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Abstract

Missile Acceleration Autopilot Design Based on
State-Dependent Riccati Equation Method

Jaeho Lee
Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

An acceleration autopilot for a tail-fin controlled skid-to-turn maneuver mis-
sile is designed using a state-dependent Riccati equation (SDRE) method. The
asymptotic stability of the closed-loop system controlled by the designed au-
topilot is analyzed in a predefined missile operational range. To analytically
represent the closed-loop system, the analytic solution of the state-dependent
algebraic Riccati equation (ARE) is obtained and utilized in analyzing the
asymptotic stability.

In the first part of this study, six-degrees-of-freedom equations are derived
for the tail-fin controlled missile, and reduced equations for longitudinal and
lateral motions are introduced based on a linear approximation. For the longitu-
dinal dynamics of the missile, mathematical analyses of its characteristics and
closed-loop system behavior are given. A valid transformation to normal form
equations with a normal acceleration output is presented, and non-minimum
phase behavior of the tail-fin controlled missile is analyzed, based on the nor-
mal form equations. For the closed-loop system behavior with an approximate

model-based controller, input-output stability, specifying an external input as



a term causing the non-minimum phase behavior, is proved for the non-zero ac-
celeration command. Furthermore, perfect regulation of the closed-loop system
is shown for the zero acceleration command. A numerical example is given to
illustrate the analytical results.

In the second part of this study, the asymptotic stability of the closed-loop
system controlled by the SDRE method is analyzed in the predefined opera-
tional range of the missile. The analytic solution of the state-dependent ARE is
obtained for two-dimensional nonlinear systems, where a matrix sign function
and matrix principal square root are utilized. Next, a SDRE method-based
missile acceleration autopilot is designed using the longitudinal dynamics of
the missile. Incorporating assumptions about the properties of the tail-fin con-
trolled missile in the normal operational range, the asymptotic stability of the
closed-loop system controlled by the designed acceleration autopilot is analyzed,
using the Lyapunov stability theorem. The analytical result of the asymptotic
stability is demonstrated with a numerical simulation. Finally, a numerical sim-
ulation based on the six-degrees-of-freedom equations of the missile is performed

to verify the control performance of the proposed autopilot.

Keywords: Missile Acceleration Autopilot, State-Dependent Riccati Equation,
Asymptotic Stability, Nonlinear Analysis
Student Number: 2013-20698
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Chapter 1

Introduction

1.1 Background and Motivation

A state-dependent Riccati equation (SDRE) method is one of the nonlinear
control methodologies, which has emerged over the last decade as an effective
design technique, particularly in aerospace engineering. The design procedure
of the SDRE method begins by transforming a nonlinear system into a pseudo-
linear system using a state-dependent coefficient (SDC) transformation. The
SDRE method usually considers an autonomous input-affine nonlinear system.
Motivated by a linear quadratic regulator (LQR), a state-dependent algebraic
Riccati equation (ARE) for the transformed pseudo-linear system, including
the state-dependent weighting matrices, is constructed and solved in the SDRE
method. Next, the suboptimal control input with the solution of the state-
dependent ARE is generated. The main feature of the SDRE method is the
ability to directly handle the tradeoff between the state errors and control
efforts, by adjusting the weighting matrices, as in the LQR method. Tuning
of the control gains in other nonlinear control methods is far less intuitive.
Furthermore, the SDRE method allows for design flexibility, such as a non-

uniqueness of the SDC transformation.



There are many successful applications of the SDRE method to various
problems. In particular, the SDRE method has been widely used in aerospace
engineering to design a missile autopilot. A three-loop autopilot has been the
representative method for missile acceleration autopilots, because it has good
control performance. Typically, the three-loop autopilot is designed for a cer-
tain operating point, based on a linearized model of a missile. However, the
control performance can also be guaranteed for the neighborhood near the de-
sign point, if the variation of the parameters between the operating points is
sufficiently small and slow. The drawback is that the design procedure for many
operating points requires heavy time-consuming tasks, and the stability cannot
be guaranteed if the parameters change rapidly.

Nonlinear autopilots can resolve the issues of the three-loop autopilot, be-
cause they are designed for a nonlinear missile model, covering the entire flight
envelope. Among them, the SDRE method is a suitable approach for tail-fin
controlled missile autopilot design. This is because it is not based on nonlinear
dynamic inversion, unlike the feedback linearization and sliding mode control
schemes. Consequently, the SDRE method can directly handle non-minimum
phase systems, such as a tail-fin controlled missile. Furthermore, the optimal
property of the SDRE method, which approximately minimizes a quadratic cost
function, is a great advantage in designing a missile autopilot. Other nonlinear
control schemes cannot address the optimal properties of the controllers.

However, a major drawback of the SDRE method is that the state-dependent
ARE should be numerically solved at each step, which is referred to as ‘online
computation’ of the SDRE method. Online computation is inevitable in most

cases, because obtaining the analytic solution of the state-dependent ARE is



very difficult. The two main problems of online computation for the SDRE
method are i) high computational cost and ii) an analytic representation of the
closed-loop system controlled by the SDRE method is not possible. The com-
putational cost issue has been resolved to a large extent, by improvements in
the microprocessor computational capacity. However, the second issue remains
a major obstacle to using the SDRE method in practice, because the size and
boundary of the asymptotic stable region cannot be properly quantified. In fact,
most applications of the SDRE method depend on local asymptotic stability
around the equilibrium points based on the point-wise controllability and ob-
servability.

Another difficulty of the SDRE method is treating system robustness, with
respect to uncertainties and disturbances. In particular, the SDRE method is
known to be sensitive to parametric uncertainties, because it is motivated by
the LQR technique. Note that the linear model-based three-loop autopilot can
handle system robustness, by examining the phase and gain margins for a cer-
tain operating point. Some nonlinear control schemes, such as backstepping and
sliding mode control, allow further development for robust performance.

In this study, the analytic solution of the state-dependent ARE is obtained
for two-dimensional nonlinear systems, thus providing an analytic representa-
tion of the closed-loop system. To design and analyze the SDRE method-based
acceleration autopilot using the analytic solution, a short-period approximated
model of the longitudinal missile motion is used. The longitudinal dynamics can
also be applied to the lateral motion of the missile because of the axial symme-
try of the skid-to-turn maneuver. First, the characteristics of the longitudinal

dynamics for the tail-fin controlled missile are analyzed, and then the missile



acceleration autopilot is designed based on the longitudinal dynamics. Using
the analytic solution of the state-dependent ARE, the closed-loop system con-
trolled by the designed autopilot is represented analytically, and its asymptotic
stability is analyzed based on the Lyapunov stability theorem.

To examine robustness with respect to parametric uncertainties, the ana-
lytical results of the SDRE method are investigated with a numerical example
that includes the aerodynamic uncertainties. Furthermore, the control perfor-
mance of the proposed autopilot, which is designed considering the short-period
approximated model, is demonstrated using a full nonlinear dynamics model of

the skid-to-turn missile with uncertainty.



1.2 Literature Survey

1.2.1 Application and Theoretical Studies on State-Dependent
Riccati Equation Method

The SDRE method has been applied to controller design for various systems
[1-9]. Missile autopilot design is a representative application of the SDRE
method [2H6]. Also, other aerospace systems such as spacecraft [7,|8] and un-
manned helicopter [9] have used the SDRE method for designing control sys-
tems. These studies used online computation to obtain the control input of the
SDRE method, and thus only local asymptotic stability of the closed-loop sys-
tem can be guaranteed. Therefore, the region of attraction cannot be clearly
quantified. Local asymptotic stability of the SDRE method is valid in a suffi-
ciently small region around the origin, based on the fact that the closed-loop
system matrix is Hurwitz at the origin. Furthermore, the existence of a larger
region of asymptotic stability, namely large-scale asymptotic stability of the
SDRE method [10], has been proven. However, practical use is severely limited
if global stability is not guaranteed or the region of attraction is not clearly
quantified, although most applications of the SDRE method depend on large-
scale asymptotic stability.

Many previous studies have focused on the applications of the SDRE method,
rather than detailed theoretical investigation. Several studies have examined
the stability issue of the SDRE method, based on the analytic representa-
tion of the closed-loop system [11-14]. For a two-dimensional nonlinear sys-
tem with a single input, the global asymptotic stability of the SDRE method
was shown [11,[12]. These studies dealt with a very simplified system, where

some components of the SDC system and input matrices were set to zero,



and therefore, obtaining the analytic solution of the state-dependent ARE was
much easier. Furthermore, strong assumptions are required to guarantee global
asymptotic stability. In summary, the analytical results of Refs. [11,/12] are lim-
ited to a special class of nonlinear systems. In addition, it was shown that the
global stability of the SDRE method is guaranteed for scalar systems without
any additional restriction and multivariable systems with the symmetric closed-
loop system matrix [13,/14]. However, general multivariable systems do not have

a symmetric closed-loop system matrix.

1.2.2 Analytic Solution of the Algebraic Riccati Equation

The processes for obtaining the solutions of the state-dependent ARE and con-
stant ARE are the same. The only difference is whether or not the solution is
constant. The analytic representation of the closed-loop system for the constant
ARE is possible, even though it is solved by a numerical algorithm. Most studies
dealing with the constant ARE have used a numerical solution [15-17]. Among
the numerical methods for solving the ARE, Potter’s method is the most widely
used. Here, the Hamiltonian matrix corresponding to the ARE is constructed,
and its eigenvectors are computed numerically [15]. The Schur decomposition
method was proposed to improve the numerical stability |[16], and the matrix
sign function is also used to numerically solve the ARE [17].

Some studies have been done on the derivation of the analytic solution of
the ARE [18-29]. However, most of this research was confined to certain special
classes, even for two-dimensional systems [18-24]. In some studies, a process
was required to find special matrices satisfying another matrix quadratic equa-

tion, to analytically solve the ARE [25,26]. Ledyaev derived the mathematical



formulas of the algebraic and differential Riccati equations [27]. However, direct
application to the analytic representation of the closed-loop system is difficult,
because these solutions are expressed in terms of the matrix transfer functions
including the integral terms. Recently, a method to obtain the analytic so-
lution of the ARE for two-dimensional systems was introduced based on the
analytic representation of the matrix sign function by obtaining the principal
square root of the square of the Hamiltonian matrix |28|. Here, this method is
further developed to derive the analytic solution of the state-dependent ARE

component-wisely, without specifying a certain class of nonlinear systems [29].

1.2.3 Characteristics of the Tail-Fin Controlled Missile

The properties of the tail-fin controlled missile are well known, but in many
cases, a rigorous mathematical analysis has not been performed. One of the
well-known properties of the tail-fin controlled missile is a non-minimum phase
behavior. The concept of non-minimum phase was defined early on for linear
systems, and it is now well-established for nonlinear systems, based on the
stability of the internal dynamics [30]. Several studies have performed an anal-
ysis of the non-minimum phase of the tail-fin controlled missile, using specific
aerodynamic data [31] and singular perturbation theory in the normal opera-
tional range of the missile [32]. However, these studies were based on the zero-
acceleration subspace of the missile, rather than the normal form equations.
Additionally, the normal form equations of the missile longitudinal dynamics,
specifying the angle of attack as the output, were used to design the missile
acceleration autopilot [33].

For the tail-fin controlled missile system with unstable internal dynamics,



nonlinear inversion-based control schemes, such as feedback linearization and
sliding mode control, cannot be directly applied to the design of an acceler-
ation autopilot. Approximate input-output linearization (AIOL) has been fre-
quently used for circumventing the non-minimum phase behavior of the missile.
This method neglects the force induced by the fin deflection causing the non-
minimum phase behavior [31,32,3435]. Most studies using the AIOL method
for the design of a missile acceleration autopilot have assumed that the ap-
proximate model-based controller works well on the actual missile system. This
approach was validated using numerical simulation only [36]. In Ref. [37], the
boundedness of the tracking error on the actual system was proven, assuming

that the desired command and specific term are sufficiently small.

1.2.4 Missile Acceleration Autopilot

The traditional design of a missile acceleration autopilot is a three-loop struc-
ture [38]. The three-loop structure has been widely used for acceleration control
in linear-based autopilot design because of its robustness to disturbances, al-
though the control gains should be designed for each operating point [39-41]. To
deal with disturbances or modeling errors caused by the linearization, robust
control theory, such as Ho, control and p-synthesis, has been applied to the
design of a missile acceleration autopilot [42-44]. The gain-scheduling approach
is a widely used method for designing autopilots, based on the linear missile
model [45-47]. However, the gain-scheduling approach for a highly nonlinear
system requires time-consuming work, and the control performance cannot be
guaranteed for the entire flight envelope [4§].

In contrast, missile autopilot designs that take account of the nonlineari-



ties of missile dynamics have been proposed in Refs. [2-6,/49-54]. Several studies
have used the feedback linearization method, nonlinear control scheme based on
nonlinear dynamic inversion, to design a missile acceleration autopilot [49,50].
However, the feedback linearization method requires precise model information
to cancel out the nonlinearities of the missile system, and therefore, it might
not be robust to disturbances [55]. The backstepping control [51,52] and slid-
ing mode control [53,54], which are other nonlinear control schemes based on
nonlinear dynamic inversion, have also been applied to the design of a missile
acceleration autopilot. These methods allow for further development to increase
robustness, with respect to uncertainties and disturbances. The SDRE method
is one of the widely used techniques for designing a missile acceleration autopi-
lot [246]. Considering the capability of the SDRE method to directly handle
the unstable and/or non-minimum phase systems, it is a suitable approach for

designing the autopilot of the tail-fin controlled missile [56].



1.3 Contributions

The main contributions of this study are summarized as follows.

