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Abstract

Missile Acceleration Autopilot Design Based on

State-Dependent Riccati Equation Method

Jaeho Lee

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

An acceleration autopilot for a tail-fin controlled skid-to-turn maneuver mis-

sile is designed using a state-dependent Riccati equation (SDRE) method. The

asymptotic stability of the closed-loop system controlled by the designed au-

topilot is analyzed in a predefined missile operational range. To analytically

represent the closed-loop system, the analytic solution of the state-dependent

algebraic Riccati equation (ARE) is obtained and utilized in analyzing the

asymptotic stability.

In the first part of this study, six-degrees-of-freedom equations are derived

for the tail-fin controlled missile, and reduced equations for longitudinal and

lateral motions are introduced based on a linear approximation. For the longitu-

dinal dynamics of the missile, mathematical analyses of its characteristics and

closed-loop system behavior are given. A valid transformation to normal form

equations with a normal acceleration output is presented, and non-minimum

phase behavior of the tail-fin controlled missile is analyzed, based on the nor-

mal form equations. For the closed-loop system behavior with an approximate

model-based controller, input-output stability, specifying an external input as
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a term causing the non-minimum phase behavior, is proved for the non-zero ac-

celeration command. Furthermore, perfect regulation of the closed-loop system

is shown for the zero acceleration command. A numerical example is given to

illustrate the analytical results.

In the second part of this study, the asymptotic stability of the closed-loop

system controlled by the SDRE method is analyzed in the predefined opera-

tional range of the missile. The analytic solution of the state-dependent ARE is

obtained for two-dimensional nonlinear systems, where a matrix sign function

and matrix principal square root are utilized. Next, a SDRE method-based

missile acceleration autopilot is designed using the longitudinal dynamics of

the missile. Incorporating assumptions about the properties of the tail-fin con-

trolled missile in the normal operational range, the asymptotic stability of the

closed-loop system controlled by the designed acceleration autopilot is analyzed,

using the Lyapunov stability theorem. The analytical result of the asymptotic

stability is demonstrated with a numerical simulation. Finally, a numerical sim-

ulation based on the six-degrees-of-freedom equations of the missile is performed

to verify the control performance of the proposed autopilot.

Keywords: Missile Acceleration Autopilot, State-Dependent Riccati Equation,

Asymptotic Stability, Nonlinear Analysis

Student Number: 2013-20698
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Chapter 1

Introduction

1.1 Background and Motivation

A state-dependent Riccati equation (SDRE) method is one of the nonlinear

control methodologies, which has emerged over the last decade as an effective

design technique, particularly in aerospace engineering. The design procedure

of the SDRE method begins by transforming a nonlinear system into a pseudo-

linear system using a state-dependent coefficient (SDC) transformation. The

SDRE method usually considers an autonomous input-affine nonlinear system.

Motivated by a linear quadratic regulator (LQR), a state-dependent algebraic

Riccati equation (ARE) for the transformed pseudo-linear system, including

the state-dependent weighting matrices, is constructed and solved in the SDRE

method. Next, the suboptimal control input with the solution of the state-

dependent ARE is generated. The main feature of the SDRE method is the

ability to directly handle the tradeoff between the state errors and control

efforts, by adjusting the weighting matrices, as in the LQR method. Tuning

of the control gains in other nonlinear control methods is far less intuitive.

Furthermore, the SDRE method allows for design flexibility, such as a non-

uniqueness of the SDC transformation.
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There are many successful applications of the SDRE method to various

problems. In particular, the SDRE method has been widely used in aerospace

engineering to design a missile autopilot. A three-loop autopilot has been the

representative method for missile acceleration autopilots, because it has good

control performance. Typically, the three-loop autopilot is designed for a cer-

tain operating point, based on a linearized model of a missile. However, the

control performance can also be guaranteed for the neighborhood near the de-

sign point, if the variation of the parameters between the operating points is

sufficiently small and slow. The drawback is that the design procedure for many

operating points requires heavy time-consuming tasks, and the stability cannot

be guaranteed if the parameters change rapidly.

Nonlinear autopilots can resolve the issues of the three-loop autopilot, be-

cause they are designed for a nonlinear missile model, covering the entire flight

envelope. Among them, the SDRE method is a suitable approach for tail-fin

controlled missile autopilot design. This is because it is not based on nonlinear

dynamic inversion, unlike the feedback linearization and sliding mode control

schemes. Consequently, the SDRE method can directly handle non-minimum

phase systems, such as a tail-fin controlled missile. Furthermore, the optimal

property of the SDRE method, which approximately minimizes a quadratic cost

function, is a great advantage in designing a missile autopilot. Other nonlinear

control schemes cannot address the optimal properties of the controllers.

However, a major drawback of the SDRE method is that the state-dependent

ARE should be numerically solved at each step, which is referred to as ‘online

computation’ of the SDRE method. Online computation is inevitable in most

cases, because obtaining the analytic solution of the state-dependent ARE is
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very difficult. The two main problems of online computation for the SDRE

method are i) high computational cost and ii) an analytic representation of the

closed-loop system controlled by the SDRE method is not possible. The com-

putational cost issue has been resolved to a large extent, by improvements in

the microprocessor computational capacity. However, the second issue remains

a major obstacle to using the SDRE method in practice, because the size and

boundary of the asymptotic stable region cannot be properly quantified. In fact,

most applications of the SDRE method depend on local asymptotic stability

around the equilibrium points based on the point-wise controllability and ob-

servability.

Another difficulty of the SDRE method is treating system robustness, with

respect to uncertainties and disturbances. In particular, the SDRE method is

known to be sensitive to parametric uncertainties, because it is motivated by

the LQR technique. Note that the linear model-based three-loop autopilot can

handle system robustness, by examining the phase and gain margins for a cer-

tain operating point. Some nonlinear control schemes, such as backstepping and

sliding mode control, allow further development for robust performance.

In this study, the analytic solution of the state-dependent ARE is obtained

for two-dimensional nonlinear systems, thus providing an analytic representa-

tion of the closed-loop system. To design and analyze the SDRE method-based

acceleration autopilot using the analytic solution, a short-period approximated

model of the longitudinal missile motion is used. The longitudinal dynamics can

also be applied to the lateral motion of the missile because of the axial symme-

try of the skid-to-turn maneuver. First, the characteristics of the longitudinal

dynamics for the tail-fin controlled missile are analyzed, and then the missile

3



acceleration autopilot is designed based on the longitudinal dynamics. Using

the analytic solution of the state-dependent ARE, the closed-loop system con-

trolled by the designed autopilot is represented analytically, and its asymptotic

stability is analyzed based on the Lyapunov stability theorem.

To examine robustness with respect to parametric uncertainties, the ana-

lytical results of the SDRE method are investigated with a numerical example

that includes the aerodynamic uncertainties. Furthermore, the control perfor-

mance of the proposed autopilot, which is designed considering the short-period

approximated model, is demonstrated using a full nonlinear dynamics model of

the skid-to-turn missile with uncertainty.
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1.2 Literature Survey

1.2.1 Application and Theoretical Studies on State-Dependent

Riccati Equation Method

The SDRE method has been applied to controller design for various systems

[1–9]. Missile autopilot design is a representative application of the SDRE

method [2–6]. Also, other aerospace systems such as spacecraft [7, 8] and un-

manned helicopter [9] have used the SDRE method for designing control sys-

tems. These studies used online computation to obtain the control input of the

SDRE method, and thus only local asymptotic stability of the closed-loop sys-

tem can be guaranteed. Therefore, the region of attraction cannot be clearly

quantified. Local asymptotic stability of the SDRE method is valid in a suffi-

ciently small region around the origin, based on the fact that the closed-loop

system matrix is Hurwitz at the origin. Furthermore, the existence of a larger

region of asymptotic stability, namely large-scale asymptotic stability of the

SDRE method [10], has been proven. However, practical use is severely limited

if global stability is not guaranteed or the region of attraction is not clearly

quantified, although most applications of the SDRE method depend on large-

scale asymptotic stability.

Many previous studies have focused on the applications of the SDRE method,

rather than detailed theoretical investigation. Several studies have examined

the stability issue of the SDRE method, based on the analytic representa-

tion of the closed-loop system [11–14]. For a two-dimensional nonlinear sys-

tem with a single input, the global asymptotic stability of the SDRE method

was shown [11, 12]. These studies dealt with a very simplified system, where

some components of the SDC system and input matrices were set to zero,
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and therefore, obtaining the analytic solution of the state-dependent ARE was

much easier. Furthermore, strong assumptions are required to guarantee global

asymptotic stability. In summary, the analytical results of Refs. [11,12] are lim-

ited to a special class of nonlinear systems. In addition, it was shown that the

global stability of the SDRE method is guaranteed for scalar systems without

any additional restriction and multivariable systems with the symmetric closed-

loop system matrix [13,14]. However, general multivariable systems do not have

a symmetric closed-loop system matrix.

1.2.2 Analytic Solution of the Algebraic Riccati Equation

The processes for obtaining the solutions of the state-dependent ARE and con-

stant ARE are the same. The only difference is whether or not the solution is

constant. The analytic representation of the closed-loop system for the constant

ARE is possible, even though it is solved by a numerical algorithm. Most studies

dealing with the constant ARE have used a numerical solution [15–17]. Among

the numerical methods for solving the ARE, Potter’s method is the most widely

used. Here, the Hamiltonian matrix corresponding to the ARE is constructed,

and its eigenvectors are computed numerically [15]. The Schur decomposition

method was proposed to improve the numerical stability [16], and the matrix

sign function is also used to numerically solve the ARE [17].

Some studies have been done on the derivation of the analytic solution of

the ARE [18–29]. However, most of this research was confined to certain special

classes, even for two-dimensional systems [18–24]. In some studies, a process

was required to find special matrices satisfying another matrix quadratic equa-

tion, to analytically solve the ARE [25,26]. Ledyaev derived the mathematical
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formulas of the algebraic and differential Riccati equations [27]. However, direct

application to the analytic representation of the closed-loop system is difficult,

because these solutions are expressed in terms of the matrix transfer functions

including the integral terms. Recently, a method to obtain the analytic so-

lution of the ARE for two-dimensional systems was introduced based on the

analytic representation of the matrix sign function by obtaining the principal

square root of the square of the Hamiltonian matrix [28]. Here, this method is

further developed to derive the analytic solution of the state-dependent ARE

component-wisely, without specifying a certain class of nonlinear systems [29].

1.2.3 Characteristics of the Tail-Fin Controlled Missile

The properties of the tail-fin controlled missile are well known, but in many

cases, a rigorous mathematical analysis has not been performed. One of the

well-known properties of the tail-fin controlled missile is a non-minimum phase

behavior. The concept of non-minimum phase was defined early on for linear

systems, and it is now well-established for nonlinear systems, based on the

stability of the internal dynamics [30]. Several studies have performed an anal-

ysis of the non-minimum phase of the tail-fin controlled missile, using specific

aerodynamic data [31] and singular perturbation theory in the normal opera-

tional range of the missile [32]. However, these studies were based on the zero-

acceleration subspace of the missile, rather than the normal form equations.

Additionally, the normal form equations of the missile longitudinal dynamics,

specifying the angle of attack as the output, were used to design the missile

acceleration autopilot [33].

For the tail-fin controlled missile system with unstable internal dynamics,
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nonlinear inversion-based control schemes, such as feedback linearization and

sliding mode control, cannot be directly applied to the design of an acceler-

ation autopilot. Approximate input-output linearization (AIOL) has been fre-

quently used for circumventing the non-minimum phase behavior of the missile.

This method neglects the force induced by the fin deflection causing the non-

minimum phase behavior [31, 32, 34, 35]. Most studies using the AIOL method

for the design of a missile acceleration autopilot have assumed that the ap-

proximate model-based controller works well on the actual missile system. This

approach was validated using numerical simulation only [36]. In Ref. [37], the

boundedness of the tracking error on the actual system was proven, assuming

that the desired command and specific term are sufficiently small.

1.2.4 Missile Acceleration Autopilot

The traditional design of a missile acceleration autopilot is a three-loop struc-

ture [38]. The three-loop structure has been widely used for acceleration control

in linear-based autopilot design because of its robustness to disturbances, al-

though the control gains should be designed for each operating point [39–41]. To

deal with disturbances or modeling errors caused by the linearization, robust

control theory, such as H∞ control and µ-synthesis, has been applied to the

design of a missile acceleration autopilot [42–44]. The gain-scheduling approach

is a widely used method for designing autopilots, based on the linear missile

model [45–47]. However, the gain-scheduling approach for a highly nonlinear

system requires time-consuming work, and the control performance cannot be

guaranteed for the entire flight envelope [48].

In contrast, missile autopilot designs that take account of the nonlineari-

8



ties of missile dynamics have been proposed in Refs. [2–6,49–54]. Several studies

have used the feedback linearization method, nonlinear control scheme based on

nonlinear dynamic inversion, to design a missile acceleration autopilot [49, 50].

However, the feedback linearization method requires precise model information

to cancel out the nonlinearities of the missile system, and therefore, it might

not be robust to disturbances [55]. The backstepping control [51, 52] and slid-

ing mode control [53, 54], which are other nonlinear control schemes based on

nonlinear dynamic inversion, have also been applied to the design of a missile

acceleration autopilot. These methods allow for further development to increase

robustness, with respect to uncertainties and disturbances. The SDRE method

is one of the widely used techniques for designing a missile acceleration autopi-

lot [2–6]. Considering the capability of the SDRE method to directly handle

the unstable and/or non-minimum phase systems, it is a suitable approach for

designing the autopilot of the tail-fin controlled missile [56].
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1.3 Contributions

The main contributions of this study are summarized as follows.

Mathematical Analysis of the Tail-Fin Controlled Missile Dynamics

In this study, rigorous mathematical analyses of the properties of missile lon-

gitudinal dynamics are given. First, the non-minimum phase behavior of the

tail-fin controlled missile is analyzed, based on the normal form equations with

acceleration output. Although Ref. [33] proposed a valid transformation to the

normal form equations of the missile, the angle of attack was specified as the out-

put rather than the normal acceleration. Also, the analysis of the non-minimum

phase behavior of the tail-fin controlled missile was performed based on the zero-

acceleration subspace, without transforming into the normal form equations in

Refs. [31, 32]. In this study, the non-minimum phase analysis is based on the

internal dynamics, which is directly obtained from the normal form equations of

the missile. Second, the behavior of the actual system controlled by the AIOL-

based autopilot is analyzed. This result contains not only the boundedness of

the tracking error as proved in Ref. [37], but also the Lp-stability of the ac-

tual system. This is commonly used for input-output stability, where the term

causing the non-minimum phase behavior is considered to be the external input.

Analytic Solution of the SDRE Method for Two-Dimensional Non-

linear Systems

To analytically present the closed-loop system controlled by the SDRE method-

based autopilot, the analytic solution of the state-dependent ARE is derived for

two-dimensional nonlinear systems. References [11, 12] have suggested an ana-
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lytic solution of the state-dependent ARE for two-dimensional systems. How-

ever, some components of the SDC system and input matrices of the pseudo-

linear system in the SDRE method were set to zero, so that the process of

obtaining the analytic solution was greatly simplified. In this study, an analytic

solution of the SDRE method is proposed for general two-dimensional non-

linear systems, without any restriction on the matrix components included in

the pseudo-linear system. Whereas studies dealing with the derivation of the

analytic solution of the ARE are confined to certain restrictions on the sys-

tems [18–24], the method proposed here needs only conditions for the existence

of the positive definite stabilizing solution of the state-dependent ARE. The

analytic solution of the ARE proposed in Ref. [27] cannot be directly applied

to the analytic representation of the closed-loop system, because the analytic

solution is expressed as the matrix transfer functions, including the integral

terms. However, the method proposed in this study allows for the analytic rep-

resentation of the closed-loop system, because the obtained solution is expressed

component-wisely.

