°

Gabor Filters
   Outputs

Figure 2.1: Demonstration of Gabor filter bank and their responses with kernel size

= 3 applied to an image. Responses for four orientations (θ = 0, π/4, π/2, 3π/4) are

shown.

very well. Hence, the Gabor filter responses have been used in the applications where

the orientational textures play an important role such as fingerprint recognition [22],

face detection [23], facial expression recognition [24], and age/gender estimation [7].

A recent research [25] also showed that using Gabor responses as the input can increase

the performance of CNN.

However, only a single λ was used in [25], which means that we cannot fully

observe the different depths of wrinkles. Hence, in this paper, we use the Gabor jet

proposed in [7], which is a set of the multi-scale version of Gabor filters with different

spatial scales and orientations. In the other words, we use 32 Gabor filters with λ =

{2.3, 2.5, 3, 3.8}, θ = {0, π/4, π/2, 3π/4} and π = {0, π/2}. From the extensive

experiments, we found that the optimal σ in different cases are highly dependent on λ,

specifically σ = λ/2. Also, we fix γ = 0.1 in all of our experiments.

For feeding the Gabor responses to the network, we extract several Gabor filter

responses and concatenate them with the input image, which forms a tensor input

like a multi-channel image. Let Nf be the number of Gabor filters, and let F kg be the

11



response of the k-th Gabor filter. Normally, we may just concatenate the input image (a

gray input image of sizeW ×H) andNf responses asW ×H× (Nf +1) tensor input

to the CNN as illustrated in Fig. 2.2(a). On the other hand, we may consider fusing the

Base line

Gabor Responses

Gabor Responses

Base line
Fus ion

Co nv

1X1X N
f

H

H

H

H

H

Fusion output

W

W

W

W

W

a.

c.

Nf= 8

Nf

Nf

Nf= 8

Gabor Jet

Gabor Jet

Baseline

Baseline

Nf=32

Nf=32

W

W

H

H

H

H

H

W

W

W

Nf

Nf

(a) 

(b) 

 (c) 

Baseline

 Fusion 

     Conv 

1×1×(Nf+1)

Figure 2.2: Illustration of two input feeding methods. (a) The tensor input is fed to the

CNN. (b) The tensor input is fused to be an image and fed to the CNN. (c) An example

of a fusion image which is the weighted sum of image and Gabor responses.

input and Gabor responses as a single input (matrix), and feed the matrix to the CNN

as shown in Fig. 2.2(b). The Figure also shows that fusing the input image and Gabor

responses can be interpreted as convolving the W ×H × (Nf + 1) tensor input with

1×1× (Nf +1) filter. If we denote the coefficients of this filter as [w1, w2, · · · , wNf
]

and wimage (wk is multiplied to the k-th Gabor response and wimage is multiplied to

the input image), then the fused input is represented as

F in = wimageI +

Nf∑
k=1

wkF
k
g (2.2)

which is similar to the weighted fusion method in [6]. These weights are trained along

with the rest of network parameters in the end-to-end manner. Fig. 2.2(c) is an example

of fused input, which can be considered a “wrinkle-enhanced” image.
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Both concatenation and fusion approaches inject the Gabor responses as the input

to the CNN. From the extensive experiments, while the concatenation approach shows

slight improvement compared to the baseline, the fusion approach in Fig. 2.2(b) shows

much better performance than the baseline (about 8 %p increase in the case of age

estimation using the network purposed in Levi [5] as a baseline, and also similar im-

provements when using the other networks as baselines). Also, it requires less number

of parameters than the concatenation and almost the same amount of parameters as the

baseline.

Analysis of feature maps from the network (shown in Fig. 4.1 which will be dis-

cussed later) shows that the wrinkle features and face shapes are more enhanced in

our CNN than the conventional one that uses only the pixel values as the input. As

a result, the accuracy of age/gender estimation is much improved compared to the

state-of-the-art image-domain CNNs [5, 6]. Moreover, we test our approach on fa-

cial expression recognition and also obtain some gains over the existing CNN-based

methods [13, 14, 15, 16]. In other tasks where some of the hand-crafted features are

effective, we hope that feeding such features along with the image may bring better

results.