Mathematical Analysis of the Tail-Fin Controlled Missile Dynamics

In this study, rigorous mathematical analyses of the properties of missile lon-
gitudinal dynamics are given. First, the non-minimum phase behavior of the
tail-fin controlled missile is analyzed, based on the normal form equations with
acceleration output. Although Ref. [33] proposed a valid transformation to the
normal form equations of the missile, the angle of attack was specified as the out-
put rather than the normal acceleration. Also, the analysis of the non-minimum
phase behavior of the tail-fin controlled missile was performed based on the zero-
acceleration subspace, without transforming into the normal form equations in
Refs. [31}/32]. In this study, the non-minimum phase analysis is based on the
internal dynamics, which is directly obtained from the normal form equations of
the missile. Second, the behavior of the actual system controlled by the ATOL-
based autopilot is analyzed. This result contains not only the boundedness of
the tracking error as proved in Ref. [37], but also the L,-stability of the ac-
tual system. This is commonly used for input-output stability, where the term

causing the non-minimum phase behavior is considered to be the external input.

Analytic Solution of the SDRE Method for Two-Dimensional Non-

linear Systems

To analytically present the closed-loop system controlled by the SDRE method-
based autopilot, the analytic solution of the state-dependent ARE is derived for

two-dimensional nonlinear systems. References [111/12] have suggested an ana-
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lytic solution of the state-dependent ARE for two-dimensional systems. How-
ever, some components of the SDC system and input matrices of the pseudo-
linear system in the SDRE method were set to zero, so that the process of
obtaining the analytic solution was greatly simplified. In this study, an analytic
solution of the SDRE method is proposed for general two-dimensional non-
linear systems, without any restriction on the matrix components included in
the pseudo-linear system. Whereas studies dealing with the derivation of the
analytic solution of the ARE are confined to certain restrictions on the sys-
tems [18-24], the method proposed here needs only conditions for the existence
of the positive definite stabilizing solution of the state-dependent ARE. The
analytic solution of the ARE proposed in Ref. [27] cannot be directly applied
to the analytic representation of the closed-loop system, because the analytic
solution is expressed as the matrix transfer functions, including the integral
terms. However, the method proposed in this study allows for the analytic rep-
resentation of the closed-loop system, because the obtained solution is expressed

component-wisely.

Asymptotic Stability of the Closed-Loop System Controlled by the
SDRE-Based Autopilot

In this study, the asymptotic stable region for the SDRE method-based au-
topilot is clearly quantified, based on the Lyapunov stability theorem. Existing
missile applications of the SDRE method have used online computation, which
depends on the local asymptotic stability around the origin [2-6]. The local
stability or lack of a well-quantified region of attraction prevents the SDRE

method from being used in practice, because the autopilot may not provide

11 :



good performance for arbitrary initial states. Here, asymptotic stability in the
predefined operational range of the missile is proven, using the analytic solution
of the state-dependent ARE. References [11,]12] have shown the global stability
of a closed-loop system controlled by the SDRE method, using very simplified
systems with strong assumptions. Therefore, the results are of limited use in
the design of the missile autopilot. In contrast, the analytical result proposed
in this study provides the theoretical basis and justifications for utilizing the

SDRE method practically, in the design of a missile autopilot.
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1.4 Dissertation Outline

This dissertation is organized as follows:

In Chapter [I], the background and motivation of this study are described,
and related research works are given. The objectives and contributions of the
study are presented.

In Chapter[2] six-degrees-of-freedom equations of the skid-to-turn maneuver
tail-fin controlled missile are derived, and the reduced models for the longitudi-
nal and lateral motions of the missile are presented. A brief description of the
SDRE method is given.

In Chapter [3] the analytical results of the missile longitudinal dynamics
are provided. The characteristics of the longitudinal dynamics of the tail-fin
controlled missile are analyzed including the coordinate transformation to the
normal form equations and non-minimum phase behavior. And the analytical
results of the closed-loop system behavior with the approximate model-based
controller are presented. Numerical example is provided to demonstrate the
findings of the mathematical analyses.

In Chapter[d] the analytic solution of the SDRE method for two-dimensional
systems is derived. The missile acceleration longitudinal autopilot is designed
based on the SDRE method, and the stability analysis of the closed-loop system
controlled by the designed autopilot is performed using the derived analytic so-
lution of the SDRE method. By providing the numerical example, the analytical
results of the SDRE method are verified.

In Chapter [5| the design procedure of the three-axes missile autopilot is
provided based on the proposed longitudinal autopilot and roll stabilizer. For

comparison, the SDRE method-based missile acceleration autopilot designed

13 -



for the full-order missile model is presented. Numerical simulation is performed
for two autopilot cases to demonstrate the control performance of the designed
autopilots.

In Chapter [6] concluding remarks and suggestions for further works are

presented.

14
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Chapter 2

System Model and State-Dependent
Riccati Equation Method

2.1 System Model

2.1.1 Six-Degrees-of-Freedom Equations

In this study, the following assumptions are considered for deriving six-degrees-

of-freedom equations of motions for the tail-fin controlled missile.
Assumption 2.1: The missile has symmetric, cruciform shape.

Assumption 2.2: The physical parameters of the missile including the mass,

moment of inertia, reference length, and area are fixed.

Assumption 2.3: External forces and moments caused by the aerodynamic
effects are considered, and the forces and moments caused by the gravity and

thrusters are neglected.

Under Assumptions 2.2 and 2.3, the six-degrees-of-freedom equations of the

missile with respect to the body-axes can be represented as follows [57],

mv +m(w x v)=F, (2.1)

I —w x Tw = M, (2.2)

15 -



where m and I are the mass and the moment of inertia matrix of the missile,
respectively, v = [u v w]T is the velocity vector, w = [p ¢ 7|7 is the angular
velocity vector, and F, = [Fx Fy Fz]T and M, = [L M N]' are the exter-
nal force and moment vectors caused by the aerodynamic effects, respectively.

Under Assumption 2.1, the moment of inertia matrix can be expressed as

follows,
I.. 0 0
I={ o0 1, O (2.3)
0 0 I,

where I, = I... Using the aerodynamic coefficients, the external forces are

expressed as

Fx =QSCx
Fy =QSCy (2.4)
Fz =QS5Cy

where () is the dynamic pressure, and S is the reference area. And Cx, Cy,
and Cz are the non-dimensionalized aerodynamic force coefficients which can

be expressed as the following nonlinear functions.

Cx = fCX (Ma h, Tem, o, B, 5r75pa5y)
Cy = ny (M, h, Zem, o, B, 6, 517’ 5@/) (2-5)
Cz = fo, (M, h,Zem, o, B, 61, 6, 0y)

where M is the Mach number, h is the altitude, x.y is the distance between

the missile’s nose and the center of mass, o and § are the angle of attack

and sideslip angle, respectively, d,, d,, and J, are the roll, pitch, and yaw fin
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deflections, respectively, and f;(-) denotes a nonlinear function. Likewise, the

external moments can be represented as follows,

D
L=Q5SD (C[ + QVCle>

D
M =QSD (cm + WCmqq> (2.6)

D

where D is the reference length, V is the total velocity, C;, C,,, and C,, are
the non-dimensionalized aerodynamic moment coefficients, and Cy,, Cp,,, and
Cy, are the non-dimensionalized aerodynamic damping coefficients. The non-
dimensionalized aerodynamic moment coefficients are expressed as the following

nonlinear functions.

C = sz (M, h, Tem, o, B8, O, 6p7 5y)
Cm = me (Mu h7ajcm7 O[,ﬁ, 5?“7 6]?’ 5y) (27)

Cp = fC’n (M7 h, Zem, o, B, 0, 5p7 6y)

Substituting Eqs. (2.3)), (2.4) and (2.6)) into Egs. (2.1) and ({2.2)), the six-degrees-
of-freedom equations of the tail-fin controlled missile can be obtained in scalar

form as follows:

Translational Equations

U=7rv—quw -+ @5Cx
m
0 =pw —ru-+ @5Cy (2.8)
m
w = qu — pv + @5C7
17
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Rotational Equations

. QSD D
b="T" Cr+ 2VCz,,p

L. — Iz QSD D
_ o+, 2.
I, pr + i Cy, + 2VC . (2.9)

. Lo — Iy, QSD D
r = pq + I C, + 2VC"TT

In addition, the dynamics of the angle of attack and sideslip angle can be
derived using the obtained six-degrees-of-freedom equations. The angle of attack

and sideslip angle are defined as follows,

o= tan_l

(2.10)

B =sin"?

<l< 2|

Using Eq. (2.10) and the total velocity, the components of the velocity vector

can be rewritten as

u =V cos acos 3
v="Vsing (2.11)

w =V sinacosf

Differentiating the total velocity with respect to time and substituting Eqgs. (2.8)
and (2.11) into the resulting equation yield

V= %(CX cosacos § + Cy sin B + Cyz sin v cos ) (2.12)

Differentiating Eq. (2.10) with respect to time and substituting Egs. (2.8)),
(2.11), and (2.12)) into the resulting equation, the following dynamics of the

18



angle of attack and sideslip angle can be obtained.

& =q— (pcosa+ rsina)tan g + (aycosa — agsin o)

1
Vcos (2.13)

B =psina —rcosa — V(axcosasinﬁ—aycosﬁ—i-azsinasinﬁ)

where a,, ay, and a, are X-, Y-, and Z-axes accelerations of the missile body,

respectively, which are defined as

QSCx
ay =
m
QSCy
ay =2 (2.14)
QSCz
a, =
m

2.1.2 Longitudinal and Lateral Motions of Equations

Based on the roll stabilization, the longitudinal and lateral motions of the mis-
sile can be presented separately neglecting the coupling effects between the
roll-pitch-yaw channels. Under Assumption 2.3 with a specified altitude, the
aerodynamic force and moment coefficients of the longitudinal motion can be
modeled using the small-perturbation theory and first-order Taylor expansion

as follows,

Cz =Cgz,(M,a)a + Czs,(M, a)dp
(2.15)

Cm = Cmo (M, a)a + Cpyy (M, )0y

where C(,)(M, «) represents the longitudinal aerodynamic coefficient expressed

as a function of the Mach number and the angle of attack. Substituting Eq. (2.15)
into Eqgs. (2.9), (2.13)), and (2.14)), the longitudinal motion of the missile can be

described based on the short-period approximation as follows [58],
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55 (C2eM.@)a+ Cz, (M, 0)5,) +g

QSD
Iyy
e 25 (02, (M, a)a + C,, (M, )5,

D
qg= (Cma(M, a)a + Cm, (M, a)d, + WC’mq (M, a)q) (2.16)

Figure [2.1] shows the longitudinal geometry of the tail-fin controlled missile,
where Xp and Zp denote X- and Z-axes of the missile body, and s and zp
are the distances from the missile’s nose to the center of pressures for the
missile’s tail-fin and body, respectively. Similarly, the aerodynamic force and

moment coefficients of the lateral motion are modeled as follows,

CY = CYB (M7 5)6 + CYzSy (M’ B)dy

Cn = ng(MaB)B + Cnéy (M’B)(sy

(2.17)

Figure 2.1 Tail-fin controlled missile geometry in the longitudinal motion
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where C()(M, 3) represents the lateral aerodynamic coefficient expressed as a

function of the Mach number and the sideslip angle. Substituting Eq. (2.17)) into
Egs. (2.9), (2.13)), and (2.14]), the lateral motion of the missile can be described

based on the short-period approximation as follows,

QS

B =3 (Cvs (M, B)8 + Cy; (M, B)d,) —r
;= Qfﬂ <Cn5(M,6)B + Cny, (M, )3, + ;;cm(M,B)r) (2.18)
S
a, = % (Cyﬂ(M, B)B + Cy;, (M,ﬁ)éy)

Remark 2.1: Because the missile has an axial symmetric shape with respect
to X-axis of the missile body under Assumption 2.1, the longitudinal and
lateral motions can be described in the same way based on the roll stabilization
as in Egs. and , respectively. Therefore, the design schemes and
analytical results for the longitudinal dynamics of the missile treated in this

study can also be applied to the lateral dynamics of the missile.
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2.2 State-Dependent Riccati Equation Method

This section introduces the traditional SDRE method-based controller design
process for multi-input multi-output nonlinear systems. Let us consider the

following autonomous input-affine nonlinear system.
&= f(z)+ g(x)u (2.19)

where z € R" is the state vector, u € R™ is the input vector, f(z) € R"
is the system vector, and g(z) € R™ ™ is the input matrix. Assuming that
f(0) =0 and g(x) # 0 for all z in a region of interest, the input-affine nonlinear
system, Eq. , can be transformed into a pseudo-linear system using the

SDC transformation as follows,
&= F(x)r + B(x)u (2.20)

where F(z) € R™"™ and B(z) € R™™ are the state-dependent system and
input matrices, respectively, satisfying F'(z)z = f(x) and B(z) = g(z).
Motivated by the LQR technique, which is the linear control design scheme
based on the optimal control theory, the SDRE method constructs the state-
dependent ARE for the pseudo-linear system, Eq. , considering the fol-

lowing quadratic cost function.

J = ;/000 (acTQ(m)x + uTR(as)u) dt (2.21)

where Q(z) € R™"™ and R(z) € R™*™ are weighting matrices. Note that the
SDRE method can directly handle the tradeoff between the state errors and

control efforts by adjusting the weighting matrices Q(x) and R(z) as in the
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LQR method. Based on the quadratic cost function in Eq. (2.21)), the state-

dependent ARE can be constructed as follows,
F(x)TX(2) + X(2)F(z) — X (2)B(z)R(z) 'B(z)T X (z) + Q(z) =0 (2.22)

where X (z) € R™"™ is the positive definite stabilizing solution of the state-
dependent ARE, which exists if the following conditions are satisfied on the

region of interest of x [59].

Condition 2.1: All state-dependent matrices of the pseudo-linear system are

continuous matrix-valued functions.

Condition 2.2: The weighting matrices are continuous matrix-valued functions

satisfying Q(z) = Q(x)” > 0 and R(x) = R(x)T > 0.

Condition 2.3: The pairs (F(z), B(z)) and (F(z),Q(z)) are point-wise con-

trollable and observable, respectively, where Q(x) = Q(z)Q(x)T.

