

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Exploration of machine learning
techniques for anomaly detection in

computer security

보안을위한이상징후탐지를위한기계학습기법의탐색

BY

HAYOON YI

AUGUST 2019

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Exploration of machine learning
techniques for anomaly detection in

computer security

보안을위한이상징후탐지를위한기계학습기법의탐색

BY

HAYOON YI

AUGUST 2019

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Abstract

Anomaly detection has long been studied in computer security for its capabil-

ity in detecting unknown new attacks. From these studies, various machine learning

models and feature engineering techniques have been proposed to enhance the ca-

pability of anomaly detection. Unfortunately, it is still considered premature for most

anomaly detection techniques to be fully deployed in real world systems. In this thesis,

I will explore various techniques to improve the deployability of anomaly detection in

real world systems. First, I will propose a new feature to be used for OS kernel data

anomaly detection to improve existing machine learning work. Then, I will explore and

propose applying LSTM language models to model program execution behavior while

mitigating a long known weakness to existing execution behavior modeling: mimicry

attacks. Furthermore, I will also propose a novel HW architecture to better support

and facilitate real-time anomaly detection with the proposed language model. Finally,

I will propose a network-device correlational model to better capture and model the

behavior of IoT devices. In this thesis, I will give details of the design and implemen-

tations of the aforementioned work and evaluate their effectiveness through various

experimental results.

주요어: Security, Machine learning, Anomaly detection

학번: 2012-20844

i

Contents

Abstract i

Contents ii

List of Tables v

List of Figures vi

1 Introduction 1

2 Preliminaries 4

2.1 LSTM network . 5

2.2 ROC curve . 6

3 DADE: A Fast Data Anomaly Detection Engine for Kernel Integrity Mon-

itoring 8

3.1 Background . 8

3.2 Motivation . 12

3.2.1 Overview of memory introspection system for kernel data anomaly

detection . 12

3.2.2 Object identification & naming 14

3.3 The DADE Approach . 18

ii

3.3.1 Backtrace-Naming . 19

3.3.2 Limitations of backtrace-naming 21

3.4 Design and Implementation . 22

3.4.1 Security assumptions and threat model 23

3.4.2 Overview . 23

3.4.3 Generating integrity specifications 24

3.4.4 Extracting backtraces . 25

3.4.5 Verifying object integrity . 28

3.4.6 Deallocations . 28

3.5 Evaluation . 31

3.5.1 Performance . 31

3.5.2 Data anomaly detection . 35

3.6 Related Work . 40

3.7 Summary . 42

4 Mimicry Resilient Program Behavior Modeling with LSTM based Branch

Models 44

4.1 Background . 44

4.2 Prototype Design . 46

4.2.1 Components of DeePBM . 46

4.2.2 LSTM branch model . 49

4.3 Preliminary findings . 50

4.3.1 Branch sequences and Mimicry attacks 50

4.3.2 Branch sequence model for anomaly detection 53

4.4 Summary . 55

5 Real-Time Anomalous Branch Behavior Inference with a GPU-inspired

Engine for Machine Learning Models 56

iii

5.1 Background . 56

5.2 Related Work . 60

5.3 RTAD Architecture . 62

5.3.1 Input Generation Module . 63

5.3.2 ML Computing Module . 64

5.3.3 Anomaly Detection with RTAD SoC 67

5.4 Evaluation . 68

5.4.1 Synthesis Results . 69

5.4.2 Performance Analysis . 71

5.4.3 Detection Speed of ML Models 73

5.5 Summary . 75

6 Hawkware: Network Intrusion Detection based on Behavior Analysis with

ANNs on an IoT Device 76

6.1 Background . 76

6.2 Related Work . 80

6.3 Hawkware Design . 82

6.3.1 Threat models and assumptions 83

6.3.2 Monitor Module . 83

6.3.3 Detector Module . 87

6.4 Evaluation . 92

6.5 Summary . 98

7 Conclusion 100

Abstract (In Korean) 114

Acknowlegement 115

iv

List of Tables

3.1 Overhead for object identification and naming during kernel boot in

DADE . 33

3.2 Attacks, which were successfully detected by DADE, reported along-

side their required detection method in Gibraltar’s original design (at-

tacks detectable with persistent specifications or transient specifications) 36

5.1 Synthesized results of RTAD . 70

5.2 Trimming Result of ML-MIAOW 70

6.1 Feature vector of Hawkware . 86

6.2 Average performance of each component of Hawknet (in cycles per

input) . 98

v

List of Figures

2.1 Standard LSTM architecture . 5

2.2 Example ROC curve . 7

3.1 Workflow of a memory introspection system for kernel data anomaly

detection. 13

3.2 An example backtrace-name with its corrsponding function call trace. 18

3.3 Granularity of backtrace-naming. 20

3.4 Overview of DADE. 23

3.5 The process of trapping an allocation event in DADE. 26

3.6 Number of invariant properties for unique object names. 34

3.7 Partial code of a VFS attack. 37

3.8 Path-name based integrity specification for i fop. 37

3.9 Backtrace-name of inode object. 38

3.10 Backtrace-name based integrity specification for i fop. 38

3.11 Backtrace-name for kobject (a) allocation event (b) legitimate deallo-

cation event (c) abnormal deallocation event. 39

4.1 Architectural overview of the DeePBM framework. 47

4.2 Branch model. 48

4.3 Initial branch sequence of system call open(). 51

vi

4.4 The ROC curves and perplexity of each Program. ProFTPD and DOP

share the same normal sequence in this figure. 52

4.5 The average perplexity values for a system call sequence model and

branch sequence model. 54

5.1 RTAD architectural overview. 63

5.2 Block diagram of IGM. 64

5.3 Block diagram of MCM. 65

5.4 Trimming MIAOW into ML-MIAOW. 66

5.5 RTAD anomaly detection procedure. 69

5.6 Performance overhead of RTAD. 71

5.7 Data transfer latency of RTAD. 72

5.8 Latencies of anomaly detection. 74

6.1 Architectural overview of Hawkware. 82

6.2 Design of Hawkware’s detector module (DM). 87

6.3 Detection accuracy of Hawknet, Kitsune and variations of Hawknet

given as the the receiver operating characteristic (ROC) curve along-

side the area under curve (AUC) and equal error rate (EER). 92

6.4 Degrees of anomaly (RMSE for Kitsune and NBA-only, perplexity for

the rest) of Kitsune, Hawknet and its variations. 95

vii

Chapter 1

Introduction

Inspired by biological immune systems, anomaly detection techniques in security strive

to define a sense of self (normal behavior) in order to detect any non-self (abnormal

behavior) within its target environment [1]. The rationale behind anomaly detection is

that there is a distinguishable difference in benign behavior and malicious behavior.

Therefore, unlike its counterpart, misuse detection which defines malware or attack

behavior and finds adversarial activity with the defined behavior, anomaly detection

focuses on defining benign normal behavior so that it may detect any abnormalities

deviating from the defined normal behavior. This lends anomaly detection the capa-

bility of detecting even new and unknown attacks as anything that deviates from the

norm will be detected as anomalous behavior.

With recent reports showing that millions of new malware and attacks are found in

the wild every month [2], this capability of anomaly detection should make it highly

favorable over misuse detection because it is well known that traditional security so-

lutions based on misuse detection are hard-pressed to keep their malicious behavior

definitions up-to-date. This is due to the fact that as the analysis of newly found mali-

cious behavior takes time, a vast amount of effort must be given to keep the analysis

from falling behind the discovery of new malicious behavior. Furthermore, as misuse

1

detection relies on given definitions of malicious behavior, the time needed for analy-

sis delays the update of the security solution. Unfortunately, during this delay, misuse

detection is left blind to new malicious behavior which could cause severe harm to sys-

tems employing only such solutions. On the other hand, as anomaly detection defines

benign behavior and detects any deviation from that defined behavior, new malicious

behavior can be detected without any need of update as long as the benign behavior

has not changed.

Until recently, most commodity security solutions employing anomaly detection

realized the definition of normal behavior as a white-list rule set. In other words, only

the behavior following the given rule set is considered normal and any behavior that

violates the rules is considered anomalous. These rules are typically handcrafted by

security and system experts who analyze their intended defense target, be it a network

or a system, to formulate a set of rules defining its normal behavior. Evidently, this

demands effort from highly skilled experts which, unfortunately, is well known to be

in shortage across the globe.

To mitigate this issue, alongside the recent developments in machine learning,

there has been focus on incorporating machine learning into security solutions. In ma-

chine learning based anomaly detection, instead of manually formulating rule-sets, a

machine learning algorithm would formulate a set of rules or build a model from a

given set of benign data. As long as a set of normal behavioral data is available, this

would minimize the effort needed from a human expert and expedite the development

of an anomaly detection solution for new networks or systems.

However, even though recent trends favor machine learning based anomaly de-

tection for security, there are still many issues to consider in order to deploy the two

decades of published work in real world environments. In this thesis, I perform a se-

ries of research that each explores a different issues in enhancing the deployability of

machine learning based anomaly detection. Though each research addresses an issue

2

in deploying anomaly detection in a specific security domain, the approaches could be

generalized to be of use in other domains as well.

In Chapter 3, an issue on feature collection an representation in kernel data anomaly

detection will be discussed. The way prior work collected and represented kernel data

feature was found to be impractical when trying to detect newer attacks and therefore

a new collection and representation method that enables realistic deployment of kernel

data anomaly detection will be proposed.

In Chapter 4, preliminary findings in research to mitigate a long known weakness

of system call based program behavior anomaly detection will be shared. As my find-

ings show branch sequences to provide better information in detecting anomalies in

program behavior, a prototype deep learning model is also employed to learn the more

complex branch behavior.

In Chapter 5, issues on performing real-time anomaly detection will be discussed.

To facilitate real-time inference of branch based program behavior anomaly detection,

a MPSoC will be proposed. The MPSoC accelerates the collection of branch behavior

data, the preprocessing of features, delivery of features to a anomaly detection model

and the execution of the model itself.

In Chapter 6, issues on deploying anomaly detection in IoT systems will be dis-

cussed. As most existing work assume high-end machines to perform anomaly detec-

tion, they are too heavy to deploy in inexpensive IoT devices. Therefore, features and

a model fit for IoT behavior anomaly detection will be proposed.

In Chapter 2, some basic preliminaries to help understanding the following re-

search will be given. From Chapter 3 to Chapter 6, the various issues will be discussed

and explored while providing clear motivation and relation to other work. The details

of the design and implementation of the proposed solutions will be explained and their

effectiveness will be evaluated through various experimental results. After exploring

the various issues, this thesis will be concluded in Chapter 7.

3

Chapter 2

Preliminaries

Below I will provide brief explanations on some important terms used throughout the

thesis.

Learning/Training: The terms learning and training are used throughout Chapter

4 to Chapter 6. As these chapters discuss mainly deep learning models, learning and

training indicate the act of adjusting the neural network parameters in accordance to

the given training data.

Inference: The use of the term inference slightly differ between Chapter 3 and the

other Chapters. In Chapter 3, inference means the act of inferring specifications from

a given set of benign kernel memory snapshots, which would be closer to the term

learning/training in the other Chapters. This is due to the fact that the machine learning

algorithm used in Chapter 3, Daikon [21], defines the act of generating specifications as

inference. In the other Chapters, inference indicates the act of performing classification

with a trained neural network model.

False positive/negative: As we are discussing anomaly detection for security in

this thesis, a positive classification on a data sample indicates that the classifier believes

that the sample in anomalous. Therefore a false positive would be a benign sample

being reported as anomalous and a false negative would be an anomalous sample being

4

Cell X+X

i

X

𝑥𝑡
𝑦𝑡−1

𝑐𝑡−1

𝑐𝑡
𝑦𝑡

𝑖𝑡
𝑓𝑡

𝑜𝑡

𝑐𝑡
c

X +: Hadamard product : Vector addition

: act(Ax+By+b)

tanh

tanh : Hyperbolic tangent

where A,B are weight matrices, x,y,b are vectors
and act() is a sigmoid function (for i,f,o) or tanh function (for c)

f o

Figure 2.1: Standard LSTM architecture

reported as benign.

2.1 LSTM network

Though other machine learning algorithms are also mentioned, the newly proposed

models in this thesis are all based on Long Short Term Memory (LSTM) [3] Recursive

Neural Network (RNN). Therefore I will focus on explaining the basics of LSTM

RNNs here.

RNNs are artificial neural networks that are designed to operate in a recurrent

manner so that its operation on input xt is affected by prior inputs x1 through xt−1.

This is typically accomplished by recurrently using the prior iteration’s output yt−1

(from processing the prior input xt−1) when calculating the current iteration’s output

yt from input xt. LSTM is a type of RNN which uses, in addition to the prior output

yt−1, a special memory block to perform such recurrent operations. Through the use

of this memory block, LSTM networks can maintain information over long distances

(relative to typical RNNs) between inputs which gives it the capability to correlate

inputs over large gaps. As shown in Figure 2.1, the LSTM memory block contains

5

a memory cell storing ct, a context vector representing information of prior inputs,

as well as three gates regulating the data flow into and out of the memory cell. The

input gate i controls how much the current input xt and prior output yt−1 would affect

the calculation for ct. The forget gate f decides how much of the prior information

represented in ct−1 should be kept for the current iteration. From the outputs of these

two gates, ct is calculated. The output gate o controls how the new values stored in

ct should be represented in the current iteration’s output yt. And from the output of o

and the values in c, the current output yn is calculated. The explicit operations of each

gate, which can be found in [3], is omitted here for the sake of brevity.

In order for an LSTM network to compute output (y1, ..., yn) from input (x1, ..., xn),

the following operations are performed iteratively from t = 1 to t = n.

1. it = σ(Wixxt +Wiyyt−1 + bi)

2. ft = σ(Wfxxt +Wfyyt−1 + bf)

3. ct = ft•ct−1 + it•tanh(Wcxxt +Wcyyt−1 + bc)

4. ot = σ(Woxxt +Woyyt−1 + bo)

5. yt = ot•tanh(ct)

Here, the operator • denotes the Hadamard product (element-wise product), the W

terms denote weight matrices (e.g.Wix indicates the weight matrix for the input within

the input gate’s calculations.) and the b terms denote bias vectors.

2.2 ROC curve

In order to evaluate a proposed machine learning model, we must be able to measure

its performance. Though the performance of a classification model can be expressed

by simple metrics such as false positive rate (FPR) or true positive rate (TPR), the

6

Figure 2.2: Example ROC curve

value of these can change depending on the selected threshold of the classifier. There-

fore, in most classifier evaluations, receiver operating characteristics (ROC) curves are

used to visualize the performance of the classifier over various thresholds. As can be

seen in Figure 2.2, an ROC curve plots the TPR against the FPR on various threshold

values. Typically, the larger the area under the curve (AUC), the better a classifier can

distinguish data classes [4]. For example, in Figure 2.1, the classifier represented by

the green curve has better performance than that of the blue curve. ROC curves are

used to evaluate the proposed classifiers in Chapter 4 and Chapter 6.

7

Chapter 3

DADE: A Fast Data Anomaly Detection Engine for Ker-

nel Integrity Monitoring

3.1 Background

In computer systems, the kernel is at the heart of most critical operations because it

manages the information stored in the system (both code and data) as well as hardware

resources such as CPU, memory, and peripheral devices. Thus, ensuring the integrity

of the kernel assumes considerable importance as attacks against the kernel could allow

an adversary to obtain the highest privilege within a compromised system. However,

with said privilege, adversaries would be able to bypass most protection methods inside

a system, therefore most methods of monitoring kernel integrity require an isolated

environment which is safe from the potential influence of a compromised kernel.

This isolation is typically achieved by keeping the monitor on the outside of the

operating system it wishes to verify. From this external position, the monitor would

perform memory introspection, which is the act of looking into and making sense of

the raw memory of a different system, in order to acquire the values of current ker-

nel data. Then, it would verify kernel integrity by checking whether certain integrity

specifications, which describes the behavior expected from an uncompromised ker-

8

nel, hold over the acquired data or not. These specifications would represent invariant

properties, properties that would hold true throughout the execution of an uncompro-

mised kernel, and any violation of these specifications would be acknowledged as a

data anomaly and be considered as an attack against the kernel. For example, pointers

in the system call table are supposed to strore addresses of legitimate system calls and

therefore any pointer indicating an unknown address can be considered as the result of

an attack that tries to insert a malicious hook inside the system call table.

For most cases in the past, the integrity specifications and their corresponding

invariant properties were identified and specified by hand, as this task typically re-

quires intimate knowledge of the workings of a kernel to understand and describe the

expected behavior of its data. However, as it requires such expert knowledge, hand-

tailoring these specifications can be rather time-consuming. For example, in order

to write the specification that verifies the existence of permission tampering attacks

against the Access Vector Cache (AVC) in the SELinux, shown in [35], the writer

must recognize that the attack creates a discrepancy between AVC node values and

the access permissions in access vector tables and therefore can be verified by cross-

checking the two. This rule was written in 709 lines of C code. Considering this rule

alone, the code size may not seem much big, but let me remind that the code was only

for a certain type of attack against a single data structure. Therefore, describing such

specifications for the entire kernel would be highly impractical as there are thousands

of objects within a kernel and thousands of new kernel attacks surface every month

[9].