2.1.2 Age and Gender Estimation using the Gabor Responses

The gender estimation is just a binary classification, while the age estimation is im-

plemented as a classification or regression problem. In the case of age estimation as

a classification problem (segmenting the age into several ranges), we apply our in-

put fusion scheme in Fig. 2.2(b) to three different baselines. One of them is the most

simple age estimation network similar to Levi [5] (Fig. 2.3), and the two others are

VGG16 [27] and ResNet-101 [28]. For the gender estimation, in addition to using

Levi (Fig. 2.3) and ResNet [28] as baseline, we also examine our method on VGG16-

Hybrid network (Fig. 2.4) which estimates the gender, and use the gender-result for

more accurate gender-specific age estimation. For training the VGG16-Hybrid net-
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work, we first pre-train the gender network and each of the gender-specific networks

separately on their specific data. Then, the network is finely tuned using the whole

dataset.
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Figure 2.3: Baseline age classification network (Levi’s network).
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Figure 2.4: Baseline age classification network (VGG16-Hybrid).

Age estimation can also be implemented as a regression problem when we wish to

tell a person’s exact age, rather than as a classification problem which tells the range

(class) of ages. We use two networks: one is the VGG16-Hybrid network in Fig. 2.4

and the other is the Resnet [28]. One of the main differences between the classification

and regression problem is that they need different loss functions. For the classification

problem, we use the softmax loss defined as:

L(x) = − 1

N

N∑
i=1

Yiyi log piyi (2.3)

where N is the number of classes, Yiyi is one-hot encoding of the sample’s age label

and piyi is the yi-th element of predicted probability vector for xi. For the regression,

we use Mean Absolute Error (MAE) as the loss function. To be precise, the MAE is

defined as

L(x) = − 1

M

M∑
i=1

|ŷi − yi| (2.4)
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where M is the maximum age that we set, and ŷi is the estimate of true age yi.
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2.2 GF-CapsNet

2.2.1 Modification of CapsNet

In the previous section, we showed that feeding Gabor features to the CNNs can in-

crease their performances in face-related problems. However, the best performances

shown in the tables do not still seem good enough to solve the real-world problems.

Hence, we attempt to further increase the performance by using the recently developed

CapsNet in this section.

As we mentioned before, there are some problems in using the CNN for face-

related tasks such as age estimation and FER. First, CNNs are not good at finding the

spatial relations of facial landmarks, and secondly, they are invariant to changes in

viewpoints. On the other hand, the CapsNet can capture the parameters of the specific

feature along with its likeliness. Hence, it can not only detect features but also learn

and detect their variants. To construct a CapsNet-based age estimation architecture,

we adopt the EM routing mechanism in [8]. This method employs the EM clustering

technique to cluster the lower layer capsules in Gaussian distribution and create a part-

whole relationship. We use the matrix capsule which detects the likeliness and 4 × 4

pose matrices which define the change of viewpoint of features. Also, in the CapsNet,

there are 4× 4 transformation matrices W between the capsules in the L-th layer and

their parent capsules in the (L + 1)-th layer. Then, the votes matrix is defined as the

multiplication of the pose matrix with the transformation matrix as:

vij = MiWij (2.5)

where vij is a vote for a capsule j to be the parent of capsule i, Mi is a pose matrix for

the capsule i, andWij is the transformation matrix between the capsules i and j. Then,

by using the EM routing on these votes, the parent-children relation can be made.

According to the method in [8], the capsule j will be activated depending on the
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activation function

aj = sigmoid(λ(bj −
∑
h

costhj ))

= sigmoid(λ(bj −
∑
h

∑
i

rijcosthij))
(2.6)

where rij is the runtime assignment probability which shows the amount data of cap-

sule i assigned to the capsule j, and h refers to hth component of pose matrix. The bj

is related with the capsule j’s mean and variance, which can be approximated through

the optimization of cost function costij , which is the cost for the capsule i in the L-th

layer to activate the parent capsule j in the layer L + 1. The pose matrix is generally

modeled as Gaussian, and then the costhij is defined as

costhij = −ln

 1√
2π(σhj )2

exp

(
−

(vhij − µhj )2

2(σhj )2

) (2.7)

where µj and σj are capsule j’s mean and variance respectively. Note that rij , µhj ,

σhj and aj are computed using the EM routing whose main objective is to fit the data

points to a Gaussian model. Further details of EM routing algorithm can be found in

[8].

In summary, the baseline network that we use is the one proposed in [8], which

has a simple convolutional layer at the head to extract the features, followed by three

capsule layers. In our proposed CapsNet, we inject Gabor features along with the im-

age to the network. Also, considering the complexity of face-related tasks, we add one

more convolution layer at the head to extract more features as shown Fig. 2.5.