Asymptotic Stability of the Closed-Loop System Controlled by the

SDRE-Based Autopilot

In this study, the asymptotic stable region for the SDRE method-based au-

topilot is clearly quantified, based on the Lyapunov stability theorem. Existing

missile applications of the SDRE method have used online computation, which

depends on the local asymptotic stability around the origin [2–6]. The local

stability or lack of a well-quantified region of attraction prevents the SDRE

method from being used in practice, because the autopilot may not provide
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good performance for arbitrary initial states. Here, asymptotic stability in the

predefined operational range of the missile is proven, using the analytic solution

of the state-dependent ARE. References [11,12] have shown the global stability

of a closed-loop system controlled by the SDRE method, using very simplified

systems with strong assumptions. Therefore, the results are of limited use in

the design of the missile autopilot. In contrast, the analytical result proposed

in this study provides the theoretical basis and justifications for utilizing the

SDRE method practically, in the design of a missile autopilot.
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1.4 Dissertation Outline

This dissertation is organized as follows:

In Chapter 1, the background and motivation of this study are described,

and related research works are given. The objectives and contributions of the

study are presented.

In Chapter 2, six-degrees-of-freedom equations of the skid-to-turn maneuver

tail-fin controlled missile are derived, and the reduced models for the longitudi-

nal and lateral motions of the missile are presented. A brief description of the

SDRE method is given.

In Chapter 3, the analytical results of the missile longitudinal dynamics

are provided. The characteristics of the longitudinal dynamics of the tail-fin

controlled missile are analyzed including the coordinate transformation to the

normal form equations and non-minimum phase behavior. And the analytical

results of the closed-loop system behavior with the approximate model-based

controller are presented. Numerical example is provided to demonstrate the

findings of the mathematical analyses.

In Chapter 4, the analytic solution of the SDRE method for two-dimensional

systems is derived. The missile acceleration longitudinal autopilot is designed

based on the SDRE method, and the stability analysis of the closed-loop system

controlled by the designed autopilot is performed using the derived analytic so-

lution of the SDRE method. By providing the numerical example, the analytical

results of the SDRE method are verified.

In Chapter 5, the design procedure of the three-axes missile autopilot is

provided based on the proposed longitudinal autopilot and roll stabilizer. For

comparison, the SDRE method-based missile acceleration autopilot designed

13



for the full-order missile model is presented. Numerical simulation is performed

for two autopilot cases to demonstrate the control performance of the designed

autopilots.

In Chapter 6, concluding remarks and suggestions for further works are

presented.
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Chapter 2

System Model and State-Dependent
Riccati Equation Method

2.1 System Model

2.1.1 Six-Degrees-of-Freedom Equations

In this study, the following assumptions are considered for deriving six-degrees-

of-freedom equations of motions for the tail-fin controlled missile.

Assumption 2.1: The missile has symmetric, cruciform shape.

Assumption 2.2: The physical parameters of the missile including the mass,

moment of inertia, reference length, and area are fixed.

Assumption 2.3: External forces and moments caused by the aerodynamic

effects are considered, and the forces and moments caused by the gravity and

thrusters are neglected.

Under Assumptions 2.2 and 2.3, the six-degrees-of-freedom equations of the

missile with respect to the body-axes can be represented as follows [57],

mv̇ +m(ω × v) = Fa (2.1)

Iω̇ − ω × Iω = Ma (2.2)
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where m and I are the mass and the moment of inertia matrix of the missile,

respectively, v = [u v w]T is the velocity vector, ω = [p q r]T is the angular

velocity vector, and Fa = [FX FY FZ ]T and Ma = [L M N ]T are the exter-

nal force and moment vectors caused by the aerodynamic effects, respectively.

Under Assumption 2.1, the moment of inertia matrix can be expressed as

follows,

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.3)

where Iyy = Izz. Using the aerodynamic coefficients, the external forces are

expressed as

FX = QSCX

FY = QSCY (2.4)

FZ = QSCZ

where Q is the dynamic pressure, and S is the reference area. And CX , CY ,

and CZ are the non-dimensionalized aerodynamic force coefficients which can

be expressed as the following nonlinear functions.

CX = fCX (M, h, xcm, α, β, δr, δp, δy)

CY = fCY (M, h, xcm, α, β, δr, δp, δy) (2.5)

CZ = fCZ (M, h, xcm, α, β, δr, δp, δy)

where M is the Mach number, h is the altitude, xcm is the distance between

the missile’s nose and the center of mass, α and β are the angle of attack

and sideslip angle, respectively, δr, δp, and δy are the roll, pitch, and yaw fin
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deflections, respectively, and fi(·) denotes a nonlinear function. Likewise, the

external moments can be represented as follows,

L = QSD

(
Cl +

D

2V
Clpp

)
M = QSD

(
Cm +

D

2V
Cmqq

)
(2.6)

N = QSD

(
Cn +

D

2V
Cnrr

)

where D is the reference length, V is the total velocity, Cl, Cm, and Cn are

the non-dimensionalized aerodynamic moment coefficients, and Clp , Cmq , and

Cnr are the non-dimensionalized aerodynamic damping coefficients. The non-

dimensionalized aerodynamic moment coefficients are expressed as the following

nonlinear functions.

Cl = fCl(M, h, xcm, α, β, δr, δp, δy)

Cm = fCm(M, h, xcm, α, β, δr, δp, δy) (2.7)

Cn = fCn(M, h, xcm, α, β, δr, δp, δy)

Substituting Eqs. (2.3), (2.4) and (2.6) into Eqs. (2.1) and (2.2), the six-degrees-

of-freedom equations of the tail-fin controlled missile can be obtained in scalar

form as follows:

Translational Equations

u̇ = rv − qw +
QSCX
m

v̇ = pw − ru+
QSCY
m

(2.8)

ẇ = qu− pv +
QSCZ
m
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Rotational Equations

ṗ =
QSD

Ixx

(
Cl +

D

2V
Clpp

)
q̇ =

Izz − Ixx
Iyy

pr +
QSD

Iyy

(
Cm +

D

2V
Cmqq

)
(2.9)

ṙ =
Ixx − Iyy

Izz
pq +

QSD

Izz

(
Cn +

D

2V
Cnrr

)

In addition, the dynamics of the angle of attack and sideslip angle can be

derived using the obtained six-degrees-of-freedom equations. The angle of attack

and sideslip angle are defined as follows,

α = tan−1 w

u

β = sin−1 v

V

(2.10)

Using Eq. (2.10) and the total velocity, the components of the velocity vector

can be rewritten as

u = V cosα cosβ

v = V sinβ (2.11)

w = V sinα cosβ

Differentiating the total velocity with respect to time and substituting Eqs. (2.8)

and (2.11) into the resulting equation yield

V̇ =
QS

m
(CX cosα cosβ + CY sinβ + CZ sinα cosβ) (2.12)

Differentiating Eq. (2.10) with respect to time and substituting Eqs. (2.8),

(2.11), and (2.12) into the resulting equation, the following dynamics of the
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angle of attack and sideslip angle can be obtained.

α̇ = q − (p cosα+ r sinα) tanβ +
1

V cosβ
(az cosα− ax sinα)

β̇ = p sinα− r cosα− 1

V
(ax cosα sinβ − ay cosβ + az sinα sinβ)

(2.13)

where ax, ay, and az are X-, Y-, and Z-axes accelerations of the missile body,

respectively, which are defined as

ax =
QSCX
m

ay =
QSCY
m

(2.14)

az =
QSCZ
m

2.1.2 Longitudinal and Lateral Motions of Equations

Based on the roll stabilization, the longitudinal and lateral motions of the mis-

sile can be presented separately neglecting the coupling effects between the

roll-pitch-yaw channels. Under Assumption 2.3 with a specified altitude, the

aerodynamic force and moment coefficients of the longitudinal motion can be

modeled using the small-perturbation theory and first-order Taylor expansion

as follows,

C̄Z = CZα(M, α)α+ CZδp (M, α)δp

C̄m = Cmα(M, α)α+ Cmδp (M, α)δp

(2.15)

where C(·)(M, α) represents the longitudinal aerodynamic coefficient expressed

as a function of the Mach number and the angle of attack. Substituting Eq. (2.15)

into Eqs. (2.9), (2.13), and (2.14), the longitudinal motion of the missile can be

described based on the short-period approximation as follows [58],
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α̇ =
QS

mV

(
CZα(M, α)α+ CZδp (M, α)δp

)
+ q

q̇ =
QSD

Iyy

(
Cmα(M, α)α+ Cmδp (M, α)δp +

D

2V
Cmq(M, α)q

)
(2.16)

az =
QS

m

(
CZα(M, α)α+ CZδp (M, α)δp

)
Figure 2.1 shows the longitudinal geometry of the tail-fin controlled missile,

where XB and ZB denote X- and Z-axes of the missile body, and xcf and xcp

are the distances from the missile’s nose to the center of pressures for the

missile’s tail-fin and body, respectively. Similarly, the aerodynamic force and

moment coefficients of the lateral motion are modeled as follows,

C̄Y = CYβ (M, β)β + CYδy (M, β)δy

C̄n = Cnβ (M, β)β + Cnδy (M, β)δy

(2.17)

c.f.

c.p.

M

ZF

BX

BZ

V

αcfx cpx

��

c.m.

xcm

Figure 2.1 Tail-fin controlled missile geometry in the longitudinal motion
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where C(·)(M, β) represents the lateral aerodynamic coefficient expressed as a

function of the Mach number and the sideslip angle. Substituting Eq. (2.17) into

Eqs. (2.9), (2.13), and (2.14), the lateral motion of the missile can be described

based on the short-period approximation as follows,

β̇ =
QS

mV

(
CYβ (M, β)β + CYδr (M, β)δy

)
− r

ṙ =
QSD

Izz

(
Cnβ (M, β)β + Cnδr (M, β)δy +

D

2V
Cnr(M, β)r

)
(2.18)

ay =
QS

m

(
CYβ (M, β)β + CYδy (M, β)δy

)

Remark 2.1: Because the missile has an axial symmetric shape with respect

to X-axis of the missile body under Assumption 2.1, the longitudinal and

lateral motions can be described in the same way based on the roll stabilization

as in Eqs. (2.16) and (2.18), respectively. Therefore, the design schemes and

analytical results for the longitudinal dynamics of the missile treated in this

study can also be applied to the lateral dynamics of the missile.
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2.2 State-Dependent Riccati Equation Method

This section introduces the traditional SDRE method-based controller design

process for multi-input multi-output nonlinear systems. Let us consider the

following autonomous input-affine nonlinear system.

ẋ = f(x) + g(x)u (2.19)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, f(x) ∈ Rn

is the system vector, and g(x) ∈ Rn×m is the input matrix. Assuming that

f(0) = 0 and g(x) 6= 0 for all x in a region of interest, the input-affine nonlinear

system, Eq. (2.19), can be transformed into a pseudo-linear system using the

SDC transformation as follows,

ẋ = F (x)x+B(x)u (2.20)

where F (x) ∈ Rn×n and B(x) ∈ Rn×m are the state-dependent system and

input matrices, respectively, satisfying F (x)x = f(x) and B(x) = g(x).

Motivated by the LQR technique, which is the linear control design scheme

based on the optimal control theory, the SDRE method constructs the state-

dependent ARE for the pseudo-linear system, Eq. (2.20), considering the fol-

lowing quadratic cost function.

J =
1

2

∫ ∞
0

(
xTQ(x)x+ uTR(x)u

)
dt (2.21)

where Q(x) ∈ Rn×n and R(x) ∈ Rm×m are weighting matrices. Note that the

SDRE method can directly handle the tradeoff between the state errors and

control efforts by adjusting the weighting matrices Q(x) and R(x) as in the
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LQR method. Based on the quadratic cost function in Eq. (2.21), the state-

dependent ARE can be constructed as follows,

F (x)TX(x) +X(x)F (x)−X(x)B(x)R(x)−1B(x)TX(x) +Q(x) = 0 (2.22)

where X(x) ∈ Rn×n is the positive definite stabilizing solution of the state-

dependent ARE, which exists if the following conditions are satisfied on the

region of interest of x [59].

Condition 2.1: All state-dependent matrices of the pseudo-linear system are

continuous matrix-valued functions.

Condition 2.2: The weighting matrices are continuous matrix-valued functions

satisfying Q(x) = Q(x)T ≥ 0 and R(x) = R(x)T > 0.

Condition 2.3: The pairs (F (x), B(x)) and
(
F (x), Q̄(x)

)
are point-wise con-

trollable and observable, respectively, where Q(x) = Q̄(x)Q̄(x)T .

The full-state feedback control input of the SDRE method including the solution

of the state-dependent ARE is obtained as follows,

u = −R(x)−1B(x)TX(x)x (2.23)

Substituting Eq. (2.23) into Eq. (2.20), the closed-loop system controlled by

the SDRE method can be expressed as

ẋ = F (x)x−B(x)R(x)−1B(x)TX(x)x

= (F (x)−B(x)R(x)−1B(x)TX(x))x

= Ac(x)x (2.24)

where Ac(x) ∈ Rn×n is the closed-loop system matrix.
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Remark 2.2: Because it is very difficult to obtain the analytic solution of

the state-dependent ARE, Eq. (2.22), it is usually solved at each step using a

numerical algorithm, which is referred as the online computation of the SDRE

method. Therefore, the closed-loop system controlled by the SDRE method,

which is presented in Eq. (2.24), cannot be represented analytically, and it is

very hard to perform deep theoretical investigations for the SDRE method.
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Chapter 3

Analysis of Missile Longitudinal
Dynamics

3.1 Problem Statement

In this chapter, the missile longitudinal dynamics is analyzed using the equa-

tion derived in the previous chapter. The primary objectives of the analysis are

twofold; the first is to provide rigorous analyses of the characteristics of the

tail-fin controlled missile including the coordinate transformation to the nor-

mal form equations and non-minimum phase behavior. The second objective is

to further analyze the existing results of the linearization-oriented modeling-

based AIOL, which is frequently used method to deal with the non-minimum

phase behavior of the tail-fin controlled missile. The analysis starts from the

missile longitudinal dynamics, Eq. (2.16), with following second-order actuator

dynamics of the pitch fin deflection.

δ̈p + 2ζωnδ̇p + ω2
nδp = ω2

nδpc (3.1)

where ζ and ωn are the damping ratio and the natural frequency of the actuator,

respectively, and δpc is the command of the pitch fin deflection. Using Eqs. (2.16)

and (3.1), the missile longitudinal dynamics including the second-order actuator
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dynamics can be represented as the following input-affine form.

ẋ = f(x) + g(x)u

y = h(x)

(3.2)

where x = [x1 x2 x3 x4]T = [α q δp δ̇p]
T , y = az, u = δpc , and

f(x) =



f1(x)

f2(x)

f3(x)

f4(x)


=



QS
mV

(
CZ0(M, x) + CZδp (M, x)x3

)
+ x2

QSD
Iyy

(
Cm0(M, x) + Cmδp (M, x)x3 + D

2V Cmq(M, x)x2

)
x4

−ω2
nx3 − 2ζωnx4



g(x) =



0

0

0

g1(x)


=



0

0

0

ω2
n


, h(x) =

QS

m

(
CZ0(M, x) + CZδp (M, x)x3

)

with CZ0(M, x) = CZα(M, x)x1 and Cm0(M, x) = Cmα(M, x)x1. Note that

CZ0(M, 0) = Cm0(M, 0) = 0. The analysis is performed on a following region

of interest which is set to consider the normal operational range of the missile.

Ω =
{
x ∈ R4 | |xi| ≤ cxi , i = 1, · · · , 4

}
(3.3)

where cxi , i = 1, · · · , 4, is a positive constant. Within the region of interest, the

following assumptions are applied.

Assumption 3.1: The total velocity is fixed.

Assumption 3.2: The center of pressure for the missile’s tail-fin is located

further from the missile’s nose than the center of pressure for the missile body,

i.e., xcp < xcf in Fig. 2.1.
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Assumption 3.3: The aerodynamic coefficients CZδp (M, α) and Cmδp (M, α)

are non-zero and the partial derivative of CZ0(M, α) with respect to the angle

of attack is negative for any fixed M > 0.

Assumption 3.4: All aerodynamic coefficients are Ck, k ≥ 2, functions of the

angle of attack for any fixed M > 0.

Remark 3.1: The origin of the unforced case in Eq. (3.2), i.e., ẋ = f(x), is

an equilibrium point. In addition, all aerodynamic coefficients of the missile

longitudinal dynamics only depend on x1 under Assumption 3.1.
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3.2 Analysis Results of Missile Longitudinal Dynam-

ics

This section includes the main analysis of the longitudinal dynamics for the

characteristics of the tail-fin controlled missile and the behavior of the actual

system with the AIOL-based controller. All analyses are based on the noninear

control theory [30,60].