In order to lessen tremendous efforts and overheads for monitoring every object in

the kernel, much of research in practice has taken a more realistic approach where they

confine their interest only on a more limited class of objects, called kernel control data,

which are used to manage the flow of operations within a kernel, such as the system

call table or the interrupt descriptor table. From the perspective of security, kernel

9

control data are of great importance in that they are involved in the kernel’s runtime

execution behavior. Thus, by examining their values, we may basically determine the

existence of a rootkit that is altering normal control flows of the kernel at its disposal.

Fortunately, their types and numbers are relatively small when compared to the entire

kernel data and moreover, each control data structure generally holds just a limited

number of possible, legitimate values under normal circumstances. Capitalizing on this

interesting property, previous studies have successfully verified the integrity of various

critical kernel structures by examining only a handful of integrity specifications for

control data.

However, in their efforts to seek sophisticated techniques to compromise OSes,

adversaries have turned their eyes to attacking a system without altering control data

(or equivalently, changing normal execution flows) but only by tampering with non-

control kernel data. For example, an attack could alter the non-control data represent-

ing the maximum number of threads that could run concurrently and cause a denial

of service (DoS) attack or tamper with the data managing reserved pages and cause

a resource wastage attack [12]. Unfortunately, unlike control data that, in most cases,

can be verified with similar types of specifications defining the legitimate addresses of

kernel code for certain services, non-control data usually have little in common. This

is due to the fact that, as each non-control data dictates a specific functionality within

the system and therefore would represent a different aspect of the kernel state, the con-

text of most non-control data would be vastly different from one another. Furthermore,

non-control kernel data heavily outnumber kernel control data, making it virtually im-

possible, as stated above, to provide hand-crafted specifications for all non-control data

in the kernel to verify the kernel integrity.

Acknowledging this, Baliga et al. [12] suggested a framework named Gibraltar

that leverages machine learning to find invariants of kernel data, which are properties

expected to hold true during the runtime of a kernel. This is made possible by defining

10

templates of possible invariant properties of data, such as value bounds (V alueA ≤

V alueB) or memberships (V alueA ∈ SetX), that could express most cases of data

behavior in a simple and straightforward way. These templates are used alongside

with memory snapshots of a healthy kernel to infer the actual invariants of kernel data

structures. This allows the generation of specifications for both control and non-control

data across the entire kernel with little human involvement, minimizing human error

as well as human labor in the process.

Unfortunately, despite the advantages of Gibraltar, there is a major problem in its

original design in regards to its practicality for deployment in real-world systems. As

mentioned above, Gibraltar and most frameworks enforce their specifications by em-

ploying external monitors that are isolated, physically or virtually, from the potential

influence of contaminated kernels. However, this isolation introduces a complication

to these frameworks widely known as the semantic gap, i.e., the external monitors not

having any contextual information of the raw kernel memory that they are monitoring.

As this is the case, each framework has its own way of overcoming the gap and exam-

ining the data objects within raw kernel memory. In the original design of Gibraltar,

data objects are found by their relative position to public symbols, whose addresses

are predetermined at compile time. These relative positions, however, are subject to

change after a system reboot, and thus any specification related to an object with an

alternate position must incorporate its new position in order to correctly examine its

current value. Consequently, Gibraltar must track down data objects and infer their

invariant properties at the start of each and every reboot of the system, which takes up

from 20 to 50 minutes even on an up-to-date machine.

In this chapter, I propose a new design that accelerates the overall introspection

process by virtually eliminating the long booting delay needed in Gibraltar. The key

idea of my design is to leverage information available at object allocation events,

namely, backtraces of kernel function calls, to identify objects persistently over re-

11

boots, substantially cutting out the time needed at every reboot as well as the time

needed to verify specifications at runtime. To evaluate the effectiveness of my design,

I have implemented a prototype data anomaly detection engine (DADE) which relies

on a virtualization to provide an isolated externel monitor environment. The experi-

ment reveals that DADE only induces a delay of 68.49ms with each reboot and a delay

of 900ms for an initial scan and an average of 160ms for subsequent scans. The main

contributions of this chapter is introducing this new design and providing evaluation

of a working prototype based on this design, which enables the automatic generation

and use of integrity specifications of kernel data objects while incurring low overhead.

The remainder of this chapter is organized as follows. I first give a more thorough

description of memory introspection and my motivation in Section 3.2 and then ex-

plain the main concepts of my approach in Section 3.3. I then show the design and

implementation of the prototype DADE in Section 3.4 and its evaluation in Section

3.5. Finally, I relate my work to others in Section 3.6 and conclude in Section 3.7.

3.2 Motivation

In this section, I give a brief overview of the general flow of kernel data anomaly

detection and introduce the techniques adopted in such systems and then explain the

motivation behind my approach.

3.2.1 Overview of memory introspection system for kernel data anomaly

detection

Figure 3.1 is a diagram of the basic workflow of a memory introspection system for

data anomaly detection.

In order to perform memory introspection, kernel data objects must first be identi-

fied within raw memory. However, as stated in Section 3.1, the monitor performing in-

trospection initially has little information of the actual kernel data residing in memory.

12

Raw memory

101010
101001
010100
101010
101000

- type
- address
- ∙∙∙
- ∙∙∙
- ∙∙∙
- valueObject

identification

Inference
Object X, Y, Z

Object name Invariant property

Path from X to Z == 1
Data structure of X ∈ {1, 2, 3}

∙∙∙ ∙∙∙
Address of Y < 0x100

Integrity specifications

Naming

Semantic information

Monitoring

Figure 3.1: Workflow of a memory introspection system for kernel data anomaly de-

tection.

In order to overcome this, the monitor typically leverages known semantic information

of data objects, such as their data structure definitions, and maps out the data objects

within raw kernel memory. During this process each object is given a name that rep-

resents one of its semantic information, such as its physical address or object type, in

order to distinguish them from one another.

For the generation of integrity specifications in this system, the invariant prop-

erties of the mapped data objects are inferred from their found data values, be it by

hand or machine learning, and associated with their corresponding data objects. The

association of object name and invariant property would be reflected in integrity spec-

ifications as seen in Figure 3.1, being in the form of tuples of object names and their

corresponding invariant properties.

Then, during runtime, these specifications are utilized for data anomaly detection.

When the system monitors for data anomaly, the monitor first goes through the raw

memory mapping data objects and naming them. Next, it looks up the object names

in integrity specifications to find their corresponding invariant properties. Finally, it

examines the current values of the objects and verifies whether or not a data anomaly

has occurred.

13

Transient integrity specifications In such a system, especially when integrity spec-

ifications are generated automatically, there exists a complication, namely, transient

integrity specifications, which are specifications that hold true during the runtime they

were inferred but may not hold true across system reboots. There are mainly two rea-

sons for these specifications: the object naming used for specifications being transient

or the inferred invariant property being transient. Though both cases have interesting

properties, in this chapter, I focus on those caused by transient object names and leave

the other case to future work. Below I give a more in depth view of object naming and

why some techniques may end up with transient specifications.

3.2.2 Object identification & naming

In a memory introspection system, its overall operation is greatly affected by the tech-

nique selected for object identification and naming. For instance, assume a system

opted to naı̈vely name every identified object with the same name. In this scenario, all

objects would be subject to the same set of invariant properties because all properties

would be associated with one single name. Thus, it would be impossible to perform a

meaningful data anomaly detection. On the other hand, if a system adopted an elab-

orate technique that could name each object uniquely, it could perform a thorough

data anomaly detection as each object would be verified by their own set of invariant

properties. I give below an overview of the two most prominent object identification

schemes and their associated naming schemes along with their impact on the operation

of data anomaly detection systems.

Memory traversal

Memory traversal [16, 17] is one of the most widely used techniques for object iden-

tification. For a system to utilize memory traversal, it must first gather two sets of

information on the OS it wishes to monitor: One is the set of addresses where static

14

objects, whose addresses are fixed at compile time, can be located and the other is the

set of data structure definitions for all data objects. Having this information, the sys-

tem can identify all objects in memory by recursively following objects pointed by a

member pointer field of an object that was identified earlier, starting with static objects.

This technique allows the system to gather valuable semantic information, namely, the

pointer traversal paths leading up to each object. These paths of objects are highly

suitable for object naming since they can uniquely distinguish each individual object

and express essential information on the connectivity between objects in a form that

is easy to interpret. For these reasons, Gibraltar adopted memory traversal for object

identification along with naming objects with their path information.

However, despite the advantage of naming objects with their path information,

there is a problem with verifying integrity specifications generated with such object

names. As mentioned before, in order to verify the integrity of an object, a detection

system names an object and then checks invariant properties associated with the object

name in its integrity specifications. The problem is that there is no guarantee that the

path-name of an object would persist over system reboots, and thus making it difficult

to reuse integrity specifications across reboots as there is no way of knowing if the

path-name in a specification points to the same object after a reboot. This is because

one or more objects on a pointer traversal path may be of a container type of data

structure, say a linked-list, and in this case, the path is subject to change after every

system reboot, as the contents of the linked list cannot be decided until runtime. For

instance, task struct objects, which hold task information, are known to be connected

in a linked-list that starts from the static object init task. Therefore, the path-name for

the nth task struct object would be init task→ next→ task struct 1→ next→ ...→

next→ task struct n. However, after a reboot, unless the kernel being monitored has

the exact same task environment as that of when its invariant properties were inferred

before the reboot, the path-name leading to the nth task struct object might be pointing

15

to a different task struct object.

In consideration of this, Gibraltar categorized integrity specifications into two dis-

tinct groups: persistent and transient. Persistent specifications are ones that would hold

across reboots, in other words, the object names of persistent specifications will always

stay the same regardless of reboot as well as their associated invariant properties. All

other specifications, which was briefly mentioned above, are considered to be transient

ones. The authors of Gibraltar argued that persistent specifications alone are sufficient

enough to detect all of the attacks from their test suite. However, I discovered that

there are attacks that cannot be covered by their set of persistent specifications. For

example, VFS (Virtual File System) [15] rootkits are a well-known class of rootkits

hijacking control flows during file management. They attempt to manipulate mem-

ber function pointers of file objects which designate the functions to be called when

file operations such as read and write are carried out. In order to detect this class

of rootkits, the value of the f op variable inside file objects must match a value in a

list of legitimate f op values. The path-name for file objects, however, are subject to

change over reboots, therefore only with transient specifications can a VFS rootkit

be detected. Consequently, Gibraltar must employ both groups of specifications in or-

der to provide adequate security, which, unfortunately, hampers performance. In order

to employ transient integrity specifications, Gibraltar must discard previous integrity

specifications and generate new specifications after every reboot. This encompasses

cross-examining an overwhelming number of object values for the inference of new

invariant properties, which alone was reported to take at least 20 minutes in Gibraltar’s

experimental results.

Linear scan

The drawbacks of memory traversal, mentioned above, could be alleviated if objects

are identified with a different scheme: linear scanning. Linear scanning [36, 25] iden-

16

tifies objects with each object’s allocation information which could be obtained by

memory management structures, such as slab [14] allocators in Linux [25], or by ob-

serving object allocation events [36]. The major difference between this technique and

memory traversal is that an object can be identified without reference to any other

object. This frees linear scanning from the drawbacks of pointer chasing that occurs

in memory traversal and renders it possible to overcome the limitations of Gibral-

tar. The root cause of Gibraltar’s problems, as you may recall, lies in the fact that it

names objects with their paths, semantic information of object relations that cannot

be guaranteed to persist over reboots; bringing the possibility of transient integrity

specifications. Considering this, it is safe to assume that if the semantic information

used for naming objects remains persistent across reboots, no transient specification

would be generated from invalidated object names. Which would partially eliminate

the need of generating specifications with every reboot, as such specifications would

be reusable across reboots due to the persistency of their object names. Fortuitously,

typical semantic information obtainable in linear scanning are not subject to change

over reboots. For instance, the type of an object obtained through the kernel memory

allocator should never be altered in normal circumstances and would stay the same re-

gardless of reboots. Therefore, employing linear scanning in Gibraltar would alleviate

its inherent problem, as it would allow the reuse of specifications over reboots; in other

words, Gibraltar only needs to generate its specifications once due to the fact that they

would persist across reboots.

However, these approaches come with their own drawbacks. As [36] was mainly

designed for systems such as honeypots, it did not concern itself in having practical

performance in commodity systems. On the other hand, [25] shows practical perfor-

mance. However, it determines information of objects with their types or their connec-

tivity to different objects, the former lacking a bit in granularity to distinguish objects

of different contexts and the latter having the same problem as path-naming.

17

Figure 3.2: An example backtrace-name with its corrsponding function call trace.

In summary, despite their advantages, there are limitations to prior techniques in

object identification. Memory traversal with path-naming, though it is straightforward

and fine-grained, is accompanied by transient specifications caused by transient object

names, whereas linear scanning techniques lack precision in distinguishing individual

objects, even though they are free from those transient specifications. In this chapter, I

aim to provide a new object identification scheme that would overcome the aforemen-

tioned limitations. I employ linear scanning in DADE to eliminate transient specifica-

tions caused by pointer chasing and introduce a new semantic information for naming

objects that provides a narrow enough granularity. I give a detailed explanation on my

approach in the following section.

3.3 The DADE Approach

As stated in Section 3.2, I introduce a new semantic information obtainable through

linear scanning: backtraces, which, in my data anomaly detection engine DADE, is

utilized to name objects.

18

3.3.1 Backtrace-Naming

A backtrace (also called call trace or traceback) is a backward list of active function

calls that starts with the last function call. As a function is a unit of performing a

specific task, the backtrace can be helpful in discerning the context of the current thread

because it shows the tasks performed up until the last function call. In DADE I use

backtrace-naming, which is naming objects with their allocation backtrace. In other

words, whenever an object allocation occurs in a function, the object is named with the

backtrace of that function, which would represent the context of the object’s creation.

For instance, Figure 3.2 depicts a backtrace of the kernel functions calling function

bus add driver and the corresponding backtrace-name for the object allocated by the

allocator function. This name would hold true for the object under any circumstance,

barring a change in kernel code. Consequently, backtrace-names would persist over

reboots, allowing DADE to reuse integrity specifications generated during a one-time

offline inference.

The basis for the use of backtrace-naming in DADE for kernel integrity monitoring

is the following two observations made on examining Linux kernels:

O1. Most Kernel objects are allocated through only a couple of fundamental object

allocators.

O2. The kernel context when a kernel object is created reflects the object’s character-

istic during runtime.

Identifying Kernel Objects DADE applies linear scanning to identify kernel ob-

jects. In order to accomplish this, whenever an object allocation event occurs, DADE

must gather relevant information through the virtual machine manager (VMM). Al-

though there are various types of object allocators in the kernel, according to my ex-

amination, most are nothing but wrapper functions that ultimately call a couple of

fundamental object allocators, as in O1. For example, the alloc task struct node func-

19

Figure 3.3: Granularity of backtrace-naming.

tion, which allocates task struct objects, internally calls the kmem cache alloc node

function; in other words, it wraps the other function. Likewise, kmalloc is a wrapper

function of the kmem cache alloc function. Therefore, DADE can gather most object

allocation information of kernel objects by only tracking a couple of fundamental al-

locators.

Object naming As mentioned before, DADE names objects with the backtrace at

the moment of their allocation. This allows DADE to more elaborately distinguish ob-

jects than prior naming schemes in linear scanning, such as allocation-sites or data

structures. For instance, lets assume the case of Figure 3.3.(a), where an object is al-

located in function C. Under allocation-site naming, all objects would share the same

name of allocated-in-C, whereas with backtrace-naming, objects would have two dis-

tinct names reflecting the function that called C. The name C← A for objects allocated

when C was called by A and C← B for the case of C being called by B. Furthermore,

as backtrace naming can distinguish function calls from different branches, as in the

case of Figure 3.3.(b), it can give a higher resolution of objects in terms of granularity.

Therefore, backtrace-naming is able to better reflect the subtle differences in kernel

context than other existing naming schemes in linear scanning.

20

Generating Integrity Specifications Still, even with a higher resolution than prior

linear scanning naming schemes, as backtrace naming cannot give every individual ob-

ject their own unique name, a few objects are bound to share the same name, and thus

the same integrity specifications. Observation O2, however, gives insight that objects

created in a similar kernel context would have similar characteristics at runtime, and

thus their sharing of a name is not necessarily a bad thing in this case. For instance, in-

odes are kernel objects used in various kernel functionalities, such as file systems,

sockets or device drivers. They are allocated by the function alloc inode which is

a wrapper function for kmem cache alloc, which I have found that could be called

through 259 distinct backtraces. The reason for this is that, instead of generating and

distributing inodes from a central component, each kernel component generates their

own inode in accordance to their distinct kernel context. As a result, inodes sharing the

same backtrace-name show similar characteristics, and thus the integrity specifications

shared among them reflect the invariant properties based on these similarities.

3.3.2 Limitations of backtrace-naming

Static objects Kernel objects can be categorized into static objects and dynamic ob-

jects. Among these, only dynamic objects are created through allocators, and thus

backtrace-naming can only be applied to these objects. However, as the memory loca-

tion of static objects are fixed at compile time, their identification in memory is trivial.

DADE incorporates these static objects via locating them at their predetermined ad-

dresses and names these objects with their addresses.