The full-state feedback control input of the SDRE method including the solution

of the state-dependent ARE is obtained as follows,
u=—R(z)'B(z)" X (2)x (2.23)

Substituting Eq. (2.23]) into Eq. (2.20)), the closed-loop system controlled by
the SDRE method can be expressed as

i = F(z)z — B(z)R(z) ' B(2)T X (z)z
= (F(z) - B(x)R(z)"' B(z)" X (2))z

= A (x)x (2.24)

where A.(z) € R™" is the closed-loop system matrix.
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Remark 2.2: Because it is very difficult to obtain the analytic solution of
the state-dependent ARE, Eq. , it is usually solved at each step using a
numerical algorithm, which is referred as the online computation of the SDRE
method. Therefore, the closed-loop system controlled by the SDRE method,
which is presented in Eq. , cannot be represented analytically, and it is

very hard to perform deep theoretical investigations for the SDRE method.
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Chapter 3

Analysis of Missile Longitudinal
Dynamics

3.1 Problem Statement

In this chapter, the missile longitudinal dynamics is analyzed using the equa-
tion derived in the previous chapter. The primary objectives of the analysis are
twofold; the first is to provide rigorous analyses of the characteristics of the
tail-fin controlled missile including the coordinate transformation to the nor-
mal form equations and non-minimum phase behavior. The second objective is
to further analyze the existing results of the linearization-oriented modeling-
based AIOL, which is frequently used method to deal with the non-minimum
phase behavior of the tail-fin controlled missile. The analysis starts from the
missile longitudinal dynamics, Eq. , with following second-order actuator

dynamics of the pitch fin deflection.
Op + 2Cwndp + w2, = W25, (3.1)

where ¢ and w,, are the damping ratio and the natural frequency of the actuator,
respectively, and ¢, is the command of the pitch fin deflection. Using Egs. (2.16))

and (33.1]), the missile longitudinal dynamics including the second-order actuator
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dynamics can be represented as the following input-affine form.

&= f(z) +g(x)u

y = h(x)

(3.2)

where = = [z1 22 23 24]T = [ ¢ 6, 6p]7, y = a, u = 5, and

_ fi(z) ] | €8 (CZO(M,x) +Cz, (M,x)xg) s )
for— | PO | _ D ((Cyy (M ) + Cog, (M, )3 + - Co, (ML, )22
f3(x) -

L f4(.73) _ L —w%l'g — 2Cwngp4 |

CT T
g9(z) 0 0 h(z) QS (C (M, z) + Cyz, (M, )z )

- - ’ - Zo ’ Zs ) 3
0 0 m P
L g1(z) ] i w% |

with Cz,(M,z) = Cz, (M, z)x; and Cpy(M,z) = Cp,, (M, x)z;. Note that
Cz,(M,0) = Cpy(M,0) = 0. The analysis is performed on a following region

of interest which is set to consider the normal operational range of the missile.

4}

where c;;, 7 =1,--- ,4, is a positive constant. Within the region of interest, the

Q:{x€R4||xi]§cxi,i:1,--~ (3.3)

following assumptions are applied.
Assumption 3.1: The total velocity is fixed.

Assumption 3.2: The center of pressure for the missile’s tail-fin is located

further from the missile’s nose than the center of pressure for the missile body,

i.e., Tep < o in Fig.
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Assumption 3.3: The aerodynamic coefficients Cz; (M, ) and Cp,s, (M, a)
are non-zero and the partial derivative of Cz, (M, a) with respect to the angle

of attack is negative for any fixed M > 0.

Assumption 3.4: All aerodynamic coefficients are C*, k > 2, functions of the

angle of attack for any fixed M > 0.

Remark 3.1: The origin of the unforced case in Eq. (3.2)), i.e., # = f(x), is
an equilibrium point. In addition, all aerodynamic coefficients of the missile

longitudinal dynamics only depend on x; under Assumption 3.1.
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3.2 Analysis Results of Missile Longitudinal Dynam-

ics

This section includes the main analysis of the longitudinal dynamics for the
characteristics of the tail-fin controlled missile and the behavior of the actual
system with the ATOL-based controller. All analyses are based on the noninear

control theory [30,60].

3.2.1 Characteristics of the Tail-Fin Controlled Missile

Theorem 3.1: For the missile longitudinal dynamics with the acceleration
output presented in Eq. (3.2), there exists a valid coordinate transformation to

the normal form equations on (2.

Proof of Theorem 3.1: Using Lie derivatives, the time derivative of the system

output can be written as follows,

dh

= = = Lyh(x) + Loh(x)u (3.4)

Y
where Lh(x) and Lgh(x) can be calculated based on Eq. (3.2)) as

oh oh
Lih(z) = Tmfl(ﬂﬁ) + aimgfs(ﬂf) 35)
Loh(z) =0

Taking the time derivative of Eq. (3.4) yields
ij = L3h(x) + LoLh(x)u (3.6)
where L£,L¢h(x) can be obtained as

LoLihia) = Ly, () (3.7)
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Since LyLh(x) is non-zero under Assumption 3.3, the relative degree of the
missile longitudinal dynamics is well-defined as 2 on 2. Now, let us consider a

following nonlinear mapping.

T T
(b(x):[h(l‘) Lyh(z) 71 162} :[51 & m 2 (3.8)

where [|®(0)|| = 0, and the Jacobian matrix of ®(x) can be obtained as

0D
ox

Oh

Oh

oo O G O
OLsh  OLfh  OLyh  OLsh
ox1 Oxo Ox3 Oxy
1 0 0 0
0 1 0 0

(3.9)

Then, the determinant of Eq. (3.9) can be calculated using Eqs. (3.2)) and ([3.5)

as

(3.10)

0]  0h 0Lk (QS ?
Det [ax] = Ous Ows <m026p(“51>>

Note from Eq. (3.10) that the Jacobian matrix of ®(z) is nonsingular under

Assumption 3.3. The inverse transformation of ®(z) is given by

1 ="M
T2 =12
1 m
=— | —=-C 3.11
T Oy, () (QS51 Z“"”) 1
1 m 1 0Cz,
= ek (& +
T Cayy (m) [QS& <v§1 ”2>{am
8C2Qp 1

om Cz, (m) (63?951 - CZO(m)> }]
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The nonlinear mapping ®(x) can transform the missile longitudinal dynamics

presented in Eq. (3.2) into the following equations in the normal form.
G =6

52 = CL(&, 77) + b(f, 77)“
(3.12)

1 =q(&n)
y==~&
where &€ = [€] &]7 is the external state vector, n = [; n2]” is the internal state

vector, and

S
a(em) =22

m

aQCZO 32025p _ QS [0Cy, 8CZ6P 2
{< o o fl(g’””mV(@vn " om ‘””3>

+2

Cyz, _ _
ﬁmp fs(ﬁ,n)}fl(&n) + Cz;, (m) fa(&;m)

9Cz,  9Cz ; S z
(G2 + S5 <fz(£,n)+gb‘/czap(m)fs(&n))]
e ) = LuiCz, ()
B B T
a&m=1[ fen Rien ]

Filem) = 6+

- S

fa(&,m) = QI = (Cmo (1) + Cimg, (m)z3 + %Cmq (m)w)
vy

. B 1 9Cz, 00z, \ - m

f4(§7 77) = wq%x3 - QCwnf_Z}(g? 77)
Note that x3 in Eq. (3.12)) can be expressed as the function of the transformed

variables & and 7; using Eq. (3.11), and a(§,n), b(&,n), and ¢(&,n) are well-

defined under Assumptions 3.3 and 3.4. Therefore, the nonlinear equations

in the normal form presented in Eq. (3.12) are valid on . U
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Corollary 3.1: The missile longitudinal dynamics with the acceleration output

presented in Eq. (3.2) is non-minimum phase on €.

Proof of Corollary 3.1: The zero dynamics of the nonlinear equations in the
normal form presented in Eq. (3.12]) can be obtained by substituting & = £ =0

into q(§,n) as follows,

m =n2
3.13)
. QSD Cz(m)Crms, (M) D (
= Cmo(m) = P+ = Cp
72 Iyy < 0 (771) CZ(;p (,,71) 2V q (771)772

Now, let us find the equilibrium points of the zero dynamics on 2. Substituting
1 = n2 = 0 into Eq. (3.13)) yields 2 = 0 and

Czo (1) Crms
Cmo (771) - z ((";'7;21) (7711)7 (nl) =0 (314)

Note that the following relationship between the force and moment aerodynamic

coefficients is considered based on the missile geometry in the longitudinal mo-

tion [38].
Lep — Tem
Cmy(m) = Cz, (m)pT
. . (3.15)
cf 7 Lem
Cims, (M) = Oz, (M) —F—
Substituting Eq. (3.15]) into Eq. (3.14) yields
(me - $cm)CZo (771)025,, (m) = (wer — xcm)CZo (771)025p (m) (3.16)

Equation (3.16|) implies that zc, = z¢ or 71 = 0 under Assumption 3.3.
Because the former contradicts Assumption 3.2, the origin of the zero dy-

namics is the only equilibrium point on 2. To analyze the behavior of the zero

dynamics near the origin, substituting Eq. (3.15) into Eq. (3.13) simplifies the
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n2-dynamics as follows,

. QSD Lep — Lef D
= B2 {Cam) (255) + g Colmim) )

Using Eqgs. (3.13) and (3.17]), the Jacobian matrix for the zero dynamics near

the origin can be obtained as

0 1
= (3.18)

QSD 9Cz, Tep—Tof QSDZC (0)
(m1,m2)=(0,0) Ly "0 |, g D 20,V ~ Mg

9q(0,7)
on

The characteristic polynomial of the Jacobian matrix can be obtained as follows,

(“;“) =0 (3.19)

where A\ denotes the eigenvalue of the Jacobian matrix. The characteristic poly-

 QSD?  QSDdCy,

22 -
21,V .(0) I, Om

1=0

nomial has positive and negative roots, respectively, because the last term on the
left side of Eq. is negative under Assumptions 3.2 and 3.3, which im-
plies that the origin of the zero dynamics is an unstable saddle point. Therefore,
the zero dynamics cannot have any asymptotically stable equilibrium points on
), and finally it can be concluded that the missile longitudinal dynamics with

the acceleration output is non-minimum phase on 2. U

Theorem 3.2: The force induced by the tail-fin deflection, i.e., Cz, (x1)xs
in Eq. (3.2), causes non-minimum phase behavior in the missile longitudinal

dynamics on §2.

Proof of Theorem 3.2: The longitudinal dynamics presented in Eq. (3.2)

with Czép (1) = 0 is defined as an approximate model. For this model, Lie
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derivatives in Theorem 3.1 are rewritten as Lzh(z) = Egﬁfﬁ(x) =0 and

oh

Lih(z) = —— fi(x)
! Oy - (3.20)
2501 Gﬁfh - 8£fh _

Ef (ﬂ? - axl fl (:Z:) + ax2 fQ(x)

where the tilde denotes a function of the approximate model. The time deriva-

tive of Eq. (3.6 for the approximate model can be obtained as follows,
y® = L3h(2) + LL30(x)u (3.21)

where the superscripted (k), k > 3, denotes the k-th time derivative, and the

Lie derivatives can be presented as

- OLZh. OLZh OLZh
L3h(x) = x)+ z)+ x
Egﬁf;ﬁ(ﬂs) =0
Taking the time derivative of Eq. (3.21)) yields
y W = Lih(z) + LL30(x)u (3.23)
where Lgﬁi’gﬁ(:c) can be calculated as follows,
OL3h 2
() = ey = (@9)7 D 0C, 2
L5 = 5 L@ = C DR, et (21)

Note that Eq. (3.24]) is non-zero under Assumption 3.3, which implies that
the relative degree of the approximate model is well-defined as 4 on 2. Let us

consider the following mapping for the approximate model.

T
®(z) = | h(x) Lih(x) L}h(:g) Ei’;ﬁ(m)} (3.25)
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The Jacobian matrix of Eq. (3.25)) can be written as
oo 00

8£fh Bﬁfh

dd dz1 Oxa 0 0
—_— = - - - (3.26)
dz OL2h  OL2h  OL2h
f f f 0
o1 Oz Oxs

37 37 37 37
aﬁfh Bﬁfh 8th Bﬁfh
ox1 Oxao Oxs3 Oxy

Using Egs. (3.22) and (3.24), the determinant of the Jacobian matrix can be

calculated as follows,

~ ~ = 27 9,37
dx 0x1 Oxre Ox3 Ox4
_ (QSdCz\* (QSD 2
__( o 5 ) (5 Gy o) (3.27)

Note from Eq. (3.27) that the Jacobian matrix of ®(z) is nonsingular under As-
sumption 3.3. Using the mapping i)(ac), the approximate model is transformed

into the following equations in the normal form on €.

éi = éé
éé = éé
&= (3.28)

* _ 47 37

&= th(ac) + L'gﬁfh(x)u

y=%&
The nonlinear equations in the normal form for the approximate model are valid
and minimum phase on 2, because there are no (unstable) internal dynamics. It

means that the force induced by the tail-fin deflection causes the non-minimum

phase behavior in the missile longitudinal dynamics on 2. U
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3.2.2 System Behavior with Approximate Model-Based Con-

troller

In this section, the following approximate model-based controller is considered,

which deals with the unstable internal dynamics of the tail-fin controlled missile.

N S TR
ut = .cgﬁi}ﬁ(x)< 4k )) (3.29)

where v* is the control input designed for linear systems. In this study, the

following linear controller is considered.

4
o =a® = >k (& - alV) (3.30)
=1

where a,, is the acceleration command, and k; is the control gain which is set
to be positive constant. The reminder of this section shows the analysis for
the behavior of the actual system controlled by the approximate model-based

control input.

Theorem 3.3: Considering C'z; (x1) to be the external input, the actual missile
system with the approximate model-based controller is finite-gain £, stable for

each p € [1,00] on Q if Oy, (x1) is C*, k > 4, function of 1.

Proof of Theorem 3.3: The approximate model-based mapping i)(x) trans-

forms the actual missile system into the following nonlinear system.