About the loss function for the training, the “spread loss” is defined in [8] which

is expressed as

Lspread =
∑
i 6=t

(max(0,m− (at − ai)))2 (2.8)

wherem is the margin which is initially 0.05 and linearly increased to 0.95, and at and

ai correspond to activation target and wrong class respectively. In our implementation

for the classification, we use this spread loss function. However, in the case of age
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Figure 2.5: Our modified Capsule network.
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Figure 2.6: Reconstruction of input image using the decoder network.

regression, the spread loss does not differentiate between the wrong estimates and

different values of errors. Hence, we add one more capsule after the final layer (Class

Caps), and use Mean Absolute Error (MAE) instead of the spread loss.

As Sabur et al. suggested in [19], adding the reconstruction error to the total loss

can improve the performance and acts as a regularization method. However, unlike

the MNIST dataset used in [19], the face-related datasets are more complicated and

reconstructing the whole image is hard and unnecessary. Hence, in the proposed re-

construction loss, we extract the Gabor features of the original and the reconstructed

image which is obtained from the last layer of CapsNet (output poses). That is, we

modify the loss function to

L = Lspread or MAE + r||G(Iorg)−G(Irec)|| (2.9)

where γ is the regularization scale and G(Iorg) and G(Irec) are Gabor features ex-

tracted from the original and reconstructed image respectively. The procedure of image

reconstruction is illustrated in Fig. 2.6.

subsectionFacial Expression Recognition (FER)

In the FER experiments, we choose some state-of-the-art networks as the baselines

and show they yield improved results when fed with fusion input. The first baseline is

VGG-19 [27] which shows the best results on FER2013. We add one more drop out
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after the last fully connected layer to decrease the overlapping as shown in Fig. 2.7.

We also choose the zero-bias CNN+AD [15] shown in Fig. 2.8, which uses three con-

volutional layers followed by one fully connected layer.
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Figure 2.7: Illustration of GF-VGG network for facial expression recognition on

FER2013.

 Fusion 

     Conv 

1×1×(Nf+1)

 Fusion 

Output

  5×5 Conv

      64,

    ReLU

  5×5 Conv

      256,

    ReLU,

Max pool

  5×5 Conv

      128,

    ReLU

M
ax

 P
o
o
l   5×5 Conv

      256,

    ReLU

Q
au

d
ran

t P
o
o
l

       FC

       300,

     ReLU,

Dropout 0.5

M
ax

 P
o
o
l

Figure 2.8: Illustration of GF-Zero-bias CNN+AD network for facial expression recog-

nition on CK+.
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Chapter 3

Distill-2MD-MTL: Data Distillation based on Multi-Dataset

Multi-Domain Multi-Task Frame Work to Solve Face

Related Tasks

3.1 MTL learning
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Figure 3.1: The proposed method. Right: the first step of training using the proposed

2MD-MTL network (teacher). Left: the second step of training using a simple single

task network (student) with labels produced by the 2MD-MTL network (teacher).
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Suppose we have t tasks Ti for 1 ≤ i ≤ t, and d datasets Dj for 1 ≤ j ≤ d in

which each dataset contains labels for a subset of the t tasks. Without loss of generality,

suppose the target task is T1 and at least one of the datasets contains the related labels

for the target task. By defining a multi-task networkNm, we trainNm with the datasets

Dj in a multi-dataset multi-domain multi-task (2MD-MTL) manner.

To be more clear, instead of training the network with alternating inputs from each

dataset, we construct an input batch of size b = t × b̂ as a combination of b̂ images

from each task Ti. Therefore, by evaluation of the network Nm on the input batch, we

will have a matrix L of size b × t related to the loss functions of the different tasks,

in which cell li,j means the loss value for the i-th image and the j-th task. Now, we

construct a mask matrixM of the same size by puttingmi,j = αj , where αj is equal to

the coefficient of the loss due to the task Tj , if the i-th image contains the label for task

Tj and 0 otherwise. Then, the final loss will be equal to the dot product of these two

matrices. In other words, we use all the tasks parallelly in the network by considering

only the valid loss values at the end.

The loss function in multi-task learning is generally defined as L = ΣiωiLi, where

Li is a Loss function and ωi is a scalar coefficient for the i-th task respectively. In most

of the cases, it is challenging to find the best value for each ωi which not only need

huge efforts and extensive experiments but also decrease network generalization. We

use the gradient normalization [48] to solve the loss balancing problem, which obviates

the expensive time-consuming grid search for tuning the ωis.

Figure 3.1 shows the proposed framework, where we use VGG-16 [72] network

as the baseline, all tasks are sharing convolutional layers (5 convolutional blocks), and

each task has its own Fully connected layers and also their own loss as their head.