Coverage for dynamic objects During a more thorough investigation I found that

even though most dynamic kernel objects are created by fundamental allocators, which

are explicit as observed in O1, some data objects are allocated in an implicit way. For

example, the kernel manages page objects, which contains memory properties of a

continuous block of virtual memory called a page, in such a way that it first allocates

21

one large memory block, divides the block into page objects and indices them se-

quentially. Furthermore, objects created through arbitrary allocations or non-standard

means of allocations would not go through the fundamental allocators. As these allo-

cations are beyond the reach of DADE’s current backtrace-naming scheme, it cannot

incorporate the objects created in such a way. DADE may be able to encompass these

implicit allocators by treating them explicitly but it is out of the scope of this chapter.

Representing kernel context Though backtrace-naming reflects the kernel context

when an object is created, it does not necessarily reveal all relevant contexts; it cannot

distinguish different contexts that reflect data values or express context not included

in the function call trace at creation. For example, in Figure 3.3.(c) function C has

an if-else statement before the allocator, and the condition is true when function C

is called from function A and false when it is called from function B. The allocator,

however, is on the outside of the if-else statement, so the backtrace name of any object

allocated by the allocator does not reflect the different execution flow caused by this

if-else statement because DADE extracts a backtrace at the moment the allocator is

called. To resolve this limitation, DADE must be able obtain the runtime callstack,

and I leave its inclusion as future work.

3.4 Design and Implementation

In this section, I describe my design and implementation of a prototype DADE. The

prototype is implemented on an Arndale board [5], with an ARM Cortex-A15 citearm-

cortexa 1.7 GHz dual-core processor and 2 GB RAM, which supports hardware vir-

tualization extension. The prototype was integrated to a KVM [8] with Linux version

3.8.0, running VMs with Linux version 2.4.20 and 3.8.0.

22

Figure 3.4: Overview of DADE.

3.4.1 Security assumptions and threat model

DADE is designed to work from the VMM of a virtualization environment, monitoring

the kernels of systems running within virtual machines (VM). It is assumed that the

VMM is not contaminated by attacks and protected from malicious modification so

that DADE would work as intended. DADE aims to detect attacks that alter any kind of

kernel data, therefore attacks that do not alter any kernel data, such as altering kernel

code, is considered out of scope. In addition, as will be described in the following

sections, DADE selects to perform periodic scans to monitor the kernel data. This gives

DADE only a probabilistic chance of detecting transient attacks [30]. This probability

relies on the interval or randomness of periodic scans which in itself is a separate

topic of research. Therefore transient attacks are considered to be out of scope for this

chapter as well.

3.4.2 Overview

Figure 3.4 depicts the components of DADE and their interactions. While the kernel

of the guest OS runs, the backtrace extractor obtains the backtrace-name whenever an

23

object is allocated and then stores the name along with the object’s allocation address.

At the same time, the dirty page tracer marks all memory pages where write operations

occur. Then, the integrity verifier periodically scans objects residing in the marked

pages, which is easily done by extracting object values from the addresses provided

by the backtrace extractor. Then, it periodically verifies the integrity of the extracted

objects by confirming whether or not they follow pre-inferred integrity specifications,

which are generated with the help of Daikon [21], a machine learning tool that infers

invariant properties of programs.

DADE assumes that the kernel code is not altered during runtime, that its source

code is available a priori and that there is a way to securely bootup a clean kernel for

each launch of the system. These assumptions are typically acheivable to some point

in virtualization environments, which, fortunately, DADE is built on.

3.4.3 Generating integrity specifications

Unlike Gibraltar, DADE only needs a one-time offline inference phase to generate

integrity specifications due to the fact that the backtrace-names adopted in DADE

are persistent across reboots. The one-time inference phase itself is similar to that

of Gibraltar. First of all, DADE finds all dynamically allocated objects in the memory

of a benign kernel with the help from fundamental allocators and the backtrace ex-

tractor. This provides DADE with the allocation address and backtrace-name of each

allocated object. The next step is to identify the data structures of the identified objects

and then associate objects with their corresponding data structures in order to properly

interpret the contents of the object. DADE achieves this by gathering the address and

type information of objects found in a memory traversal and then matching these ob-

ject addresses with the addresses of objects found through the backtrace extractor. As

matching these objects enables DADE to associate type information with backtrace-

named objects, it only needs to be done once during the one-time inference. After this

24

is done, by utilizing the type information of objects, DADE records the values of its

identified objects in various work cases, such as right after finishing a reboot or during

the execution of a strenuous benchmark. These records provide DADE with the list

of observed values of data objects in various kernel contexts that are commonly en-

countered during runtime. Then, DADE groups objects on the basis of their assigned

backtrace-names. Each group with the same backtrace-name is treated in Daikon as an

individual input instance and as a result, Daikon produces integrity specifications in re-

gards to backtrace-names. These generated specifications are then enforced at run-time

(supported by O2 in Section 3.3.1).

3.4.4 Extracting backtraces

Based on O1 in Section 3.3.1, DADE can extract most object allocation information

by trapping a couple of fundamental allocators such as kmem cache alloc, kmalloc,

or vmalloc node range.

Early in the kernel bootup sequence, DADE replaces an instruction in the exit code

block of these fundamental allocators with a hypercall instruction, which traps to the

VMM, as seen in Figure 3.5. Then, when a fundamental allocator is called, the inserted

hypercall transfers control over to the hypercall handler in the VMM, which calls the

backtrace extractor. The backtrace extractor ascends the stack and retrieves the current

backtrace along with the allocation address of the allocated object and stores them as

a tuple.

In order to retrieve a backtrace, the extractor must go through the stack and retrieve

the return addresses from the stack frames of each funtion call. The most convenient

way to accomplish this is to utilize frame pointers due to the fact that they can provide

the backtrace extractor with the exact size of each stack frame. Unfortunately, opti-

mizations that are commonly found in modern compilers usually omit frame pointers

and related instructions in order to reduce performance overhead. Thus, the target ker-

25

returning to kernel

replacing code with
a hyper call inst.

VMMGuest OS

allocation event

trapping to VMM

kmem_cache_alloc:
push {r4, ..., lr}
...

mov r0, r4 ← hvc 1
pop {r4, ..., pc}

backtrace_extractor:

bl extract_backtrace
...
bl replace_nop_inst
nop ← mov r0, r4
eret

hypercall_handler:
...

world_switch_to_host:
...

Figure 3.5: The process of trapping an allocation event in DADE.

nel needs to be re-compiled with an option similar to -fno-omit-frame-pointer in GCC,

which would force the compiler to keep frame pointers. If one wishes to apply the

optimizations that omit frame pointers, they can achieve the same effect of DADE by

analyzing, in accordance to the processor’s calling convention, the binary of the kernel

alongside the program stack for the retrieval of backtraces. In DADE, I compiled the

kernel so that it would keep frame pointers.

When the backtrace extractor finishes, DADE must properly execute the original

kernel instruction that was replaced with the hypercall instruction at bootup before

the hypercall handler returns control back to the kernel. This is done by keeping a

nop instruction in the exit code block of the backtrace extractor and executing the

original kernel instruction instead of the nop instruction at runtime. This is depicted in

Figure 3.5. However, this workaround is not always possible. For instance, instructions

26

dealing with memory or banked registers would produce different results because the

instructions would operate on the memory and register contents of the VMM rather

than those of the kernel. To avoid such problems, the instruction to be replaced with a

hyper call must be chosen carefully.

Optimizing backtrace extraction

As mentioned before, in DADE, whenever an object allocation event transpires, con-

trol transfer between the kernel and the VMM must occur because DADE traps every

kernel object allocation event to keep track of live kernel objects. Normally when a

trap happens, the hypercall handler performs a world switch so that the data in regis-

ters and memory would reflect the state of the VMM, and thus handing control over

to the VMM. World switches are, however, expensive operations due to the fact that a

considerable amount of state needs to be saved and restored. As DADE needs to trap

every allocation event in the kernel, this overhead for world changes could potentially

cripple the guest VM’s performance, which, in turn, would render DADE unsuitable

for practical use. In order to minimize this overhead, DADE deploys a conditional

branch in the hypercall handler, as seen in Figure 3.5, so that when the current hyper-

call is just called for recording an object allocation event, the handler directly calls and

executes the backtrace extractor without performing a world switch. This optimization

reduces the time needed for handling a hypercall for object identification to 321 CPU

cycles, as shown in table 3.1, whereas without this optimization, 2,270 cycles would

be needed just for a single round-trip to the VMM [18].

Another optimization in DADE for backtrace extraction is related to memory pres-

sure. DADE has to manage over ten thousand allocation data at runtime with only a

limited amount of memory space. Thus, in my implementation, DADE stores backtrace-

names as hash values. For example, in Figure 3.2, we can compute the hash value of

the backtrace-name by running a hash function using each address of the subroutine

27

as its inputs. The resulting hash value would be 0xb95260f4. This hashing scheme is

also adopted when generating an integrity specification in inference phase. Though

collision within a hash could possibly lead to objects having different properties to

share the same object name, which could lead to false positives during detection, con-

sidering the false positive rate from the evaluation in Section 3.5.1, the effect could be

considered negligible.

3.4.5 Verifying object integrity

For efficiency, DADE enforces integrity specifications only on objects whose contents

might have changed since the last enforcement. In other words, it only verifies the

integrity of objects residing on dirty pages. In order to do so, DADE initially marks

every kernel memory page as not dirty. Then, when any content of a page is modified,

it flags the page as dirty. This is implemented by leveraging extended page tables

supported by hardware virtualization extensions. DADE sets the whole kernel memory

as read only, then any write towards a kernel memory page would be prohibited and

generate a page fault, which is handled by the VMM. When such an event occurs,

DADE flags the page as dirty and enables writes on the page to prevent any further

page faults on an already dirty page. Once DADE performs a scan for data anomaly

detection, it marks all pages as not dirty and starts this process all over again.

To fully capitalize on this dirty page optimization, DADE keeps track of not only

the backtrace-names of objects but also their allocation addresses, which makes it pos-

sible to extract the object values in dirty pages with a single linear scan and check their

corresponding integrity specifications.

3.4.6 Deallocations

Any object that is allocated might be deallocated at some point at runtime, and there-

fore DADE must be able to handle deallocation events to properly locate and verify

28

objects. DADE accomplishes this by instrumenting hypercall instructions into fun-

damental deallocator functions just as it has done with allocators. With this, DADE

generates a list of the backtraces of deallocation events along with the addresses of the

deallocated objects. Then, at the start of the each data anomaly detection, it cross ex-

amines newly deallocated addresses with the addresses of identified objects and deletes

information it gathered on objects that have a matching address. To handle reallocation

events, which are allocations following deallocations, DADE deletes only the oldest

object information that has a matching address per deallocation event.

Inference from deallocation information

DADE, as it has done with allocation information, could leverage deallocation infor-

mation, such as the backtrace of a deallocation event or the address of a deallocated

object, so that it could infer invariant properties related to object deallocations. Fur-

thermore, by utilizing allocation and deallocation information together, DADE could

infer invariant properties related to an object’s life cycle, which is a hidden yet fun-

damental property of an object. For instance, such an invariant property might dictate

where, in kernel code, an object must be deallocated and an integrity specification re-

flecting this property could potentially detect attacks that involve an abnormal removal

of a kernel object, such as those used in loadable kernel module (LKM) hiding attacks.

Example integrity specification with deallocation information

As an example of such invariant properties, I introduce a new simple invariant property

I1, which is universally applicable to kernel objects that only have a single legitimate

deallocation event.

I1.objects allocated by an allocator with BacktraceA are only deallocated by a deal-

locator with BacktraceB .

In practice, when DADE performs its off-line inference, in addition to backtrace-

29

names and values of objects, it also retrieves the addresses of objects coupled with

their allocation backtraces and deallocation backtraces. This information is packaged

and given to Daikon as a custom input format so that Daikon may acknowledge it is

handling additional allocation and deallocation information. When Daikon is handling

such inputs Daikon sees if it can infer I1 from the given inputs. This inference is

done by first building sets of allocation addresses that share the same backtrace-names;

that is to say, Daikon groups the addresses of objects allocated by the same allocator

that was called in the same kernel context. Data objects from different bootups of

the kernel are grouped seperately as they probably would not share the same object

addresses. This grouping is done similarly for deallocation addresses and deallocation

event backtraces as well and are matched with the allocation backtrace group from the

same kernel execution. After the sets are all built and matched, Daikon examines them

to ascertain if a set of deallocation addresses with the sameBacktraceB , is the unique

subset for a set of allocation addresses with the same BacktraceA; in other words, it

determines if there is no other subset but the one. This relation between these sets

imply that all objects allocated by BacktraceA are observed to only be deallocated by

BacktraceB , and therefore when such a relationship between sets are found, Daikon

produces the invariant property I1 and its corresponding integrity specification.

Enforcing deallocation related integrity specifications at runtime

In order for these integrity specifications reflecting I1 to be enforced at runtime, it

must be done when DADE handles deallocation events. When DADE is about to

resolve a recorded deallocation event and delete the corresponding object informa-

tion it had stored, it links deallocation event backtraces with their corresponding al-

location event backtraces by finding a match between the addresses of the objects

related to the events. For instance, an object that was allocated at AddressX with

BacktraceA would be linked to an deallocation event that deallocatedAddressX with

30

BacktraceB , as both events are related to the object allocated at the same address. Af-

ter the link is made, DADE verifies one last integrity specification I1, if it exists for the

allocation backtrace. In the case of the specification being present, DADE compares

the backtraces of the linked object’s allocation and deallocation events against those

in the specification. Any discrepancy between them would indicate that the object was

deallocated in an abnormal way.

3.5 Evaluation

In this section, I evaluate DADE in terms of its practical performance and its ability to

detect data anomalies.

3.5.1 Performance

The performance of DADE is evaluated in four aspects, the generation time of integrity

specifications, false positive rate, the induced delay at boot-up and the detection per-

formance. As discussed in the limitations of backtrace-naming in Section 3.3, though

DADE can trivially encompass the static region of the kernel memory, my approach

holds little advantage over previous approaches handling the static region of kernel

memory because its main idea is built around improving the locating of dynamically

allocated kernel objects. Therefore, for clarity on the effects of DADE, evaluations in

this section report only on these dynamic objects. The performance evaluations were

made on Linux 3.8.0.

Generation time of integrity specifications

In order to generate integrity specifications, as detailed in Section 3.4, DADE extracts

data object values from an uncontaminated kernel and associates object names with

the values so that it can utilize Daikon to infer the invariant properties of the objects.

31

For this process, I extract kernel data in various kernel states, such as when the boot-up

sequence just finished, when the kernel is in an idle state and when a benchmark (such

as lmbench [29], SPEC2006 [11]) is running. I have collected 2 to 3 sets of object val-

ues from various situations, cumulating in 15 sets of object values per inference. With

these records of object value changes, I run the invariant property inference module of

Daikon to infer invariant properties and generate integrity specifications, which took

an average of 54 minutes. Note that this whole process is done offline, so the runtime

performance of DADE is not affected in any way.

False positives

As DADE automatically generates integrity specifications from kernel data acquired

in various situations, its specifications are confined by the information embedded in

the sets of data used for their generation. In other words, DADE might report legiti-

mate kernel data values found in rare kernel events as a data anomaly if the event was

not captured for its generation of specifications. These false positives in data anomaly

reports are artifacts of generating specifications from incomplete sets of kernel data

values and shows a side of DADE that may be improved with better sets of kernel

data values. To measure the amount of false anomaly reports, I ran a benign workload,

which includes running the aforementioned benchmarks [29, 11] in different configu-

rations or running benign programs (ProFTPD [10], gcc [7], bzip2 [6]), and recorded

any data anomaly report made from DADE over 30 minutes. During this experiment,

0.15% of the specifications were related in false reports. Unfortunately, as I have no

way of exactly replicating the benign workload of Gibraltar which reported a 0.65%

false positive rate, I cannot fairly claim better accuracy over it. However, note that

DADE achieves its goal in improving aspects of Gibraltar while still having a compa-

rably low false positive rate.

32

Table 3.1: Overhead for object identification and naming during kernel boot in DADE

The number of allocations 186,132

The number of deallocations 156,367

The number of live objects 29,765

Avr. CPU cycles per trap 321

Avr. CPU cycles per backtrace-naming 140

Total spent CPU cycles of traps 116,440,503

Total spent time(ms) of traps at 1.7GHz 68.49

Induced delay at boot-up

As a means to evaluate the impact DADE’s object identification and naming scheme

has on system performance, I measured the delay caused by the backtrace extraction

and object naming that is handled during the boot-up of a guest VM. This was mea-

sured through the performance monitor equipped on ARM processors and Table 3.1

shows the results. During the guest VM boot-up, there were 342,499 traps caused

by the hyper call instrumented in fundamental (de)allocators, ultimately delaying the

boot-up sequence by 68.49ms. This is 1.5% of the average boot-up time 4.5s. Note that,

as mentioned in Section 3.2, without the backtrace naming scheme DADE introduces,

Gibraltar would need to generate integrity specifications at every system boot-up, in-

ducing a delay of 56 minutes (reported in their paper [12]) or 54 minutes (from my

experimental results in Section 3.5.1).