€ = Lih(x) + Loh(x)u
éfg = ﬁfﬁfil(l’) + Egﬁfﬁ(x)u (3‘31)
€ = LrLEM(x) + LoL3A(z)u

54 = ﬁfﬁ?;ib(l’) + Egﬁ?}h(m)u
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Considering §(z) is equal to g(x), Lyh(z), Egﬁfﬁ(:n), and £g£?fz(x) are zero,
and Lyh(z), Efﬁfib(.’l?), Efﬁfgfb(x), and Efﬁi’;fz(m) can be rewritten on () as
follows,

QS oh
mV 9z,
QS &L‘fﬁ
mV 0xq

Qs OL%h

mV Bac
37

37(x) = L4 i
LeLih(a) = Lih(x) + 22t

Lyh(z) = Lih(x) + Cz,, (1)x3

ﬁfﬁfﬁ(fn) = L’?;B(x) + Czs, (x1)3

(3.32)

ﬁfﬁfgﬁ(l‘) = ﬁfch( x) + Czs, (x1)x3

Czs, (21)23

Applying Eq. (3.32) to Eq. (3.31) yields

(3.33)

Qsaﬁh

Ly hiZed
Sa= L) 0V o

CZ(sp (z1)x3 + Egﬁj’;ﬁ(x)u

Let us define the acceleration error of the actual missile system and the error

vector of the approximate model as

e=a, —a,

c

(3.34)

€ [él €y €3 €4 }T
[51 & & 54}T*{azc Az, Az, ag?c))]T

Substituting the AIOL-based controller presented in Eq. (3.29)) into Eq. (3.33)),
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the error dynamics can be obtained as

. S .
&= Ae+ %Vzb(x)ngZEp (11) = £.(6, Cz, (21)) (3.35)
where
- - - 1 [ en ]
0 1 0 0 ¢1(m) Oz
0o 0 1 0 ba() i
- 2(T “Ox1
A= , Y(x) = = aﬁ%lﬁ
o 0 0 1 Y3() i,
1
~ky —ky —ks —ka Ya() OLGh
- - - - L Oz1

Note from Eq. (3.35) that the origin of the error dynamics of the approximate
model is exponentially stable for the unforced case regarding C'Zép (z1) as the

external input, i.e., é = Aé. The components of 1(z) can be calculated using

Eqgs. and ( as follows,

éiz _asacy,

dr1  m Oxy
aﬁfh — % 62CZOf ( ) QS aOZO ?

8561 m V 8.’E1
OLIh Qs 920y, 0Cyz, (1 0L o], 025 fh
faolz) + = + 2= fl( )

ox1 m 8;1:1 Oox1 \'V 0z 0x1
L3R 3 2 oL ~71

7 QS 0°Cyg, 0°Cyz, 10k 8f2

ox1 8351 fl( )f( )+ 6x% V 0x 83:1 fl( ) (3.36)

0Cyz, [ 0f2 QSD? 2 agﬁfﬁ 9

T o {8561 o1, v Cme @)\ v g fi(@)
0fs OLFh QS 0Cy, OLHh 335 h OL3h
87:1;1 o0x1 mV O0x1 0Ox1 fl( ) 8:1:183:2f2( 7)

(QS)2D (0%Cy, aczo 8Cmap ;
+ 81‘1 Cm‘; (1) + oxr1 Ox1 3(2)

Iyy
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where

dfs  QSD <acm0 N ICms, D 9Cp, )
9l _ ,

83:1 Iyy 8951 81‘1 x3+ﬁ 81‘1 v
2fs  QSD [ 92Cp, . 820m5,,x D PCmy
0z~ I, \ 0a? ox2 P av 922 P

82/:]% _ % (83CZ0 -

2
e fl(a:)+3QS 0Cz, 0 CZO>
Ty

&T% m mV Oz Bx%

2,27,
O"Lh — (QS)* [ D? aQCZOC (71) + 0Cz, 0Cm, \ , 1 9Cz,8°Cy,
0x10x9 mV | 21y, ax% T Or1 Oz m 0x1 (9:15%
QS 3Cy, - 0°L h
o oz3 ! w ox3
FLih _ Q5 [9'C i)+ 95 15 (2Ca 2 4900 0Cs
Gacil” m 8:6‘11 mV 81:% ory 8x?

Note that t(z) is well-defined and bounded on Q if Cy,(x1) is C*, k > 4,
function of 21, because fi(z), f2(z), and f3(z) are bounded on Q. Consequently,

the following inequality can be obtained based on the bounded property of ¢ (x).

1706, Cyy (20)) ~ Fol&.0) = 22 s (a)esCz (0]

QS
< e Oz, (21))] (3.37)

where ¢, is a positive constant. The origin of the error dynamics of the ap-
proximate model for unforced case is exponentially stable, and therefore there
exists a C! function V(&) that satisfies the following inequalities based on the

converse Lyapunov theorem [60].

cillel* < V(e) < eale)®

ov N
160 < —cslel? (3.38)
g P
oe || = e
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where ¢; for i = 1, -- |4 are positive constants. Applying Eq. (3.38) to the time

derivative of V (€), the following relation can be obtained.

dV a~ fe( 0) + %V (fe(e CZ(; (z1)) — fe(e, 0))

dt
. S .
< —esllll + ex e |E1Cz, 1)
3 QS V(é)
S —gV(e) + C4m7VCwa3 T’CZ&Z’ (.’L'l)‘ (339)

Defining W (t) as \/V(é(t)), the upper Dini derivative of W (t) satisfies the
following inequality for all V'(€) > 0 based on Eq. (3.39)).

+ 2\/» Q“S/chcm‘czé (x1)] (3.40)

where DT denotes the upper Dini derivative. As a result, the following inequality

can be obtained by the comparison lemma.

= B S cg QS b t—7
W(r) < e HW0) + e, / ey (wa(r)ldr (341)

Considering Eq. (3.41) and \/e1|é(t)|| < W(t) < \/]|é(t)|| given in Eq. (3.38),

the error vector of the approximate model satisfies the following equation.

- Co —Bg. .
le®)ll < /e ="[le(0)]
1

t c
L 95 / 23| 0y, (o(7))ldr (3.42)
0

The magnitude of actual acceleration error satisfies the following inequality.

- S
o = [0+ Laacz, (20) -

.. QS
e + Hx?)CZ(;p (xl)

< Jell + Dey Oz (1) (3.43)
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Substituting Eq. (3.42)) into Eq. (3.43) yields
ca QS
le(t)] < \/Cle %5"|e(0)]] + ~ o Caal Oz, (21(1))]

o even, | e BOTNCg, il (344

The p-norm of truncation of the first term on the right side in Eq. (3.44)) satisfies

the following inequality.

3= wo],

where the subsrcipt 7 denotes the truncation of the function, and

_ Jeo .
< py /- llEO)] (3.45)
Ly 1

~ 1 if p=oo
p= 2co p :
<@) if pe|l,00)

Likewise, the p-norms of truncation of other terms on the right side in Eq. (3.44)

satisfy the following equations.

QS QS
H|: ng|CZ(5 ($1)|:|T ‘) < WCmg |:CZ(5p (131)}7‘ c
074@ ' — g (t—T)
H[ch mvc¢cx3/0 e %2 C,, (x1(7))|dT e (3.46)
cacy QS
= ey my {Czdp(xl)}r £

Based on Egs. (3.45)), (3.46)), and the triangle inequality, the p-norm of trunca-

tion of the acceleration error satisfies the following inequality.

S
ek, < Lo, (14225 |[Ca (o) |, + /21601 @)

Equation (3.47) implies that the actual system controlled by the AIOL-based

control input is finite-gain £, stable on €2 for each p € [1,00] and Cy, (1)
included in the extended £, space considering Cz, (x1) to be the external

input. U

40



Corollary 3.2: The approximate model-based controller presented in Eq. (3.29)

perfectly regulates the output of the actual missile system for a sufficiently small

Czs, (1)

Proof of Corollary 3.2: For the zero acceleration command, Eq. (3.35) can

be rewritten as

€= A6+ 224 (w)nsCz, (1) (3.45)

where £ = [& & &3 &]7. Based on Egs. (3.20), (3.22), (3.25), and (3.26), it

can be seen that |®(x)|| = 0 if and only if ||z|| = 0 under Assumption 3.3.
Consequently, since the mapping &)(x) is bounded on 2, there exists a positive

constant ¢, satisfying the following inequality except for ||z|| = 0.

L_ @)l _ LEl (3.49)

Using Eq. 1’ and the bounded properties of 1(z) and CZ(;p (z1) on Q, the

following can be obtained.

(2)23C, (1)

&

QS QS =
v < 2 < = .

where ¢, is a positive constant such that |Cz; (1) < ¢5,. Equation (3.48)
with CZap = 0 still holds the inequailities presented in Eq. 1} based on the

converse Lyapunov theorem. Therefore, the time derivative of V(€) satisfies the

following inequality considering Eqs. (3.38) and (3.50)).

dv =5 OV || QS
T < ol + | 2] | vweca, @)
S -
<~ (a— e e ) 161 (351)
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Equation (3.51]) implies that the origin of Eq. (3.48]) is asymptotically stable if

the following condition holds.

QS
c3 — C4m—vc¢05pca, >0 (3.52)

The magnitude of the acceleration error also satisfies the following inequality.
;o @S s, QS QS :
jax] = [& + 20z (er)as| < il + e, ol < (1+ Ees,ea ) €] (353)

Note from Eq. (3.53) that the actual acceleration converges to zero as t — oo

for the small CZ(;p (z1) satisfying the condition presented in Eq. 1' O

Remark 3.2: If the approximate model-based controller is designed neglecting
the actuator dynamics based on the singular perturbation theory, Theorem
3.3 and Corollary 3.2 hold true without the condition that Cgz, (1) is C*,
k > 4, function of x1. The reason is that all functions required for the proofs
associated with the missile system neglecting the actuator dynamics are well-

defined and bounded under Assumption 3.4.
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3.3 Numerical Example

In this section, numerical example is presented to illustrate the analysis for the
missile longitudinal dynamics using the hypothetical aerodynamic data and
physical parameters of the missile. The physical parameters are summarized in
Table. The following aerodynamic models at a specified altitude of 6,096 m

and Mach number of 2 are used [45].

Cz(a) = Czy(a) + Cz; 6p = an@® + bpa + cpdy (354

D
Cm(a) = Cpyy(a) + C’mép Op + Wcmqq = apa® 4 bpa + cmOp + dmg

where the numerical values of the aerodynamic coefficients are summarized in
Table [3.:2] Note that Assumptions 3.3 and 3.4 are satisfied for the consid-
ered hypothetical aerodynamic models. The constants for the region of interest

presented in Eq. (3.3) are set as

Coy = % rad, ¢z, =2mrad/s, ¢z = % rad, ¢z, = 67 rad/s (3.55)

Numerical simulation is performed for the missile longtudinal dynamics con-
trolled by the approximate model-based controller presented in Eq. (3.29) with

following control gains.
k1 =25x100, ky=24x10% ky=1.5x10% ky=100 (3.56)

To demonstrate the effects of C'z; (1) on the actual missile system, Cz; (1)
is replaced with eCZ(;p (x1), for € = 0,1,2,3, in the simulation. Note that the
case of € = 0 shows the behavior of the approximate model controlled by the
approximate model-based controller. The parameters of the actuator dynamics

are set as w, = 15 Hz and ¢ = 0.8, and all the initial conditions are set to zero.
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Table 3.1 Physical parameters of the missile

Symbol Name Value
m Mass 204.023 kg
I, | Moment of Inertia | 247.429 kg - m?
S Reference Area 0.041 m?
D Reference Length 0.229 m
a Speed of Sound 316.032 m/s
p Density of Air 0.653 kg/m?

Table 3.2 Numerical values of aerodynamic coeflicients

Normal Force | Pitch Moment
an = —39.571 | a,, = —81.189
b, = —12.956 | b, = —4.871
cp, =—1.948 | ¢,, = —11.803
dm = —1.719
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Figures and show the simulation results, where the dash line rep-
resents the acceleration command signal, the solid line without marker repre-
sents the responses for the case of ¢ = 0, and the solid lines with the triangle,
square, and circle markers represent the responses for the cases of € = 1,2, 3,
respectively. Figure [3.1] shows the time responses of the acceleration output for
the cases of € = 0,1,2,3. For the desired non-zero acceleration command, the
larger tracking errors and effects of the undershoot are shown for the larger ¢
values. Furthermore, all responses have zero steady-state errors for the desired
zero command. These results are consistent with the analyses of Theorem 3.3
and Corollary 3.2. For the case of € = 0, no undershoot phenomenon appears,
which implies that the force induced by the fin deflection, non-zero € case, causes
the non-minimum phase behavior shown in Theorem 3.2. Figure [3.2] shows
the time responses of the state variables including the angle of attack, pitch
rate, pitch fin delflection, and its time derivative for the cases of € = 0,1, 2, 3.
These results show that all responses for each € of state variables are nearly

identical and within the region of interest, which is set as in Eq. (3.55).
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Figure 3.1 Time responses of the pitch acceleration for e = 0,1,2,3
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Figure 3.2 Time responses of the state variables for e = 0,1,2,3
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Chapter 4

Analysis of State-Dependent Riccati
Equation Method for Missile
Longitudinal Autopilot

4.1 Problem Statement

In this chapter, the analysis of the SDRE method is performed for the missile
longitudinal autopilot. First, the analytic solution of the state-dependent ARE
is obtained. Note that the state-dependent ARE is usually solved at each step
using the numerical algorithm due to the difficulty of obtaining the analytic so-
lution. The properties of the analytic solution including the nonsingularity and
symmetry of matrices are also shown. Second, the missile acceleration autopi-
lot for the longitudinal dynamics is designed based on the SDRE method. The
analytic representation of the closed-loop system is obtained using the analytic
solution of the state-dependent ARE. Finally, the stability of the missile longi-
tudinal closed-loop system controlled by the SDRE method is analyzed based
on the Lyapunov stability theorem using the analytic solution of the SDRE

method.
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4.2 Analytic Solution of State-Dependent Riccati Equa-

tion

This section presents the analytic solution of the following two-dimensional

state-dependent ARE.
F(x)"X(2) + X (2)F(z) — X (2)G(2)X (z) + H(z) =0 (4.1)

where F(z), G(z), H(z), and X (x) € R?*? are the state-dependent matrices.
Note that the state-dependent matrices G(z) and H(x) match the matrices
B(x)R(z)"'B(x)" and Q(z) in Eq. , respectively. To obtain the positive
definite stabilizing solution X (), it is assumed that Conditions 2.1-2.3 are
satisfied for the state-dependent matrices in Eq. . The components of the

state-dependent matrices F'(z), G(z), and H(x) are defined as

Fla) = fi fo Gl = g1 92  H() = hi  ha (4.2)

3 fa g2 93 ho hs

where the dependence of x is omitted for notational convenience.