While the features learned above on multiple tasks will be more general-purpose

ones than those learned on a single task, there may be still a problem if the dataset

domains are so different. For example, Figure 3.2 shows some images used in our ex-

periments, where the images from MORPHII and Casia datasets are frontal images
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while the photos from the Adience dataset are mainly wild. On the other hand, MOR-

PHII subjects are photos of prisoners’ who don’t show that many emotions while Casia

is emotion dataset. In order to minimize the domain gap between different datasets and

also extract more generalized features, we use metric learning based discriminator.

In our proposed method, we add the discriminator head shown in Figure 3.3 after

the shared layers. Then, we apply a triplet loss which aims to pull samples belong-

ing to the same dataset into nearby points on a manifold surface and push samples

from different datasets apart from each other. The labels of the training images for the

discriminator’s head can be easily provided by the dataset to which they belong (for

example 0: age, 1: gender, and 2: emotion). Then, they are selected and formed into

triplets as Ti = (xa, yp, yn), where xa and yp are the anchor and positive samples

respectively which belong to one dataset and yn is the negative sample which belongs

to another. Then, we train the discriminator head to decrease the triplet loss (Eq. 3.1)

and the rest of the network to minimize the total loss (Eq. 3.2) where N is the number

of tasks and Li is the loss function per task. In the other word, we train network in
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the way that the discriminator’s head is not able to distinguish between datasets, while

still the other heads being able to extract informative feature for all the task, therefore

shared layer features will be generalized on all tasks and domains.

LDA = ΣT
t=1[||xat − ybt ||22 − ||xat − yat ||22 + 0.2] (3.1)

LTotal = ΣN
i=1ωiLi − LDA (3.2)

Using the triplet loss for the discriminator’s head can help us to overcome the class

imbalance problem due to the different sizes of datasets. For example, the number of

MORPHII images is one order of magnitude greater than the images in CK+. There-

fore, without considering a solution for the class imbalance, the discriminator will be

biased to MORPHII based on a large number of images in that class.
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3.2 Data Distillation

Hinton et al. [54] proposed knowledge distillation (KD) in order to transfer the knowl-

edge from a cumbersome teacher model to a smaller student model. They use the class

probabilities predicted by the teacher model as a soft target to guide the student model.

Furlanello et al.in born-again neural networks [52] show that we can also adopt student

network architecture as the teacher in order to improve the model by guiding itself.

Radosavovic et al. [64] apply this idea to omni-supervised learning. They showed that

by using a trained model with a labeled dataset, we can generate labels for an unla-

beled dataset by applying the model on multiple transformations of the input images

and aggregate the results as the hard labels similar to the ground truth labels. It has

been shown that the aggregation will improve the results in [51, 55, 76]. Comparing

to the previous methods, we believe that using weakly labeled datasets in a multi-task

learning manner instead of an unlabeled one has advantages especially when the dis-

tributions of the labeled datasets and the unlabeled one is highly different.

For example, in the case of face-related tasks, if we have a dataset consists of

images in domain “A” in a specific task “X” (such as facial expression recognition),

and we have a datasets of images in domain “B” which they have different features

with images in domain “A” and they are labeled by the other task “Y” ( such as age

estimation). Then if we want to use a model trained on domain “A” to estimate the

facial expression of domain “B”, the model which is trained only on a specific domain

probably will suffer from the differences of features between the domain and won’t

show a good performance. Therefore, the proposed method in [64] cannot produce

good labels without adopting the new domain. Therefore, in our method, we used our

proposed trained MTL framework, which can learn more general features, to generate

Unknown labels for all datasets (Figure 3.1). For examples, if dataset “A” has been an-

notated for task “X” but not task “Y” and “Z” we use our MTL network to generate “Y

& Z” labels for task “A”, then by doing so, we can generate more accurate predictions

and can train our network in the classic MTL manner.
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Chapter 4

Experiments and Results

4.1 Experiments on GF-CNN and GF-CapsNet

4.2 GF-CNN Result

We perform age classification based on the standard five-fold, subject-exclusive cross-

validation protocol for fair comparison. Tables 4.1 and 4.2 show the results for age

estimation, with comparisons to baselines and state-of-the-art methods. The results

show that adding the Gabor responses along with images improves the performance

compared to the baselines.

For the visual analysis of the effects of Gabor response feeding, we compare some

feature maps in Fig. 4.1. The feature maps from our GF-Levi are shown Fig. 4.1(b),

and those from the original Levi are shown in Fig. 4.1(c). As can be observed, the

feature maps from the GF-Levi contain stronger facial features and wrinkle textures

than the original network, which is believed to be the cause of better performance.
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Table 4.1: The accuracy (%) of age estimation (classification) on Adience & Ghal-

lagher datasets, compared with the baseline. The network with prefix “GF-” uses the

Gabor response input to the baseline network.