3.2.1 Characteristics of the Tail-Fin Controlled Missile

Theorem 3.1: For the missile longitudinal dynamics with the acceleration

output presented in Eq. (3.2), there exists a valid coordinate transformation to

the normal form equations on Ω.

Proof of Theorem 3.1: Using Lie derivatives, the time derivative of the system

output can be written as follows,

ẏ =
dh

dt
= Lfh(x) + Lgh(x)u (3.4)

where Lfh(x) and Lgh(x) can be calculated based on Eq. (3.2) as

Lfh(x) =
∂h

∂x1
f1(x) +

∂h

∂x3
f3(x)

Lgh(x) = 0

(3.5)

Taking the time derivative of Eq. (3.4) yields

ÿ = L2
fh(x) + LgLfh(x)u (3.6)

where LgLfh(x) can be obtained as

LgLfh(x) =
QS

m
ω2
nCZδp (x1) (3.7)
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Since LgLfh(x) is non-zero under Assumption 3.3, the relative degree of the

missile longitudinal dynamics is well-defined as 2 on Ω. Now, let us consider a

following nonlinear mapping.

Φ(x) =
[
h(x) Lfh(x) x1 x2

]T
=
[
ξ1 ξ2 η1 η2

]T
(3.8)

where ‖Φ(0)‖ = 0, and the Jacobian matrix of Φ(x) can be obtained as

∂Φ

∂x
=



∂h
∂x1

0 ∂h
∂x3

0

∂Lfh
∂x1

∂Lfh
∂x2

∂Lfh
∂x3

∂Lfh
∂x4

1 0 0 0

0 1 0 0


(3.9)

Then, the determinant of Eq. (3.9) can be calculated using Eqs. (3.2) and (3.5)

as

Det

[
∂Φ

∂x

]
=

∂h

∂x3

∂Lfh
∂x4

=

(
QS

m
CZδp (x1)

)2

(3.10)

Note from Eq. (3.10) that the Jacobian matrix of Φ(x) is nonsingular under

Assumption 3.3. The inverse transformation of Φ(x) is given by

x1 = η1

x2 = η2

x3 =
1

CZδp (η1)

(
m

QS
ξ1 − CZ0(η1)

)
(3.11)

x4 =
1

CZδp (η1)

[
m

QS
ξ2 −

(
1

V
ξ1 + η2

){
∂CZ0

∂η1

+
∂CZδp
∂η1

1

CZδp (η1)

(
m

QS
ξ1 − CZ0(η1)

)}]
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The nonlinear mapping Φ(x) can transform the missile longitudinal dynamics

presented in Eq. (3.2) into the following equations in the normal form.

ξ̇1 = ξ2

ξ̇2 = a(ξ, η) + b(ξ, η)u

η̇ = q(ξ, η)

y = ξ1

(3.12)

where ξ = [ξ1 ξ2]T is the external state vector, η = [η1 η2]T is the internal state

vector, and

a(ξ, η) =
QS

m

[{(
∂2CZ0

∂η2
1

+
∂2CZδp
∂η2

1

x3

)
f̄1(ξ, η) +

QS

mV

(
∂CZ0

∂η1
+
∂CZδp
∂η1

x3

)2

+ 2
∂CZδp
∂η1

f̄3(ξ, η)

}
f̄1(ξ, η) + CZδp (η1)f̄4(ξ, η)

+

(
∂CZ0

∂η1
+
∂CZδp
∂η1

x3

)(
f̄2(ξ, η) +

QS

mV
CZδp (η1)f̄3(ξ, η)

)]

b(ξ, η) =
QS

m
ω2
nCZδp (η1)

q(ξ, η) =
[
f̄1(ξ, η) f̄2(ξ, η)

]T
f̄1(ξ, η) =

1

V
ξ1 + η2

f̄2(ξ, η) =
QSD

Iyy

(
Cm0(η1) + Cmδp (η1)x3 +

D

2V
Cmq(η1)η2

)
f̄3(ξ, η) =− 1

CZδp (η1)

(
∂CZ0

∂η1
+
∂CZδp
∂η1

x3

)
f̄1(ξ, η) +

m

QSCZδp (η1)
ξ2

f̄4(ξ, η) =− ω2
nx3 − 2ζωnf̄3(ξ, η)

Note that x3 in Eq. (3.12) can be expressed as the function of the transformed

variables ξ1 and η1 using Eq. (3.11), and a(ξ, η), b(ξ, η), and q(ξ, η) are well-

defined under Assumptions 3.3 and 3.4. Therefore, the nonlinear equations

in the normal form presented in Eq. (3.12) are valid on Ω. �
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Corollary 3.1: The missile longitudinal dynamics with the acceleration output

presented in Eq. (3.2) is non-minimum phase on Ω.

Proof of Corollary 3.1: The zero dynamics of the nonlinear equations in the

normal form presented in Eq. (3.12) can be obtained by substituting ξ1 = ξ2 = 0

into q(ξ, η) as follows,

η̇1 = η2

η̇2 =
QSD

Iyy

(
Cm0(η1)−

CZ0(η1)Cmδp (η1)

CZδp (η1)
+

D

2V
Cmq(η1)η2

)
(3.13)

Now, let us find the equilibrium points of the zero dynamics on Ω. Substituting

η̇1 = η̇2 = 0 into Eq. (3.13) yields η2 = 0 and

Cm0(η1)−
CZ0(η1)Cmδp (η1)

CZδp (η1)
= 0 (3.14)

Note that the following relationship between the force and moment aerodynamic

coefficients is considered based on the missile geometry in the longitudinal mo-

tion [38].

Cm0(η1) = CZ0(η1)
xcp − xcm

D

Cmδp (η1) = CZδp (η1)
xcf − xcm

D

(3.15)

Substituting Eq. (3.15) into Eq. (3.14) yields

(xcp − xcm)CZ0(η1)CZδp (η1) = (xcf − xcm)CZ0(η1)CZδp (η1) (3.16)

Equation (3.16) implies that xcp = xcf or η1 = 0 under Assumption 3.3.

Because the former contradicts Assumption 3.2, the origin of the zero dy-

namics is the only equilibrium point on Ω. To analyze the behavior of the zero

dynamics near the origin, substituting Eq. (3.15) into Eq. (3.13) simplifies the
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η2-dynamics as follows,

η̇2 =
QSD

Iyy

{
CZ0(η1)

(
xcp − xcf

D

)
+

D

2V
Cmq(η1)η2

}
(3.17)

Using Eqs. (3.13) and (3.17), the Jacobian matrix for the zero dynamics near

the origin can be obtained as

∂q(0, η)

∂η

∣∣∣∣∣
(η1,η2)=(0,0)

=

 0 1

QSD
Iyy

∂CZ0
∂η1

∣∣∣
η1=0

(
xcp−xcf

D

)
QSD2

2IyyV
Cmq(0)

 (3.18)

The characteristic polynomial of the Jacobian matrix can be obtained as follows,

λ2 − QSD2

2IyyV
Cmq(0)λ− QSD

Iyy

∂CZ0

∂η1

∣∣∣∣∣
η1=0

(
xcp − xcf

D

)
= 0 (3.19)

where λ denotes the eigenvalue of the Jacobian matrix. The characteristic poly-

nomial has positive and negative roots, respectively, because the last term on the

left side of Eq. (3.19) is negative under Assumptions 3.2 and 3.3, which im-

plies that the origin of the zero dynamics is an unstable saddle point. Therefore,

the zero dynamics cannot have any asymptotically stable equilibrium points on

Ω, and finally it can be concluded that the missile longitudinal dynamics with

the acceleration output is non-minimum phase on Ω. �

Theorem 3.2: The force induced by the tail-fin deflection, i.e., CZδp (x1)x3

in Eq. (3.2), causes non-minimum phase behavior in the missile longitudinal

dynamics on Ω.

Proof of Theorem 3.2: The longitudinal dynamics presented in Eq. (3.2)

with CZδp (x1) = 0 is defined as an approximate model. For this model, Lie
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derivatives in Theorem 3.1 are rewritten as Lg̃h̃(x) = Lg̃Lf̃ h̃(x) = 0 and

Lf̃ h̃(x) =
∂h̃

∂x1
f̃1(x)

L2
f̃
h̃(x) =

∂Lf̃ h̃
∂x1

f̃1(x) +
∂Lf̃ h̃
∂x2

f̃2(x)

(3.20)

where the tilde denotes a function of the approximate model. The time deriva-

tive of Eq. (3.6) for the approximate model can be obtained as follows,

y(3) = L3
f̃
h̃(x) + Lg̃L2

f̃
h̃(x)u (3.21)

where the superscripted (k), k ≥ 3, denotes the k-th time derivative, and the

Lie derivatives can be presented as

L3
f̃
h̃(x) =

∂L2
f̃
h̃

∂x1
f̃1(x) +

∂L2
f̃
h̃

∂x2
f̃2(x) +

∂L2
f̃
h̃

∂x3
f̃3(x)

Lg̃L2
f̃
h̃(x) = 0

(3.22)

Taking the time derivative of Eq. (3.21) yields

y(4) = L4
f̃
h̃(x) + Lg̃L3

f̃
h̃(x)u (3.23)

where Lg̃L3
f̃
h̃(x) can be calculated as follows,

Lg̃L3
f̃
h̃(x) =

∂L3
f̃
h̃

∂x4
g̃1(x) =

(QS)2D

mIyy

∂CZ0

∂x1
Cmδp (x1)ω2

n (3.24)

Note that Eq. (3.24) is non-zero under Assumption 3.3, which implies that

the relative degree of the approximate model is well-defined as 4 on Ω. Let us

consider the following mapping for the approximate model.

Φ̃(x) =

[
h̃(x) Lf̃ h̃(x) L2

f̃
h̃(x) L3

f̃
h̃(x)

]T
(3.25)
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The Jacobian matrix of Eq. (3.25) can be written as

dΦ̃

dx
=



∂h̃
∂x1

0 0 0

∂Lf̃ h̃
∂x1

∂Lf̃ h̃
∂x2

0 0

∂L2
f̃
h̃

∂x1

∂L2
f̃
h̃

∂x2

∂L2
f̃
h̃

∂x3
0

∂L3
f̃
h̃

∂x1

∂L3
f̃
h̃

∂x2

∂L3
f̃
h̃

∂x3

∂L3
f̃
h̃

∂x4


(3.26)

Using Eqs. (3.22) and (3.24), the determinant of the Jacobian matrix can be

calculated as follows,

Det

[
dΦ̃

dx

]
=

∂h̃

∂x1

∂Lf̃ h̃
∂x2

∂L2
f̃
h̃

∂x3

∂L3
f̃
h̃

∂x4

=

(
QS

m

∂CZ0

∂x1

)4(QSD
Iyy

Cmδp (x1)

)2

(3.27)

Note from Eq. (3.27) that the Jacobian matrix of Φ̃(x) is nonsingular under As-

sumption 3.3. Using the mapping Φ̃(x), the approximate model is transformed

into the following equations in the normal form on Ω.

˙̃
ξ1 = ξ̃2

˙̃
ξ2 = ξ̃3

˙̃
ξ3 = ξ̃4 (3.28)

˙̃
ξ4 = L4

f̃
h̃(x) + Lg̃L3

f̃
h̃(x)u

y = ξ̃1

The nonlinear equations in the normal form for the approximate model are valid

and minimum phase on Ω, because there are no (unstable) internal dynamics. It

means that the force induced by the tail-fin deflection causes the non-minimum

phase behavior in the missile longitudinal dynamics on Ω. �
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3.2.2 System Behavior with Approximate Model-Based Con-

troller

In this section, the following approximate model-based controller is considered,

which deals with the unstable internal dynamics of the tail-fin controlled missile.

u∗ =
1

Lg̃L3
f̃
h̃(x)

(
v∗ − L4

f̃
h̃(x)

)
(3.29)

where v∗ is the control input designed for linear systems. In this study, the

following linear controller is considered.

v∗ = a(4)
zc −

4∑
i=1

ki

(
ξ̃i − a(i−1)

zc

)
(3.30)

where azc is the acceleration command, and ki is the control gain which is set

to be positive constant. The reminder of this section shows the analysis for

the behavior of the actual system controlled by the approximate model-based

control input.

Theorem 3.3: Considering CZδp (x1) to be the external input, the actual missile

system with the approximate model-based controller is finite-gain Lp stable for

each p ∈ [1,∞] on Ω if CZ0(x1) is Ck, k ≥ 4, function of x1.

Proof of Theorem 3.3: The approximate model-based mapping Φ̃(x) trans-

forms the actual missile system into the following nonlinear system.

˙̃
ξ1 = Lf h̃(x) + Lgh̃(x)u

˙̃
ξ2 = LfLf̃ h̃(x) + LgLf̃ h̃(x)u

˙̃
ξ3 = LfL2

f̃
h̃(x) + LgL2

f̃
h̃(x)u

˙̃
ξ4 = LfL3

f̃
h̃(x) + LgL3

f̃
h̃(x)u

(3.31)

35



Considering g̃(x) is equal to g(x), Lgh̃(x), LgLf̃ h̃(x), and LgL2
f̃
h̃(x) are zero,

and Lf h̃(x), LfLf̃ h̃(x), LfL2
f̃
h̃(x), and LfL3

f̃
h̃(x) can be rewritten on Ω as

follows,

Lf h̃(x) = Lf̃ h̃(x) +
QS

mV

∂h̃

∂x1
CZδp (x1)x3

LfLf̃ h̃(x) = L2
f̃
h̃(x) +

QS

mV

∂Lf̃ h̃
∂x1

CZδp (x1)x3

LfL2
f̃
h̃(x) = L3

f̃
h̃(x) +

QS

mV

∂L2
f̃
h̃

∂x1
CZδp (x1)x3

LfL3
f̃
h̃(x) = L4

f̃
h̃(x) +

QS

mV

∂L3
f̃
h̃

∂x1
CZδp (x1)x3

(3.32)

Applying Eq. (3.32) to Eq. (3.31) yields

˙̃
ξ1 = ξ̃2 +

QS

mV

∂h̃

∂x1
CZδp (x1)x3

˙̃
ξ2 = ξ̃3 +

QS

mV

∂Lf̃ h̃
∂x1

CZδp (x1)x3

˙̃
ξ3 = ξ̃4 +

QS

mV

∂L2
f̃
h̃

∂x1
CZδp (x1)x3

˙̃
ξ4 = L4

f̃
h̃(x) +

QS

mV

∂L3
f̃
h̃

∂x1
CZδp (x1)x3 + Lg̃L3

f̃
h̃(x)u

(3.33)

Let us define the acceleration error of the actual missile system and the error

vector of the approximate model as

e = az − azc

ẽ =
[
ẽ1 ẽ2 ẽ3 ẽ4

]T
(3.34)

=
[
ξ̃1 ξ̃2 ξ̃3 ξ̃4

]T
−
[
azc ȧzc äzc a

(3)
zc

]T
Substituting the AIOL-based controller presented in Eq. (3.29) into Eq. (3.33),
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the error dynamics can be obtained as

˙̃e = Ãẽ+
QS

mV
ψ(x)x3CZδp (x1) = fe(ẽ, CZδp (x1)) (3.35)

where

Ã =



0 1 0 0

0 0 1 0

0 0 0 1

−k1 −k2 −k3 −k4


, ψ(x) =



ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)


=



∂h̃
∂x1

∂Lf̃ h̃
∂x1

∂L2
f̃
h̃

∂x1

∂L3
f̃
h̃

∂x1


Note from Eq. (3.35) that the origin of the error dynamics of the approximate

model is exponentially stable for the unforced case regarding CZδp (x1) as the

external input, i.e., ˙̃e = Ãẽ. The components of ψ(x) can be calculated using

Eqs. (3.20) and (3.22) as follows,

∂h̃

∂x1
=
QS

m

∂CZ0

∂x1

∂Lf̃ h̃
∂x1

=
QS

m

{
∂2CZ0

∂x2
1

f̃1(x) +
QS

mV

(
∂CZ0

∂x1

)2
}

∂L2
f̃
h̃

∂x1
=
QS

m

{
∂2CZ0

∂x2
1

f̃2(x) +
∂CZ0

∂x1

(
1

V

∂Lf̃ h̃
∂x1

+
∂f̃2

∂x1

)}
+
∂2Lf̃ h̃
∂x2

1

f̃1(x)