Detection performance

As DADE runs data anomaly detection periodically, the interval between scans is di-

rectly related to the performance and security of the whole system. The time it takes

DADE to perform a single scan is proportional to the number of objects that need to

be verified and the amount of invariant properties related to each object. Figure 3.6

33

Figure 3.6: Number of invariant properties for unique object names.

depicts the number of object names (Y-axis) that have certain numbers of properties

(X-axis) in my prototype. A total of 68,854 invariant properties were inferred for a

total of 5,177 unique object backtrace names, so each object name had an average of

13.3 invariant properties. Therefore, when DADE needs to verify N objects, it would

perform an average of 13.3N comparisons to detect data anomaly.

During a scan in DADE, the number of objects that need to be checked depends on

the number of objects that were created or changed. DADE narrows down, as described

in Section 3.4, the objects it performs data anomaly detection by only scanning the

objects within a memory page that was marked dirty. As seen in table 3.1, right after

kernel boot-up, DADE identified and verified 29,865 objects, which resided on 9,854

dirty pages. This initial scan took 900ms. After this, DADE performed another scan

after an execution of a benchmark and found that 17604 objects were located on 1,232

dirty pages. This additional scan only took 159ms. This result is due to the dirty page

optimization of DADE. Initially, DADE must go through every object because the

34

pages they reside on will all be marked dirty during boot-up. However, after the initial

scan, the number of objects needing verification decreases as only the pages containing

object changes will be scanned.

3.5.2 Data anomaly detection

Even though DADE might show practical runtime performance, if it is unable to detect

data anomalies, its performance would be for nothing. In order to evaluate the security

aspect of my approach, I show DADE’s performance against various kernel attacks.

For more precise detection, specifications for objects in the static region of the kernel

are included in the evaluations of this section.

Detecting attack against the kernel To evaluate DADE’s ability to detect kernel

attacks through data anomaly, I tested it against a subset of attacks reported in the

original paper of Gibraltar [12]. Though some of these attacks may have been patched

out in recent kernels, they represent the manipulation of variant kernel objects and

thus, DADE’s ability to detect them can be translated to detecting any other attack that

would manipulate other kernel data in a similar fashion. As some of these attacks are

somewhat difficult to reproduce on more recent Linux kernels, in order to test DADE, I

have additionally set up the environment originally used in Gibraltar’s reports, namely,

Linux 2.4.20. Attacks that were not reported in Gibraltar’s paper are tested on the 3.8.0

kernel to show DADE works fine on both occasions.

As seen in Table 3.2, DADE successfully detected various forms of kernel attacks.

It was able to detect a set of attacks that includes all attack types that were tested

against Gibraltar. Though this set is a subset of that of Gibraltar, the additional attacks

reported in Gibraltar share common characteristics with the selected attacks. There-

fore, testing those additional attacks would only provide redundant information as they

are detectable through similar or same integrity specifications that detect the selected

attacks. Furthermore, DADE was able to detect an attack (VFS hooking on inodes)

35

Table 3.2: Attacks, which were successfully detected by DADE, reported alongside

their required detection method in Gibraltar’s original design (attacks detectable with

persistent specifications or transient specifications)

Attack type Gibraltar (Path)

Rootkits

(Adore, Kbd, Synapsys, Knark)

Disabling firewall Detect with

Entropy pool contamination Persistent spec.

Resource wastage

Intrinsic Denial of Service

VFS hooking (inode) with Transient spec.

LKM hiding Cannot detect

that could only be covered by transient specifications and an attack (LKM hiding) that

would have gone unnoticed in a path-naming scheme. Below, I give a more in depth

look into these attacks.

VFS Hooking Attack The VFS is the highest abstraction layer of file management

in Linux. It provides a common set of API functions, which are independent of file

systems like ext2 or NFS, for operations such as opening a file or reading its contents.

In practice, these operations are performed on an inode object which stores system-

level information about a single file. This is done through file operations, a member

field of inode that contains function pointers for each API in the common set. These

point to the actual implementation of the API operations for the selected file system

type. Therefore, if a rootkit hooks these function pointers, it can manipulate a variety

of file system related functionalities; for example, by implanting a fake read function,

it can hide its existence from anti-malware software or it could modify the contents of

a file by calling a hijacked write function.

36

Figure 3.7 is a snippet of code from the VFS rootkit I deployed, which substitutes

i fop, a pointer indicating file operations in an inode object, in order to achieve various

malicious goals.

struct file *pFile = filp_open(filename, ...);
struct inode *pNode= pFile→f_dentry→d_inode;
pNode→i_fop = &malicious_func;

path name:
init_task→pid_link→pids__0→pid→pid→upid→numbers__0→pid_namespace→ns→task_struct
→child_reaper→list_head→children→task_struct→next→list_head→sibling→task_struct→next
→list_head→children→task_struct→next→list_head→sibling→task_struct→next→files_struct
→files→fdtable→fdt→file→dentry→f_dentry→inode→d_inode→file_operations→i_fop

invariant property: == 0xc04a8640

hash value of a backtrace name: 0x25cceaec
data structure: inode
target field: file_operations←i_fop
invariant property: == 0xc04a8640

hash value of a backtrace name: 0x25cceaec
data structure: inode
backtrace name:

alloc_inode←iget_locked←kernfs_get_inode←kernfs_iop_lookup
←lookup_real←__lookup_hash←lookup_slow←link_path_walk
←path_openat←do_filp_open←do_sys_open←sys_openat
←ret_fast_syscall

Figure 3.7: Partial code of a VFS attack.

In a memory introspection system, this attack may be detected by generating and

verifying an integrity specification for the value of i fop.

In Gibraltar, since each process in the system maintains its own private view of the

file, i fop can be identified by a path starting from init task, a static object in the process

list, that goes through a list of task struct, files struct, dentry and inode structures. A

specification generated for an i fop is given in Figure 3.8.

struct file *pFile = filp_open(filename, ...);
struct inode *pNode= pFile→f_dentry→d_inode;
pNode→i_fop = &malicious_func;

path name:
init_task→pids__0→pid→numbers__0→ns→child_reaper→children
→next→sibling→next→children→next→sibling→next→files
→fdt→file→f_dentry→d_inode→i_fop

invariant property: == 0xc04a8640

hash value of a backtrace name: 0x25cceaec
data structure: inode
data field: i_fop

invariant property: == 0xc04a8640

hash value of a backtrace name: 0x25cceaec
data structure: inode
backtrace name:

alloc_inode←iget_locked←kernfs_get_inode←kernfs_iop_lookup
←lookup_real←__lookup_hash←lookup_slow←link_path_walk
←path_openat←do_filp_open←do_sys_open←sys_openat
←ret_fast_syscall

Figure 3.8: Path-name based integrity specification for i fop.

As discussed in Section 3.2, the integrity specification based on this path-name

is transient, and therefore in order to detect a VFS rootkit, Gibraltar must repeat the

generation of integrity specifications with every reboot.

As DADE, on the other hand, expresses object names as the hash value of the

backtrace at the point of their creation, the object names would be presented as in

Figure 3.9.

In practice, such hash values are associated with their corresponding invariant

properties in an integrity specification. For instance, a specification for an i fop is given

in Figure 3.10. As mentioned in Section 3.3, this backtrace-naming based specification

37

struct file *pFile = filp_open(filename, ...);
struct inode *pNode= pFile→f_dentry→d_inode;
pNode→i_fop = &malicious_func;

path name:
init_task→pid_link→pids__0→pid→pid→upid→numbers__0→pid_namespace→ns→task_struct
→child_reaper→list_head→children→task_struct→next→list_head→sibling→task_struct→next
→list_head→children→task_struct→next→list_head→sibling→task_struct→next→files_struct
→files→fdtable→fdt→file→dentry→f_dentry→inode→d_inode→file_operations→i_fop

invariant property: == 0xc04a8640

hash value of a backtrace name: 0x25cceaec
data structure: inode
data field: file_operations←i_fop

invariant property: == 0xc04a8640

hash value of a backtrace name: 0x25cceaec
data structure: inode
backtrace name:

alloc_inode←iget_locked←kernfs_get_inode←kernfs_iop_lookup
←lookup_real←__lookup_hash←lookup_slow←link_path_walk
←path_openat←do_filp_open←do_sys_open←sys_openat
←ret_fast_syscall

Figure 3.9: Backtrace-name of inode object.

is persistent, and therefore is applicable across multiple reboots.

struct file *pFile = filp_open(filename, ...);
struct inode *pNode= pFile→f_dentry→d_inode;
pNode→i_fop = &malicious_func;

path name:
init_task→pids__0→pid→numbers__0→ns→child_reaper→children
→next→sibling→next→children→next→sibling→next→files
→fdt→file→f_dentry→d_inode→i_fop

invariant property: == 0xc04a8640

hash value of a backtrace name: 0x25cceaec
data structure: inode
data field: i_fop

invariant property: == 0xc04a8640

hash value of a backtrace name: 0x25cceaec
data structure: inode
backtrace name:

alloc_inode←iget_locked←kernfs_get_inode←kernfs_iop_lookup
←lookup_real←__lookup_hash←lookup_slow←link_path_walk
←path_openat←do_filp_open←do_sys_open←sys_openat
←ret_fast_syscall

Figure 3.10: Backtrace-name based integrity specification for i fop.

With this specification, DADE successfully detected that the VFS rootkit was alter-

ing i fop values. When the rootkit altered i fop, the memory page containing i fop was

marked dirty and at the next data anomaly detection scan, DADE was able to detect

the rootkit’s presence efficiently.

LKM Hiding Attack Though a kernel may need to provide a variety of function-

alities, not all of them must be present at the same time. Therefore, modern kernels

support loadable kernel modules (LKM) so that it may load or unload certain func-

tionality modules for efficiency. However, as LKMs are capable of running custom

code inside the kernel, many attackers leveraged these to covertly take over the kernel.

In order to hide LKMs, attackers would typically implant codes that erase any hint of

the LKM being loaded. When an LKM is loaded, the kernel creates a kobject object,

which would make the LKM’s information obtainable under /sys/module. Therefore,

as a means to hide its own presence, malicious LKMs execute the instruction kob-

ject del(&THIS MODULE→mkobj.kobj); after the LKM initializes in order to delete

its corresponding kobject. At this point, the LKM cannot be found under /sys/modules

38

hash value of a backtrace name: 0x59e26da0
data structure: kobject
backtrace name:

kobject_create←kobject_create_and_add←load_module
←sys_init_module←ret_fast_syscall

hash value of a backtrace name: 0x1d872690
data structure: kobject
backtrace name:

kobject_release←kobject_put←mod_kobject_put←free_module
←sys_delete_module←ret_fast_syscall

hash value of a backtrace name: 0x386a3732
data structure: kobject
backtrace name:

init_module←do_one_initcall←load_module←sys_init_module
←ret_fast_syscall

(a) When loading LKM

(b) When releasing LKM

(c) When hiding LKM

Figure 3.11: Backtrace-name for kobject (a) allocation event (b) legitimate dealloca-

tion event (c) abnormal deallocation event.

as it has no kobject. However, as it is not properly unloaded from the kernel, its codes

can still be executed to attack the kernel from the inside.

As this attack is related to the creation and deletion of kobject, a kernel object

handling LKM, the invariant property I1, which was described in Section 3.4.6, can be

used for its detection. For example, the backtrace name for a kobject is given in Figure

3.11.(a) and the backtrace for a normal kobject deallocation event is always given

as Figure 3.11.(b) because kobjects only have a single legitimate deallocation event.

However, a malicious LKM that seeks to delete its kobject in order to hide itself would

produce a deallocation event backtrace as seen in Figure 3.11.(c) and this goes against

the integrity specification for kobject deallocation : objects allocated with backtrace

0x59e26da0 are only deallocated with backtrace 0x1d872690. Through this process,

DADE successfully detected an LKM rootkit I deployed.

39

3.6 Related Work

There has been research on memory introspection techniques to detect data anomalies

in guest VM kernels. One of the most important obstacles that these introspection

techniques have to hurdle is the semantic gap problem, which comes from the difficulty

in extracting the semantic meaning of a target VM from the outside, say a VMM.

There is research that aims to provide efficient ways to introspect the kernel by

leveraging expert knowledge on kernel internal functionalities. Virtuoso [20] crafts

tools that are useable from the outside of a VM. The tools report internal VM states

by dynamically slicing the kernel binary. VMST [22], ShadowContext [37], and Exte-

rior [23] allow an examiner outside of a VM to monitor the kernel state by redirecting

kernel behaviors such as system call executions.

Many introspection techniques employ memory traversal to overcome the semantic

gap. SBCFI [33] thwarted attacks that tried to hijack the control in kernel by comparing

the runtime data structure hierarchy information, which it gathers through memory

traversal, against what it collected during a static analysis. Gibraltar [12], which is

the closest research to my work in that it detected data anomalies by comparing the

runtime values of objects, which are identified through memory traversal, against the

legitimate values it automatically inferred with machine learning. This work has been

tuned up in [13] where the number of objects monitored with each scan is reduced by

leveraging a shadow page table optimization.

However, naı̈ve memory traversal is known to have a limited object identifica-

tion coverage due to the fact that ambiguous data types, such as union or void, often

lead to misidentified objects. In order to address this problem, techniques that used

sophisticated static analyses, such as points-to analysis, were suggested [16, 17]. Un-

fortunately, they had to trade off performance for better coverage, and thus take quite

some time to identify objects at runtime.

Taking a different approach to bridge the semantic gap, there has been research

40

employing linear scan with object allocation information to get better identifications

of dynamic objects. Notable work in this approach are LiveDM [36] and OSck [25].

LiveDM logs debugging information and later analyzes it to determine the object type

created by a certain allocation event. OSck leverages the memory management system

in a kernel to identify objects and then compared the object found at runtime to the data

structure hierarchy they mapped beforehand. Compared to backtraces used in DADE,

however, objects in these work are coarse grained.

Another work employing linear scanning is SigGraph [28], which differs from

LiveDM or OSck in that, instead of leveraging allocation information, it locates objects

in a linear scan by spotting signatures that represent each object. In SigGraph objects

are distinguished by signatures of the different offsets between their pointer member

fields. This was based on two observations. The first was that many kernel objects have

a kind of super type that is composed of several sub types and the second was that huge

data types generally have many member fields containing pointer values.

KOP [19] suggested another novel approach for recognizing objects through robust

signatures of data types based on fragile member fields. Any abnormal modification

to these fields would cause a system crash, which guarantees KOP to always locate

objects through them in a running system.

There are studies that leverage hardware support for the isolation of their monitor

system. Copilot [34] installs a card on a PCI slot and makes it take snapshots of the

kernel memory and analyzes them on another connected machine. The author, in ad-

dition, suggested a framework, which included Copilot or other hardware support that

can monitor the integrity of kernel objects, based on integrity specifications which are

described by a special specification language [35]. Vigilare [30] and Ki-Mon [27] in-

troduces a straw-man style consistent monitoring technique by equipping a hardware

component called snooper on the system bus, so that, with negligible overhead, they

can detect transient memory modifications to the kernel static area and dynamic area,

41

respectively. I believe such hardware support can be designed to complement DADE

and improve its performance and monitoring capability as it did for these researches.

Another possible research area that could relate to DADE would be anomaly de-

tection techniques employing more modern machine learning models. Though DADE

shows adequate performance by employing Daikon [21], it is a rather simple form of

machine learning. Though, to the best of my knowledge, no work other than Gibraltar

and DADE has yet been done on detecting data anomaly in systems by employing ma-

chine learning, malware detection [26, 32] or network anomaly [31, 24] detection are

seeing benefit from modern machine learning techniques. Unlike DADE, where I gen-

erate specifications through machine learning, these techniques generate probabilistic

models that can classify data into normal or abnormal. However as these techniques

typically can only handle a handful of data at a time, significant work would be needed

to scale the models to be able to determine the normality of all kernel data as in DADE.

3.7 Summary

I have designed DADE, a memory introspection system for kernel data anomaly de-

tection. It traps allocation events to extract backtraces along with addresses of allo-

cated objects and efficiently identifies objects in raw memory through a linear scan. It

also generates and verifies specifications using these backtraces to name objects. This

backtrace-naming, as it rendered specifications reusable across reboot, allowed DADE

to outperform prior work in data anomaly detection by virtually eliminating the time

needed at every system boot-up while maintaining a comparable false positive rate. I

believe this increases the practicality of data anomaly detection and would provide a

good basis for research in this area to improve upon.

For future work, there are a number of areas where DADE could be improved.

First, as I have stated before, finding a way to incorporate the seemingly transient

properties of kernel data would allow a tighter integrity specifications for kernel data,

42

which in turn would reduce theoretically possible false negatives from detection. Sec-

ond, as mentioned in Section 3.3.2, refining the object naming of DADE to enable it to

differentiate more context or finding a way to accommodate custom mappings would

also increase its detection performance. Additionally, it could be beneficial to combine

DADE with security systems that protect/detect other aspects of the kernel execution

(such as control flow or code). This would provide a more complete protection system

for the kernel.

I also presented a prototype of DADE implemented on ARM architecture and

showed that it could successfully detect various kernel attacks with practical perfor-

mance. Furthermore, by leveraging allocation an deallocation information that was

unavailable in prior work, DADE was able to deploy a new form of integrity specifi-

cation and successfully detect a kernel attack tampering with object deallocation.