Remark 4.1: Equation shows that there is no restriction on the com-
ponents of the state-dependent matrices included in Eq. except for Con-
ditions 2.1-2.3, which are necessary for the existence of the positive definite
stabilizing solution. In contrast, the existing works which obtain the analytic
solution of the SDRE method impose restrictions on the components of the
state-dependent matrices. For example, fi, f3, g1, and go are zero in Ref. [11],

and f1, g1, and g3 are zero in Ref. [12] under Conditions 2.1-2.3.
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4.2.1 Process of Obtaining Analytic Solution

This section presents the process of obtaining the analytic solution of the state-

dependent ARE using the matrix sign function with the following lemma [61].

Lemma 4.1: The solution of the ARE can be obtained as X = Wy, Wﬁl, where
Wia, Wao € R2%2 are block matrices of the following matrix.
1 _ Wi Wi
W = 3 {sign[M] — I} = (4.3)
where sign[-] denotes a matrix sign function, M is the Hamiltonian matrix that

corresponds to the ARE, and Iy is a 4 x 4 identity matrix.

The proof of Lemma 4.1 can be found in Ref. [61]. Note that Lemma 4.1 is
generally used to solve the ARE numerically. However, in this study, Lemma
4.1 is used to obtain the analytic solution of the state-dependent ARE by
representing the matrix sign function of the Hamiltonian matrix. Assuming
that Re[A[M]] # 0, the following definition of the matrix sign function via the

principal matrix square root is used [62].
sign(M) = M~ (\/ M2) (4.4)

where \[-] denotes the eigenvalue of matrix, and Re[:] denotes the real part.

The principal square root of M2, which is denoted as V' M2, is defined as [63]
—\ 2 _ =
(\/MQ) — M2 and Re [Ak (\/M2>} >0 forallk (4.5)

For the state-dependent ARE presented in Eq. (4.1)), the state-dependent Hamil-

tonian matrix is constructed as follows,

_ F(x —G(x
M(zx) = (@) (@) (4.6)
—H(z) —F(z)"
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Considering the property of the Hamiltonian matrix, if A is the eigenvalue
of M(z), then —\, A, and —\ are also eigenvalues of M (z). Therefore, the
eigenvalues of M () can be expressed for the real eigenvalue case (Case 1) and

for the complex eigenvalue case (Case 2) as follows [64],

_ a,—a, b,—b (Case 1)
A[M(z)] = (4.7)
a+bi,—a+bi, a—bi,—a—bi (Case 2)

where a,b € RT. Because the Hamiltonian matrix has no eigenvalue on the
imaginary axis under Condition 2.3, a and b are non-zero. The square of

M (x) can be written as

P G 0 m

_ g2 p2 -r O
M(z)? = (4.8)
0 —r P11 @

ro 0 qQ P2

where

1= fi+ fafs + g1k + g2ho,  pa= fi+ fafs + g2ha + g3hs
q = fife+ fofs+g1ho + g2hs, g2 = fif3+ f3fs + g2h1 + g3he

r1 = fagr + fag2 — fr92 — fag3, T2 = foha + faho — fiho — f3hs
The characteristic polynomial of M () can be obtained as follows,
A (@)]* = (pr + p2)AM (2)]* + Ay = 0 (4.9)

where A j; is the determinant of M (z). Note that the characteristic polynomial
of a real Hamiltonian matrix is even [64], which is consistent with Eq. (4.9).
The determinant of M (z) can be written using Eq. (4.8)) as

Ajr =pip2 — q1q2 — 1172 (4.10)
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Since the determinant of matrix is equal to the product of its eigenvalues, the
determinant of M (z) can be rewritten for each case as
a’b? (Case 1)
Ay = , (4.11)
(a? +b%)" (Case 2)
Note from Eq. (4.11)) that A; is positive for any a, b € R*. Consequently, the

following inverse matrix of M (z) is non-singular.

_ 1 m m m m
M(x)_le—M o T (4.12)

where

m1 = fift + figshs + fageho — fofsf1 — fagshe — fsg2hs
my = fif1+ figaha + fagihy — fifafs — fag2ha — fagiho
m3 = f3fs+ fagoha + fagihs — fifafs — frgohs — fagihs
my = fofi + fagshi + fsgaho — f1fafa — frgsha — fagaha
ms = gshs + 2f2f192 — f393 — fig1 — g1g3hs
me = g3h + 2f1fs92 — f1gs — f391 — g1g3M
mr = fi1fags + fafagr + g193ha — f1fag2 — fofsg2 — g3ho
mg = gshs + 2f3fahy — f5hs — fih1 — gshihs
mg = g1hi + 2f1 faho — fThs — f3h1 — g1hihs

mio = fifshs + fafahi + gahihs — fifiha — fafsha — goh3
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Lemma 4.2: The principal square root of M (x)? can be obtained as follows,

M (2)? = \}a (¥ + VAgL)
| 1+ Ay q 0 r1 ]
b q2 p2 + \/@ -1 0
-Vl 0 —T2 p1+ Ay 2
I 72 0 q p2 + \/@ |

(4.13)

where d = p1 + p2 + 21/Aj;.

Proof of Lemma 4.2: Using the property of the matrix trace, the following

relation can be obtained.
L2
p1+p2 = 5t [M(2)”] (4.14)
where tr[-] denotes the matrix trace. Based on Eq. (4.14), d in Eq. (4.13) can

be rewritten as

d= %tr [M(2)?] +2v/Ay (4.15)

The trace of M(x)? can be expressed using the eigenvalue of the Hamiltonian

matrix for each case as

_ 1 _ 2(a% +b%) (Case 1)
tr [M(2)?] =3 (M [M(2)])* = 4.16
M i=1 (e @D 4(a® — b%) (Case 2) 10

Substituting Eqgs. (4.11)) and (4.16]) into Eq. (4.15) yields

a? + b2 +2|ab] (Case 1)
d= (4.17)
4a® (Case 2)
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Equation (4.17)) shows that d is positive for any a, b € RT. Applying the Cayley-

Hamilton theorem to Eq. (4.9)), the following matrix equation can be obtained.
M(z)* = (p1 + po)M(2)?> + Agly =0 (4.18)
Substituting Eq. (4.18]) into the square of Eq. (4.13)) yields
2
- 1/ 2
( M(a:)2> == (M(a:)2 + \/AML;)
1/ _
= = (M(:v)4 + 2 /A M (z)? + AMI4)
1 _ _ _
== {1+ ) M@ + 2/ By M (2} = M) (419)

Equation (4.19)) shows that the square of Eq. (4.13) is equal to M (x)?, which is
consistent with the definition of the principal square root of matrix in Eq. (4.5)).

The eigenvalues of Eq. (4.13]) with even algebraic multiplicity can be expressed

as follows,

A { M@:)?] - 2\1@ <d = \/(p1 +p2)? - 4AM> (4.20)

Substituting Eqgs. (4.11)), (4.16)), and (4.17) into Eq. (4.20)), we have

1 (42 2 2 12
\ [ M(x)z] _ ) ava (a® + b* + 2[ab| £ |a* — b?|) (Case 1) (4.21)
% (a? + |abli) (Case 2)

From Eq. 1’ the real part of the eigenvalues of y/M (x)? can be obtained

as follows,
a’+|ab| or b2+|ab| Case 1
Re [A [ M(x)i’H = Vd vi ) (4.22)
%a? (Case 2)

Equation 1| implies that all the real parts of the eigenvalues of \/M (z)? are
positive for any a, b € RT. Therefore, based on Eq. (4.5, it can be concluded
that Eq. (4.13) is the principal square root of M (z)2. O
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Using Eqs. (4.12)), (4.13)), and the relation M (x)~'M(z)? = M(z), Wia(z)
and Was(z) in Eq. (4.3)) can be obtained as follows,

1 w1 w2
Wig(z) = ———
2¢/dA wy w3
_ _ (4.23)
1 Wq W5
Wao(x) = ————
2\/dAy; | we wr |

where

wi =ms — g1/ Dy, w2 =my— g/ Ay, w3z =me — g3/ Ay
w4:m1+<f1+\/g>\/AM, w5:m4+f3\/AM
we = m3 + for/Ay,  wr=ma+ (f4 + \/3) VAN

From Eq. (4.23)), the inverse matrix of Wia(z) can be expressed as follows,

w3  —w2

1
28wy | sy wy

where Ay is the determinant of Wis(z). Using Eqgs. (4.23) and (4.24), the
analytic solution of the state-dependent ARE in Eq. (4.1) can be obtained

Wig(z) ™ (4.24)

based on Lemma 4.1 as follows,

1 Tr1 X2 r11 12
X = —---—-——--- = ’ ’ 425
(@) 4dA Ay oA ( )

2 I3 21 X22

>

where

T1 = waws — w3wy, T2 = WalWyq — WIW5

N ~
To = W2W7 — W3We, T3 = W2We — W1W7

°0 . iﬂ k._l 1_'_” &k 3y



4.2.2 Properties of Analytic Solution

Lemma 4.3: Wis(x) in Eq. (4.23)) is a non-singular matrix.

Proof of Lemma 4.3: For the non-singular matrix G(z) in Eq. (4.1)), it was
proven that Wis(z) is non-singular [65]. Now, let us investigate the case that
G(7) is the singular matrix. If G(x) is singular, i.e., g1g3 — g3 = 0, the deter-

minant of Wiy can be rewritten as

1
Ay = — + - - 2 4.26
WS A (f3g1 + fag92 — f192 — f293) (4.26)

The state-dependent controllability matrix of the pair (F(x), G(x)) can be con-

structed as follows,

g1 92 figr+ fag2  fig2 + fa93 Co, ()
Cra(z) = = (4.27)

92 93 f3g1+ fag2  [392 + fag3 Co,(z)

Let us assume that the determinant of Wia(z) is zero. Then, the following

equality is satisfied based on Eq. (4.26]).

f391 + fa92 = fi92 + fag3 (4.28)

Noth that, if g, is non-zero, g; and g3 are also non-zero because g1g3 — g3 = 0,

and g2Cp, (x) = g1Co,(x) based on Eqgs. (4.27) and (4.28). Otherwise, if g2

is zero, g1g3 should be zero, and the state-dependent controllability matrix in
Eq. should have at least one row of all zeros. Therefore, if the determinant
of Wia(z) is zero, the controllability matrix cannot be a full-rank matrix, which
implies that the pair (F(x), G(x)) is point-wise uncontrollable. This assumption
contradicts Condition 2.3, and therefore the determinant of Wia(z) cannot

be zero, i.e., Wia(z) is a non-singular matrix. O
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Lemma 4.4: The analytic solution X (x) in Eq. (4.25) is a symmetric matrix.
Proof of Lemma 4.4: Based on Eq. (4.23)), 2 — 2% can be expressed as

A Al
Ty — T9g = WaW4 + W3Wg — W1W5 — WoW7

=Dy +uiy/ Ay + ug (4.29)
where
ur = —g2(m1 —ma) — gsms + gima — fams + fame + (f1 — fa)mr

U2 = M1M7 + M3Mme — MMy — M4Ms5

Using the relation that M (x) 1M (x) = Iy, the following relations can be ob-

tained.

gamq + ggm3 + fyms + famz =0
(4.30)

gama + gimyg + fome + fim7 =0

Applying Eq. (4.30) to Eq. (4.29) yields that u; is zero, and the following

relation can be obtained based on (M(x)_1)2 = (M(x)2)_1.

Uy = M1M7 + M3Mmeg — MMy — NMygMs

= —p1par1 + qugar1 + T2 (4.31)

Equation (4.31) can be rewritten as ug = —r1Ay; using Eq. (4.10). Finally,
based on Eq. (4.29)) and u; = 0, it can be concluded that iy — &), = 0, i.e., X (z)

is a symmetric matrix. O
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4.3 Stability Analysis of Missile Longitudinal Closed-
Loop System

In this section, stability analysis is performed for the missile longitudinal closed-
loop system controlled by the SDRE method using the analytic solution of the

state-dependent ARE, which is obtained in the previous section.

4.3.1 Design of Missile Longitudinal Autopilot Using State-
Dependent Riccati Equation Method

The autopilot is designed based on the missile longitudinal dynamics in Eq. (2.16]).

Assuming the fast and stable actuator of the missile, the actuator dynamics is
neglected based on the singular perturbation theory. Now, the missile longitu-

dinal dynamics in Eq. (2.16) can be rewritten as follows,

@ = fi(z) + gi(x)w

(4.32)
2= ()
where x; = [« q]T, u; = 0y, 2 = a, and
[ 5
filz) = A Cz(Moa)atg
| 9GP (Cona M)+ £ Con, (M, 1))
S
95 Cgs, (M, 1)
gi(xy) = o
| 7, Cmg, (M, 21)

(1) = % (CZQ(M,M)@ + CZ(;p(M,xl)ép)

The region of interest of z; is defined as €; = {(a,q)| @ € Qy and g € R},
where (), is the normal operational range of the angle of attack, and the fol-

lowing assumptions are considered.

59 -



Assumption 4.1: The total velocity is fixed.

Assumption 4.2: The aerodynamic force and moment coefficients Cz, (M, z;),
Czs, (M, 21), C, (M, 1), Crs, (M, 77), and Cp, (M, 21) are negative on € for
any fixed M > 0.