∂L3
f̃
h̃

∂x1
=
QS

m

[
∂3CZ0

∂x3
1

f̃1(x)f̃2(x) +
∂2CZ0

∂x2
1

(
1

V

∂Lf̃ h̃
∂x1

+ 3
∂f̃2

∂x1

)
f̃1(x) (3.36)

+
∂CZ0

∂x1

{
∂f̃2

∂x1

QSD2

2IyyV
Cmq(x1) +

(
2

V

∂2Lf̃ h̃
∂x2

1

+
∂2f̃2

∂x2
1

)
f̃1(x)

}]

+
∂f̃2

∂x1

∂Lf̃ h̃
∂x1

+
QS

mV

∂CZ0

∂x1

∂L2
f̃
h̃

∂x1
+
∂3Lf̃ h̃
∂x3

1

f̃1(x)2 +
∂2L2

f̃
h̃

∂x1∂x2
f̃2(x)

+
(QS)2D

mIyy

(
∂2CZ0

∂x2
1

Cmδp (x1) +
∂CZ0

∂x1

∂Cmδp
∂x1

)
f̃3(x)
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where

∂f̃2

∂x1
=
QSD

Iyy

(
∂Cm0

∂x1
+
∂Cmδp
∂x1

x3 +
D

2V

∂Cmq
∂x1

x2

)
∂2f̃2

∂x2
1

=
QSD

Iyy

(
∂2Cm0

∂x2
1

+
∂2Cmδp
∂x2

1

x3 +
D

2V

∂2Cmq
∂x2

1

x2

)
∂2Lf̃ h̃
∂x2

1

=
QS

m

(
∂3CZ0

∂x3
1

f̃1(x) + 3
QS

mV

∂CZ0

∂x1

∂2CZ0

∂x2
1

)
∂2L2

f̃
h̃

∂x1∂x2
=

(QS)2

mV

{
D2

2Iyy

(
∂2CZ0

∂x2
1

Cmq(x1) +
∂CZ0

∂x1

∂Cmq
∂x1

)
+

1

m

∂CZ0

∂x1

∂2CZ0

∂x2
1

}
+
QS

m

∂3CZ0

∂x3
1

f̃1(x) +
∂2Lf̃ h̃
∂x2

1

∂3Lf̃ h̃
∂x3

1

=
QS

m

[
∂4CZ0

∂x4
1

f̃1(x) +
QS

mV

{
3

(
∂2CZ0

∂x2
1

)2

+ 4
∂CZ0

∂x1

∂3CZ0

∂x3
1

}]

Note that ψ(x) is well-defined and bounded on Ω if CZ0(x1) is Ck, k ≥ 4,

function of x1, because f̃1(x), f̃2(x), and f̃3(x) are bounded on Ω. Consequently,

the following inequality can be obtained based on the bounded property of ψ(x).

‖fe(ẽ, CZδp (x1))− fe(ẽ, 0)‖ =
QS

mV
‖ψ(x)x3CZδp (x1)‖

≤ QS

mV
cψcx3 |CZδp (x1)| (3.37)

where cψ is a positive constant. The origin of the error dynamics of the ap-

proximate model for unforced case is exponentially stable, and therefore there

exists a C1 function Ṽ (ẽ) that satisfies the following inequalities based on the

converse Lyapunov theorem [60].

c1‖ẽ‖2 ≤ Ṽ (ẽ) ≤ c2‖ẽ‖2

∂Ṽ

∂ẽ
fe(ẽ, 0) ≤ −c3‖ẽ‖2 (3.38)∥∥∥∥∥∂Ṽ∂ẽ

∥∥∥∥∥ ≤ c4‖ẽ‖
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where ci for i = 1, · · · , 4 are positive constants. Applying Eq. (3.38) to the time

derivative of Ṽ (ẽ), the following relation can be obtained.

dṼ

dt
=
∂Ṽ

∂ẽ
fe(ẽ, 0) +

∂Ṽ

∂ẽ

(
fe(ẽ, CZδp (x1))− fe(ẽ, 0)

)
≤ −c3‖ẽ‖2 + c4

QS

mV
cψcx3‖ẽ‖|CZδp (x1)|

≤ −c3

c2
Ṽ (ẽ) + c4

QS

mV
cψcx3

√
Ṽ (ẽ)

c1
|CZδp (x1)| (3.39)

Defining W̃ (t) as
√
Ṽ (ẽ(t)), the upper Dini derivative of W̃ (t) satisfies the

following inequality for all V (ẽ) ≥ 0 based on Eq. (3.39).

D+W̃ (t) ≤ − c3

2c2
W̃ (t) +

c4

2
√
c1

QS

mV
cψcx3 |CZδp (x1)| (3.40)

whereD+ denotes the upper Dini derivative. As a result, the following inequality

can be obtained by the comparison lemma.

W̃ (t) ≤ e−
c3
2c2

t
W̃ (0) +

c4

2
√
c1

QS

mV
cψcx3

∫ t

0
e
− c3

2c2
(t−τ)|CZδp (x1(τ))|dτ (3.41)

Considering Eq. (3.41) and
√
c1‖ẽ(t)‖ ≤ W̃ (t) ≤ √c2‖ẽ(t)‖ given in Eq. (3.38),

the error vector of the approximate model satisfies the following equation.

‖ẽ(t)‖ ≤
√
c2

c1
e
− c3

2c2
t‖ẽ(0)‖

+
c4

2c1

QS

mV
cψcx3

∫ t

0
e
− c3

2c2
(t−τ)|CZδp (x1(τ))|dτ (3.42)

The magnitude of actual acceleration error satisfies the following inequality.

|e| =
∣∣∣∣h̃(x) +

QS

m
x3CZδp (x1)− azc

∣∣∣∣
=

∣∣∣∣ẽ1 +
QS

m
x3CZδp (x1)

∣∣∣∣
≤ ‖ẽ‖+

QS

m
cx3 |CZδp (x1)| (3.43)
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Substituting Eq. (3.42) into Eq. (3.43) yields

|e(t)| ≤
√
c2

c1
e
− c3

2c2
t‖ẽ(0)‖+

QS

m
cx3 |CZδp (x1(t))|

+
c4

2c1

QS

mV
cψcx3

∫ t

0
e
− c3

2c2
(t−τ)|CZδp (x1(τ))|dτ (3.44)

The p-norm of truncation of the first term on the right side in Eq. (3.44) satisfies

the following inequality.∥∥∥∥[√c2

c1
e
− c3

2c2
t‖ẽ(0)‖

]
τ

∥∥∥∥
Lp
≤ ρ̄
√
c2

c1
‖ẽ(0)‖ (3.45)

where the subsrcipt τ denotes the truncation of the function, and

ρ̄ =

{
1 if p =∞(

2c2
c3p

)p
if p ∈ [1,∞)

Likewise, the p-norms of truncation of other terms on the right side in Eq. (3.44)

satisfy the following equations.∥∥∥∥[QSm cx3 |CZδp (x1)|
]
τ

∥∥∥∥
Lp
≤ QS

m
cx3

∥∥∥[CZδp (x1)
]
τ

∥∥∥
Lp∥∥∥∥[ c4

2c1

QS

mV
cψcx3

∫ t

0
e
− c3

2c2
(t−τ)|CZδp (x1(τ))|dτ

]
τ

∥∥∥∥
Lp

(3.46)

≤ c2c4

c1c3

QS

mV
cψcx3

∥∥∥[CZδp (x1)
]
τ

∥∥∥
Lp

Based on Eqs. (3.45), (3.46), and the triangle inequality, the p-norm of trunca-

tion of the acceleration error satisfies the following inequality.

‖[e]τ‖Lp ≤
QS

m
cx3

(
1 +

c2c4cψ
c1c3V

)∥∥∥[CZδp (x1)
]
τ

∥∥∥
Lp

+

√
c2

c1
ρ̄‖ẽ(0)‖ (3.47)

Equation (3.47) implies that the actual system controlled by the AIOL-based

control input is finite-gain Lp stable on Ω for each p ∈ [1,∞] and CZδp (x1)

included in the extended Lp space considering CZδp (x1) to be the external

input. �
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Corollary 3.2: The approximate model-based controller presented in Eq. (3.29)

perfectly regulates the output of the actual missile system for a sufficiently small

CZδp (x1).

Proof of Corollary 3.2: For the zero acceleration command, Eq. (3.35) can

be rewritten as

˙̃
ξ = Ãξ̃ +

QS

mV
ψ(x)x3CZδp (x1) (3.48)

where ξ̃ = [ξ̃1 ξ̃2 ξ̃3 ξ̃4]T . Based on Eqs. (3.20), (3.22), (3.25), and (3.26), it

can be seen that ‖Φ̃(x)‖ = 0 if and only if ‖x‖ = 0 under Assumption 3.3.

Consequently, since the mapping Φ̃(x) is bounded on Ω, there exists a positive

constant cx satisfying the following inequality except for ‖x‖ = 0.

1

cx
≤ ‖Φ̃(x)‖
‖x‖

=
‖ξ̃‖
‖x‖

(3.49)

Using Eq. (3.49) and the bounded properties of ψ(x) and CZδp (x1) on Ω, the

following can be obtained.∥∥∥∥QSmV ψ(x)x3CZδp (x1)

∥∥∥∥ ≤ QS

mV
cψcδp‖x‖ ≤

QS

mV
cψcδpcx‖ξ̃‖ (3.50)

where cδp is a positive constant such that |CZδp (x1)| ≤ cδp . Equation (3.48)

with CZδp = 0 still holds the inequailities presented in Eq. (3.38) based on the

converse Lyapunov theorem. Therefore, the time derivative of Ṽ (ξ̃) satisfies the

following inequality considering Eqs. (3.38) and (3.50).

dṼ

dt
≤ −c3‖ξ̃‖2 +

∥∥∥∥∥∂Ṽ∂ξ̃
∥∥∥∥∥
∥∥∥∥QSmV ψ(x)x3CZδp (x1)

∥∥∥∥
≤ −

(
c3 − c4

QS

mV
cψcδpcx

)
‖ξ̃‖2 (3.51)
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Equation (3.51) implies that the origin of Eq. (3.48) is asymptotically stable if

the following condition holds.

c3 − c4
QS

mV
cψcδpcx > 0 (3.52)

The magnitude of the acceleration error also satisfies the following inequality.

|az| =
∣∣∣∣ξ̃1 +

QS

m
CZδp (x1)x3

∣∣∣∣ ≤ |ξ̃1|+
QS

m
cδp‖x‖ ≤

(
1 +

QS

m
cδpcx

)
‖ξ̃‖ (3.53)

Note from Eq. (3.53) that the actual acceleration converges to zero as t → ∞

for the small CZδp (x1) satisfying the condition presented in Eq. (3.52). �

Remark 3.2: If the approximate model-based controller is designed neglecting

the actuator dynamics based on the singular perturbation theory, Theorem

3.3 and Corollary 3.2 hold true without the condition that CZ0(x1) is Ck,

k ≥ 4, function of x1. The reason is that all functions required for the proofs

associated with the missile system neglecting the actuator dynamics are well-

defined and bounded under Assumption 3.4.
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3.3 Numerical Example

In this section, numerical example is presented to illustrate the analysis for the

missile longitudinal dynamics using the hypothetical aerodynamic data and

physical parameters of the missile. The physical parameters are summarized in

Table. 3.1. The following aerodynamic models at a specified altitude of 6, 096 m

and Mach number of 2 are used [45].

CZ(α) = CZ0(α) + CZδp δp = anα
3 + bnα+ cnδp

Cm(α) = Cm0(α) + Cmδp δp +
D

2V
Cmqq = amα

3 + bmα+ cmδp + dmq
(3.54)

where the numerical values of the aerodynamic coefficients are summarized in

Table 3.2. Note that Assumptions 3.3 and 3.4 are satisfied for the consid-

ered hypothetical aerodynamic models. The constants for the region of interest

presented in Eq. (3.3) are set as

cx1 =
π

6
rad, cx2 = 2π rad/s, cx3 =

π

6
rad, cx4 = 6π rad/s (3.55)

Numerical simulation is performed for the missile longtudinal dynamics con-

trolled by the approximate model-based controller presented in Eq. (3.29) with

following control gains.

k1 = 2.5× 106, k2 = 2.4× 105, k3 = 1.5× 104, k4 = 100 (3.56)

To demonstrate the effects of CZδp (x1) on the actual missile system, CZδp (x1)

is replaced with εCZδp (x1), for ε = 0, 1, 2, 3, in the simulation. Note that the

case of ε = 0 shows the behavior of the approximate model controlled by the

approximate model-based controller. The parameters of the actuator dynamics

are set as ωn = 15 Hz and ζ = 0.8, and all the initial conditions are set to zero.
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Table 3.1 Physical parameters of the missile

Symbol Name Value

m Mass 204.023 kg

Iyy Moment of Inertia 247.429 kg ·m2

S Reference Area 0.041 m2

D Reference Length 0.229 m

ā Speed of Sound 316.032 m/s

ρ Density of Air 0.653 kg/m2

Table 3.2 Numerical values of aerodynamic coefficients

Normal Force Pitch Moment

an = −39.571 am = −81.189

bn = −12.956 bm = −4.871

cn = −1.948 cm = −11.803

dm = −1.719
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Figures 3.1 and 3.2 show the simulation results, where the dash line rep-

resents the acceleration command signal, the solid line without marker repre-

sents the responses for the case of ε = 0, and the solid lines with the triangle,

square, and circle markers represent the responses for the cases of ε = 1, 2, 3,

respectively. Figure 3.1 shows the time responses of the acceleration output for

the cases of ε = 0, 1, 2, 3. For the desired non-zero acceleration command, the

larger tracking errors and effects of the undershoot are shown for the larger ε

values. Furthermore, all responses have zero steady-state errors for the desired

zero command. These results are consistent with the analyses of Theorem 3.3

and Corollary 3.2. For the case of ε = 0, no undershoot phenomenon appears,

which implies that the force induced by the fin deflection, non-zero ε case, causes

the non-minimum phase behavior shown in Theorem 3.2. Figure 3.2 shows

the time responses of the state variables including the angle of attack, pitch

rate, pitch fin delflection, and its time derivative for the cases of ε = 0, 1, 2, 3.

These results show that all responses for each ε of state variables are nearly

identical and within the region of interest, which is set as in Eq. (3.55).
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Figure 3.2 Time responses of the state variables for ε = 0, 1, 2, 3
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Chapter 4

Analysis of State-Dependent Riccati
Equation Method for Missile
Longitudinal Autopilot

4.1 Problem Statement

In this chapter, the analysis of the SDRE method is performed for the missile

longitudinal autopilot. First, the analytic solution of the state-dependent ARE

is obtained. Note that the state-dependent ARE is usually solved at each step

using the numerical algorithm due to the difficulty of obtaining the analytic so-

lution. The properties of the analytic solution including the nonsingularity and

symmetry of matrices are also shown. Second, the missile acceleration autopi-

lot for the longitudinal dynamics is designed based on the SDRE method. The

analytic representation of the closed-loop system is obtained using the analytic

solution of the state-dependent ARE. Finally, the stability of the missile longi-

tudinal closed-loop system controlled by the SDRE method is analyzed based

on the Lyapunov stability theorem using the analytic solution of the SDRE

method.
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4.2 Analytic Solution of State-Dependent Riccati Equa-

tion

This section presents the analytic solution of the following two-dimensional

state-dependent ARE.

F (x)TX(x) +X(x)F (x)−X(x)G(x)X(x) +H(x) = 0 (4.1)

where F (x), G(x), H(x), and X(x) ∈ R2×2 are the state-dependent matrices.