Network Adience Gallagher

Levi [5] 50.7±5.1 -

GF-Levi 58.3±2.1 71.0±0.9

VGG16 [27] 53.2±1.0 68.1±0.6

GF-VGG16 59.2±1.3 72.0±0.3

ResNet-101 [28] 54.6±2.3 69.1±0.8

GF-ResNet-101 59.8±1.2 72.6±0.7

Table 4.2: The accuracy (%) of age estimation (classification) on Adience & Ghal-

lagher datasets, compared with sate of the art techniques.

Method Adience Gallagher

LBP [7] 41.1 58.0

LBP+FPLBP+Dropout 0.8 [34] 45.1 66.6

Eidinger [29] 45.1 -

Levi [5] 50.7 -

PTP [35] 53.27 68.6

DAPP [35] 54.9 69.9

GF-ResNet-101 (ours) 59.8±1.2 72.6±0.7

In the case of age regression, we use four-fold cross-validation protocol for Web-

face dataset and the Leave-One-Person-Out (LOPO) test strategy when working on

FG-Net because the number of pictures in FG-Net is small. Table 4.3 shows the result

of age regression, which also indicates that our network yields better performance than

the state of the art method.

The results on gender estimation is summarized in Table 4.4, which also shows that

our method outperforms the other techniques on Adience. The table also shows that
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Figure 4.1: Comparison of feature maps after the first convolution layer in two net-

works: (a) input image, (b) feature map of GF-Levi network, (c) feature map of the

original Levi Network.

Table 4.3: Mean absolute error of age regression methods on Webface, MorphII and

FG-Net datasets. The last two methods with prefix GF are the networks that take the

Gabor responses as the input.

Method Casia Webface MorphII FG-Net

BIF[7] 10.65 5.09 4.77

EBIF[36] - 4.11 3.17

ResNet [28] 5.80 3.13 3.10

OR-CNN[37] 5.93 3.27 -

VGG16-Hybrid [6] 5.75 2.96 -

Ranking-CNN[38] 5.71 2.96 -

GF-ResNet 5.61±0.04 2.95±0.06 3.04±0.01

GF-VGG16-Hybrid 5.53±0.02 2.93±0.05 3.06±0.02

the proposed method can increase the performance of baseline and also outperforms

the other techniques on Webface.
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Table 4.4: The accuracy (%) of gender estimation on Adience & Webface datasets.

Method Adience Casia Webface

BIF [7] - 79.3

Eidinger [29] 77.8 -

Levi [5] 86.8 -

ResNet [28] 88.5 89.2

VGG16-Hybrid [6] - 92.3

GF-Levi 90.1±1.3 92.1±1.5

GF-ResNet 90.7±1.1 92.4±0.5

GF-VGG16-Hybrid 90.6±0.5 93.1±0.4

Kernel Size

For determining the appropriate Gabor filter size, we conduct the experiments using

several kernel sizes and summarize the result in Table 4.5. We can see that the smaller

size works better, and we use only 3× 3 filter instead of 5× 5 or 7× 7 like [39].

Table 4.5: The accuracy (%) of age classification on Adience and Gallagher datasets

depending on the kernel size of Gabor filter banks.

GF-Levi Age (Adience) Age (Gallagher)

7× 7 56.7 70.1

5× 5 57.6 70.4

3× 3 58.3 71.0
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Gabor Jet vs. Single-Scale Gabor

In [25], they used the Gabor filter in eq. 2.1 with five hyper-parameters (λ, θ, φ, γ and

σ) which are tuned depending on the given problem. Specifically, the grid search was

conducted for each of the problems to find the appropriate parameters. However, since

this manual optimization is time-consuming, we use Gabor jet instead of the single-

scale Gabor filter used in the previous work. The Gabor jet is a set of Gabor filters

with different scales and orientations, and thus using the Gabor jet is to add the multi-

scale filters to the previous Gabor filters. As stated previously, we combine several

scales and orientations, resulting in 32 filter banks in total. The results with Gabor jet

are compared with those using the optimized single-scale Gabor in Table 4.6, which

shows that using a larger number of multi-scale filters may bring better results than

using a fewer number of single-scale filters with manual optimization.

Table 4.6: Comparison of using Gabor jet and single-scale Gabor filter bank on age

and gender estimation. The estimation accuracy (%) is measured with Adience dataset

and the mean absolute error is obtained with Morph II.