Note from Assumption 4.1 that the aerodynamic force and moment coef-
ficients only depend on the angle of attack. Also, under Assumption 4.2,
f1(0) = 0 and g;(x;) # 0 on €. Therefore, Eq. (4.32) can be transformed into

the following pseudo-linear system using the SDC transformation.

i = A(x)z + B(x)z)

(4.33)
z1 = H(x)z; + L(z)w
where
Qs
A(xl) _ n:;\l/)CZa (l'l) e 1 _ al 1
L Qlyy Cma(xl> g?]yyvcmq(xl) az as
Lo, (g b
B(z)) = QW;‘; 25, (1) e
L Ty Cmns, (1) ba
Ex)=|aV 0|, L(x)=b0V

Under Assumption 4.2, ay, as, as, b1, and bs are negative on €2;. To design the

SDRE-based control input, the following quadratic cost function is considered.

J=3 / (27 quw + uiry) dt (4.34)
0

where ¢, and r,, are weighting parameters which are set to be positive constant.

Substituting Eq. (4.33]) into Eq. (4.34) yields

1 oo
J = 2/ (xlTQ(xl)xl + ul R(x)uy + 2IZTN($Z)U1) dt (4.35)
0
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where

Q) = quE(x) E(x), R(x) =rw+ qul(z)® N(z) = qul(z)E(x)"

The following state-dependent ARE is constructed based on the quadratic cost

function in Eq. (4.35).

Alz)" X () + X (1) A(z) + Q1)

— (X(21)B(z1) + N(2)) R(z) ™" (B(a)" X (21) + N(z)") =0 (4.36)

Using the solution of the state-dependent ARE X (z;), the full-state feedback

control input based on the SDRE method can be obtained as follows,

w = —R(x) " (Bla)" X(v) + N(2)") 2, = —K ()2 (4.37)
The state-dependent ARE in Eq. (4.36) can be modified as follows,
Az)" X () + X (1) Ay)
— X (1) B(w) R(w1) " Bla) " X (1) + Q(z1) = 0 (4.38)
where
. B - a; 1
A(z) = A(z) — B(w)R(x)” N(x)" =
ds as
. . T g 0
Q(z1) = Q1) — N(z)R(w) ™ N(z)" =
0 0
and
A Tw a a a bleVQQU) ~ VQQU)T’LU (L2
a — — e
! b T b2V 2qy, b Fw + 02V2q,
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Note that a; and ¢ are negative and positive, respectively, because a; is negative
on 2. The state-dependent ARE presented in Eq. (4.38)) has the same form of
Eq. (4.1) with the following relations.

~

F(z) = A(x)
G(:L’l) = B(ml)R(a:l)*lB(a;l)T (439)
H(xy) = Q)

The analytic solution of the state-dependent ARE obtained in the privious
section can be applied to the state-dependent ARE for the missile longitudinal
autopilot based on the matrix relations presented in Eq. (4.39). The components

of B(x;)R(x;) ' B(z;)T can be represented as
B(a)R(a) "' B(xy)" = (4.40)
where

b2 b2
1 2 -2
rw + b2V 2q,’ Ty + b2V 2,

T =

From Eq. (4.40)), it is clear that 7y and 79 are positive on €.

4.3.2 Stability Analysis Using Analytic Solution

To analyze the stability of the closed-loop system controlled by the SDRE
method, the following two assumptions are considered based on the properties

of the tail-fin controlled missile.
Assumption 4.3: The term 4a1b; 4 bs is negative on €);.

Assumption 4.4: The term (agbi + ba)a; — 2a9by is positive on ;.
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Remark 4.2: Assumption 4.3 is valid for most tail-fin controlled missiles,
because be usually dominates 4a1b;. That is because QSD/ I, is generally much
greater than S/(mV’) in normal operational range of the missile. Moreover,

Cp, (1) is greater than Czs, (1) considering Eq. (3.15). Therefore, the magni-

Sp
tude of bs is usually much greater than those of a; and b; considering Eq. (4.33)).
Similarly, Assumption 4.4 is reasonable for most tail-fin controlled missiles.

Using Eq. (4.33)), the term (agby + b2)a; — 2a2b; in Assumption 4.4 can be

rewritten as follows,

(a3b1 + bg)al — 2a9b1
Q?s°D
mV 1y,

CZa (5Ul)CZ5p ($l) { (iUcf - $cp) ;)(~Tcp - IL"cm) + 250711(1 (xl)} (4.41)

where C’mq (71) = (D/2V)Cip,(x1). Note that zcs — x¢p represents the distance
from the aerodynamic center of the tail-fin to the center of pressure for the
missile’s body, and ¢, — Zem represents the distance from the center of pressure
to the center of mass. Considering the normal operational range of the tail-fin
controlled missile, the magnitude of the former is generally much greater than
that of the latter. Also, because QS/(mV’) usually has a small value, it is valid

to assume that (aszb; + ba)a; — 2agb; is positive on €.

Before analyzing the stability of the closed-loop system, Conditions 2.1-
2.3 should be examined for the designed longitudinal autopilot for the existence
of the positive definite stabilizing solution of the state-dependent ARE. First of
all, it is obvious that Conditions 2.1 and 2.2 are satisfied on {); considering
Eqgs. and . For Condition 2.3, the point-wise controllability can be

examined using the pair (A(2;), B(2;)), which has the following controllability
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matrix.

by aiby + be
C o) = (4.42)

by G201 + azbs

The determinant of C; 5(x;) can be expressed as
Det[CAB(xl)} = &Qb% + agzbiby — bg(&lbl + bQ) (4.43)

From Eq. (4.38)), the following relation can be obtained.

bibyV2qu
o1y — <a2 B 12qa1> b

a1ba — agby =
Tw + b2V 2,

e

Tw + b2V 2q,

1 2 2

= m(mbzrw + a1b1baV2qy) — asby
w 1 w

= a1b2 — a2b1 (4.44)
Using Eq. 1) the determinant of C'5 p(2) can be rewritten as
Det[C’AB(ml)} = agb% + agb1by — bg(albl + bg) (445)

Under Assumption 4.3, a1b; + by is negative on €);. Therefore, the determi-
nant of CAB(iUl) is negative, because as, as, b1, and bo are all negative on 2,
which implies that the pair (A(z;), B(x;)) is point-wise controllable on €; under
Assumption 4.3. Similarly, the observability matrix of the pair (A(z;), Q(z;))

can be obtained as follows,

Oip(®m) =4 (4.46)

Because ¢ is positive, the observability matrix has rank 2, and it implies that

the pair (A(z;),Q(x;)) is point-wise observable on ;. Therefore, Condition

2.3 is satisfied on €; under Assumption 4.3.
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The stability analysis starts from representing the closed-loop system con-

trolled by the designed autopilot using the analytic solution of the state-dependent

ARE as follows,

i = Az — Bl K (z)z
= A(ml)xl — B(xl)R(xl)*l(B(:vl)TX(xl) + N(l’l)T):L'l
= (A(x;) — B(x)R(z) ' B(a)" X (1))

~ Ao (4.47)

where A.(z;) can be expressed as

i a1 — P21+ 17222 1— P1Zo+V/r1To83
Au() = 1 4dA 5 Ay 4dA 5 Ay
’ Gy YiiTbitiniy . \[Fifaiatisin
2 4dA o A 3 4dA o A
Qc1 Ac2 (4 48)
L Gc,3 Q¢4

Using Eqgs. (4.12)), (4.23)), (4.25), and (4.38)), a1 can be derived as follows,

1
Ac,1 = W {(GSbl — by + bp/&) t1 + ble\/AM} (4.49)

where t1 = a1by — a9by. Using the relationship between the force and moment
aerodynamic coefficients, which are presented in Eq. (3.15)), and Eq. (4.33)), t1

can be rewritten as

2qQ2
= i‘f I:Z (€ (@) Cim, (@21) = Czy (@20)Crn (1))

_ Q*S’D (et — ep
- mVIy, D

ty

) CZQ (CEZ)CZ% (151) (4.50)

Note from Eq. (4.50) that ¢; is positive on €; considering the tail-fin controlled

missile geometry as shown in Fig. Similarly, the other components of A.(z;)
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can be derived as follows,

Gep = —M {(asbr — ba)(ashy — by + byv/d) + 3/ By}

A,B
Q3 = Det[C';B(xl)] {(tl + bz\/a)tl + bg\/AM} (4.51)
Qe 4 = —M {(a3b1 — bo)(t1 + baVd) + bibay/ Am}

A,B

Substituting Eq. (4.8) into Eq. (4.10)), and substituting Eqs. (4.38]) and (4.40)

into the resulting equation, A;; can be rewritten as

a1b2V2(a1b2 — 2@2[)1)’[1_) + alag(alag — 2@2)

2
Am=a+ V2 + 1

(4.52)

where @ = gy /7. Then, the partial derivative of Ay; with respect to w can be

obtained as follows,

0Ay _ (b2 — asbi){(asby + ba)ar — 2a2b1}V2ay (453)
ow (L2V20 + 1)2 :

Under Assumption 4.4, the partial derivative of Ay; is positive on ), and

Ay satisfies the following relations for any fixed a € Q4.

inf [Ay] = lim [Ag] = (a2 — aja3)?
wWERT ) +
eRrR —0 , (4‘54)
: 31
sup [A] = Tim (] = ()
weR+ W—r00 1
Using Eqs. (4.8)), (4.38]), and (4.40), p1 + p2 can be expressed as
2a1b1b2V 20 — a?
pL+ps=2ay+ai— 12 U (4.55)

bIV2w + 1
The partial derivative of p1 + po with respect to w can be obtained as follows,

d(p1 + p2) _ _alb1V2(alb1 + 2b9)
Ow (b3V2w + 1)2

(4.56)
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Note that the partial derivative of p; 4+ po is positive on €2;, because a1b; + 2bo
is negative under Assumption 4.3. Considering the relation that d = p; +
p2 + 24/ Ay, the partial derivative of d with respect to w is also positive on €2;.

Therefore, the following relations of d can be obtained for any fixed a € ().
inf [d] = lim [d] = a? + 2as + a3 + 2|as — a1a3] = (a1 + a3)?
weRt w—0t

sup [d] = lim [d] = -2 <b2> ay + 2as + a3 + 2

wWERT W—00 b1

, 4t

tq
L b1

b1

Lemma 4.5: Under Assumptions 4.1-4.4, a.; and a.2 are negative and

positive, respectively, on €);.

Proof of Lemma 4.5: Using Eq. (4.57)), the following relation of the term

asby — by + b1V/d can be obtained for any fixed a € Q.

asby — by + bl\/(i > azb; — by + by sup |:\/g}

WERT
4t
=agb; — by + b1 a%——l
V by
= a3b1 — b2 — (a361)2 — 4b1t1 (458)

Defining ¢5 = aszb; — by and cg = +/(agb1)? — 4bity, their squares satisfy the

following relation.

C% - C% = (a3b1 — bg) — {(a361)2 — 4b1t1}
= b% — 2a3b1by + 4by (a1b2 — agbl)

= by(4ayby + by) — 2azbiby — 4agh? (4.59)

Under Assumption 4.3, Eq. (4.59) is positive on €2;. Therefore, because cs

and cg are positive, c5 is greater than cg, which implies that the right side of
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Eq. (4.58)) is positive on ;. From this result, it can be noticed that the term

agb1 —bo +b1Vd is positive, and therefore a. 1 and a. 2 are negative and positive,

respectively, on €; considering Eqs. (4.49) and (4.51)). O

Lemma 4.6: Under Assumptions 4.1-4.4, a4 is negative on ;.

Proof of Lemma 4.6: Using Eq. (4.51)), the partial derivative of a.4 with

respect to w can be obtained as follows,

et e by L0, L 0y
ow QDEt[CA,B(ﬂfl)]{(a3bl v) Jaow t A, aw} (4.60)

Using Eqgs. (4.53) and (4.56]), Eq. (4.60) can be rewritten as

80,074 . a1b267(a3b1 - b2)V2
dw  2Det[C; p(x1)]\/dA 5 (3V20 + 1)2

(4.61)
where
cy = bl(albl + 2b2)\/A]\7[ + {(agbl + bg)al — 2a2b1}(a3b1 — by + bl\/g)

Because asb; — by + b1V/d is positive, which is proved in Lemma 4.5, c7 is
positive on €; under Assumption 4.3 and 4.4, which implies that the partial
derivative of a.4 with respect to w is negative on ;. Therefore, the following

relation of a.4 can be obtained for any fixed o € 2,.

sup [ac4) = lim [ac 4]
weR+ w—0
1
=lim |———————— {(agbi — ba)(t1 + boV/d) + biba /AL 4.62
wlinm Det[CA,B(:Ez)] {(a3 1= b2)(t+bavd) £ b1 Qm} ( )

Substituting Eqs. (4.54) and (4.57)) into Eq. (4.62) yields

wsélu% [aca] = —]w {(asby — b2)(t1 — ba(a1 + a3)) — biba(az — ara3)}
= —M {agbg(albl + bz) — asgby (agbl + ang)} (4.63)
A,B
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From Eq. (4.63), the supremum of a. 4 with respect to @ is negative on {; under
Assumption 4.3, and therefore it can be concluded that a. 4 is negative on €

under Assumption 4.1-4.4. O

Theorem 4.1: Under Assumptions 4.1-4.4, the closed-loop system repre-
sented by Eq. (4.47)) is asymptotically stable on €2, if there exists a constant x
satisfying the following inequality.

2 2

1
AL+ Jacia
sup < Kk < inf M clfed (4.64)

a€Qq Qc,2 a€Qq Ac2

Proof of Theorem 4.1: To analyze the stability of the closed-loop system
controlled by the designed autopilot, let us consider a following Lyapunov can-

didate function.