Note that the state-dependent matrices G(x) and H(x) match the matrices

B(x)R(x)−1B(x)T and Q(x) in Eq. (2.22), respectively. To obtain the positive

definite stabilizing solution X(x), it is assumed that Conditions 2.1-2.3 are

satisfied for the state-dependent matrices in Eq. (4.1). The components of the

state-dependent matrices F (x), G(x), and H(x) are defined as

F (x) =

 f1 f2

f3 f4

 , G(x) =

 g1 g2

g2 g3

 , H(x) =

 h1 h2

h2 h3

 (4.2)

where the dependence of x is omitted for notational convenience.

Remark 4.1: Equation (4.2) shows that there is no restriction on the com-

ponents of the state-dependent matrices included in Eq. (4.1) except for Con-

ditions 2.1-2.3, which are necessary for the existence of the positive definite

stabilizing solution. In contrast, the existing works which obtain the analytic

solution of the SDRE method impose restrictions on the components of the

state-dependent matrices. For example, f1, f3, g1, and g2 are zero in Ref. [11],

and f1, g1, and g3 are zero in Ref. [12] under Conditions 2.1-2.3.
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4.2.1 Process of Obtaining Analytic Solution

This section presents the process of obtaining the analytic solution of the state-

dependent ARE using the matrix sign function with the following lemma [61].

Lemma 4.1: The solution of the ARE can be obtained as X = W22W
−1
12 , where

W12, W22 ∈ R2×2 are block matrices of the following matrix.

W =
1

2

{
sign[M̄ ]− I4

}
=

 W11 W12

W21 W22

 (4.3)

where sign[·] denotes a matrix sign function, M̄ is the Hamiltonian matrix that

corresponds to the ARE, and I4 is a 4× 4 identity matrix.

The proof of Lemma 4.1 can be found in Ref. [61]. Note that Lemma 4.1 is

generally used to solve the ARE numerically. However, in this study, Lemma

4.1 is used to obtain the analytic solution of the state-dependent ARE by

representing the matrix sign function of the Hamiltonian matrix. Assuming

that Re[λ[M̄ ]] 6= 0, the following definition of the matrix sign function via the

principal matrix square root is used [62].

sign(M̄) = M̄−1
(√

M̄2
)

(4.4)

where λ[·] denotes the eigenvalue of matrix, and Re[·] denotes the real part.

The principal square root of M̄2, which is denoted as
√
M̄2, is defined as [63](√

M̄2
)2

= M̄2 and Re
[
λk

(√
M̄2
)]

> 0 for all k (4.5)

For the state-dependent ARE presented in Eq. (4.1), the state-dependent Hamil-

tonian matrix is constructed as follows,

M̄(x) =

 F (x) −G(x)

−H(x) −F (x)T

 (4.6)
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Considering the property of the Hamiltonian matrix, if λ is the eigenvalue

of M̄(x), then −λ, λ̄, and −λ̄ are also eigenvalues of M̄(x). Therefore, the

eigenvalues of M̄(x) can be expressed for the real eigenvalue case (Case 1) and

for the complex eigenvalue case (Case 2) as follows [64],

λ
[
M̄(x)

]
=

 a,−a, b,−b (Case 1)

a+ bi,−a+ bi, a− bi,−a− bi (Case 2)
(4.7)

where a, b ∈ R+. Because the Hamiltonian matrix has no eigenvalue on the

imaginary axis under Condition 2.3, a and b are non-zero. The square of

M̄(x) can be written as

M̄(x)2 =



p1 q1 0 r1

q2 p2 −r1 0

0 −r2 p1 q2

r2 0 q1 p2


(4.8)

where

p1 = f2
1 + f2f3 + g1h1 + g2h2, p2 = f2

4 + f2f3 + g2h2 + g3h3

q1 = f1f2 + f2f4 + g1h2 + g2h3, q2 = f1f3 + f3f4 + g2h1 + g3h2

r1 = f3g1 + f4g2 − f1g2 − f2g3, r2 = f2h1 + f4h2 − f1h2 − f3h3

The characteristic polynomial of M̄(x) can be obtained as follows,

λ[M̄(x)]4 − (p1 + p2)λ[M̄(x)]2 + ∆M̄ = 0 (4.9)

where ∆M̄ is the determinant of M̄(x). Note that the characteristic polynomial

of a real Hamiltonian matrix is even [64], which is consistent with Eq. (4.9).

The determinant of M̄(x) can be written using Eq. (4.8) as

∆M̄ = p1p2 − q1q2 − r1r2 (4.10)
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Since the determinant of matrix is equal to the product of its eigenvalues, the

determinant of M̄(x) can be rewritten for each case as

∆M̄ =

 a2b2 (Case 1)(
a2 + b2

)2
(Case 2)

(4.11)

Note from Eq. (4.11) that ∆M̄ is positive for any a, b ∈ R+. Consequently, the

following inverse matrix of M̄(x) is non-singular.

M̄(x)−1 =
1

∆M̄



m1 m3 m5 m7

m4 m2 m7 m6

m8 m10 −m1 −m4

m10 m9 −m3 −m2


(4.12)

where

m1 = f1f
2
4 + f1g3h3 + f4g2h2 − f2f3f4 − f2g3h2 − f3g2h3

m2 = f2
1 f4 + f1g2h2 + f4g1h1 − f1f2f3 − f2g2h1 − f3g1h2

m3 = f2
2 f3 + f2g2h2 + f3g1h3 − f1f2f4 − f1g2h3 − f4g1h2

m4 = f2f
2
3 + f2g3h1 + f3g2h2 − f1f3f4 − f1g3h2 − f4g2h1

m5 = g2
2h3 + 2f2f4g2 − f2

2 g3 − f2
4 g1 − g1g3h3

m6 = g2
2h1 + 2f1f3g2 − f2

1 g3 − f2
3 g1 − g1g3h1

m7 = f1f2g3 + f3f4g1 + g1g3h2 − f1f4g2 − f2f3g2 − g2
2h2

m8 = g3h
2
2 + 2f3f4h2 − f2

3h3 − f2
4h1 − g3h1h3

m9 = g1h
2
2 + 2f1f2h2 − f2

1h3 − f2
2h1 − g1h1h3

m10 = f1f3h3 + f2f4h1 + g2h1h3 − f1f4h2 − f2f3h2 − g2h
2
2
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Lemma 4.2: The principal square root of M̄(x)2 can be obtained as follows,√
M̄(x)2 =

1√
d

(
M̄(x)2 +

√
∆M̄I4

)

=
1√
d



p1 +
√

∆M̄ q1 0 r1

q2 p2 +
√

∆M̄ −r1 0

0 −r2 p1 +
√

∆M̄ q2

r2 0 q1 p2 +
√

∆M̄


(4.13)

where d = p1 + p2 + 2
√

∆M̄ .

Proof of Lemma 4.2: Using the property of the matrix trace, the following

relation can be obtained.

p1 + p2 =
1

2
tr
[
M̄(x)2

]
(4.14)

where tr[·] denotes the matrix trace. Based on Eq. (4.14), d in Eq. (4.13) can

be rewritten as

d =
1

2
tr
[
M̄(x)2

]
+ 2
√

∆M̄ (4.15)

The trace of M̄(x)2 can be expressed using the eigenvalue of the Hamiltonian

matrix for each case as

tr
[
M̄(x)2

]
=

4∑
i=1

(
λi
[
M̄(x)

])2
=

 2(a2 + b2) (Case 1)

4(a2 − b2) (Case 2)
(4.16)

Substituting Eqs. (4.11) and (4.16) into Eq. (4.15) yields

d =

 a2 + b2 + 2|ab| (Case 1)

4a2 (Case 2)
(4.17)
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Equation (4.17) shows that d is positive for any a, b ∈ R+. Applying the Cayley-

Hamilton theorem to Eq. (4.9), the following matrix equation can be obtained.

M̄(x)4 − (p1 + p2)M̄(x)2 + ∆M̄I4 = 0 (4.18)

Substituting Eq. (4.18) into the square of Eq. (4.13) yields(√
M̄(x)2

)2

=
1

d

(
M̄(x)2 +

√
∆M̄I4

)2

=
1

d

(
M̄(x)4 + 2

√
∆M̄M̄(x)2 + ∆M̄I4

)
=

1

d

{
(p1 + p2)M̄(x)2 + 2

√
∆M̄M̄(x)2

}
= M̄(x)2 (4.19)

Equation (4.19) shows that the square of Eq. (4.13) is equal to M̄(x)2, which is

consistent with the definition of the principal square root of matrix in Eq. (4.5).

The eigenvalues of Eq. (4.13) with even algebraic multiplicity can be expressed

as follows,

λ

[√
M̄(x)2

]
=

1

2
√
d

(
d±

√
(p1 + p2)2 − 4∆M̄

)
(4.20)

Substituting Eqs. (4.11), (4.16), and (4.17) into Eq. (4.20), we have

λ

[√
M̄(x)2

]
=


1

2
√
d

(
a2 + b2 + 2|ab| ± |a2 − b2|

)
(Case 1)

2√
d

(
a2 ± |ab|i

)
(Case 2)

(4.21)

From Eq. (4.21), the real part of the eigenvalues of
√
M̄(x)2 can be obtained

as follows,

Re

[
λ

[√
M̄(x)2

]]
=


a2+|ab|√

d
or b2+|ab|√

d
(Case 1)

2√
d
a2 (Case 2)

(4.22)

Equation (4.22) implies that all the real parts of the eigenvalues of
√
M̄(x)2 are

positive for any a, b ∈ R+. Therefore, based on Eq. (4.5), it can be concluded

that Eq. (4.13) is the principal square root of M̄(x)2. �
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Using Eqs. (4.12), (4.13), and the relation M̄(x)−1M̄(x)2 = M̄(x), W12(x)

and W22(x) in Eq. (4.3) can be obtained as follows,

W12(x) =
1

2
√
d∆M̄

 w1 w2

w2 w3


W22(x) = − 1

2
√
d∆M̄

 w4 w5

w6 w7


(4.23)

where

w1 = m5 − g1

√
∆M̄ , w2 = m7 − g2

√
∆M̄ , w3 = m6 − g3

√
∆M̄

w4 = m1 +
(
f1 +

√
d
)√

∆M̄ , w5 = m4 + f3

√
∆M̄

w6 = m3 + f2

√
∆M̄ , w7 = m2 +

(
f4 +

√
d
)√

∆M̄

From Eq. (4.23), the inverse matrix of W12(x) can be expressed as follows,

W12(x)−1 =
1

2∆W

√
d∆M̄

 w3 −w2

−w2 w1

 (4.24)

where ∆W is the determinant of W12(x). Using Eqs. (4.23) and (4.24), the

analytic solution of the state-dependent ARE in Eq. (4.1) can be obtained

based on Lemma 4.1 as follows,

X(x) =
1

4d∆M̄∆W

 x̂1 x̂2

x̂′2 x̂3

 =

 x1,1 x1,2

x2,1 x2,2

 (4.25)

where

x̂1 = w2w5 − w3w4, x̂2 = w2w4 − w1w5

x̂′2 = w2w7 − w3w6, x̂3 = w2w6 − w1w7
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4.2.2 Properties of Analytic Solution

Lemma 4.3: W12(x) in Eq. (4.23) is a non-singular matrix.

Proof of Lemma 4.3: For the non-singular matrix G(x) in Eq. (4.1), it was

proven that W12(x) is non-singular [65]. Now, let us investigate the case that

G(x) is the singular matrix. If G(x) is singular, i.e., g1g3 − g2
2 = 0, the deter-

minant of W12 can be rewritten as

∆W =
1

4d
√

∆M̄

(f3g1 + f4g2 − f1g2 − f2g3)2 (4.26)

The state-dependent controllability matrix of the pair (F (x), G(x)) can be con-

structed as follows,

CF,G(x) =

 g1 g2 f1g1 + f2g2 f1g2 + f2g3

g2 g3 f3g1 + f4g2 f3g2 + f4g3

 =

 CO1(x)

CO2(x)

 (4.27)

Let us assume that the determinant of W12(x) is zero. Then, the following

equality is satisfied based on Eq. (4.26).

f3g1 + f4g2 = f1g2 + f2g3 (4.28)

Noth that, if g2 is non-zero, g1 and g3 are also non-zero because g1g3 − g2
2 = 0,

and g2CO1(x) = g1CO2(x) based on Eqs. (4.27) and (4.28). Otherwise, if g2

is zero, g1g3 should be zero, and the state-dependent controllability matrix in

Eq. (4.27) should have at least one row of all zeros. Therefore, if the determinant

of W12(x) is zero, the controllability matrix cannot be a full-rank matrix, which

implies that the pair (F (x), G(x)) is point-wise uncontrollable. This assumption

contradicts Condition 2.3, and therefore the determinant of W12(x) cannot

be zero, i.e., W12(x) is a non-singular matrix. �
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Lemma 4.4: The analytic solution X(x) in Eq. (4.25) is a symmetric matrix.

Proof of Lemma 4.4: Based on Eq. (4.23), x̂2 − x̂′2 can be expressed as

x̂2 − x̂′2 = w2w4 + w3w6 − w1w5 − w2w7

= r1∆M̄ + u1

√
∆M̄ + u2 (4.29)

where

u1 = −g2(m1 −m2)− g3m3 + g1m4 − f3m5 + f2m6 + (f1 − f4)m7

u2 = m1m7 +m3m6 −m2m7 −m4m5

Using the relation that M̄(x)−1M̄(x) = I4, the following relations can be ob-

tained.

g2m1 + g3m3 + f3m5 + f4m7 = 0

g2m2 + g1m4 + f2m6 + f1m7 = 0

(4.30)

Applying Eq. (4.30) to Eq. (4.29) yields that u1 is zero, and the following

relation can be obtained based on
(
M̄(x)−1

)2
=
(
M̄(x)2

)−1
.

u2 = m1m7 +m3m6 −m2m7 −m4m5

= −p1p2r1 + q1q2r1 + r2
1r2 (4.31)

Equation (4.31) can be rewritten as u2 = −r1∆M̄ using Eq. (4.10). Finally,

based on Eq. (4.29) and u1 = 0, it can be concluded that x̂2− x̂′2 = 0, i.e., X(x)

is a symmetric matrix. �
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4.3 Stability Analysis of Missile Longitudinal Closed-

Loop System

In this section, stability analysis is performed for the missile longitudinal closed-

loop system controlled by the SDRE method using the analytic solution of the

state-dependent ARE, which is obtained in the previous section.

4.3.1 Design of Missile Longitudinal Autopilot Using State-

Dependent Riccati Equation Method

The autopilot is designed based on the missile longitudinal dynamics in Eq. (2.16).

Assuming the fast and stable actuator of the missile, the actuator dynamics is

neglected based on the singular perturbation theory. Now, the missile longitu-

dinal dynamics in Eq. (2.16) can be rewritten as follows,

ẋl = fl(xl) + gl(xl)ul

zl = hl(xl)

(4.32)

where xl = [α q]T , ul = δp, zl = az, and

fl(xl) =

 QS
mV CZα(M, xl)α+ q

QSD
Iyy

(
Cmα(M, xl)α+ D

2V Cmq(M, xl)q
)


gl(xl) =

 QS
mV CZδp (M, xl)

QSD
Iyy

Cmδp (M, xl)


hl(xl) =

QS

m

(
CZα(M, xl)α+ CZδp (M, xl)δp

)
The region of interest of xl is defined as Ωl = {(α, q)| α ∈ Ωα and q ∈ R},

where Ωα is the normal operational range of the angle of attack, and the fol-

lowing assumptions are considered.
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Assumption 4.1: The total velocity is fixed.

Assumption 4.2: The aerodynamic force and moment coefficients CZα(M, xl),

CZδp (M, xl), Cmα(M, xl), Cmδp (M, xl), and Cmq(M, xl) are negative on Ωl for

any fixed M > 0.

Note from Assumption 4.1 that the aerodynamic force and moment coef-

ficients only depend on the angle of attack. Also, under Assumption 4.2,

fl(0) = 0 and gl(xl) 6= 0 on Ωl. Therefore, Eq. (4.32) can be transformed into

the following pseudo-linear system using the SDC transformation.