43

Chapter 4

Mimicry Resilient Program Behavior Modeling with LSTM

based Branch Models

4.1 Background

Protecting a computer system from a plethora of software attacks or malware in the

wild has been increasingly important. Although the nature or cause of an attack is

often hard to know in practice, it usually results in anomalous behavior different from

what can be seen in a normal program during execution. The rationale behind this

argument is that in the case of attacks, to infiltrate a system, attackers usually gain

control over program execution exploiting exposed vulnerabilities, which resultantly

produces different program behavior from that of benign programs. Following this

logic, as one branch of research to detect the existence of attacks or malware, there

has been much work focused on modeling the runtime behavior of a program [48,

49, 50, 51, 46, 55, 52, 45, 32, 26]. This is done by either modeling the behavior of

normal program execution in order to detect attacks that cause anomalies or modeling

the behavior of known malware families to detect similar malware.

Stemming from the seminal work of Forrest et al. [1], one of the main tools to

model program behavior is system call sequences. As stated in [1], for most mal-

44

ware or attacks to function correctly, they must access system resources which are

only accessible through system calls to the OS. Therefore, we could model the system

call sequences representing such accesses in order to discern malicious activity or we

could model the expected normal system call sequences of a system and discern any

anomalous sequence that does not follow the model to be potentially malicious.

Unfortunately, since mimicry attacks [40, 57], which hide malicious system call

sequences by mimicking that of benign programs, were proposed, program behavior

models based solely on system call sequences could no longer ensure the security of

systems. In order to counter mimicry attacks, researchers aimed to include additional

information, such as system call arguments [39, 38] or call stack information [41],

that could help build a program behavior model capable of differentiating true normal

system call sequences from mimicked system call sequences. However, the inclusion

of additional information brings its own drawbacks. For instance, unlike system call

sequences that could be easily modeled automatically via various sequence based ma-

chine learning methods, system call arguments come in many different forms and re-

quire complex handcrafted constraints or augmentations to model every different type

of argument. While this makes it capable of leveraging human intuition, it also leaves

it susceptible to human error.

Therefore, in this chapter, I report my preliminary findings in my research to build

a mimicry resilient program behavior model that does not suffer from the drawbacks

of prior work. As, during my preliminary studies, I have found that no-op system

calls [40], which are the main tool of building mimicry attacks, are easily discernible

with the help of branch traces, I employ branch sequences to harden my program be-

havior model against mimicry attacks. With the help of recent hardware features, Intel

Processor Tracing (PT) [53] on Intel x64 architectures and real-time trace macrocells

(ETM, PTM, STM) in ARM architectures, we can acquire branch sequences of a run-

ning program with low overhead. Furthermore, branch traces magnify any anomalies

45

in a corresponding system call trace as an anomalous system call would bring with

it many anomalous branch instructions. However, by employing branch traces, the

possible number of candidates for each element in a sequence are several orders of

magnitude larger than that of system call sequences. Due to this fact, most system call

sequence modeling methods proposed in prior work would not work well with branch

traces. In order to address this, I leverage deep learning, more specifically Long Short

Term Memory (LSTM) [3], to handle large scale sequence modeling. LSTM shows

great success in various sequence modeling applications and could be considered the

current de facto standard for deep learning based sequence modeling. my preliminary

experiments show it has great promise in branch sequence modeling. Based on these,

I design a prototype system, DeePBM which leverages Intel PT to acquire and deliver

branch sequences for the training and inference of an LSTM based program behavior

model.

The rest of this chapter is organized as follows. First I give a brief overview of the

design of my prototype system DeePBM and my LSTM branch model in Section 4.2.

Then I report my preliminary findings in modeling program branch sequences with

LSTM in Section 4.3. Finally, I conclude this chapter in Section 4.4.

4.2 Prototype Design

The ultimate goal of DeePBM is to support an LSTM branch model with an efficient

runtime mechanism that can record all the branch outcomes produced during program

execution and deliver them to the model. In this section, I describe the overall archi-

tecture of DeePBM.

4.2.1 Components of DeePBM

Logging module (LM) keeps track of execution paths of the live target process, gather-

ing through PT its branch traces generated by the CPU. LM aims to capture the com-

46

Figure 4.1: Architectural overview of the DeePBM framework.

plete behavior of the target process by collecting branch traces from both user mode

and kernel mode. In addition, if the process forks a child process during execution, LM

will be immediately configured to monitor it as well.

As a hardware extension to support control flow tracing, PT generates branch

traces in the form of several encoded data packets including Taken Not-Taken (TNT)

packets, Target IP (TIP) packets, and Flow Update packets (FUP). TNT indicates the

direction of direct conditional branches and represent the information about returns.

TIP records the target address of control transfers such as indirect jumps and indirect

calls. FUP provides the source address for asynchronous events such as those trigger-

ing interrupts. In the current implementation, LM gathers the traces of branch target

addresses from TNT and TIP packets.

Deep learning engine (DLE) consists of two modules each for training and in-

ference, respectively. Under a controlled environment for learning program behavior,

47

⋯

𝑃𝑃(𝑥𝑥1) 𝑃𝑃(𝑥𝑥2|𝑥𝑥1) 𝑃𝑃(𝑥𝑥3|𝑥𝑥1:2) 𝑃𝑃(𝑥𝑥𝑛𝑛|𝑥𝑥1:𝑛𝑛−1)

 𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛−1 𝑥𝑥𝑛𝑛 [GO]

⋯

⋯

embedding layer

1st hidden layer

2nd hidden layer

input layer

output layer
⋯

softmax layer

Figure 4.2: Branch model.

the training module performs four types of operations belonging to the training phase

of my deep learning model. One operation is dividing available branch traces either

into the training set or validation set. Another is transforming branch traces into an

input-friendly form for model training, which will be described in Section 4.2.2. The

remaining two are training the model with the training set and validating the model

with the validation set. In my implementation, these operations are repeated as many

times as needed. The inference module performs two types of operations belonging

to the inference phase of the model. One is transforming the given branch trace into

an input-friendly form for inference. The other is detecting anomalies or patterns in

the given branch trace with the trained branch model and reporting the result. In Sec-

tion 4.2.2, I will discuss the deep learning model trained and managed by DLE.

48

4.2.2 LSTM branch model

As typical processes in modern programs execute long chains of branches, the num-

ber of branches required to fully understand the meaning of program behavior is quite

large. In addition, the branches comprising a process are intertwined with each other in

a complicated way. In this regard, learning long-term dependence is crucial for devis-

ing effective program behavior models. Therefore, I employ long short term memory

(LSTM) [3], a well-designed RNN architecture component that has the capability of

capturing long term dependencies, as the basis of DLE.

Figure 4.2 illustrates the architecture of the branch model, that is, the language

model of branch sequences, which estimates the probability distribution of the next

branch in a sequence given the sequence of previous branch events. Let vocabulary V

be the set of all possible branch target addresses. Then, each branch target address is

indexed by an integer starting from 1 to K = |V |. However, in general, it is hard to

know all possible branch target addresses beforehand and they are not fixed. To deal

with this issue, I build a vocabulary that consists of the top K − 1 most frequent ad-

dresses and a single special address, unknown, which represents all the other addresses.

Let x = x1x2 · · ·xl(xi ∈ V) denote a sequence of l branches.

At the input layer, the branch at each time step xi is fed into the model in the form

of one-hot encoding, in other words, a K dimensional vector with all elements zero

except position xi. At the embedding layer, incoming branches are embedded to con-

tinuous space by multiplying embedding matrix W , which should be learned. At the

hidden layer, the LSTM unit has an internal state, and this state is updated recurrently

at each time step. At the output layer, a softmax activation function is used to produce

the estimation of normalized probability values of possible branches coming next in

the sequence, P (xi|x1:i−1). According to the chain rule, we can estimate the sequence

49

probability by the following formula:

P (x) =

l∏
i=1

P (xi|x1:i−1) (4.1)

Given training branch sequence data, we can train this LSTM-based branch model

using the backpropagation through time (BPTT) algorithm. The training criterion min-

imizes the cross-entropy loss, which is equivalent to maximizing the likelihood of the

branch sequence. A standard RNN often suffers from the vanishing/exploding gradi-

ent problem, and when training with BPTT, gradient values tend to blow up or vanish

exponentially. This makes it difficult to learn long-term dependency in RNNs [47].

LSTM is equipped with an explicit memory cell and tends to be more effective to

cope with this problem. Given a new query branch sequence, on the assumption that

attack/malware branch patterns deviate from normal patterns, a sequence with a per-

plexity, an average negative log-likelihood probability, above a threshold could be con-

sidered to not be likely of what is learned by the model. In other words, a sequence

that shows high perplexity in a branch model of a malware family is probably not

associated with that particular malware type.

4.3 Preliminary findings

In this section, I share my findings during my preliminary studies and experiments.

I first explore the inherent resilience branch sequences offer against mimicry attacks.

Then I share my experiments in employing DeePBM to learn the normal behaviors of

programs in order to detect any attacks against those programs.

4.3.1 Branch sequences and Mimicry attacks

Mimicry attacks [40, 57] were originally proposed to defeat solutions that only rely

on system call sequences. In [40], a handcrafted mimicry attack sequence is given by

transforming an existing attack to emit a system call sequence that would be viewed

50

Figure 4.3: Initial branch sequence of system call open().

as a normal sequence by existing work. The transformation relies on no-op system

calls which can be made in such a way that it would not affect anything, such as

calling mkdir() with an invalid pointer, to hide the system call footprints of the ma-

licious code. This technique would nullify program behavior modeling solutions that

only monitor system calls, and subsequently necessitates supplementary data in order

to differentiate no-op system calls between normal system calls. During my prelimi-

nary experimentation I have found that by simply examining branch sequences, which

would be counted as using supplementary data in addition to system calls, I was able

to isolate no-op calls from normal ones when the branch sequences following system

51

Figure 4.4: The ROC curves and perplexity of each Program. ProFTPD and DOP share

the same normal sequence in this figure.

calls diverge even though the system calls are of the same type. For example, Figure 4.3

shows the initial 27 branches when an open() system call is made. As can be seen, the

sequence of a normal call and that of a no-op call diverges from the 23rd branch. After

the shown branches, the normal system call goes through 364 branches handling open-

ing the file, while the no-op call goes through 159 branches handling errors stemming

from trying to use a null pointer. This trend can be seen through most no-op system

calls, as they leverage null or invalid pointers to render system calls void. Therefore, it

would be possible to discover system call sequence mimicry attacks in past literature.

However theoretically, any program behavior modeling solution, including DeePBM,

is susceptible to new mimicry attacks crafted to forge mimic sequence patterns similar

to those of call/branch sequences accepted to be normal by its existing model [58]. The

key issue is how much leeway is left for adversaries to maneuver. Solutions that exam-

ine more detailed information leave less room for new mimicry attacks. This is another

benefit of operating on branch sequences, that is, the most detailed information which

is efficiently available. Though theoretically there still might exist mimicry attacks that

would not be detectable by branch models, the expressiveness of such attacks would

52

be severely limited as it will be hard to find necessary no-op branches. Therefore, I

believe in practice that it would be considerably difficult to build mimicry attacks to

avoid detection from program branch models.

4.3.2 Branch sequence model for anomaly detection

I trained branch models on three separate real programs: MySQL, Nagios and ProFTPD [65,

66, 10]. These applications were mainly selected as they were the target victims of four

publicly available attacks: privilege escalation via CVE-2016-6663 and CVE-2016-

6664 [60, 61] against MySQL, privilege escalation via CVE-2016-9565 and CVE-

2016-9566 [62, 63] against Nagios and address leakage attack and data-oriented pro-

gramming (DOP) attack via CVE-2006-5815 [56, 59].

The lower row of Figure 4.4 depicts the ROC curves and perplexity of sequences

collected for inference. This shows how my branch model regards the collected se-

quences. As can be seen, the model is quite capable of discerning between the normal

and attack sequences. The perplexity for the normal sequences are quite low, meaning

that they conform to what the model has learned from the training datasets. On the

other hand, nearly all sequences containing attacks show high perplexity, which would

mean the branch sequences deviate from what the model expected. For a few normal

sequences, the model reports high perplexity. With further examination, I believe this

is due to the sequences containing rare events, such as one of the Nagios monitored

computers crashing, that were not covered by the training data. This could also be

seen that the model can successfully interpret branch sequences of such events as an

anomaly in program behavior. As seen in the upper row of Figure 4.4, the overall de-

tection performance of DeePBM’s trained models are reflected in their ROC curves.

The models can achieve high detection rate with low false positive rates on modern

server programs.

To further evaluate the branch sequence model, I have trained a LSTM based sys-

53

Figure 4.5: The average perplexity values for a system call sequence model and branch

sequence model.

tem call sequence model on the same programs so that we may observe the differ-

ence between the two. Figure 4.5 depicts the average perplexity values of a system

call sequence model an branch sequence model on each of the server programs in

addition to a privilege escalation attack on GNU Screen [64] and several malware,

namely, Dopebot, Fu4k and Pakfil. Except for the malware, the four bars in each pro-

gram depict, from left to right, the average perplexity of normal system call sequences,

malicious system call sequences, normal branch sequences and malicious branch se-

quences. As can be seen in the first four programs, system call sequences differentiate

normal from abnormal well enough. However, for GNU Screen, as the program and its

attacks hardly call any system calls, it is impossible to differentiate between the two,

while the branch sequence finds the deviation in attack behavior well. The malware

experiment was done slightly different from the other five, as in instead of training the

model to learn the behavior of a single program, I have trained the model on the sys-

tem call or branch sequences observed across the whole system. However as branch

addressed do not transfer between different programs, I have only trained the model

on the branch sequences observed within the kernel space. The result shows that when

54

we try to generate a model for the general behavior of benign program behavior, the

sequences from malware end up being observed from some benign program across the

system and thus is not distinguishable from benign sequences. On the other hand, by

observing branch sequences, the model can still detect the branch sequence of malware

deviating from those of benign programs.

4.4 Summary

In this chapter, I have shared my preliminary findings on applying LSTM to branch se-

quences in order to model program behavior. I believe my work has provided a glimpse

of evidence that can demonstrate the feasibility of deep learning models employed

for program behavior modeling via LSTM and branch sequences. I have also briefly

explored the possibility of mimicry attack mitigation through the nature of branch

sequences and believe when leveraged well, branch information could provide an effi-

cient way of mimicry mitigation.

55

Chapter 5

Real-Time Anomalous Branch Behavior Inference with

a GPU-inspired Engine for Machine Learning Models

5.1 Background

With the resurgence of machine learning (ML) in recent years, renewed interest is

given to applying ML to solve diverse computer security problems where rule-based

or deterministic algorithms have shown inherent limitations. The main attraction of

applying ML to security is its capability to learn from data a model representing the

behavior of a system or program which would otherwise be needed to be arduously

developed by hand. Furthermore, ML also grants the possibility for the model to un-

ravel and learn the intricate nature of a program which is hidden within raw infor-

mation and thus impossible in practice to be unriddled by a set of man-made rules.

One of the primary security applications leveraging these strengths of ML is anomaly

detection [67, 44, 54, 46, 69, 55, 72, 68], whose goal is to recognize aberrant execu-

tions caused by attacks, misconfigurations, bugs and eccentric usage patterns. With its

capability to define normal states from given normal data, ML has been considered

a natural fit for anomaly detection by many studies where a normal model is com-

monly constructed to compare against the current runtime behavior and discover any

56

discrepancies characterizing abnormal behaviors. To detect such anomalies with un-

usual behaviors, ML models take as input a set of feature values representing the cur-

rent runtime behavior of a program and test whether the input is normal or abnormal.

This test procedure is usually referred to as inference. The merit of this learning-based

anomaly detection over conventional rule-based security solutions is its independence

from attack signatures which might be easily modified by attackers to dodge detec-

tion [70, 77]. Furthermore, this attractive attribute of ML could potentially help to

proactively prevent new and unknown zero-day attacks.

In the IoT era, the importance of security for embedded devices cannot be exagger-

ated because they will become an enticing target for adversaries as they are being inte-

grated into everyday life, thus storing and processing personal information to provide

users with various services. The aforementioned potential strength of learning-based

anomaly detection solutions is believed to benefit embedded devices in that attacks on

these devices tend to occur any time during their field operations in unexpected man-

ners, and thus the conventional defense systems based on fixed sets of rules will easily

be subverted by such unexpected, unknown attacks. I also believe that such solutions

would more benefit embedded devices if they could infer anomaly in a real-time fash-

ion because for a certain device deployed in the IoT environment, inference speed is

just as equally important as accuracy to its successful mission. For instance, upon re-

ceiving a report of anomaly in the system, a mission-critical device (e.g., unmanned

vehicle) may be able to counteract anomalies quickly in the field and continue its

mission without interruption. To this end of real-time detection (or inference), I have

developed a multiprocessor SoC (MPSoC), called RTAD, which is designed to sup-

port in hardware the online inference task of a variety of ML models that have been

trained with records of normal runtime behavior of programs. I assume in my work

the branch information as the records used in training ML models since it is widely

regarded that a sequence of branches (i.e., control flow transfers) serves as a record

57

of program behaviors at runtime. In fact, there have been numerous ML studies that

examine various types of branches, ranging from those with specific purposes (e.g.,

system calls) to general ones, in order to infer anomaly in branch behaviors that may

be induced by diverse attacks, such as control flow hijacking or data only attacks, that

can cause deviant control flow in software.