VL = (/<;0z2 + q2) (4.65)

| =

Note that V7, is positive except for a = ¢ = 0. Considering Egs. (4.47) and
(4.48]), the time derivative of V7, can be obtained as follows,

Vi = kad + qg = /iac,locQ + (Kac2 + ac3)oq + ach2

Kac 2+ac 3

Kac1 a
= [ a g } ¢ 2 = fon(xl)xl (4.66)
"'ﬂlc,2+ac,3
5 Qc 4 q

The matrix A, (x;) is symmetric, and its characteristic polynomial can be ob-

tained as follows,

1
A[An(xl)P - (K'ac,l + CLC74))\[A,§(SU1)] + KGc1Gc4 — Z(KIU/CQ + ac,3)2

= AlAs(@)? = usA[An(ar)] + s = 0 (4.67)
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where

2 2 2
U3 = Kael + Ged, Uy = —ag k" +2(20c10c4 — Ae20c3)K — ag3

Note that u3z is negative, because a.1 and a.4 are negative on € as proven
in Lemma 4.5 and 4.6, respectively. Therefore, if uy is positive, Ax(x;) is
negative definite on €2;. Using Eqgs. (4.49) and (4.51)), the following relation can

be obtained.

Ae1Ged — Qe20e3 = \/ A gy (4.68)

Using Eq. (4.68)), u4 can be rewritten as follows,

Uy = —a§’2 (K — Emin) (K — Kmax) (4.69)
where
1 2 1 2
o A;\‘Z — 4/Qc,10c 4 . A?\Z + \/Qc,1Gc 4
RKmin = Gos ;  Rmax = P
C, c,

1
Here, kmax is greater than kpmin, because A ?\Z and ,/ac1Gc4 are positive on €.

If K = (Kmin + Kmax)/2, U4 is positive which can be written as follows,

daciacar/ Dy i
e e e B J; Fmax (4.70)
c,2

Considering Eqs. (4.69) and (4.70)), the relation between u4 and k for any fixed

a € Q4 can be plotted as shown in Fig. If the constant & is chosen as a value
between Kmin and Kmax for all a € Q, then uy is positive on €2;. Therefore, the

following condition for the constant x can be obtained.

SUp [Kmin] < £ < inf [Kmax] (4.71)
a€fy acQy
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Figure 4.1 The relation between u4 and s for any fixed a € €2,

Now, A, (z;) is negative definite for the constant x satisfying Eq. (4.71]), and
therefore the state vector x; of the closed-loop system converges to the origin

on §; under Assumptions 4.1-4.4. O

Remark 4.3: Theorem 4.1 guarantees that the region of attraction contains
the operational range of the missile for the closed-loop system controlled by
the designed autopilot. In other words, if the constant x satisfying Eq.
exists for the defined operational range and weighting parameters, then the
states converge to the origin in finite-time and are maintained thereafter for
any initial points on the defined operational range. This conclusion provides a
solid theoretical basis for the SDRE method to be used in real practices with
the guaranteed stable region. The characteristic provided by Theorem 4.1 is
significant in that it outweighs the existing studies which are limited only to

the local version of stability properties.
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4.4 Numerical Example

This section provides a numerical example of the analytical results which are
shown in this chapter. The hypothetical aerodynamic data and physical param-
eters of the tail-fin controlled missile in Sec. B.3] are used in this section. The

operational range of angle of attack is set as
Qo ={aeR|—7/6 <a<n/6} (4.72)
The coefficients in Eq. (4.33]) are obtained from Eq. (3.54]) as follows,

Cy.(z;) = —39.571a% —12.956, C,. (z;) = —81.189a> — 4.871
(4.73)
Czs, = —1.948, Cp,; = —11.803, Cp, =—1.719
Note that all coefficients in Eq. (4.73)) are negative for a € €. Using the missile

data, a1, a2, as, by, and by can be calculated as

a1 = 0.042C7, (v1), as = 4.950C,, (), a3 = 4.950C,
(4.74)
by = 0.042Cz, , by = 4.950C,,

Using Egs. (4.73) and (4.74), the value of 4a1b; 4+ be in Assumption 4.3 is

expressed as
4a1by + by = 0.5440° — 58.247 (4.75)

Because Eq. (4.75) is negative for a € Q,, Assumption 4.3 is satisfied for the
numerical values of the considered missile model. Similarly, (azb; +b2)a; —2a2b;

in Assumption 4.4 can be expressed as
(asby + by)ai — 2azb; = 30.18302 + 27.468 (4.76)

Note that Eq. (4.76) is positive for a € Q. Therefore, Assumption 4.4 is also

satisfied for the numerical values of the considered missile model.
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To examine the effects of aerodynamic uncertainty on the analytical results,

the uncertainties of C,_ (x;) and Cm;, are considered as follows,

Cma (xl) = éma + Acma
(4.77)

Cs, = COms, + ACm;

where C’ma and C‘mép represent nominal values of the coefficients, and the un-
certainties AC,,,, and AC,, 5, Are modeled as values proportional to the nominal
values, i.e., ACy,, = 71Cn,, and AC’m(SP = 726’m5p with v1,v2 € R. Considering
the relation between the force and moment aerodynamic coefficients, the force

coefficients including the uncertainties can be expressed as follows,

Cz.(x1) = Cz, + 1Cyz, (478)
Czs, = ngp + ’72(72%

where C'7, and C_'Z(;p represent nominal values of the coefficients. For Assump-

tion 4.3, 4a1b; + b2 including the uncertainties can be obtained as follows,
darby + by = 0.544(1 + 71 + 72 + 1172)0” + (1 + 72)(0.178~; — 58.247) (4.79)

Figure shows the supremum value of Eq. with respect to a € €, for
1, v2 € [—1.5,1.5], where 2 has the most influence on the supremum value
compared with ;. Note that the range of vy guaranteeing the negative value for
the supremum of Eq. can be computed as |y2| < 1 for y; € [—1.5,1.5].
Therefore, Assumption 4.3 holds for the uncertainties of the aerodynamic
coefficients less than 100% of the nominal value. To examine the robustness of
Assumption 4.4, (agb; +bs)a; — 2agb; is expressed including the uncertainties

as

(azby + bo)ay — 2asby = (1 + 1) (72 + 1)(30.183a2 + 27.468) (4.80)
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where 30.183a2+27.468 is positive for a € Q. Figureshows the sign of (1 +
1)(v2 + 1) for 1, 72 € [-1.5,1.5], where blue and red areas represent positive
and negative signs, respectively. In Fig. H the positive sign of (y1 +1)(y2+1)
holds if both ; and o are greater than —1, which implies that Assumption
4.4 also holds if both uncertainties of the aerodynamic coefficients are less than

100% of the nominal values.

Supremum value

Figure 4.2 Supremum value of 4a1b; + bs with respect to a € Q for vy, 72 €
[~1.5,1.5]

74



== Positive Sign
==Negative Sign

Figure 4.3 Sign of (71 + 1)(y2 + 1) for 71, 72 € [-1.5,1.5]
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Numerical simulation is performed for the missile model to demonstrate the
performance of the designed autopilot and to verify the analytical results. The
weighting parameters ¢, and r,, are set to be 1 and 20, 000, respectively. Now,

the following values of Kmin and kmax at @ = 5 x 1072 can be calculated.

1 2
AL — Ja.ia
SUp [Kmin] = Sup M elfed = 127.767
a€Qq a€q Gc,2
X = (4.81)
AL + Jacia
inf [Kmax] = inf M T VTOITed ) 997 979
a€fq a€Qq a’C,Q

Since the supremum of Ky, with respect to a € €, is smaller than the infi-
mum of Ky.x With respect to a € €, the closed-loop system controlled by the
designed autopilot for the considered missile model is asymptotically stable on
€); based on Theorem 4.1.

Figures show the simulation results. Figure [£.4] shows the time re-
sponses of the Z-axis acceleration and the pitch fin deflection, where the solid
line represents the responses of the designed autopilot and the dotted line rep-
resents the signal of the acceleration command. Figure shows the time re-
sponses of the states, i.e., the angle of attack and pitch rate. As shown in the
simulation results, the designed autopilot has satisfactory tracking performance
within the defined operational range of the missile. Furthermore, to verify the
correctness of the analytic solution of the SDRE method, which is obtained in
Sec. the solution of the state-dependent ARE is computed in two ways: i)
the analytic way presented in Eq. , and ii) the online computation using
the numerical algorithm [66]. Figure shows the time response of the dif-
ferences of the solution components calculated by the analytic and numerical

ways, where e; ; represents the difference of the components z; ; computed in
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two ways. As shown in Fig. the magnitude of e; ; is smaller than 1 x 10-10
for all ¢ and j. Therefore, the time response of the analytic solution is same
as the solution obtained by the online computation, which verifies that the

analytic solution obtained in Sec. is correct.
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Figure 4.4 Time responses of Z-axis acceleration and pitch fin deflection
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Figure 4.5 Time responses of the state variables
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Figure 4.6 Time responses of the differences between the solution components
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Chapter 5

Three-Axes and Full-Order Missile
Autopilots

5.1 Problem Statement

In this chapter, the three-axes missile autopilot is designed using the longi-
tudinal autopilot proposed in Chap. [4. Because of the axial symmetry of the
skid-to-turn maneuver missile considered in this study, the pitch and yaw planes
of the missile can be handled separately if the roll motion is stabilized. Accord-
ingly, the autopilot design based on the longitudinal dynamics of the missile
is applied to both pitch and yaw planes of the missile, while a proportional-
derivative (PD) controller stabilizes the roll motion. Note that the sideslip angle
and yaw rate are specified as the state variables in yaw plane instead of the angle
of attack and pitch rate. Furthermore, a design procedure of the SDRE-based
missile autopilot is provided based on the full-order missile model for compar-
ison. In the numerical simulation, the control performance of the three-axes
missile autopilot is compared with that of the full-order missile model-based

autopilot.
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5.2 Three-Axes and Full-Order Autopilot Design
5.2.1 Three-Axes Autopilot Design

To apply the autopilot design proposed in Chap. [ to the six-degrees-of-freedom
model of the tail-fin controlled missile, this section designs the three-axes au-
topilot. In this study, the skid-to-turn maneuver missile is considered which has
the axial symmetric around X-axis of the missile body. Therefore, if the fast
roll stabilization is assumed, the pitch and yaw planes of the missile can be
controlled separately. Using this property, the proposed autopilot designed on
the longitudinal motion of the missile is applied to both pitch and yaw planes,
and the roll motion is stabilized using the PD controller.

Figure shows the block diagram of the three-axes acceleration autopilot
proposed in the study, where 9, ., dpc, and d, . are the commands of the roll,
pitch, and yaw fin deflections, respectively. As shown in this figure, the SDRE-
based pitch and yaw controllers designed in Chap. [ generate the commands of
the pitch and yaw fin deflections, respectively, while the PD controller generates
the command of the roll fin deflection for stabilizing the roll motion of the

missile, which is designed as follows,

ug = —Kpg — K¢ (5.1)

where ¢ is the roll angle of the missile, ug is the PD control input, and K,
and K, are the proportional and derivative control gains of the PD controller,
respectively. Similar to the pitch controller designed in Chap. [4 the SDRE-
based yaw controller is designed except for specifying the sideslip angle and
yaw rate as the state variables instead of the angle of attack and pitch rate,

where the lateral equations of motions are used as described in Eq. (2.18)).
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Three-Axes Acceleration Autopilot

Sr,c
PD Controller
SDRE-Based Op,c Missile
Pitch Controller System
SDRE-Based 63"”
Yaw Controller

uv,w,p,q,r

¢’ 9’ ¢’ a’ﬁ

Figure 5.1 Block diagram of three-axes acceleration autopilot
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5.2.2 Full-Order Autopilot Design

In this subsection, the SDRE-based acceleration autopilot based on the full-
order missile model is designed for comparison with the designed acceleration
autopilot based on the reduced-order missile model. Figure 5.2 shows the block
diagram of the full-order missile model-based acceleration autopilot, where p,
ge, and 7. are the commands of the angular rates. As shown in Fig. the full-
order autopilot has a two-loop structure consisting of the inner- and outer-loops.
The outer-loop controller generates the command inputs of the angular rates
and sends them to the inner-loop controller. Then, the inner-loop controller
generates the commands of the fin deflections corresponding to the commands
of the angular rates. The two-loop design enables the tail-fin controlled missile
to be controlled more efficiently by separating relatively fast and slow variables.
Furthermore, it provides more design flexibility and computational efficiency
by handling small SDC matrices in the SDRE method. First of all, applying

small-perturbation theory and first-order Taylor expansion to the aerodynamic

SDRE-Based Full-Order Autopilot

) Outer-Loop Inner-Loop Missile
Controller Pc Controller Or ¢ System
dc Opc
e 6

,C

uv,w,p,q,7r

(,b, 0, 'Jh a;ﬁ

Figure 5.2 Block diagram of full-order acceleration autopilot
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coefficients presented in Egs. (2.5 and (2.7]), the following types of aerodynamic

coefficients are used in designing the full-order acceleration autopilot.

Cy = Oy, + CyyyM + Cy,a + Cy, B + Cy, 6, + Cy; 5, + Cy; 4,
Cz = Czy + CzyyM + Cz,a + Cg,B + Cz, 6, + Cz; 8y + Cz,
Cr = Ciy + Cr,a + C, B+ Ciy 6, + Ciy 8+ Ciy 6, (5.2)

~

Cin = Oy + O @ + Crny B+ Cimg 8r + Cony 8y + Cimg 0y

Cn = Cno + Cnaa + CnB’B + Cngré’r‘ + Cn(;pfsp + Cn(;y(sy

Substituting Eq. (5.2)) into Eq. (2.9)), the rotational equations of the missile can

be obtained as follows,

. QSD
L.

D
(Clo + ClaOé + Clﬁ,B + ClérdT + Cl(;pdp + Clgy(sy + WO[pP)
= Lbias + Lpp + L6r 61" + Lépdp + LzSy 5y

q= pr+ Cmo +Cmaa+cmﬁﬂ
Iyy Iyy

D
+a%@+Q%%+@%%+%p%Q (5.3)

= Mpjas + Mqq + Myprpr + Ms, 0, + M5p5p + M(Sy(sy

=t YWpq + QI (Cno + Cpoa+ Cpy 8

D
+a%&+a%%+a%@+mg%0

= Npigs + Npr + Npqpq + Nér(sr + Nép(sp + Néy(sy

where Ly;qs, Mpias, and Np;qs are the terms that do not depend on the angular
rates and the fin deflections, and L(.), M., and N(.) are dimensional coefficients

with respect to (). Also, the following kinematic equation of the roll angle is
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used.