ẋl = A(xl)xl +B(xl)xl

zl = H(xl)xl + L(xl)ul

(4.33)

where

A(xl) =

 QS
mV CZα(xl) 1

QSD
Iyy

Cmα(xl)
QSD2

2IyyV
Cmq(xl)

 =

 a1 1

a2 a3


B(xl) =

 QS
mV CZδp (xl)

QSD
Iyy

Cmδp (xl)

 =

 b1

b2


E(xl) =

[
a1V 0

]
, L(xl) = b1V

Under Assumption 4.2, a1, a2, a3, b1, and b2 are negative on Ωl. To design the

SDRE-based control input, the following quadratic cost function is considered.

J =
1

2

∫ ∞
0

(
z2
l qw + u2

l rw
)
dt (4.34)

where qw and rw are weighting parameters which are set to be positive constant.

Substituting Eq. (4.33) into Eq. (4.34) yields

J =
1

2

∫ ∞
0

(
xTl Q(xl)xl + uTl R(xl)ul + 2xTl N(xl)ul

)
dt (4.35)
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where

Q(xl) = qwE(xl)
TE(xl), R(xl) = rw + qwL(xl)

2, N(xl) = qwL(xl)E(xl)
T

The following state-dependent ARE is constructed based on the quadratic cost

function in Eq. (4.35).

A(xl)
TX(xl) +X(xl)A(xl) +Q(xl)

− (X(xl)B(xl) +N(xl))R(xl)
−1
(
B(xl)

TX(xl) +N(xl)
T
)

= 0 (4.36)

Using the solution of the state-dependent ARE X(xl), the full-state feedback

control input based on the SDRE method can be obtained as follows,

ul = −R(xl)
−1
(
B(xl)

TX(xl) +N(x)T
)
xl = −K(xl)xl (4.37)

The state-dependent ARE in Eq. (4.36) can be modified as follows,

Â(xl)
TX(xl) +X(xl)Â(xl)

−X(xl)B(xl)R(xl)
−1B(xl)

TX(xl) + Q̂(xl) = 0 (4.38)

where

Â(xl) = A(xl)−B(xl)R(xl)
−1N(xl)

T =

 â1 1

â2 a3


Q̂(xl) = Q(xl)−N(xl)R(xl)

−1N(xl)
T =

 q̂ 0

0 0


and

â1 =
rw

rw + b21V
2qw

a1, â2 = a2 −
b1b2V

2qw
rw + b21V

2qw
a1, q̂ =

V 2qwrw
rw + b21V

2qw
a2

1
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Note that â1 and q̂ are negative and positive, respectively, because a1 is negative

on Ωl. The state-dependent ARE presented in Eq. (4.38) has the same form of

Eq. (4.1) with the following relations.

F (xl) = Â(xl)

G(xl) = B(xl)R(xl)
−1B(xl)

T (4.39)

H(xl) = Q̂(xl)

The analytic solution of the state-dependent ARE obtained in the privious

section can be applied to the state-dependent ARE for the missile longitudinal

autopilot based on the matrix relations presented in Eq. (4.39). The components

of B(xl)R(xl)
−1B(xl)

T can be represented as

B(xl)R(xl)
−1B(xl)

T =

 r̂1

√
r̂1r̂2

√
r̂1r̂2 r̂2

 (4.40)

where

r̂1 =
b21

rw + b21V
2qw

, r̂2 =
b22

rw + b21V
2qw

From Eq. (4.40), it is clear that r̂1 and r̂2 are positive on Ωl.

4.3.2 Stability Analysis Using Analytic Solution

To analyze the stability of the closed-loop system controlled by the SDRE

method, the following two assumptions are considered based on the properties

of the tail-fin controlled missile.

Assumption 4.3: The term 4a1b1 + b2 is negative on Ωl.

Assumption 4.4: The term (a3b1 + b2)a1 − 2a2b1 is positive on Ωl.
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Remark 4.2: Assumption 4.3 is valid for most tail-fin controlled missiles,

because b2 usually dominates 4a1b1. That is because QSD/Iyy is generally much

greater than QS/(mV ) in normal operational range of the missile. Moreover,

Cmδp (xl) is greater than CZδp (xl) considering Eq. (3.15). Therefore, the magni-

tude of b2 is usually much greater than those of a1 and b1 considering Eq. (4.33).

Similarly, Assumption 4.4 is reasonable for most tail-fin controlled missiles.

Using Eq. (4.33), the term (a3b1 + b2)a1 − 2a2b1 in Assumption 4.4 can be

rewritten as follows,

(a3b1 + b2)a1 − 2a2b1

=
Q2S2D

mV Iyy
CZα(xl)CZδp (xl)

{
(xcf − xcp)− (xcp − xcm)

D
+
QS

mV
Ĉmq(xl)

}
(4.41)

where Ĉmq(xl) = (D/2V )Cmq(xl). Note that xcf − xcp represents the distance

from the aerodynamic center of the tail-fin to the center of pressure for the

missile’s body, and xcp−xcm represents the distance from the center of pressure

to the center of mass. Considering the normal operational range of the tail-fin

controlled missile, the magnitude of the former is generally much greater than

that of the latter. Also, because QS/(mV ) usually has a small value, it is valid

to assume that (a3b1 + b2)a1 − 2a2b1 is positive on Ωl.

Before analyzing the stability of the closed-loop system, Conditions 2.1-

2.3 should be examined for the designed longitudinal autopilot for the existence

of the positive definite stabilizing solution of the state-dependent ARE. First of

all, it is obvious that Conditions 2.1 and 2.2 are satisfied on Ωl considering

Eqs. (4.33) and (4.35). For Condition 2.3, the point-wise controllability can be

examined using the pair (Â(xl), B(xl)), which has the following controllability
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matrix.

CÂ,B(xl) =

 b1 â1b1 + b2

b2 â2b1 + a3b2

 (4.42)

The determinant of CÂ,B(xl) can be expressed as

Det[CÂ,B(xl)] = â2b
2
1 + a3b1b2 − b2(â1b1 + b2) (4.43)

From Eq. (4.38), the following relation can be obtained.

â1b2 − â2b1 =
rw

rw + b21V
2qw

a1b2 −
(
a2 −

b1b2V
2qw

rw + b21V
2qw

a1

)
b1

=
1

rw + b21V
2qw

(a1b2rw + a1b
2
1b2V

2qw)− a2b1

= a1b2 − a2b1 (4.44)

Using Eq. (4.44), the determinant of CÂ,B(xl) can be rewritten as

Det[CÂ,B(xl)] = a2b
2
1 + a3b1b2 − b2(a1b1 + b2) (4.45)

Under Assumption 4.3, a1b1 + b2 is negative on Ωl. Therefore, the determi-

nant of CÂ,B(xl) is negative, because a2, a3, b1, and b2 are all negative on Ωl,

which implies that the pair (Â(xl), B(xl)) is point-wise controllable on Ωl under

Assumption 4.3. Similarly, the observability matrix of the pair (Â(xl), Q̂(xl))

can be obtained as follows,

OÂ,Q̂(xl) = q̂

 1 0 â1 0

0 0 1 0

T (4.46)

Because q̂ is positive, the observability matrix has rank 2, and it implies that

the pair (Â(xl), Q̂(xl)) is point-wise observable on Ωl. Therefore, Condition

2.3 is satisfied on Ωl under Assumption 4.3.
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The stability analysis starts from representing the closed-loop system con-

trolled by the designed autopilot using the analytic solution of the state-dependent

ARE as follows,

ẋl = A(xl)xl −B(xl)K(xl)xl

= A(xl)xl −B(xl)R(xl)
−1(B(xl)

TX(xl) +N(xl)
T )xl

= (Â(xl)−B(xl)R(xl)
−1B(xl)

TX(xl))xl

= Ac(xl)xl (4.47)

where Ac(xl) can be expressed as

Ac(xl) =

 â1 − r̂1x̂1+
√
r̂1r̂2x̂2

4d∆M̄∆W
1− r̂1x̂2+

√
r̂1r̂2x̂3

4d∆M̄∆W

â2 −
√
r̂1r̂2x̂1+r̂2x̂2
4d∆M̄∆W

a3 −
√
r̂1r̂2x̂2+r̂2x̂3
4d∆M̄∆W


=

 ac,1 ac,2

ac,3 ac,4

 (4.48)

Using Eqs. (4.12), (4.23), (4.25), and (4.38), ac,1 can be derived as follows,

ac,1 =
1

Det[CÂ,B(xl)]

{(
a3b1 − b2 + b1

√
d
)
t1 + b1b2

√
∆M̄

}
(4.49)

where t1 = a1b2 − a2b1. Using the relationship between the force and moment

aerodynamic coefficients, which are presented in Eq. (3.15), and Eq. (4.33), t1

can be rewritten as

t1 =
Q2S2D

mV Iyy

(
CZα(xl)Cmδp (xl)− CZδp (xl)Cmα(xl)

)
=
Q2S2D

mV Iyy

(
xcf − xcp

D

)
CZα(xl)CZδp (xl) (4.50)

Note from Eq. (4.50) that t1 is positive on Ωl considering the tail-fin controlled

missile geometry as shown in Fig. 2.1. Similarly, the other components of Ac(xl)
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can be derived as follows,

ac,2 = − 1

Det[CÂ,B(xl)]

{
(a3b1 − b2)(a3b1 − b2 + b1

√
d) + b21

√
∆M̄

}
ac,3 =

1

Det[CÂ,B(xl)]

{
(t1 + b2

√
d)t1 + b22

√
∆M̄

}
(4.51)

ac,4 = − 1

Det[CÂ,B(xl)]

{
(a3b1 − b2)(t1 + b2

√
d) + b1b2

√
∆M̄

}
Substituting Eq. (4.8) into Eq. (4.10), and substituting Eqs. (4.38) and (4.40)

into the resulting equation, ∆M̄ can be rewritten as

∆M̄ = a2
2 +

a1b2V
2(a1b2 − 2a2b1)w̄ + a1a3(a1a3 − 2a2)

b21V
2w̄ + 1

(4.52)

where w̄ = qw/rw. Then, the partial derivative of ∆M̄ with respect to w̄ can be

obtained as follows,

∂∆M̄

∂w̄
=

(b2 − a3b1){(a3b1 + b2)a1 − 2a2b1}V 2a1

(b21V
2w̄ + 1)2

(4.53)

Under Assumption 4.4, the partial derivative of ∆M̄ is positive on Ωl, and

∆M̄ satisfies the following relations for any fixed α ∈ Ωα.

inf
w̄∈R+

[∆M̄ ] = lim
w̄→0+

[∆M̄ ] = (a2 − a1a3)2

sup
w̄∈R+

[∆M̄ ] = lim
w̄→∞

[∆M̄ ] =

(
t1
b1

)2 (4.54)

Using Eqs. (4.8), (4.38), and (4.40), p1 + p2 can be expressed as

p1 + p2 = 2a2 + a2
3 −

2a1b1b2V
2w̄ − a2

1

b21V
2w̄ + 1

(4.55)

The partial derivative of p1 + p2 with respect to w̄ can be obtained as follows,

∂(p1 + p2)

∂w̄
= −a1b1V

2(a1b1 + 2b2)

(b21V
2w̄ + 1)2

(4.56)
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Note that the partial derivative of p1 + p2 is positive on Ωl, because a1b1 + 2b2

is negative under Assumption 4.3. Considering the relation that d = p1 +

p2 + 2
√

∆M̄ , the partial derivative of d with respect to w̄ is also positive on Ωl.

Therefore, the following relations of d can be obtained for any fixed α ∈ Ωα.

inf
w̄∈R+

[d] = lim
w̄→0+

[d] = a2
1 + 2a2 + a2

3 + 2|a2 − a1a3| = (a1 + a3)2

sup
w̄∈R+

[d] = lim
w̄→∞

[d] = −2

(
b2
b1

)
a1 + 2a2 + a2

3 + 2

∣∣∣∣ t1b1
∣∣∣∣ = a2

3 −
4t1
b1

(4.57)

Lemma 4.5: Under Assumptions 4.1-4.4, ac,1 and ac,2 are negative and

positive, respectively, on Ωl.

Proof of Lemma 4.5: Using Eq. (4.57), the following relation of the term

a3b1 − b2 + b1
√
d can be obtained for any fixed α ∈ Ωα.

a3b1 − b2 + b1
√
d > a3b1 − b2 + b1 sup

w̄∈R+

[√
d
]

= a3b1 − b2 + b1

√
a2

3 −
4t1
b1

= a3b1 − b2 −
√

(a3b1)2 − 4b1t1 (4.58)

Defining c5 = a3b1 − b2 and c6 =
√

(a3b1)2 − 4b1t1, their squares satisfy the

following relation.

c2
5 − c2

6 = (a3b1 − b22)− {(a3b1)2 − 4b1t1}

= b22 − 2a3b1b2 + 4b1(a1b2 − a2b1)

= b2(4a1b1 + b2)− 2a3b1b2 − 4a2b
2
1 (4.59)

Under Assumption 4.3, Eq. (4.59) is positive on Ωl. Therefore, because c5

and c6 are positive, c5 is greater than c6, which implies that the right side of
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Eq. (4.58) is positive on Ωl. From this result, it can be noticed that the term

a3b1−b2 +b1
√
d is positive, and therefore ac,1 and ac,2 are negative and positive,

respectively, on Ωl considering Eqs. (4.49) and (4.51). �

Lemma 4.6: Under Assumptions 4.1-4.4, ac,4 is negative on Ωl.

Proof of Lemma 4.6: Using Eq. (4.51), the partial derivative of ac,4 with

respect to w̄ can be obtained as follows,

∂ac,4
∂w̄

= − b2
2Det[CÂ,B(xl)]

{
(a3b1 − b2)

1√
d

∂d

∂w̄
+ b1

1√
∆M̄

∂∆M̄

∂w̄

}
(4.60)

Using Eqs. (4.53) and (4.56), Eq. (4.60) can be rewritten as

∂ac,4
∂w̄

=
a1b2c7(a3b1 − b2)V 2

2Det[CÂ,B(xl)]
√
d∆M̄ (b21V

2w̄ + 1)2
(4.61)

where

c7 = b1(a1b1 + 2b2)
√

∆M̄ + {(a3b1 + b2)a1 − 2a2b1}(a3b1 − b2 + b1
√
d)

Because a3b1 − b2 + b1
√
d is positive, which is proved in Lemma 4.5, c7 is

positive on Ωl under Assumption 4.3 and 4.4, which implies that the partial

derivative of ac,4 with respect to w̄ is negative on Ωl. Therefore, the following

relation of ac,4 can be obtained for any fixed α ∈ Ωα.

sup
w̄∈R+

[ac,4] = lim
w̄→0

[ac,4]

= lim
w̄→0

[
− 1

Det[CÂ,B(xl)]

{
(a3b1 − b2)(t1 + b2

√
d) + b1b2

√
∆M̄

}]
(4.62)

Substituting Eqs. (4.54) and (4.57) into Eq. (4.62) yields

sup
w̄∈R+

[ac,4] = − 1

Det[CÂ,B(xl)]
{(a3b1 − b2)(t1 − b2(a1 + a3))− b1b2(a2 − a1a3)}

= − 1

Det[CÂ,B(xl)]
{a3b2(a1b1 + b2)− a3b1(a2b1 + a3b2)} (4.63)
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From Eq. (4.63), the supremum of ac,4 with respect to w̄ is negative on Ωl under

Assumption 4.3, and therefore it can be concluded that ac,4 is negative on Ωl

under Assumption 4.1-4.4. �

Theorem 4.1: Under Assumptions 4.1-4.4, the closed-loop system repre-

sented by Eq. (4.47) is asymptotically stable on Ωl, if there exists a constant κ

satisfying the following inequality.

sup
α∈Ωα


∆

1
4

M̄
−√ac,1ac,4
ac,2

2
 < κ < inf

α∈Ωα


∆

1
4

M̄
+
√
ac,1ac,4

ac,2

2
 (4.64)

Proof of Theorem 4.1: To analyze the stability of the closed-loop system

controlled by the designed autopilot, let us consider a following Lyapunov can-

didate function.