However, in order to support ML models for real-time anomalous branch behavior

inference, there have been two challenging requirements to be addressed in the devel-

opment of RTAD. First, to meet the development goal, RTAD is required to collect and

transfer in a timely fashion a sequence of branches as the input to the ML model. This

requirement is challenging due to the fact that as branches in the real code do occur

fairly frequently, it will immensely slowdown the host system (up to 167% with soft-

ware instrumentation [46]) to collect branch events and transfer a colossal amount of

branch information to the ML model. Recent work [72, 68] gives a glimpse of promise

in handling this requirement by employing hardware support, such as Intel Processor

Tracing (PT), for collecting runtime branch outcomes. However, though their hardware

may facilitate an efficient collection of runtime branch data, it alone cannot suffice the

first requirement for RTAD since it lacks a mechanism for a fast transfer of the col-

lected data to ML models. In my work, RTAD has been implemented in hardware to

fully meet the requirement. For this purpose, RTAD is equipped with a dedicated hard-

ware module, called input generation module (IGM), which gathers runtime branch

outcomes inside the CPU on the fly and quickly transforms them into vectors which

are then fed as inputs to the ML model running for anomaly inference.

The other requirement for the development is that the ML model running on RTAD

must be able to promptly compute and perform inference on the delivered branch data

without significant delay. The natural approach for this would be to implement a high-

performance accelerator engine for ML model computation. In order to help RTAD run

diverse ML models in software, I have designed the engine to be programmable. As a

58

prime candidate architecture for a programmable engine, I opted for a GPGPU due not

only to its programmability, but also to its excellent parallel processing capability that

would be instrumental to fully utilizing the high degree of parallelism inherent in most

ML models for speed up. Capitalizing on the GPGPU's versatility to accept software

instructions, RTAD would easily support various ML models with the same hardware

engine. In my early design, I employed an open-core GPGPU MIAOW [80]. However,

in the preliminary experiment, I have found that MIAOW is designed to be too general-

purpose to yield optimal performance for certain special-purpose operations like the

ML computations. More specifically in my original implementation, MIAOW was not

fast enough to catch up with the speed of branch outcomes that IGM generates espe-

cially when a branch-heavy application was running, ending up with its internal input

buffer being overflown. In order to tackle this performance problem, I could choose

a straightforward strategy where I boost up the computing capability by adding more

compute units (CUs) to the original implementation so that I can process in parallel

more incoming branch outcomes. However, such a straightforward strategy to enhance

performance was not a plausible option for RTAD since I target embedded devices that

are mostly subject to severe resource constraints.

Alternatively, I adopted a different approach where I build a variant of the MIAOW

architecture, called ML-MIAOW, customized for ML operations by transforming the

excessive GPGPU-style hardware into more compact application-specific one. ML-

MIAOW is inspired by the strength of GPGPU in terms of programmability and par-

allel processing in a sense that it basically works as a GPGPU like MIAOW except

its datapath optimized for ML operations. I have built ML-MIAOW by eliminating

logic elements unnecessary for ML operations while maintaining the core datapaths

needed for software programmability. my experiments reveal that ML-MIAOW attains

5x performance-per-area, meaning that its area is just about 1/5 of that of MIAOW, yet

achieving the same performance. Since ML-MIAOW and MIAOW both have virtually

59

the same core circuits like pipeline stages and ALUs, ML-MIAOW can also support

the same runtime environments as MIAOW, thus facilitating accommodation of exist-

ing ML models designed to run on a GPGPU.

To ease the deployment of RTAD in SoC-based embedded devices today, I en-

deavor to comply with state-of-the-art design rules of SoC. My hardware IPs are placed

outside and connected to the host CPU core to build the target SoC. RTAD is basically

an MPSoC combining two heterogeneous processing elements: the CPU and ML pro-

cessing unit (MLPU). I choose an ARM processor as the CPU since ARM has been a

dominant player in the embedded CPU market for years. MLPU consists of two core

modules, IGM and ML computing module (MCM). ML-MIAOW is the main compo-

nent of MCM and control logics for operating ML-MIAOW are also included within

MCM. To evaluate RTAD, I have deployed several ML models on an FPGA-based pro-

totype and found that thanks to RTAD's support, they can infer an attack from branch

data as early as within just about 24µs after the attack initiates an attempt to divert the

branch behavior of a victim process running on an ARM device, yet attaining a per-

formance improvement of 2.75x on average over the original MIAOW as an inference

engine.

5.2 Related Work

To my knowledge, this is the first work that builds a complete MPSoC on an ARM

device to efficiently support real-time anomalous branch behavior inference. RTAD

has several distinctive merits over previous work. Firstly, RTAD is able to support

many different ML models whereas others support fixed models. Thus in the RTAD

SoC, users may realize and deploy several models at their disposal, trying diverse

types of branches as data features. Secondly, my system can be applied to existing

software environments established for today's ARM system since in RTAD SoC, an

ARM processor can be integrated with other hardware IPs for anomaly detection. As

60

stated earlier, the goal of my work is to provide a system that could efficiently support

anomalous branch behavior inference and therefore I consider the numerous work in

this area focusing on developing ML models to be orthogonal to my work. The stud-

ies closely related to RTAD are those that took into consideration the performance of

inference and its data collection process. Ozsoy et al. [73] proposed malware-aware

processors (MAPs). Their work was motivated by the results shown by Demme et

al. [71]. MAPs have a hardware-based real-time detector that differentiates malware

from legitimate programs. Rahmatian et al. [74] proposed a host-based intrusion de-

tection solution that detects malicious software in embedded systems. To characterize

the benign program behavior, they implemented an FSM to model the possible sys-

tem call sequences occurred during the program execution. To extract the system call

sequence, they modified the internal microarchitecture of a SPARC3 Leon processor.

Das et al. [69] proposed GuardOL, a hardware architecture to perform real-time mal-

ware detection. They have modified the x86 internal architecture to extract system calls

and to construct features necessary for GuardOL's ML algorithm. Although all these

hardware-based studies attain their goals with remarkably low performance overhead,

their solutions cannot be applied directly to real embedded systems running on ARM,

unlike RTAD.

In the latest work [72, 68], ML models can work with branch data collected from

the Intel PT. However, as their focus was in developing a model that works well with

branch data, they have only employed hardware to efficiently collect branch informa-

tion. RTAD considers the real-time branch behavior inference problem and designs

hardware modules to augment such branch collection hardware support for this end.

Duarte et al. [78] discussed a general approach where the MIAOW architecture can

be trimmed for specific applications by eliminating unnecessary hardware, but they

did not specifically consider anomaly detection or other security applications in their

work. In particular, they discussed optimizations for a single fixed application. On the

61

other hand, in my work, I consider simultaneous trimming for multiple applications by

merging the minimum required logics of several different ML models. Furthermore,

I eliminate additional unnecessary logics by analyzing code coverage as will be dis-

cussed in Section 5.3.

5.3 RTAD Architecture

Fig. 5.1 shows the overall architecture of RTAD where an off-core MLPU is integrated

together with the host CPU and other peripheral IPs. As shown in the figure, the host

CPU of the RTAD architecture is an ARM Cortex-series processor which is the de-

facto standard processor deployed in commercial smart devices these days. The host

CPU and MLPU are connected with a shared main memory via the ARM NIC-301

bus, a standard AMBA3 AXI interconnect. It is noteworthy that I have tried to design

all modules in accordance with the standard protocols and specifications of the current,

up-to-date ARM-based MPSoCs.

In my system, I have designed IGM to receive the branch information of a run-

ning program inside the CPU through the ARM CoreSight PTM and TPIU, as be-

ing inspired by previous studies for different purposes [75, 76]. PTM provides sim-

ilar support in collecting runtime branch outcomes as Intel PT employed in recent

work [72, 68]. However, as stated in Section 5.1, PTM alone does not fulfill the perfor-

mance needs of RTAD and therefore I design IGM to augment the support provided by

PTM. Upon receiving information through PTM and TPIU, IGM refines it to generate

input vectors that are given as input to ML models running in MCM. MCM takes the

outputs of IGM and makes transactions conforming to the ML-MIAOW input protocol.

In the subsequent subsections, I give detailed descriptions of the hardware modules in

RTAD.

62

Input
Generation

Module

MCM D
etection R

esult
(benign/m

alicious)

Memory On-chip Memory

In
pu

t V
ec

to
r

trace

classifier

System bus
M

L

M
L

M
L

M
L

Host CPU

ARM Cortex-Series Core

PTM TPIU

RTAD MPSoC

ML Processing Unit

Figure 5.1: RTAD architectural overview.

5.3.1 Input Generation Module

IGM overview: As illustrated in Fig. 5.2, IGM receives the ARM CoreSight PTM

traces as input and generates the input vector after decoding the branch address that

is generated during execution of the target application. PTM is the key module of

CoreSight that captures diverse types of debug information generated by programs

running inside the ARM CPU, such as branch target addresses, exceptions, instruction

set mode changes (ARM/THUMB) and current process IDs. After compression, the

generated trace stream is routed to TPIU, and finally forwarded to the off-chip pins to

provide the external peripheral modules with the runtime branch information of host

programs. In the current implementation (Fig. 5.1), the output signals of TPIU are

directly routed to the on-chip ports of MLPU instead of the off-chip pins so that I can

utilize the CoreSight modules within the RTAD MPSoC. To activate the functionalities

of PTM and TPIU, I have also built a device driver running on the Linux kernel.

Trace analyzer: The main submodule in IGM is the trace analyzer (TA) that re-

ceives the trace stream through a 32-bit port and decodes it to extract branch target

addresses. Because the trace stream is constructed of multiple packets of one or more

bytes of data, decoding for each packet must be done sequentially in bytes. TA has

four TA units responsible for each byte decoding. Since the incoming 32-bit input can

63

Input
Vector
Generator

x1
x2
x3

xnTrace Analyzer
P2S

TA Unit 32

PT
M

 tr
ac

e

32

32
8

Input Generation Module

Input Vector

Figure 5.2: Block diagram of IGM.

be decoded into four branch addresses in the worst case, I install the parallel-to-serial

converter (P2S) between TA and input vector generator (IVG). IVG transforms a se-

quence of branch addresses into an input vector format suitable for use in the inference

process of MCM. IVG is largely divided into two sub-blocks: the address mapper and

vector encoder (VE). The address mapper lets only the relevant branch addresses be

passed by filtering out the addresses not existing within a lookup table. Users can con-

figure the table to select branches related to their ML models, such as system calls

or critical API function calls which are used in many previous anomaly detection al-

gorithms [46, 69]. The filtered address values are transferred in real time to VE as

input and then converted into vector format following a conversion table that can be

configured to match the need of target ML models.

5.3.2 ML Computing Module

MCM overview: The code running on the host CPU manages memory on both the host

and peripheral, and also launches kernels which are functions that can be executed in

parallel on the peripheral. Before executing a kernel on ML-MIAOW, all the data used

by the kernel must be transferred from the host memory to the peripheral memory. Af-

ter execution, the data produced by the kernel most likely needs to be transferred back

to the host memory. Then, the host CPU continues operations with the copied results.

64

ML Computing Module

In
pu

t V
ec

to
r

…

x1

Internal FIFO
Interrupt
Manager

ML-MIAOW

Interrupt to H
O

ST

ML-MIAOW Driver
TX Engine RX Engine

Protocol Converter

READ_INPUT

WAIT_INPUT

WRITE_INPUT
WAIT_DONE

READ_RESULT

Control FSM

x2
x3

xn

y1
y2
y3

yn

z1
z2
z3

zn

Figure 5.3: Block diagram of MCM.

For data transmission, in the base hardware architecture of ML-MIAOW, it has an AXI

bus interface through which bus masters can deliver data to ML-MIAOW. When the

data is delivered via the interface, ML-MIAOW stores the data in its internal memory.

ML-MIAOW then uses the stored data for its operation. In order to fully utilize RTAD

modules, a hardware component is necessary to quickly convert the output of IGM to

the input protocol of ML-MIAOW. In this regard, I design MCM as shown in Fig. 5.3.

The control FSM contains configuration registers and controls the operation of

the ML-MIAOW driver. The TX engine and RX engine are responsible for sending

data to ML-MIAOW and getting data from ML-MIAOW, respectively. The protocol

converter is used to convert the TX/RX data to the protocol required by ML-MIAOW.

The interrupt manager is responsible for generating an interrupt to the host CPU. In

the initial WAIT INPUT state, MCM waits for the output of IGM to come. When the

input vector arrives at the internal FIFO, the FSM state transits to the READ INPUT

state. The vector value is temporarily stored in the internal FIFO, and the TX engine

reads the stored value. Then, the FSM state is changed to the WRITE INPUT and

the TX engine makes write transactions to drive input to ML-MIAOW. At the same

time, control registers for each CU such as starting addresses of register files and local

memory are also set. Then, the TX engine triggers ML-MIAOW to start computing for

65

ML1

Assembly codes of
the target ML models uncovered

coveredcase (port_en)
4’b0001: …
4’b0010: …
4’b0100: …
4’b1000: …

endcase

if (control_en)
statement0;

else if (reg_trig)
statement1;

else if (check)
statement2;

else

case (port_en)
4’b0001: …
4’b0010: …
4’b0100: …
4’b1000: …

endcase

if (control_en)
statement0;

else if (reg_trig)
statement1;

else if (check)
statement2;

else

case (port_en)
4’b0001: …
4’b0010: …
4’b0100: …
4’b1000: …

endcase

if (control_en)
statement0;

else if (reg_trig)
statement1;

else if (check)
statement2;

else

1) Run
simulation

Instruction
B

uffer

case (port_en)
4’b0001: …
4’b0010: …
4’b0100: …
4’b1000: …

endcase

if (control_en)
statement0;

else if (reg_trig)
statement1;

else if (check)
statement2;

else

…

MIAOW Verilog-HDL
module A module B

ML0

2) Merge

Instruction
B

uffer

case (port_en)
4’b0001: …
4’b0010: …
4’b0100: …
// 4’b1000: …

endcase

if (control_en)
statement0;

else if (reg_trig)
// statement1;

else if (check)
statement2;

else

…

ML-MIAOW Verilog-HDL
module A module B

3) Trim uncovered
code lines

4) Run
simulation 4) Compare

computation results

1) Code coverage results

trimmed

Figure 5.4: Trimming MIAOW into ML-MIAOW.

the inference. The FSM state then transits to the WAIT DONE state and waits for the

ML computation to end. When the computation is finished, the RX engine reads the

results from ML-MIAOW after transiting to the READ RESULT. If the results indicate

the existence of an anomaly, the interrupt manager fires an interrupt to the host CPU.

ML-MIAOW: At the center of MCM lies ML-MIAOW, optimized from the open

source MIAOW processor which is available in the RTL form and prototyped in FPGA.

MIAOW is basically a GPGPU implementing a subset of AMD's Southern Islands

ISA. MIAOW supports the OpenCL programming model widely used for general het-

erogeneous parallel computing. ML-MIAOW naturally inherits this characteristic of

the original MIAOW while having significant performance merit over MIAOW. As

mentioned earlier in Section 5.1 and 5.2, I trimmed unnecessary logics from the orig-

inal MIAOW to improve performance-per-area. This area saving can bring not only

power efficiency but also more computation power by increasing the number of CUs

without demanding more space. The trimming process, depicted in Figure 5.4, is as

follows:

1. Run dynamic simulations for the target ML models with turning on the option

for code coverage indicating which lines of the MIAOW HDL code are actu-

ally hit during simulation (e.g., conditional branches or items within case state-

66

ments).

2. Merge code coverage results of each simulation.

3. Identify uncovered code lines, which would represent circuits not required for

computing the ML models, and trim them out.

4. Verify whether the trimmed code operates correctly by comparing its computa-

tion results with those from the original MIAOW.

This process allows me to efficiently and thoroughly trim MIAOW and leave only the

circuits needed for computing the target ML models, greatly improving performance-

per-area. I employ Cadence Incisive Enterprise Simulator as the dynamic simulator

and ICCR for merging and analyzing the coverage results.

5.3.3 Anomaly Detection with RTAD SoC

As stated in Section 5.1, RTAD is an MPSoC designed to provide support for ML

models performing inference on runtime branch behavior. RTAD can help to collect

data for training models by running the target application in advance and extracting

the branch traces generated by the target application for various inputs using IGM. A

model would then be able to learn from the collected traces, effectively modeling the

expected branch behavior of normal program execution. Once learning is finished, the

model is employed by the inference engine running on MCM to infer attacks on the

target application. When the target application is loaded by the OS kernel, the corre-

sponding model is also loaded into MCM's memory. The inference engine uses the

model to detect the existence of an anomaly by monitoring the actual behavior exhib-

ited while the target application is running. For inference, the branch traces emitted

from PTM are transformed into input vectors encoded form by IGM. The transformed

trace is then delivered to MCM and the ML-MIAOW driver sends a start command to

ML-MIAOW. Upon receiving this start command, ML-MIAOW executes the inference

67

engine code. At this time, ML-MIAOW has in its local memory the model of the target

program. Based on this model, the inference engine code judges the existence of an

anomaly based on the received branch sequence. If the model discerns the probability

of the given branch sequence to be unlikely, the inference engine recognizes it as an

anomaly. In this case, MCM is notified of the anomaly and then the host CPU is in-

formed through an interrupt signal. I depict the overall procedure of anomaly detection

supported by RTAD in Fig. 5.5.