¢ =p+qgsingptan + rcos ¢ tanf (5.4)

where 0 is the pitch angle of the missile. To derive the dynamics of Y- and Z-

axes acceleration, differentiating Cy and C in Eqgs. 1} with respect to time

and substituting the resulting equation and Egs. (2.12) and (2.13]) into the time

derivative of the Y- and Z-axes acceleration yield

208

ay % (az cosacos S+ aysin B + a, sin a cos B)C’y
m

ST1
—i—Q— — (ay cos accos B + ay sin 5 + a, sin a cos §)Cyy,
m | as

+{q — (pcosa +rsina) tan § + (aycosa — agsina) }Cy,

Vcos

+{psina — rcosa — V(ax cosasin B — ay cos B + a. sinasin §) } Cy,

+CY5T 5,» + Cyép Sp + Cy§y Sy

= Ypias + Ya.a: + Yayay + Y},p + quq +Yr (5'5)
208

% (az cosacos S+ aysin B + a, sin a cos B)C’Z
m

ST1
—i—Q— — (ay cos accos B + ay sin f + a sinacos §)Czy,
m | as

ay

+{q — (pcosa + rsina) tan § + (aycosa —agsina)}Cyz,

Vcosp

+{psina — rcosa —

v (ag cosacsin f — ay, cos B + a sin asin 5)}025

+CZ(;T57" + CZ(SP Sp + CZsy Sy
= Zbias + Zazaz + Zayay + pr + qu + Zyr

where ay is the speed of sound, Yj;qs and Zp;,s are the terms that do not depend
on the accelerations and the angular rates, and Y(.) and Z( are dimensional

coefficients with respect to (-).
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The outer-loop controller is designed to deal with the Y- and Z-axes ac-
celerations and roll angle of the missile. Therefore, Eqs. (5.4) and (5.5) are

transformed into the following pseudo-linear system using the SDC transfor-

mation.
to = Ao(zo)ro + Bo(ro)uo (5.6)
where
-750_[¢ Gy Ay 80]7 uO:[p q T]T
0 0 0 0
Ao(ﬂ;‘o) _ 0 Zaz Zay Zbias/so
0 Yaz Yay vaias/so
0 0 0 -
1 singtanf cos¢tanf
Z Z, Z,
Bo(zo)=| " ! '
Y, Y, Y,
0 0 0

Note that s, is an additional state to treat the bias terms, which is governed

by the following stable dynamics.
S0 = —AoSo (5.7)

where A, is a positive constant. Similarly, the inner-loop controller deals with
the angular rates of the missile, and Eq. (5.3 is transformed into the following

pseudo-linear system using the SDC transformation.

i:[:A](xj)ZE[—FB[(l'])uI (5.8)
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where

LP 0 0 Lbias/si
A ( ) UPTMPTT Mq (1 - Upr)Mprp Mbias/Si
I\T1) =
0pgNpqq (1 - qu)Npqp N; Nbias/si
0 0 0 -\
Ls. Ls, Ls,
Ms, Ms, Ms
B](ﬂﬁ[) — P Yy
N5, Ns, N,
0 0 0

Note that o, € [0,1] and oy, € [0,1] are design parameters that provide
the non-uniqueness of the SDC transformation. A variable s; is an additional
state to augment bias terms Ly;qs, Mpias, and Npies in the SDC matrix, and its

dynamics is described as
éi = _)\isi (5.9)

where )\; is a positive constant. For each pseudo-linear system in Eqgs. (5.6]) and
(5.8), the state-dependent ARE can be constructed as presented in Eq. (2.22)).
Then, by solving the state-dependent ARE, the following inner- and outer-loop

control inputs can be generated.

ur = —Ry(zr) ' Br(zr) X ()2
(5.10)

uo = —Ro(zo) ' Bo(zo)" Xo(zo)zo
where R;(z7) and Ro(xo) are the weighting matrices, and X(x;) and Xo(zo)

are the state-dependent ARE solutions for the inner- and outer-loops, respec-

tively.
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Remark 5.1: In the full-order acceleration autopilot, each loop deals with
a four-dimensional system, and accordingly the dimensions of their solutions
of the state-dependent ARE are also four. Because the four-dimensional ARE
cannot be solved analytically, each state-dependent ARE should be numeri-
cally solved at each step. It leads not only the high computational burden
but also preventing the closed-loop system from being analytically represented.
Therefore, the only local asymptotic stability of the closed-loop system can be
guaranteed for a narrow unknown region of attraction around the equilibrium
point based on the point-wise controllability and observability. This lack of the
guaranteed stable region is considered as a major obstacle to use the SDRE

method in practice, because the autopilot may fail for arbitrary initial states.
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5.3 Numerical Simulation
5.3.1 Simulation Setup

To demonstrate the performance of the proposed autopilots, numerical simula-
tions are performed for the two types of missile acceleration autopilots, which
are the three-axes autopilot and full-order missile model-based autopilot. In
this simulation, the gliding phase of the missile is considered, and therefore
no thrust forces of the missile exist and the inertial properties including the
mass and the moment of inertia are fixed. For the actuator dynamics of the
missile’s tail, the second-order dynamics is considered. Table summarizes
the characteristics of the missile in the numerical simulation. For the skid-to-
turn maneuver missile, zero roll angle should be maintained for the entire flight
time. Therefore, the roll command is set as zero during the simulation. The
commands of the Y- and Z-axes accelerations are summarized in Table. [5.2 for

each time interval, where a,. and a., are the commands of the Y- and Z-axes

Table 5.1 Missile characteristics in simulation

Symbol Name Value
m Mass 50.502 kg
Lix X-Axis Moment of Inertia 0.325 kg - m?

Iy, I.. | Y- and Z-Axes Moment of Inertias | 60.102 kg - m?

S Reference Area 0.022 m?
D Reference Length 0.165 m
W, Natural Frequency of Actuator 30 Hz
¢ Damping Ratio of Actuator 0.8
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Table 5.2 Acceleration commands in simulation

Time Interval [sec] | [0, 0.5) | [0.5, 1.5) | [1.5, 2.5) | [2.5, 3.5) | [3.5, 4]

ay, [g] 0 10 20 -10 0
a-, [g] 0 10 20 -10 0

accelerations, respectively. The initial conditions of the total velocity and other
states are set to be 950 m/s and zero, respectively, and the operational ranges
for the angle of attack and sideslip angle are set as /6.

Figure [5.3] shows the time response of the total velocity, where the total ve-
locity decreases slowly from 950 m/s to about 830 m/s due to the aerodynamic
effect during the simulation. Before performing numerical simulation, the supre-
mum of ki, and the infimum of k. of both pitch and yaw plane autopilots
with respect to the angle of attack and sideslip angle, respectively, are shown
in Fig. for the total velocity from 800 m/s to 1,000 m/s. In Fig. the
solid line represents the supremum of xn;n and the dash-dotted line represents
the infimum of Kpax. As shown in this result, the supremum of Ky, is less than
1.15, and the infimum of Kyax is much greater than the supremum of Ky, for
any fixed total velocity from 800 m/s to 1,000 m/s. It implies that the ana-
lytical results of the asymptotic stability presented in Theorem 4.1 can be
applied to both pitch and yaw plane autopilots for any fixed total velocity in

the range.
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Figure 5.3 Time response of the total velocity
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5.3.2 Simulation Results

Simulation results of the three-axes and full-order autopilots are shown in
Figs. where the solid line represents the responses of the full-order
autopilot, the dash-dotted line represents the responses of the three-axes au-
topilot, and the dashed line represents the command signal. Figure [5.5] shows
the time responses of roll angle and Y- and Z-axes accelerations, and Fig.
shows the time responses of the three-channel fin deflections for the two au-
topilots. As shown in the results, the Y- and Z-axes accelerations of the three-
axes autopilot are well regulated within £0.1 g. For the non-zero commands
of the accelerations, the three-axes autopilot shows satisfactory tracking per-
formance compared to the responses of the full-order autopilot, although there
exist steady-state tracking errors of less than 10% due to coupling effects and
aerodynamic modeling errors. The roll angle of the three-axes autopilot is reg-
ulated within 0.5 deg as well, while the magnitude of maximum roll error of
the full-order autopilot is about 2 deg. Figure shows the time responses of
the angle of attack and sideslip angle, and Fig. shows the time responses of
roll, pitch, and yaw rates for two cases. Note that all states of both pitch and
yaw planes in the three-axes autopilot are within the predefined operational

ranges of the angle of attack and the sideslip angle.
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Figure 5.6 Time responses of roll, pitch, and yaw fin deflections
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Furthermore, Monte Carlo simulation is performed for the three-axes au-
topilot to examine the robust performance with respect to the aerodynamic
uncertainties. The following force and moment aerodynamic coefficients includ-

ing uncertainties are applied to the simulation.

Cy =(1+m)Cy, Cz=(1+%)Cz
(5.11)

Cr=0+7)C, Cpn=147)Cn, Cn=1+17)Cy
where Cy, Cyz, Cj, Cy,, and C,, denote the nominal values of the acrodynamic
coefficients, and ~;, for i = 1,--- .5, denote the proportional value for the nom-
inal value, which represents the aerodynamic uncertainties. To examine the
robust performance of the three-axes autopilot for various uncertain environ-
ments, Monte Carlo simulation of 150 runs is performed for +;, for i =1,--- ,5,
where ; has a normal distribution with a zero mean and a standard deviation
of 0.1. The acceleration commands summarized in Table are also applied
to the Monte Carlo simulation. Table [£.3] summarizes the values of the mean
and standard deviation of the steady-state acceleration errors for each non-zero

acceleration command interval.

Table 5.3 Steady-state errors for non-zero command intervals in Monte Carlo

simulation
Magnitude of Steady-State Error [g]
Time Interval [sec],
Mean Standard Deviation
Acceleration Command [g]
Gy a, Ay az
[0.5, 1.5), 10 0.6012 | 0.9311 | 0.3717 0.5404
[1.5, 2.5), 20 1.3546 | 1.4284 0.7238 0.8691
[2.5, 3.5), -10 0.3675 | 0.7320 | 0.2252 0.2941
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Figures and shows the results of Monte Carlo simulation of 150
runs, where the solid line represents the responses of the three-axes autopilot
and the dashed line represents the command signal. Figure [5.9] shows the time
responses of roll angle and Y- and Z-axes accelerations, and Fig. shows the
time responses of the three-channel fin deflections for Monte Carlo simulation.
Compared to the results of the nominal simulation, the control performance
degradations, especially in the transient responses, occur due to the aerody-
namic uncertainties. Nevertheless, none of simulation responses of 150 runs
diverge and the available levels of control performances in various uncertain en-
vironments are achieved even though certain ranges contain some steady-state
errors. Additionally, all 150 responses of the roll angles are well regulated within

+1.5 deg in various uncertain environments.
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Chapter 6

Conclusion

6.1 Concluding Remarks

In this study, a missile acceleration autopilot was designed based on a state-
dependent Riccati equation (SDRE) method, and the asymptotic stability of
its closed-loop system was analyzed, using an analytic solution of the state-
dependent algebraic Riccati equation (ARE). The main results of this study

are summarized as follows:

Analysis of the Tail-Fin Controlled Missile

This study provided a rigorous mathematical analysis of the tail-fin controlled
missile. This has not been done in previous studies. A valid transformation to
normal form equations of the missile was proposed, and the non-minimum phase
behavior of the tail-fin controlled missile was analyzed, based on the normal
form equations. In addition, closed-loop system behavior with an approximate
model-based controller was analyzed, where input-output stability was proven,
considering the term causing the non-minimum phase behavior as an external
input. This is an improvement on existing work that addressed the boundedness

of the tracking error for the closed-loop system.
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Missile Acceleration Autopilot Using the State-Dependent Riccati

Equation Method

For two-dimensional systems, an analytic solution of the state-dependent ARE
was obtained, using a matrix sign function and principal square root of a Hamil-
tonian matrix. The acceleration autopilot for the tail-fin controlled missile was
designed based on the SDRE method, and its asymptotic stability was analyzed
using the analytic solution. To utilize the analytic solution for two-dimensional
systems, the missile acceleration autopilot was designed based on missile longi-
tudinal dynamics with a short-period approximation. The analytical result will
provide a solid theoretical basis for the SDRE method to be practically utilized,

with a clearly quantified stable region.

Six-Degrees-of-Freedom Simulation

To demonstrate the control performance of the proposed acceleration autopilot,
a numerical simulation based on the six-degrees-of-freedom equations for the
missile was performed. The proposed autopilot was applied to both pitch and
yaw planes of the missile because of the axial symmetry of a skid-to-turn maneu-
ver missile. For comparison, numerical simulation for a full missile model-based
acceleration autopilot was also performed, and the results of two autopilots
were compared. Simulation results of the proposed autopilot showed satisfac-

tory control performance, compared with that of the full model-based autopilot.
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6.2 Further Works

Generalization of Asymptotic Stability Analysis

In this study, some assumptions, based on the properties of the tail-fin controlled
missile in the normal operational range, are applied for the stability analysis of
the closed-loop system controlled by the SDRE method. Also, Theorem 4.1,
which addresses the asymptotic stability of the closed-loop system, is based
on the existence of a constant k satisfying a specific inequality. Application of
the analytical result may be limited because of these restrictions. Therefore, to
some extent, the assumptions and conditions required to analyze the stability

should be relaxed.

Analytic Solution for High-Order Nonlinear Systems

In this study, the analytic solution of the state-dependent ARE was derived
for two-dimensional nonlinear systems. Accordingly, the missile acceleration
autopilot was designed for the short-period approximated model, rather than
the full-order missile model. To apply the analytical result proposed in this
study to a wider class of systems, the analytic solution of the state-dependent

ARE should be obtained for more high-order systems.
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