VL =
1

2

(
κα2 + q2

)
(4.65)

Note that VL is positive except for α = q = 0. Considering Eqs. (4.47) and

(4.48), the time derivative of VL can be obtained as follows,

V̇L = καα̇+ qq̇ = κac,1α
2 + (κac,2 + ac,3)αq + ac,4q

2

=
[
α q

] κac,1
κac,2+ac,3

2

κac,2+ac,3
2 ac,4

 α

q

 = xTl Aκ(xl)xl (4.66)

The matrix Aκ(xl) is symmetric, and its characteristic polynomial can be ob-

tained as follows,

λ[Aκ(xl)]
2 − (κac,1 + ac,4)λ[Aκ(xl)] + κac,1ac,4 −

1

4
(κac,2 + ac,3)2

= λ[Aκ(xl)]
2 − u3λ[Aκ(xl)] +

1

4
u4 = 0 (4.67)
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where

u3 = κac,1 + ac,4, u4 = −a2
c,2κ

2 + 2(2ac,1ac,4 − ac,2ac,3)κ− a2
c,3

Note that u3 is negative, because ac,1 and ac,4 are negative on Ωl as proven

in Lemma 4.5 and 4.6, respectively. Therefore, if u4 is positive, Aκ(xl) is

negative definite on Ωl. Using Eqs. (4.49) and (4.51), the following relation can

be obtained.

ac,1ac,4 − ac,2ac,3 =
√

∆M̄ (4.68)

Using Eq. (4.68), u4 can be rewritten as follows,

u4 = −a2
c,2 (κ− κmin) (κ− κmax) (4.69)

where

κmin =

∆
1
4

M̄
−√ac,1ac,4
ac,2

2

, κmax =

∆
1
4

M̄
+
√
ac,1ac,4

ac,2

2

Here, κmax is greater than κmin, because ∆
1
4

M̄
and
√
ac,1ac,4 are positive on Ωl.

If κ = (κmin + κmax)/2, u4 is positive which can be written as follows,

u4 =
4ac,1ac,4

√
∆M̄

a2
c,2

> 0 at κ =
κmin + κmax

2
(4.70)

Considering Eqs. (4.69) and (4.70), the relation between u4 and κ for any fixed

α ∈ Ωα can be plotted as shown in Fig. 4.1. If the constant κ is chosen as a value

between κmin and κmax for all α ∈ Ωα, then u4 is positive on Ωl. Therefore, the

following condition for the constant κ can be obtained.

sup
α∈Ωα

[κmin] < κ < inf
α∈Ωα

[κmax] (4.71)
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Figure 4.1 The relation between u4 and κ for any fixed α ∈ Ωα

Now, Aκ(xl) is negative definite for the constant κ satisfying Eq. (4.71), and

therefore the state vector xl of the closed-loop system converges to the origin

on Ωl under Assumptions 4.1-4.4. �

Remark 4.3: Theorem 4.1 guarantees that the region of attraction contains

the operational range of the missile for the closed-loop system controlled by

the designed autopilot. In other words, if the constant κ satisfying Eq. (4.71)

exists for the defined operational range and weighting parameters, then the

states converge to the origin in finite-time and are maintained thereafter for

any initial points on the defined operational range. This conclusion provides a

solid theoretical basis for the SDRE method to be used in real practices with

the guaranteed stable region. The characteristic provided by Theorem 4.1 is

significant in that it outweighs the existing studies which are limited only to

the local version of stability properties.
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4.4 Numerical Example

This section provides a numerical example of the analytical results which are

shown in this chapter. The hypothetical aerodynamic data and physical param-

eters of the tail-fin controlled missile in Sec. 3.3 are used in this section. The

operational range of angle of attack is set as

Ωα = {α ∈ R| − π/6 < α < π/6} (4.72)

The coefficients in Eq. (4.33) are obtained from Eq. (3.54) as follows,

CZα(xl) = −39.571α2 − 12.956, Cmα(xl) = −81.189α2 − 4.871

CZδp = −1.948, Cmδp = −11.803, Ĉmq = −1.719

(4.73)

Note that all coefficients in Eq. (4.73) are negative for α ∈ Ωα. Using the missile

data, a1, a2, a3, b1, and b2 can be calculated as

a1 = 0.042CZα(xl), a2 = 4.950Cmα(xl), a3 = 4.950Ĉmq

b1 = 0.042CZδp , b2 = 4.950Cmδp

(4.74)

Using Eqs. (4.73) and (4.74), the value of 4a1b1 + b2 in Assumption 4.3 is

expressed as

4a1b1 + b2 = 0.544α2 − 58.247 (4.75)

Because Eq. (4.75) is negative for α ∈ Ωα, Assumption 4.3 is satisfied for the

numerical values of the considered missile model. Similarly, (a3b1 +b2)a1−2a2b1

in Assumption 4.4 can be expressed as

(a3b1 + b2)a1 − 2a2b1 = 30.183α2 + 27.468 (4.76)

Note that Eq. (4.76) is positive for α ∈ Ωα. Therefore, Assumption 4.4 is also

satisfied for the numerical values of the considered missile model.
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To examine the effects of aerodynamic uncertainty on the analytical results,

the uncertainties of Cmα(xl) and Cmδp are considered as follows,

Cmα(xl) = C̄mα + ∆Cmα

Cmδp = C̄mδp + ∆Cmδp

(4.77)

where C̄mα and C̄mδp represent nominal values of the coefficients, and the un-

certainties ∆Cmα and ∆Cmδp are modeled as values proportional to the nominal

values, i.e., ∆Cmα = γ1C̄mα and ∆Cmδp = γ2C̄mδp with γ1, γ2 ∈ R. Considering

the relation between the force and moment aerodynamic coefficients, the force

coefficients including the uncertainties can be expressed as follows,

CZα(xl) = C̄Zα + γ1C̄Zα

CZδp = C̄Zδp + γ2C̄Zδp

(4.78)

where C̄Zα and C̄Zδp represent nominal values of the coefficients. For Assump-

tion 4.3, 4a1b1 + b2 including the uncertainties can be obtained as follows,

4a1b1 + b2 = 0.544(1 + γ1 + γ2 + γ1γ2)α2 + (1 + γ2)(0.178γ1 − 58.247) (4.79)

Figure 4.2 shows the supremum value of Eq. (4.79) with respect to α ∈ Ωα for

γ1, γ2 ∈ [−1.5, 1.5], where γ2 has the most influence on the supremum value

compared with γ1. Note that the range of γ2 guaranteeing the negative value for

the supremum of Eq. (4.79) can be computed as |γ2| < 1 for γ1 ∈ [−1.5, 1.5].

Therefore, Assumption 4.3 holds for the uncertainties of the aerodynamic

coefficients less than 100% of the nominal value. To examine the robustness of

Assumption 4.4, (a3b1 +b2)a1−2a2b1 is expressed including the uncertainties

as

(a3b1 + b2)a1 − 2a2b1 = (γ1 + 1)(γ2 + 1)(30.183α2 + 27.468) (4.80)
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where 30.183α2+27.468 is positive for α ∈ Ωα. Figure 4.3 shows the sign of (γ1+

1)(γ2 + 1) for γ1, γ2 ∈ [−1.5, 1.5], where blue and red areas represent positive

and negative signs, respectively. In Fig. 4.3, the positive sign of (γ1 + 1)(γ2 + 1)

holds if both γ1 and γ2 are greater than −1, which implies that Assumption

4.4 also holds if both uncertainties of the aerodynamic coefficients are less than

100% of the nominal values.

Figure 4.2 Supremum value of 4a1b1 + b2 with respect to α ∈ Ωα for γ1, γ2 ∈

[−1.5, 1.5]
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Figure 4.3 Sign of (γ1 + 1)(γ2 + 1) for γ1, γ2 ∈ [−1.5, 1.5]
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Numerical simulation is performed for the missile model to demonstrate the

performance of the designed autopilot and to verify the analytical results. The

weighting parameters qw and rw are set to be 1 and 20, 000, respectively. Now,

the following values of κmin and κmax at w̄ = 5× 10−5 can be calculated.

sup
α∈Ωα

[κmin] = sup
α∈Ωα


∆

1
4

M̄
−√ac,1ac,4
ac,2

2
 = 127.767

inf
α∈Ωα

[κmax] = inf
α∈Ωα


∆

1
4

M̄
+
√
ac,1ac,4

ac,2

2
 = 227.279

(4.81)

Since the supremum of κmin with respect to α ∈ Ωα is smaller than the infi-

mum of κmax with respect to α ∈ Ωα, the closed-loop system controlled by the

designed autopilot for the considered missile model is asymptotically stable on

Ωl based on Theorem 4.1.

Figures 4.4-4.6 show the simulation results. Figure 4.4 shows the time re-

sponses of the Z-axis acceleration and the pitch fin deflection, where the solid

line represents the responses of the designed autopilot and the dotted line rep-

resents the signal of the acceleration command. Figure 4.5 shows the time re-

sponses of the states, i.e., the angle of attack and pitch rate. As shown in the

simulation results, the designed autopilot has satisfactory tracking performance

within the defined operational range of the missile. Furthermore, to verify the

correctness of the analytic solution of the SDRE method, which is obtained in

Sec. 4.2, the solution of the state-dependent ARE is computed in two ways: i)

the analytic way presented in Eq. (4.25), and ii) the online computation using

the numerical algorithm [66]. Figure 4.6 shows the time response of the dif-

ferences of the solution components calculated by the analytic and numerical

ways, where ei,j represents the difference of the components xi,j computed in
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two ways. As shown in Fig. 4.6, the magnitude of ei,j is smaller than 1× 10−10

for all i and j. Therefore, the time response of the analytic solution is same

as the solution obtained by the online computation, which verifies that the

analytic solution obtained in Sec. 4.2 is correct.
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Figure 4.4 Time responses of Z-axis acceleration and pitch fin deflection
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Figure 4.5 Time responses of the state variables
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Chapter 5

Three-Axes and Full-Order Missile
Autopilots

5.1 Problem Statement

In this chapter, the three-axes missile autopilot is designed using the longi-

tudinal autopilot proposed in Chap. 4. Because of the axial symmetry of the

skid-to-turn maneuver missile considered in this study, the pitch and yaw planes

of the missile can be handled separately if the roll motion is stabilized. Accord-

ingly, the autopilot design based on the longitudinal dynamics of the missile

is applied to both pitch and yaw planes of the missile, while a proportional-

derivative (PD) controller stabilizes the roll motion. Note that the sideslip angle

and yaw rate are specified as the state variables in yaw plane instead of the angle

of attack and pitch rate. Furthermore, a design procedure of the SDRE-based

missile autopilot is provided based on the full-order missile model for compar-

ison. In the numerical simulation, the control performance of the three-axes

missile autopilot is compared with that of the full-order missile model-based

autopilot.
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5.2 Three-Axes and Full-Order Autopilot Design

5.2.1 Three-Axes Autopilot Design

To apply the autopilot design proposed in Chap. 4 to the six-degrees-of-freedom

model of the tail-fin controlled missile, this section designs the three-axes au-

topilot. In this study, the skid-to-turn maneuver missile is considered which has

the axial symmetric around X-axis of the missile body. Therefore, if the fast

roll stabilization is assumed, the pitch and yaw planes of the missile can be

controlled separately. Using this property, the proposed autopilot designed on

the longitudinal motion of the missile is applied to both pitch and yaw planes,

and the roll motion is stabilized using the PD controller.

Figure 5.1 shows the block diagram of the three-axes acceleration autopilot

proposed in the study, where δr,c, δp,c, and δy,c are the commands of the roll,

pitch, and yaw fin deflections, respectively. As shown in this figure, the SDRE-

based pitch and yaw controllers designed in Chap. 4 generate the commands of

the pitch and yaw fin deflections, respectively, while the PD controller generates

the command of the roll fin deflection for stabilizing the roll motion of the

missile, which is designed as follows,

uφ = −Kpφ−Kdφ̇ (5.1)

where φ is the roll angle of the missile, uφ is the PD control input, and Kp

and Kd are the proportional and derivative control gains of the PD controller,

respectively. Similar to the pitch controller designed in Chap. 4, the SDRE-

based yaw controller is designed except for specifying the sideslip angle and

yaw rate as the state variables instead of the angle of attack and pitch rate,

where the lateral equations of motions are used as described in Eq. (2.18).
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Figure 5.1 Block diagram of three-axes acceleration autopilot
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5.2.2 Full-Order Autopilot Design

In this subsection, the SDRE-based acceleration autopilot based on the full-

order missile model is designed for comparison with the designed acceleration

autopilot based on the reduced-order missile model. Figure 5.2 shows the block

diagram of the full-order missile model-based acceleration autopilot, where pc,

qc, and rc are the commands of the angular rates. As shown in Fig. 5.2, the full-

order autopilot has a two-loop structure consisting of the inner- and outer-loops.

The outer-loop controller generates the command inputs of the angular rates

and sends them to the inner-loop controller. Then, the inner-loop controller

generates the commands of the fin deflections corresponding to the commands

of the angular rates. The two-loop design enables the tail-fin controlled missile

to be controlled more efficiently by separating relatively fast and slow variables.

Furthermore, it provides more design flexibility and computational efficiency

by handling small SDC matrices in the SDRE method. First of all, applying

small-perturbation theory and first-order Taylor expansion to the aerodynamic

Figure 5.2 Block diagram of full-order acceleration autopilot
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coefficients presented in Eqs. (2.5) and (2.7), the following types of aerodynamic

coefficients are used in designing the full-order acceleration autopilot.

ĈY = CY0 + CYMM + CYαα+ CYββ + CYδr δr + CYδp δp + CYδy δy

ĈZ = CZ0 + CZM
M + CZαα+ CZββ + CZδr δr + CZδp δp + CZδy δy

Ĉl = Cl0 + Clαα+ Clββ + Clδr δr + Clδp δp + Clδy δy (5.2)

Ĉm = Cm0 + Cmαα+ Cmββ + Cmδr δr + Cmδp δp + Cmδy δy

Ĉn = Cn0 + Cnαα+ Cnββ + Cnδr δr + Cnδp δp + Cnδy δy

Substituting Eq. (5.2) into Eq. (2.9), the rotational equations of the missile can

be obtained as follows,

ṗ =
QSD

Ixx

(
Cl0 + Clαα+ Clββ + Clδr δr + Clδp δp + Clδy δy +

D

2V
Clpp

)
= Lbias + Lpp+ Lδrδr + Lδpδp + Lδyδy

q̇ =
Izz − Ixx
Iyy

pr +
QSD

Iyy

(
Cm0 + Cmαα+ Cmββ

+ Cmδr δr + Cmδp δp + Cmδy δy +
D

2V
Cmqq

)
(5.3)

= Mbias +Mqq +Mprpr +Mδrδr +Mδpδp +Mδyδy

ṙ =
Ixx − Iyy

Izz
pq +

QSD

Izz

(
Cn0 + Cnαα+ Cnββ

+ Cnδr δr + Cnδp δp + Cnδy δy +
D

2V
Cnrr

)
= Nbias +Nrr +Npqpq +Nδrδr +Nδpδp +Nδyδy

where Lbias, Mbias, and Nbias are the terms that do not depend on the angular

rates and the fin deflections, and L(·), M(·), and N(·) are dimensional coefficients

with respect to (·). Also, the following kinematic equation of the roll angle is
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used.

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (5.4)

where θ is the pitch angle of the missile. To derive the dynamics of Y- and Z-

axes acceleration, differentiating ĈY and ĈZ in Eqs. (5.2) with respect to time

and substituting the resulting equation and Eqs. (2.12) and (2.13) into the time

derivative of the Y- and Z-axes acceleration yield

ȧy =
2QS

Vm
(ax cosα cosβ + ay sinβ + az sinα cosβ)ĈY

+
QS

m

[
1

as
(ax cosα cosβ + ay sinβ + az sinα cosβ)CYM

+{q − (p cosα+ r sinα) tanβ +
1

V cosβ
(az cosα− ax sinα)}CYα

+{p sinα− r cosα− 1

V
(ax cosα sinβ − ay cosβ + az sinα sinβ)}CYβ

+CYδr δ̇r + CYδp δ̇p + CYδy δ̇y

]
= Ybias + Yazaz + Yayay + Ypp+ Yqq + Yrr (5.5)

ȧz =
2QS

Vm
(ax cosα cosβ + ay sinβ + az sinα cosβ)ĈZ

+
QS

m

[
1

as
(ax cosα cosβ + ay sinβ + az sinα cosβ)CZM

+{q − (p cosα+ r sinα) tanβ +
1

V cosβ
(az cosα− ax sinα)}CZα

+{p sinα− r cosα− 1

V
(ax cosα sinβ − ay cosβ + az sinα sinβ)}CZβ

+CZδr δ̇r + CZδp δ̇p + CZδy δ̇y

]
= Zbias + Zazaz + Zayay + Zpp+ Zqq + Zrr

where as is the speed of sound, Ybias and Zbias are the terms that do not depend

on the accelerations and the angular rates, and Y(·) and Z(·) are dimensional

coefficients with respect to (·).
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The outer-loop controller is designed to deal with the Y- and Z-axes ac-

celerations and roll angle of the missile. Therefore, Eqs. (5.4) and (5.5) are

transformed into the following pseudo-linear system using the SDC transfor-

mation.