Threat model and assumptions: When RTAD is deployed for anomaly detection,

it is assumed that the OS kernel, which configures the hardware modules, is uncom-

promised. Therefore, it is assumed that the adversaries cannot directly tamper with

the configuration of RTAD. I also rule out direct physical attacks that compromise

the underlying CPU and the RTAD hardware modules. In practice, I also adopt any

assumptions made by the anomaly detection ML models that are deployed in RTAD

such as assuming that the OS and CPU cooperate to forbid a memory page from being

both writable and executable simultaneously by enforcing the W⊕X security protec-

tion rule where under such assumption, adversaries cannot directly run their code by

modifying the code region of the target program.

5.4 Evaluation

To evaluate my approach, I have implemented an RTAD prototype on the Xilinx ZC706

evaluation board. This development board contains the Zynq XC7Z045 FFG900 -2

platform which is equipped with a dual-core ARM Cortex-A9 processor, ARM NIC-

301 AXI interconnect, an FPGA chip, 1GB DDR3 SDRAM and other peripherals. I

have built the host system with the A9 processor and deployed Xilinx ARM Linux

kernel 4.9 as the host OS. Also, the two CoreSight modules, PTM and TPIU, in the

Cortex-A9 processor are enabled to extract branch traces from the CPU. The RTAD

modules are developed in Verilog HDL to be mapped on the FPGA. Mainly due to the

68

Online Inference

Offline Learning

Branch Traces of
Target Application Learning module

ARM CPU

Target
Application

PTM
MCM

Inference Engine

IGM

OS Kernel

Loaded into
MCM memory

interrupt

ML model

Figure 5.5: RTAD anomaly detection procedure.

speed limit of FPGA, RTAD modules are configured to operate at 125 MHz except for

ML-MIAOW which can satisfy timing constraints only when the clock frequency set

to 50 MHz. The CPU clock is lowered to 250 MHz to emulate the performance ratio

between the host and the coprocessors in most AP systems [79].

5.4.1 Synthesis Results

Based on the aforementioned parameters, I synthesized a prototype onto the FPGA

chip and quantified the logics necessary for the RTAD architecture in terms of lookup

tables for logic (LUTs), flip-flops (FFs) and block RAMs (BRAMs). The synthesis

results are shown in Table 5.1. The MLPU occupies 91.2% (199,406/218,600) of total

LUTs, 18.5% (80,953/437,200) of total FFs and 27.5% (150/545) of total BRAMs.

ML-MIAOW executing the inference occupies the majority portion of the total used

resources. Through the trimming method from Section 5.3, I was able to deploy five

trimmed CUs of ML-MIAOW, while only a single CU of the original MIAOW could

be fitted into the same FPGA. To complement the result, I also estimated the gate count

of MLPU using Synopsys Design Compiler. With a commercial 45nm process library,

69

Table 5.1: Synthesized results of RTAD
Design

Compiler

LUTs FFs BRAMs Gate Counts

Trace Analyzer 11962 350 0 12375

P2S 686 1074 0 14363
Input Vector Generator 890 1067 0 10430
Internal FIFO 13 33 10 262
ML-MIAOW Driver 489 265 0 5971
Control FSM 1609 1698 0 16977
Interrupt Manager 42 91 0 927
ML-MIAOW (5 CUs) 183715 76375 140 1865989

199406 80953 150 1927294Total

RTAD Module Submodule
FPGA

IGM

MCM

Gate counts are given as gate equivalents
(1GE = area of 2-input NAND gate).

Table 5.2: Trimming Result of ML-MIAOW
LUTs FFs Sum Area

MIAOW [11] 180902 107001 287903 -
MIAOW2.0 [15] 97222 70499 167721 -42%
ML-MIAOW (ours) 36743 15275 52018 -82%

the total gate-count of the proposed modules is 1,927,294.

Table 5.2 shows the comparison of trimming results of MIAOW between MIAOW2.0 [78]

and mine. Since MIAOW2.0 can only support one model at a time while ML-MIAOW

can support various ML models, to make a fair comparison, I deploy one LSTM model

which will be explained in the following subsection. The result shows that 82% of

MIAOW is trimmed in ML-MIAOW while only 42% in MIAOW2.0. This difference

is because that the trimming-tool of MIAOW2.0 analyzes the instructions of the target

application and only trims unused codes in certain sub-blocks such as ALU or instruc-

tion decoder, while I try to find every unnecessary code line across all sub-blocks. As

a result, ML-MIAOW has 3.2x more performance-per-area over MIAOW2.0.

70

0.5

1

1.5

2

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Baseline RTAD SW_SYS SW_FUNC SW_ALL

Figure 5.6: Performance overhead of RTAD.

5.4.2 Performance Analysis

To evaluate the performance overhead RTAD modules incur on the host CPU, I ran

SPEC CINT2006 benchmarks with the reference test input workloads. The results

are drawn in Fig. 5.6 where Baseline represents the base execution time of bench-

marks, and RTAD presents the execution time of RTAD. Additionally, three software-

based implementations—SW SYS, SW FUNC and SW ALL are compared together.

The strace utility is used for gathering the system call traces in SW SYS. For SW FUNC

and SW ALL, to collect function calls and general branches respectively, I inserted ad-

ditional instructions to the binary for dumping branch information. RTAD introduces

an overhead of 0.052% (geometric mean) while the software-based mechanisms show

an overhead of 0.6%, 10.7% and 43.4% in order. Since MLPU has no feedback signal

to the CPU that interferes with the processor critical paths, MLPU has no effect on

the CPU performance. Note that the performance overhead is mainly attributed to the

enabled ARM PTM interface but negligible.

For successful real-time inference, what matters is not merely the speed at which

MCM processes data, but how quickly the data can be transferred to MCM. When

71

0 5 10 15 20

RTAD

SW

(1) Branch Address Load (2) Input Generation (3) Transfer (unit: μs)

Figure 5.7: Data transfer latency of RTAD.

designed in pure software, the host would (1) read the gathered branch address by the

instrumented code, (2) refine it into the input vector form and (3) transfer the data to the

peripheral memory of MCM. Only upon completion of the latter operation, data will

be available to MCM for processing. In RTAD, (1) IGM decodes the branch address

from PTM trace, (2) generates the input vector and then (3) transfer the data by directly

driving the input signal of ML-MIAOW. I measured each latency between the software

implementation (denoted by SW) and RTAD as shown in Fig. 5.7.

In SW, it shows an average latency of 20.0µs. Step (3) takes up the biggest part due

to high overhead for copying the input vector into the ML-MIAOW memory, averaging

at 11.5µs. Step (2) includes multiple data read/write transfers to calculate the input

vector and takes 7.38µs. RTAD is measured to average at 3.62µs. Step (1) occupies

the largest part. This is mainly because PTM does not send the packets until enough

packets are buffered in the FIFO inside the ARM CPU. Step (2) benefits from IGM

and requires only 2 cycles (16ns). The remainder is occupied by 0.78µs which is the

successive write operations to the ML-MIAOW memory. As can be seen from the

results, my work can drive MCM 16.4µs (4,100 cycles in processor frequency) earlier

than SW, which would result in faster detection of anomalies.

72

5.4.3 Detection Speed of ML Models

I also evaluated the detection speed of RTAD, which is measured by the total time taken

for the inference engine running on MCM to make a judgment on the normality of the

behavior of a program immediately after the program executes a branch instruction. To

test anomaly detection on RTAD SoC, I chose two ML models from previous work [44,

68] which show competitive detection accuracy and implementation complexity.

• Extreme Learning Machine: The ELM model is more lightweight than a tradi-

tional multi-layer perceptron (MLP) while providing similar accuracy to MLP.

The model in [44] was built upon branch data of system calls.

• Long Short-Term Memory: The LSTM model has achieved state-of-the-art

results on modeling sequences of data in various fields of study. Researchers

in [68] have used general types of branch to build the model.

To reflect real branch patterns, I used the SPEC CINT2006 benchmark suite for each

ML model to learn. Moreover, I emulate attacks by randomly inserting legitimate

branch data (i.e., branch addresses that can be observed during normal execution) in

normal branch traces because inserting any random branch address would be trivial for

detection. This resembles myriads of recent attacks that manipulate the program exe-

cution flow by exploiting software vulnerabilities. Fig. 5.8 shows the latencies taken

for each model to detect anomaly after the target benchmarks behave aberrantly.

When the original MIAOW is employed as an inference engine, the ELM and

LSTM models have latencies of 13.83µs and 53.16µs on average, respectively. Af-

ter upgrading MIAOW to ML-MIAOW, the inference is accelerated so that the laten-

cies reduce to 4.21µs and 23.98µs respectively and thus gaining 2.75x improvement

on average. Note that the detection latencies of ELM are almost constant regardless

of benchmarks while those of LSTM vary significantly. This is because the interval

between occurrences of system calls is long enough to process one system call for

73

0

50

100

150

200

250

300

ELM (MIAOW) ELM (ML-MIAOW) LSTM (MIAOW) LSTM (ML-MIAOW)(unit: µs)

Figure 5.8: Latencies of anomaly detection.

anomaly inference before the next call comes. But in the case of LSTM where data

inputs are branches which occur much more frequently than system calls, the latencies

differ from each other because each benchmark has its own unique branch execution

pattern. For example, when two branch instructions are executed consecutively in a

short period of time, the following instruction would be buffered into the FIFO of

MCM until it can be processed. Clearly, this buffering would increase the total detec-

tion latency, and in the worst case could cause a loss in branch information as the buffer

would overflow and lose newly sent data when the processing speed of the model can-

not match the delivery speed of runtime branch data for an extended time period. When

MIAOW is employed as an inference engine, this overflow was occasionally observed

in a benchmark of heavy branch pressure such as 471.omnetpp. Fortunately, by

upgrading to ML-MIAOW, buffer overflows rarely occur as the speed of processing

branch data is fast enough to catch up with the rate of the generation of new branches.

74

5.5 Summary

RTAD is an ARM-based MPSoC built to infer attack-induced branch behavior anoma-

lies in a real-time manner. It has two heterogeneous processing elements, the ARM

CPU and MLPU. According to my evaluation, RTAD imposes virtually no perfor-

mance burden on the CPU for runtime detection of anomalies. I ascribe this result to

the ARM CoreSight architecture, not to mention the combined effort of the two core

modules of the MLPU (i.e., IGM and MCM). CoreSight PTM enables MLPU to re-

ceive a continuous stream of branch traces from the ARM CPU and by employing my

GPU-inspired ML-MIAOW, MLPU efficiently processes the branch traces and runs

ML models for anomaly detection. I have prototyped RTAD on an ARM-based FPGA

board and demonstrated the effectiveness of my approach.

75

Chapter 6

Hawkware: Network Intrusion Detection based on Be-

havior Analysis with ANNs on an IoT Device

6.1 Background

With the advent of IoT systems, embedded devices as major components of IoT have

become prevalent in the everyday life of users. In order to provide speedy and conve-

nient access to various services, these devices typically demand access to personal user

information. This, unfortunately, marks IoT devices as a prime target of adversaries.

For the defense of IoT devices against such adversaries, there has been recent research

to employ a network-based intrusion detection system (NIDS) [89, 90, 81]. Unlike a

host-based intrusion detection system (HIDS) which is specialized in detecting attacks

within a single device, NIDS analyzes data traffic in a networked system to uncover

the existence of attacks on not only a specific device but also any devices participat-

ing in the network. NIDS has been preferred by researchers for IoT security because

an IoT system can be viewed not as a standalone computing device but as a cluster of

devices networked to form an ecosystem where the devices collaborate to provide com-

putations and services with each other. To elaborate, in an IoT system, many devices

primarily perform network-driven computations incurred by incoming or for outgo-

76

ing network transactions. Hinted by such salient characteristics of IoT computations,

NIDS can be engineered to infer attack-induced anomaly inside the entire IoT system

as well as its own devices by monitoring the network transactions between the devices.

NIDS typically examines the header of a network packet to glean information

about the network transaction such as the source address, packet size or type of net-

work protocol. Although merely by analyzing this header information, NIDS can suc-

ceed fairly in identifying naive, common network-driven attacks to some degree, but

not quite as much as in discovering advanced ones [85, 92], which normally necessi-

tates deeper analysis of the packet main body (i.e., payload). Since a packet payload

contains the actual data contents involved in a network transaction, NIDS may have a

better chance to disclose through its analysis the hidden maliciousness of a packet that

may be propagated and inflicted over the network between the source and destination

devices. For example, payload inspection, also known as deep packet inspection (DPI),

would enable NIDS to uncover elaborated attempts of adversaries to deliver malicious

payloads undetected by crafting packet headers to look innocuous. However, there is a

potential limitation of DPI that the inspection itself is even impossible in the middle of

delivery when the payload is encrypted for the intended user at the end device. More

importantly, there is also a critical downside of DPI that it is not always straightforward

to represent packet payloads in a structured format since their data can be of any form,

thus requiring heavy computation for extensive, real-time data analysis. Clearly, as we

enter the 5G era, the network speed and volume rapidly grow, and we thus expect that

such computational burden would become even heavier. Particularly in an IoT system,

this burden is likely to be imposed upon its participating (possibly low-end) devices if

as suggested by the latest study [81], NIDS is deployed in a distributed manner where

instead of sitting at a single centralized point (e.g., gateway), NIDS is distributed over

to individual IoT devices in the network. In comparison with the centralized NIDS,

the distributed NIDS better ensures practical and economical scalability in its task for

77

monitoring network transactions among IoT devices, most of which communicate au-

tonomously with each other in concert. However, it is still problematic whether or not

each IoT device which already suffers from resource poverty could sustain the ever-

increasing overhead necessary to perform the payload data analysis.

To recap, DPI is essential in maximizing the detection accuracy of NIDS, but let

alone the encryption issue, its performance overhead for deep data analysis can be

a major hurdle for its application as a security solution to an IoT system consisting

mostly of low-end embedded devices. To tackle this overhead issue, I propose, Hawk-

ware, a distributed NIDS that detects attacks on a device without actual data analysis

for DPI, yet attaining a comparable detection accuracy to existing solutions accompa-

nied by intensive data analysis. For maintaining detection accuracy, in addition to the

basic inspection on the packet header, Hawkware monitors the device’s runtime be-

havior during its process of incoming or outgoing network transactions. In principle,

Hawkware replaces DPI with device behavior monitoring. The rationale behind this

strategy of Hawkware is that in a network transaction, the device usually acts and re-

acts according to the payload data because the payload basically conveys the message

or instructions for the device from/toward the outside world. Justified by this rationale,

I have designed Hawkware to detect attacks on a device by analyzing the monitored

behavior of its target device instead of analyzing the payload data. The behavior anal-

ysis has an advantage over the payload data analysis. In comparison with the payload

data, the runtime behavior is relatively easy to be represented in structured formats

(e.g., branch sequences and call graphs), which expedites and facilitates the analysis

process.

Running on a host IoT device, Hawkware monitors all its behaviors relevant to the

computations driven by network transactions with the outside. Coupled with the anal-

ysis of each packet header, the analysis of the monitored behaviors serves the purpose

of Hawkware determining the existence of attacks on the host device. The decision

78

on the attack’s existence can be made by using rule sets of specifications and/or ma-

chine learning models. In my work, Hawkware relies its decision on a machine learn-

ing model. To be more specific, I have opted for an artificial neural network (ANN)

model, based on the belief that with their resurgence in recent years, ANN models are

holding a great promise in solving with high accuracy diverse decision problems where

specification-based detection systems have shown inherent limitations. The power of

an ANN model for NIDS comes from the fact that it has capabilities of modeling

complex non-linear relations within network and device behavior. Given as inputs to

the ANN model, the runtime behaviors are structured into sequential formats, such as

network packet sequences or system call sequences. To effectively process the sequen-

tialized input data, the ANN is based on long short-term memory (LSTM) recurrent

neural networks (RNNs) [3] which have demonstrated excellent accuracy in analyzing

sequence data. Unfortunately, existing LSTM based ANNs, which mostly accept a sin-

gle sequence of inputs, did not fit my task in which the ANN must learn and infer from

a sequence of device behavior while also considering the sequence of network behav-

ior that resulted from or initiated the device behavior. Therefore, I design Hawknet,

my LSTM based ANN, to correlate and analyze both sequences of device and network

behavior in its task to detect network intrusions.

Sadly, such complex behavior analysis with an ANN comes at a cost. Hawknet

would require resource hungry computations that should normally be delegated to

high-end machines with an abundant computing resource, such as GPUs, for accept-

able performance. Obviously, I cannot expect such abundancy in computational sup-

port for my NIDS that will be deployed to a typical, IoT device. Therefore in my

implementation of Hawkware for real IoT devices, I have strived to optimize Hawknet

such that Hawkware can perform intrusion detection with minimal resource consump-

tion. The key optimization technique applied in my work is ANN weight quantization

which reduces the memory pressure of its computation [93]. The experiments with

79

Hawkware implementation were encouraging in that i was able to gain up to 30x

speedup for Hawknet while achieving almost the same detection accuracy as before

the optimizations.