Method Age (Adience) Gender (Adience) Age (Morph II)

Single-Scale (Levi) 57.8±1.8 89.6±1.0 3.34±0.04

Gabor Jet (Levi) 58.3±2.1 90.1±1.3 3.30±0.05

Single-Scale (VGG16-Hybrid) 58.0±0.9 89.8±0.2 2.95±0.03

Gabor Jet (VGG16-Hybrid) 59.2±1.3 90.6±0.5 2.93±0.05
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4.2.1 GF-CapsNet Results

We perform age classification on Adience and Gallagher datasets with the baseline

network and our modifications, i.e., with the modified loss function and/or Gabor re-

sponse input. Table 4.7 shows the effect of our modifications, and Table 4.8 shows the

comparison with other methods.

Table 4.7: The effect of our modifications on CapsNet for the age classification.

Method Accuracy on Adience (%) Accuracy on Gallagher (%)

Caspnet EM routing (Baseline) [8] 54.9±0.9 68.1±0.4

Caspnet-2 EM routing (with an additional convolution layer) 58.7±0.8 70.4±0.5

GF-Capsnet-2 with Gabor features and raw image 56.9±0.6 71.6±0.3

GF-Capsnet-2 with reconstruction loss [19] 58.3±0.9 71.5±0.6

Capsnet-2 with modified loss function in eq.(2.9) 62.3±1.1 72.1±0.5

GF-Capsnet-2 with modified loss function in eq.(2.9) 64.8±0.9 73.2±0.8

Table 4.8: Age classification accuracy (%) on Adience and Ghallagher datasets, and

Gender classification accuracy on Adience and Webface datasets.

Network No. of parameters Age (Adience) Age (Gallagher) Gender (Adience) Gender (WebFace)

Levi [5] 22.6M 50.7 - 86.8 -

PTP [35] - 53.27 68.6 - -

ResBet-101 [28] 46.0 59.2 72.0 88.5 89.2

DAPP [35] - 54.9 69.9 - -

GF-Levi 22.7 M 58.3±1.4 71.0±0.5 90.1±1.3 92.1±1.5

GF-ResNet-101 46.3 M 59.8±0.9 72.6±0.3 90.7±1.1 92.4±0.5

GF-Capsnet (our best) 19.1 M 64.8±0.9 73.2±0.8 92.0±0.8 94.0±1.0

Also Table 4.9 shows the MAE of age regression on Webface, Morph II, and FG-

Net. Regarding the network complexity, the CapsNet generally requires less number of

parameters than the CNN for the same problem (see the Table 4.8). The total number

of our network is 19.10M, which is even less than the number of parameters of the

simplest CNN in this paper (Levi’s network in Fig. 2.3).
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Table 4.9: Mean absolute error of age regression on Webface, Morph II, and FG-Net

datasets.

Method Casia Webface Morph II FG-Net

BIF [7] 10.65 5.09 4.77

OR-CNN [39] 5.93 3.27 -

Ranking-CNN [40] 5.71 2.96 -

ODFL [41] - 3.12 3.89

Mean Variance Loss [42] - 2.41 2.68

GF-Capsnet (our best) 5.32±0.46 2.40±0.03 2.61±0.08

We conduct experiments on FER using CK+, FER2013, and Oulu-CASIA [44]

datasets. All the experiment settings are the same as the previous section. Table 4.10,

Table 4.11, and Table 4.12 show the results on CK+, FER2013 and Oulu-CASIA re-

spectively. It can be seen that our network yields better performance than others on

CK+ and FER2013, and comparable results on Oulu-CASIA.

Table 4.10: FER results on CK+ dataset.

Method Accuracy on CK+ (%)

Zero-bias CNN+AD [15] 95.1±0.5

FN2EN [14] 96.8

DeRL [45] 97.30

CapsNet 97.12±0.2

GF-CapsNet (our best) 98.13±0.3
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Table 4.11: FER results on FER2013 dataset.

Method Accuracy on FER 2013 (%)

Maxim Milakov [40] 68.82

VGGNet [13] (Baseline) 72.18±1.1

GF-VGGNet (ours) 74.93±0.9

CapsNet 74.87±1.1

GF-CapsNet (our best) 76.46±1.3

Table 4.12: FER results on Oulu-CASIA dataset.