ẋO = AO(xO)xO +BO(xO)uO (5.6)

where

xO = [ φ az ay so ]T , uO = [ p q r ]T

AO(xO) =



0 0 0 0

0 Zaz Zay Zbias/so

0 Yaz Yay Ybias/so

0 0 0 −λo



BO(xO) =



1 sinφ tan θ cosφ tan θ

Zp Zq Zr

Yp Yq Yr

0 0 0


Note that so is an additional state to treat the bias terms, which is governed

by the following stable dynamics.

ṡo = −λoso (5.7)

where λo is a positive constant. Similarly, the inner-loop controller deals with

the angular rates of the missile, and Eq. (5.3) is transformed into the following

pseudo-linear system using the SDC transformation.

ẋI = AI(xI)xI +BI(xI)uI (5.8)
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where

xI = [ p q r si ]T , uI = [ δr δp δy ]T

AI(xI) =



Lp 0 0 Lbias/si

σprMprr Mq (1− σpr)Mprp Mbias/si

σpqNpqq (1− σpq)Npqp Nr Nbias/si

0 0 0 −λi



BI(xI) =



Lδr Lδp Lδy

Mδr Mδp Mδy

Nδr Nδp Nδy

0 0 0


Note that σpr ∈ [0, 1] and σpq ∈ [0, 1] are design parameters that provide

the non-uniqueness of the SDC transformation. A variable si is an additional

state to augment bias terms Lbias, Mbias, and Nbias in the SDC matrix, and its

dynamics is described as

ṡi = −λisi (5.9)

where λi is a positive constant. For each pseudo-linear system in Eqs. (5.6) and

(5.8), the state-dependent ARE can be constructed as presented in Eq. (2.22).

Then, by solving the state-dependent ARE, the following inner- and outer-loop

control inputs can be generated.

uI = −RI(xI)−1BI(xI)
TXI(xI)xI

uO = −RO(xO)−1BO(xO)TXO(xO)xO

(5.10)

where RI(xI) and RO(xO) are the weighting matrices, and XI(xI) and XO(xO)

are the state-dependent ARE solutions for the inner- and outer-loops, respec-

tively.
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Remark 5.1: In the full-order acceleration autopilot, each loop deals with

a four-dimensional system, and accordingly the dimensions of their solutions

of the state-dependent ARE are also four. Because the four-dimensional ARE

cannot be solved analytically, each state-dependent ARE should be numeri-

cally solved at each step. It leads not only the high computational burden

but also preventing the closed-loop system from being analytically represented.

Therefore, the only local asymptotic stability of the closed-loop system can be

guaranteed for a narrow unknown region of attraction around the equilibrium

point based on the point-wise controllability and observability. This lack of the

guaranteed stable region is considered as a major obstacle to use the SDRE

method in practice, because the autopilot may fail for arbitrary initial states.
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5.3 Numerical Simulation

5.3.1 Simulation Setup

To demonstrate the performance of the proposed autopilots, numerical simula-

tions are performed for the two types of missile acceleration autopilots, which

are the three-axes autopilot and full-order missile model-based autopilot. In

this simulation, the gliding phase of the missile is considered, and therefore

no thrust forces of the missile exist and the inertial properties including the

mass and the moment of inertia are fixed. For the actuator dynamics of the

missile’s tail, the second-order dynamics is considered. Table 5.1 summarizes

the characteristics of the missile in the numerical simulation. For the skid-to-

turn maneuver missile, zero roll angle should be maintained for the entire flight

time. Therefore, the roll command is set as zero during the simulation. The

commands of the Y- and Z-axes accelerations are summarized in Table. 5.2 for

each time interval, where ayc and azc are the commands of the Y- and Z-axes

Table 5.1 Missile characteristics in simulation

Symbol Name Value

m Mass 50.502 kg

Ixx X-Axis Moment of Inertia 0.325 kg ·m2

Iyy, Izz Y- and Z-Axes Moment of Inertias 60.102 kg ·m2

S Reference Area 0.022 m2

D Reference Length 0.165 m

ωn Natural Frequency of Actuator 30 Hz

ζ Damping Ratio of Actuator 0.8
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Table 5.2 Acceleration commands in simulation

Time Interval [sec] [0, 0.5) [0.5, 1.5) [1.5, 2.5) [2.5, 3.5) [3.5, 4]

ayc [g] 0 10 20 -10 0

azc [g] 0 10 20 -10 0

accelerations, respectively. The initial conditions of the total velocity and other

states are set to be 950 m/s and zero, respectively, and the operational ranges

for the angle of attack and sideslip angle are set as ±π/6.

Figure 5.3 shows the time response of the total velocity, where the total ve-

locity decreases slowly from 950 m/s to about 830 m/s due to the aerodynamic

effect during the simulation. Before performing numerical simulation, the supre-

mum of κmin and the infimum of κmax of both pitch and yaw plane autopilots

with respect to the angle of attack and sideslip angle, respectively, are shown

in Fig. 5.4 for the total velocity from 800 m/s to 1, 000 m/s. In Fig. 5.4, the

solid line represents the supremum of κmin and the dash-dotted line represents

the infimum of κmax. As shown in this result, the supremum of κmin is less than

1.15, and the infimum of κmax is much greater than the supremum of κmin for

any fixed total velocity from 800 m/s to 1, 000 m/s. It implies that the ana-

lytical results of the asymptotic stability presented in Theorem 4.1 can be

applied to both pitch and yaw plane autopilots for any fixed total velocity in

the range.
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Figure 5.3 Time response of the total velocity
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the total velocity
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5.3.2 Simulation Results

Simulation results of the three-axes and full-order autopilots are shown in

Figs. 5.5-5.8, where the solid line represents the responses of the full-order

autopilot, the dash-dotted line represents the responses of the three-axes au-

topilot, and the dashed line represents the command signal. Figure 5.5 shows

the time responses of roll angle and Y- and Z-axes accelerations, and Fig. 5.6

shows the time responses of the three-channel fin deflections for the two au-

topilots. As shown in the results, the Y- and Z-axes accelerations of the three-

axes autopilot are well regulated within ±0.1 g. For the non-zero commands

of the accelerations, the three-axes autopilot shows satisfactory tracking per-

formance compared to the responses of the full-order autopilot, although there

exist steady-state tracking errors of less than 10% due to coupling effects and

aerodynamic modeling errors. The roll angle of the three-axes autopilot is reg-

ulated within ±0.5 deg as well, while the magnitude of maximum roll error of

the full-order autopilot is about 2 deg. Figure 5.7 shows the time responses of

the angle of attack and sideslip angle, and Fig. 5.8 shows the time responses of

roll, pitch, and yaw rates for two cases. Note that all states of both pitch and

yaw planes in the three-axes autopilot are within the predefined operational

ranges of the angle of attack and the sideslip angle.
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Figure 5.5 Time responses of roll angle and Y- and Z-axes accelerations
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Figure 5.6 Time responses of roll, pitch, and yaw fin deflections
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Figure 5.7 Time responses of the angle of attack and sideslip angle
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Furthermore, Monte Carlo simulation is performed for the three-axes au-

topilot to examine the robust performance with respect to the aerodynamic

uncertainties. The following force and moment aerodynamic coefficients includ-

ing uncertainties are applied to the simulation.

CY = (1 + γ1)C̄Y , CZ = (1 + γ2)C̄Z

Cl = (1 + γ3)C̄l, Cm = (1 + γ4)C̄m, Cn = (1 + γ5)C̄n

(5.11)

where C̄Y , C̄Z , C̄l, C̄m, and C̄n denote the nominal values of the aerodynamic

coefficients, and γi, for i = 1, · · · , 5, denote the proportional value for the nom-

inal value, which represents the aerodynamic uncertainties. To examine the

robust performance of the three-axes autopilot for various uncertain environ-

ments, Monte Carlo simulation of 150 runs is performed for γi, for i = 1, · · · , 5,

where γi has a normal distribution with a zero mean and a standard deviation

of 0.1. The acceleration commands summarized in Table 5.2 are also applied

to the Monte Carlo simulation. Table 5.3 summarizes the values of the mean

and standard deviation of the steady-state acceleration errors for each non-zero

acceleration command interval.

Table 5.3 Steady-state errors for non-zero command intervals in Monte Carlo

simulation

Time Interval [sec],

Acceleration Command [g]

Magnitude of Steady-State Error [g]

Mean Standard Deviation

ay az ay az

[0.5, 1.5), 10 0.6012 0.9311 0.3717 0.5404

[1.5, 2.5), 20 1.3546 1.4284 0.7238 0.8691

[2.5, 3.5), -10 0.3675 0.7320 0.2252 0.2941

99



Figures 5.9 and 5.10 shows the results of Monte Carlo simulation of 150

runs, where the solid line represents the responses of the three-axes autopilot

and the dashed line represents the command signal. Figure 5.9 shows the time

responses of roll angle and Y- and Z-axes accelerations, and Fig. 5.10 shows the

time responses of the three-channel fin deflections for Monte Carlo simulation.

Compared to the results of the nominal simulation, the control performance

degradations, especially in the transient responses, occur due to the aerody-

namic uncertainties. Nevertheless, none of simulation responses of 150 runs

diverge and the available levels of control performances in various uncertain en-

vironments are achieved even though certain ranges contain some steady-state

errors. Additionally, all 150 responses of the roll angles are well regulated within

±1.5 deg in various uncertain environments.
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Figure 5.9 Time responses of roll angle and Y- and Z-axes accelerations in

Monte Carlo simulation of 150 runs
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Figure 5.10 Time responses of roll, pitch, and yaw fin deflections in Monte Carlo

simulation of 150 runs
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Chapter 6

Conclusion

6.1 Concluding Remarks

In this study, a missile acceleration autopilot was designed based on a state-

dependent Riccati equation (SDRE) method, and the asymptotic stability of

its closed-loop system was analyzed, using an analytic solution of the state-

dependent algebraic Riccati equation (ARE). The main results of this study

are summarized as follows:

Analysis of the Tail-Fin Controlled Missile

This study provided a rigorous mathematical analysis of the tail-fin controlled

missile. This has not been done in previous studies. A valid transformation to

normal form equations of the missile was proposed, and the non-minimum phase

behavior of the tail-fin controlled missile was analyzed, based on the normal

form equations. In addition, closed-loop system behavior with an approximate

model-based controller was analyzed, where input-output stability was proven,

considering the term causing the non-minimum phase behavior as an external

input. This is an improvement on existing work that addressed the boundedness

of the tracking error for the closed-loop system.
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Missile Acceleration Autopilot Using the State-Dependent Riccati

Equation Method

For two-dimensional systems, an analytic solution of the state-dependent ARE

was obtained, using a matrix sign function and principal square root of a Hamil-

tonian matrix. The acceleration autopilot for the tail-fin controlled missile was

designed based on the SDRE method, and its asymptotic stability was analyzed

using the analytic solution. To utilize the analytic solution for two-dimensional

systems, the missile acceleration autopilot was designed based on missile longi-

tudinal dynamics with a short-period approximation. The analytical result will

provide a solid theoretical basis for the SDRE method to be practically utilized,

with a clearly quantified stable region.

Six-Degrees-of-Freedom Simulation

To demonstrate the control performance of the proposed acceleration autopilot,

a numerical simulation based on the six-degrees-of-freedom equations for the

missile was performed. The proposed autopilot was applied to both pitch and

yaw planes of the missile because of the axial symmetry of a skid-to-turn maneu-

ver missile. For comparison, numerical simulation for a full missile model-based

acceleration autopilot was also performed, and the results of two autopilots

were compared. Simulation results of the proposed autopilot showed satisfac-

tory control performance, compared with that of the full model-based autopilot.
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6.2 Further Works

Generalization of Asymptotic Stability Analysis

In this study, some assumptions, based on the properties of the tail-fin controlled

missile in the normal operational range, are applied for the stability analysis of

the closed-loop system controlled by the SDRE method. Also, Theorem 4.1,

which addresses the asymptotic stability of the closed-loop system, is based

on the existence of a constant κ satisfying a specific inequality. Application of

the analytical result may be limited because of these restrictions. Therefore, to

some extent, the assumptions and conditions required to analyze the stability

should be relaxed.

Analytic Solution for High-Order Nonlinear Systems

In this study, the analytic solution of the state-dependent ARE was derived

for two-dimensional nonlinear systems. Accordingly, the missile acceleration

autopilot was designed for the short-period approximated model, rather than

the full-order missile model. To apply the analytical result proposed in this

study to a wider class of systems, the analytic solution of the state-dependent

ARE should be obtained for more high-order systems.
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국문초록

본 논문에서는 꼬리날개를 이용한 Skid-to-turn 기동 유도탄의 가속도 자동조종

장치를 SDRE(State-Dependent Riccati Equation) 기법을 이용하여 설계하고,

미리 설정된 유도탄의 운용 범위내에서 폐루프 시스템의 점근 안정성을 분석하였

다. SDRE 기법 기반의 제어기를 포함한 폐루프 시스템을 해석적으로 표현하기

위해 상태변수를 포함하는 대수 리카티 방정식의 해석해를 구했으며, 이를 점근

안정성 분석에 사용하였다.

본 논문에서는 먼저 꼬리날개 제어 유도탄의 6-자유도 운동방정식을 유도하

였다. 유도된 방정식을 기반으로 유도탄의 종방향 및 횡방향의 운동을 모사하는

모델을 제시하였다. 유도탄 종방향 운동방정식에 대하여 시스템 자체의 특성과 근

사 모델 기반의 제어기를 포함한 폐루프 시스템의 특성을 수학적으로 분석하였다.

유도탄의 정상운용 범위내에서 유효한 정규형 방정식으로의 변환을 제시하였으

며, 이를 기반으로 유도탄의 비최소 위상 특성을 분석하였다. 근사 모델 기반의

제어기를 포함한 폐루프 시스템에 대하여 비최소 위상을 유발하는 항을 외부 입력

으로 고려한 입출력 안정성을 증명하였다. 그리고 수치 예시를 통해 제안한 해석

결과를 확인하였다.

한편, SDRE 기법으로 설계된 자동조종장치를 포함한 폐루프 시스템의 점근

안정성을 분석하였다. 폐루프 시스템을 해석적으로 표현하기 위해 상태변수를 포

함하는 대수 리카티 방정식의 해석해를 행렬 부호 함수와 해밀토니안 행렬의 주

요 제곱근을 이용하여 구하였다. SDRE 기법을 이용하여 유도탄 가속도 자동조

종장치를 꼬리날개 제어 유도탄의 종방향 운동방정식을 기반으로 설계하였으며,

유도탄의 정상 운용 범위에서의 특성에 기반한 가정을 고려하여 설계한 가속도
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자동조종장치를 포함한 폐루프 시스템의 점근 안정성을 르야프노프 안정성 이론

을 기반으로 증명하였다. 이때, 폐루프 시스템의 해석적 표현을 위해 상태변수를

포함하는 대수 리카티 방정식의 해석해를 사용하였다. 수치 예시를 통해 제안한

안정성 해석 결과를 확인하였다.

본논문에서설계한유도탄가속도자동조종장치의제어성능을확인하기위해

가속도추종을위한 6-자유도수치시뮬레이션을수행하였다. Skid-to-turn기동의

유도탄의 축대칭을 고려하여 유도탄 종방향 운동방정식을 기반으로 설계된 자동

조종장치를 유도탄의 피치 및 요 평면에 적용한 시뮬레이션 결과를 제시하였다.

주요어: 유도탄 가속도 자동조종장치, SDRE 기법, 점근 안정성, 비선형 해석

학번: 2013-20698
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