Method Accuracy on Oulu-CASIA (%)

AUDN [43] 92.5

IACNN [17] 95.37

PPDN [16] 84.59

FN2EN [14] 87.71

DeRL [45] 88.0

CapsNet 84.8 ± 0.5

GF-Capsnet (our best) 88.12 ± 0.4
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4.3 Experiment on Distill-2MD-MTL

We conduct experiments mainly on Facial Expression recognition, and we divide our

analysis into two main parts. In the first part, we compare our network with a single-

task baseline when both training data and test data are from the same domain and the

same dataset (Sec. 4.3.1). In Sec. 4.3.1, we also evaluate our network on the auxiliary

tasks (age and Gender estimation) to prove that not only our network shows the better

result on the main task (FER), but also simultaneously improves the performance of

those auxiliary ones. Following the previous works, we use 10-fold cross validation

protocol for all the experiments on both CK+ and Casia datasets. We repeat each ex-

periment 10 times and report the average result. At the last part, we compare our result

when test data are from a different dataset from other domain in order to evaluate the

generalization of our proposed network (Sec. 4.3.2). In this part we evaluate our net-

work on FER2013 which has been already divided to train part and private test set by

publishers [40], we follow their protocol and evaluate our network on private test part

of FER2013.

In the experiments, all the images are resized to 48 × 48, and batch size to 128

which is divided into three parts 32, 32, and 64 for age, gender, and emotion datasets

respectively, and we train our network for 200 epochs per each experiment. We utilize

conventional data augmentation in the form of random sampling and horizontal flip-

ping. To adapt VGG-16 network to our 48 × 48 input, we omit the last pooling layer

right after VGG-16 5th block.

For optimization, we used Momentum optimizer and fix the momentum to be 0.9.

We use two different methods in order to adjust the learning rate, the first one is the

classic method where the learning rate starts from 10e− 2 and dropped exponentially,

in the second method as the recent researches demonstrated that instead of monoton-

ically decreasing the learning rate, vary learning rate cyclically will cause improve in

performance without a need to tune and often in fewer iterations [73], we proposed

a dynamic learning rate, in our method network gets feedback from loss difference
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between iteration and if it seems not decreasing enough it will decrease learning rate

(lrT+1 = lrT ∗ 0.1(current−training−step/10
k)) and in each kth times (lets call it “cy-

cle”) that this situation happens instead of decreasing learning rate, we will increase it

to the initial learning rate call it as lrMUX , as a result, the minimum learning rates in

each cycle, step k − 1 in each cycle, will be equal to the same value as if the learning

rate has been exponentially decreased, in our experiments we set “k” to 5.

4.3.1 Semi-Supervised MTL

In this section we use three tasks; age estimation on MORPHII, gender estimation on

Audience and FER on CK+, Oulu Casia. For facilitating the age estimation task, we

divide it into two classes, those who are younger than 38 years old and those who are

older than 43 years old and we ignore the rest. Then we evaluate our network on CK+

and Oulu Casia respectively. To have a fair compression with state of the arts as they

mostly pre-trained their network [14, 55, 59, 61, 78], we also follow their method and

pre-trained our network on LSEMSW same as [55] and then fine tune our network on

CK+ and Casia While pre-training we didn’t change the age and gender datasets.

The result has been shown in Table 4.13, Confusion matrices are also has been

shown in Figure 4.3 and Figure 4.2. Moreover, we evaluate our network on MORPHII

(age Estimation) and Adience (gender Estimation), while we use all images of Oulu

Casia for training the FER. We divide both age and gender to two parts of train and

test with a portion of 4 to 1. The result has been shown in Table 4.14. “DA” prefix in-

dicates networks with Domain Adaptation, “Distill” for the network using knowledge

distillation and “DR” for the network being trained using proposed dynamic learning

rate. As the results show, the proposed method not only gets a great improvement over

the baseline by exploiting the information of the other datasets from other tasks but

also it works better than other multi-task approaches [49, 55] and other states of the

art techniques.
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Figure 4.2: Confusion Matrix from DR- Distill-DA-2MD-MTL on CK+. The darker

the color, the higher the accuracy.
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the color, the higher the accuracy.
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Table 4.13: Facial expression recognition result on Oulu-Casia and CK+ dataset.

Method FER on Oulu-Casia FER on CK+

HOG 3D [56] 70.63 91.44

IPA2LT [81] 61.02 91.67

FN2EN [14] 87.71 96.8

DeRL [78] 88.0 97.30 (7classes)

RN+LAF+ADA [55] 87.1 96.4

Star-Gan [49] 84.3 91.6

Baseline 83.6 89.4

2MD-MTL 86.83 93.51

DA-2MD-MTL 87.1 93.4

Distill-Baseline 84.1 89.2

Distill-2MD-MTL 89.13 94.5

Distill-DA-2MD-MTL 89.3 96.73

DR-Distill-DA-2MD-MTL 90.1 97.68

4.3.2 Cross Datasets Cross-Domain Evaluation

Not only our method benefits from all of the datasets to improve the results of the

target dataset, but it is also capable of predicting the target labels on the domain of

the auxiliary datasets. For validating these properties, we train our network same as

Sec. 4.3.1, except that we evaluate our network on FER2013. For training the network

we use all CK+ dataset while training on CK+, and all Casia dataset while training on

Casia also we use all Casia and CK+ dataset together as training set as the number of

training image in each individual dataset were so low and the network could be easily

get overfed. Results are provided in Table 4.15, which shows that our method achieves

significant results without seeing any labeled image of the target task in the domain of

FER2013.
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Table 4.14: Age estimation performance on MORPHII and Gender Estimation on Adi-

ence.

Method Age on MORPH Gender On Adience

Baseline 84.2 87.6

2MD-MTL 89.3 90.8

DA-2MD-MTL 88.9 91.4

Distill-Baseline 84.9 87.9

Distill-2MD-MTL 89.8 91.2

Distill-DA-2MD-MTL 89.5 91.7

DR- Distill-DA-2MD-MTL 90.3 92.9

Table 4.15: Cross-Domain facial expression recognition result on FER 2013.

Method Trained on CK+ Trained on Casia Trained on Both

Baseline 33.1 35.2 39.8

2MD-MTL 35.6 38.3 47.0

DA-2MD-MTL 36.7 38.5 47.3

Distill-Baseline 34.7 35.9 41.3

Distill-2MD-MTL 38.4 38.7 54.0

Distill-DA-2MD-MTL 38.1 38.5 54.2

DR- Distill-DA-2MD-MTL 38.9 39.7 55.4
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Chapter 5

Conclusion

We have proposed techniques to increase the performance of age/gender estimation

and FER. It is believed that the most important features for these problems are the

shape, amount, and depth of wrinkles on the face, and the algorithms need to be ro-

bust to the variation of face rotations. We have proposed to use Gabor filter responses

as the input to the deep network, which enhances the wrinkles and hence helps the

network to find the wrinkle-enhanced features at the earlier stage of the convolutional

layers. We have also employed the capsule network and designed appropriate loss

functions, which also adds the performance improvement. In summary, using the Ga-

bor responses as the input to the deep networks (both in the case of CNN and CapsNet)

increases their performance in face-related problems. Moreover, We have proposed an

end-to-end multi-dataset, multi-domain, and multi-task deep learning framework for

joint facial expression, age, and gender estimation. The proposed scheme is able to ex-

ploit multiple datasets which the labels for different domains or tasks in the manner of

semi-supervised learning. Hence, unlike the supervised multi-task network that needs

expensive multiple labeled datasets, the proposed method is more efficiently trained.

Using domain adaptation and data distillation, we were able to enhance the network

generalization and solve the cross-domain adaptivity problem.
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초록

컨볼루션뉴럴네트워크 (CNN)는얼굴과관련된문제를포함하여많은컴퓨터

비전작업에서매우잘작동합니다.그러나연령추정및얼굴표정인식 (FER)의경

우 CNN이 제공 한 정확도는 여전히 실제 문제에 대해 충분하지 않습니다. CNN은

얼굴의주름의두께와양의미묘한차이를발견하지못했지만,이것은연령추정과

FER에필수적입니다.또한실제세계에서의얼굴이미지는 CNN이훈련데이터에

서 가능할 때 회전 된 물체를 찾는 데 강건하지 않은 회전 및 조명으로 인해 많은

차이가있습니다.또한MTL (Multi Task Learning)은여러가지지각작업을동시에

효율적으로수행합니다.모범적인MTL방법에서는서로다른작업에대한모든레

이블을 함께 포함하는 데이터 집합을 구성하는 것을 고려해야합니다. 그러나 대상

작업이다각화되고복잡해지면더강력한레이블을가진과도하게큰데이터세트가

필요할수있습니다.따라서원하는라벨데이터를생성하는비용은종종장애물이

며특히다중작업학습의경우장애가됩니다.따라서우리는가버필터와캡슐기반

네트워크 (MTL) 및 데이터 증류를 기반으로하는 다중 작업 학습에 기반한 새로운

반감독학습방법을제안한다.

주요어:얼굴관련작업, Capsule Net,데이터증류,다중태스크학습,도메인적응

학번: 2017-26727
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