To evaluate Hawkware, I implement a prototype on a Raspberry PI, which is an

ARM-based single board computer that has similar computing resources to those of

smart IoT devices. One objective of my work is to demonstrate the effectiveness

of SIMD capabilities in a state-of-the-art processor for ANN-based NIDS. For this,

Hawkware engages ARM’s NEON SIMD engine because the engine has an excellent

parallel processing capability that can accommodate the high degree of parallelism in-

herent in the Hawknet model. I measured the performance enhanced by utilizing the

SIMD engine and found that there was about 66x speedup.

6.2 Related Work

Since resource consumption is a primary concern of every embedded device in an IoT

system, efficiency must be of top priority for any techniques targeting most embedded

devices with strict resource constraints. In the defense against attacks on an IoT sys-

tem, Hawkware is a lightweight ANN-based distributed NIDS specifically developed

for resource-constrained IoT devices. The novelty of Hawkware lies in my approach

which, for maximum efficiency with little loss of accuracy, combines the packet header

analysis with the analysis of network-driven host behavior in place of expensive DPI.

Like my ANN-based approach, there have already been various approaches proposed

to develop learning-based NIDSes [82, 83]. Most of them are designed to work with

KDD-99 or NSL-KDD dataset, which contain data in the form of features that their

NIDS would be able to collect without examining the packet payload. As discussed

earlier, however, relying on such a shallow analysis with incomplete information will

leave NIDS blind to more elaborated attempts for attacks [85, 92]. Therefore, a group

of subsequent studies has made efforts to counter these advanced attacks by enhancing

80

the accuracy of NIDS with help of DPI [87, 88]. All the above-mentioned NIDS solu-

tions differ from Hawkware since they are mainly interested in detection accuracy, and

relatively indifferent to resource requirements for computing their proposed solutions.

There is another branch of studies on NIDS that attempt to trim down its resource con-

sumption. In [84, 91], the authors propose NIDSes which were designed to detect bots

without DPI. By confining their task to bot detection, they were able to attain fairly

high detection accuracy even without DPI, but obviously unlike Hawkware, their sys-

tems cannot cope with other types of network attacks. In [86], they proposed PAYL, a

lightweight NIDS that identifies anomalies in packet payloads. However, it oversimpli-

fies the representation of packet payload data, and thereby loses detection accuracy as

indicated by [81]. From the observation on previous research in centralized NIDS, we

can see that there has always been a tug of war between detection accuracy and com-

putational efficiency. In fact, the same war still continues when researchers veer their

efforts toward distributed NIDS as the importance of IoT security increases. The ap-

proaches of recent research on distributed NIDS are largely two-fold. In one approach,

researchers proposed NIDSes that could be distributed and deployed in local fog com-

puting servers for IoT systems [89, 90]. In the other, researchers proposed, NIDSes

such as Kitsune [81], that could be distributed on IoT devices. To begin with, Hawk-

ware is in line with the latter approach. The former is clearly different from Hawkware

because they assume that the local machine housing each of the distributed NIDSes

is full of computing power and resource. In particular, I have found that Kitsune is

actually the closest to Hawkware since both the systems are targeted to run on low-

cost embedded devices. In [81], it is argued that the latter has the advantage of being

economically scalable. However, the latter approach also has a challenging problem to

address; as discussed in Section 1, the devices hosting NIDS are subject to stringent

resource constraints. Like Hawkware, Kitsune is designed to be lightweight enough to

efficiently operate on resource-restricted devices. However, as Kitsune only examines

81

Processes

PortsPackets

Packet
Header
Data

System
calls

Detector Module (DM)

Hawknet

Hawknet
Controller

(HC)

Response

Host Device

Monitor Module (MM)

Feature
Preprocessor

(FP)

System Call
Logger (SCL)

Packet Analyzer
(PA)

System Call
Buffers

Feature
Vector

Hawkware

Figure 6.1: Architectural overview of Hawkware.

network behavior features similar to those available in the KDD99 dataset, it would

exhibit the same vulnerability discussed above. On the other hand, by monitoring de-

vice behaviors, which may be a cheaper alternative to DPI, Hawkware excels Kitsune

in detecting the aforementioned advanced attacks. For example, Kitsune would not be

able to detect an attack hidden with traffic mimicry [92], a method in which adversaries

slice or pad their packet payloads so that malicious packets would be indistinguishable

from benign packets when their headers are examined. On the other hand, as the actual

malicious behavior that the attack will show on the target device is not changed by

this method, Hawkware would be able to detect the attack by examining the device

behavior.

6.3 Hawkware Design

As displayed in Figure 6.1, Hawkware can be divided largely into the monitor mod-

ule (MM) and detection module (DM). The former monitors both the network and

device behaviors and extracts from the observed behaviors relevant features for the

ANN named as Hawknet. The latter tries to detect any suspicious behaviors indicating

network intrusions by utilizing Hawknet, which infers anomalies in network or device

behaviors from the features supplied by MM. Figure 6.1 shows that these modules

are further divided respectively into submodules, all of which collaborate together to

82

fulfill the task of Hawkware: (1) the packet analyzer (PA) that analyzes packet head-

ers and extracts relevant features (2) the system call logger (SCL) that records the

device behavior and extracts features from system calls related to incoming/outgoing

packets, (3) the feature preprocessor (FP) that aggregates the extracted features and

hands it over as input to Hawknet, and (4) the Hawknet controller (HC) that examines

Hawknet’s output response and determines the existence of attacks.

6.3.1 Threat models and assumptions

My assumptions in the design of Hawkware are as follows. Firstly, it is assumed that

Hawkware resides in an uncompromised OS kernel. This implies that adversaries can-

not directly tamper with the code of Hawkware or its supporting kernel modules. It is

also assumed that the W⊕X security protection is enforced, hence preventing adver-

saries from directly running their code by modifying existing programs. In the design

of Hawkware as a distributed NIDS, efficiency was of the highest concern in that it is

distributed and deployed to target low-end IoT devices with strict resource constraints.

It is assumed that local attacks on low-end IoT devices are relatively rare because IoT

services are primarily network-driven, and thus for most times, the devices act or re-

act according to network transactions. Therefore, Hawkware is meant to detect attacks

that result from or result in network transactions and does not intend to cope with such

local attacks whose origins are from the inside of the device, as those directly injected

into the device via an I/O interface or those living inside the device from the start.

6.3.2 Monitor Module

For the successful accomplishment of the monitoring task, it is important to determine

how raw behavioral data is resolved and refined into features for DM. Since the refined

data generated by MM is the only information DM can use, lack of relevant features

will lead DM to fail in anomaly detection while irrelevant or redundant features in-

83

crease its computation complexity, and, in some cases, may even hinder detection. To

properly represent the network behavior and device behavior, Hawkware incorporates

two sets of feature vectors, respectively called the network behavior feature (NBF)

vector and device behavior feature (DBF) vector, which will be detailed below.

A network packet is composed of the header and payload. The header contains ba-

sic information needed to handle the packet, and the payload contains the actual data

of the packet. Since packet headers contain necessary features for discerning common

network behavior, they are examined by Hawkware to determine network behavior in

the same way as done by other NIDS. The submodule PA in MM captures the raw

packets arriving at the device. An NBF vector is a collection of features extracted by

PA from the packet headers. It consists of seven elements: the size of packet payload,

timestamp, network protocol, remote IP, remote port, host IP and host port. I ignore

other possible features in a packet header as they are either only available in certain

types of protocols (e.g., flow label, mobility) or not helpful in terms of detecting ma-

licious packets from advanced attacks (e.g., time to live, header checksum). This NBF

vector is delivered to FP for further processing, as will be described later in this sub-

section.

As discussed in Section 6.1, attacks can be contrived to deceive the NIDS that only

utilizes the packet header information. Recall that the packet payload could be a per-

fect source of additional information supplied for the analysis deepened to spot these

advanced, deceptive attacks, but such deep analysis of payload (i.e., DPI) is too heavy

to be performed on low-cost devices. Resultantly in Hawkware, the necessary infor-

mation is acquired from an alternative source that is a chain of system call sequences,

which has been proven by earlier work [67, 44] as an excellent feature representing

device’s software behavior. The logger SCL in MM maintains separate ring buffers,

called system call buffers (SCBs), each of which is to remember the most recent sys-

tem call sequence of a different process. When a system call is invoked, SCL checks

84

the PID of the caller process and records the call into an appropriate SCB. However,

examining and storing system call sequences for each and every process would strain

the resources of an IoT device. To reduce this burden, I use a tactic that allows SCL to

record only the system calls invoked by the network-driven processes handling packets

communicated with the outside, such as those listening to host ports or their children

spawned afterward. A DBF vector is a collection of features consisting of such sys-

tem calls stored in SCB. Like NBF vectors, DBF vectors will be delivered to FP as

well for further processing. The reasoning behind this tactic is based on a presumption

that most IoT services are network-driven, which suggests that the primary pathway

to attack an IoT device would be its network-driven processes. This, in turn, clinches

the fact that it is possible to successfully protect the device effectively from network

intrusion just by examining the behaviors of those processes to perceive the first sign

of attempted intrusion against the device.

For every outgoing/incoming network packet, DM correlates network and device

behaviors by using a pair of NBF and DBF vectors relevant to each other. As mentioned

above, these two vectors are initially created by PA and SCL, respectively, and refined

by FP before being delivered finally to DM. FP first takes an NBF vector and identifies

the host port bound to the vector as well as the process associated with the port. It

then fetches the DBF vector corresponding to the process. This FP task is slightly

differentiated for outgoing and incoming network packets. In the case of an outgoing

one, an NBF vector is first created by PA from the packet captured, and then its relevant

DBF vector is fetched by FP from SCB, as discussed earlier. At last, FP packages these

two vectors for the delivery to DM. See that the DBF vector at this moment summarizes

the device behavior leading up to when the outgoing packet is captured by PA. This

is so because it must be seen how the device operates to generate the packet for the

outside world. However, in the case of an incoming packet, the DBF vector represents

the device behavior after the arrival of the packet. This must be so because Hawkware

85

Table 6.1: Feature vector of Hawkware
Feature Preprocessing method

timestamp timestamp difference with previous packet

payload size no transformation

network protocol one-hot encoded format

remote IP classify as special-use address

remote port output vector from embedding layer

host IP discarded

host port output vector from embedding layer

system call sequence one-hot encoded format

would like to see how the device reacts to the packet from the outside. To enable this,

after a packet comes in via a host port, SCL stores in a designated SCB all system

calls invoked by the process receiving the packet. As argued before, a sequence of

system calls denotes the behavior of the device reacting to the packet, which has been

transformed into a DBF vector as input for Hawknet. The DBF vector is formed with

the most recent system calls filled in the current ring buffer SCB.

Now with the two relevant DBF and NBF vectors in hand, FP transforms the fea-

tures within the vectors, as seen in Table 6.1. In my current implementation for the

32 bit Linux system, a sequence of system calls is logically an array of the numbers

whose domain has the size of 316, equal to the number of distinct system calls in

the system. It is noteworthy that each system call in the DBF vector is converted to a

one-hot encode vector, and thus each DBF vector is actually a vector of vectors, i.e.,

a matrix. The transformed NBF vector and DBF matrix are delivered to DM as the

input to Hawknet eventually. I here like to state that when two packets are requesting

consecutively to use the same host port, they are served in the order they request. To

enforce this in-order service, when a new incoming or outgoing packet requests to ac-

cess the port bound to the current SCB, SCL immediately ceases system call logging

for the current packet and forms a DBF vector including all valid SCB entries stacked

86

Hawknet

Data propagation

Layer

Vector

Network
Behavior
Analyzer
(NBA)

Packet feature vector

Device Behavior
Analyzer (DBA)

one-hot encoded system calls

LSTM
Layer

Context
Converter

Softmax
Layer

Perplexity

Detector Module (DM)

Hawknet Controller
(HC)

Score >
threshold

?

Alarm to
system

Keep
doing

Yes No

D
e
c
o
d
e
r

E
n
c
o
d
e
r

Embedding
Layer

Decoding
Layer

Reconstruction
Layer

Scalar

Name

Embedding
Layer

RMSE

Encoding
Layer

Context
Vector
StorageHost

port

Context
vector

Vector
Separator

Feature
vector

Figure 6.2: Design of Hawkware’s detector module (DM).

up so far. By default, every system call subsequently stored in SCB will be used later

to generate a new DBF vector for the next packet.

6.3.3 Detector Module

As depicted in Figure 6.2, at the core of DM lies HC that governs the operations of

Hawknet. HC supplies Hawknet with the two inputs, the NBF vector and DBF matrix,

processed by FP. Then, Hawknet measures the degree of anomaly of the current net-

work transaction represented by the inputs. The degree value indicates the likeliness

of the features representing aberrant network or device behaviors commonly induced

by attacks. HC then reads this measured value and determines the existence of net-

work attacks on the device by checking if the value surpasses the predefined threshold.

More specifically, to accomplish this task, HC interacts with the three ANN models of

Hawknet: the network behavior analyzer (NBA), device behavior analyzer (DBA) and

context converter (CC). The DBF matrix, as one of the inputs, is consumed by DBA to

87

infer anomalous device behavior. In the design, HC splits the matrix into a list of one-

hot encoded system call vectors, each delivered to DBA one by one in order. The NBF

vector, as the other input, is consumed by NBA to infer anomalies in network behav-

ior. Usually, a host device manages multiple network ports each of which is linked to

a separate communication channel with a different party. Recall that each NBF vector

summarizes a packet transmitted over one of the host network ports. Thus in its view,

a sequence of NBF vectors for one such port collectively form a separate history of

network behavior conducted over the port. Following this view, I have designed HC to

keep track of NBF vector sequences separately for each and every port, and indepen-

dently determine anomalies of the individual network behaviors represented by such

sequences. To fulfill its task, when HC receives a new NBF vector for one host port, it

builds up one history of network behavior by augmenting with this vector an existing

sequence of earlier NBF vectors for the same port. Next, by offering this augmented

sequence as input, HC asks NBA to quantify the degree of anomaly of this behavior

history. Also, after the DBF matrix is consumed by DBA, HC receives the output value

from DBA. With this value of DBA as well as that of NBA, HC makes a final verdict

on the existence of intrusion.

I hereby like to clarify that in my actual implementation, the augmented sequence

of NBA vectors is in fact delivered to NBA as two separate vectors: the new NBF

vector and context vector. The latter is a condensed realization of a sequence of the

earlier NBF vectors that share the same port with the new vector. I have NBA to create

the context vector, and then to analyze the new NBF vector subject to the contextual

information for the network behavior history denoted by the context vector. To ac-

complish this, NBA has an autoencoder ANN that mimics the identity function, i.e.,

given its input, the ANN tries to produce the same output as the input values. The two

main components of the autoencoder are the encoder and decoder. The former com-

presses the input NBF vector into an encoded vector, and the latter tries to regain the

88

input vector from the encoded vector. In the learning phase, I train NBA with the NBF

vectors extracted from network transactions exhibiting normal behavior in a way that

induces NBA to encode such normal NBF vectors and restore these original vectors by

decoding the encoded ones. What is intriguing here is that once properly trained, NBA

would fail in restoring the input vectors extracted from anomalous (thus unfamiliar)

network behavior. NBA leverages this property to obtain the degree of anomaly of an

NBF vector by calculating the root mean square error (RMSE) between the input NBF

vector and the vector reconstructed by NBA’s autoencoder. NBA is trained such that

the RMSE value can be small for normal NBF vectors, and conversely that it will be

large for anomalous ones.

As network communication typically entails transmission of multiple network pack-

ets with the same party, NBA must be able to identify all those related packets. To en-

able this, I design NBA to incorporate an LSTM RNN layer, which exhibits excellent

accuracy in analyzing sequence data. The key factor in this design is how to determine

where the LSTM layer is placed. In a conventional design [94], the layer should have

been placed in both the encoder and decoder components. However, this design deci-

sion assumes that all of the input vectors can be encoded and decoded simultaneously

because they will be available at the same time. This does not suit NBA because, in

order to acquire all NBF vectors for related packets utilizing the same port for com-

munication, NBA should wait until the communication is terminated. This would pose

a serious problem in that if there was an attack in the middle of the communication,

the anomaly detection based on RMSE would be too late. Therefore in order to calcu-

late RMSE as quickly as possible, while allowing the encoder to see the past history

of NBF vectors when it encodes a given input NBF vector, the decoder is confined to

reconstruct the current NBF vector only for the RMSE calculation. To realize this, I

place an LSTM layer only in the encoder and employ a simple fully connected layer

for the decoder. The LSTM layer accumulates the information of NBF vectors it has

89

examined in the past in an internal context vector which is then used to encode new

NBF vectors in relation to its predecessors. Note that this context vector only repre-

sents the network behavior history of a single network port. Therefore, I design NBA

in a way that swaps the context vector for one representing the history of that port

when the vector must examine a new NBF vector from a packet bound to a different

port. Whenever a new NBF vector is delivered to NBA, HC offers the related context

vector alongside it.

As depicted in Figure 6.2, NBA has four ANN layers: the embedding layer, en-

coding layer, decoding layer and reconstruction layer. The embedding layer converts

the NBF vector into a vector in a higher dimensional vector space so that this out-

put vector may express various relations between the features within the input vector.

This vector is then compressed to an encoded vector by the encoding layer, which as

mentioned above, uses an LSTM model to take into consideration the history of NBF

vectors. Note that, during this process, a newly updated context vector is created to

replace its predecessor in HC’s context vector database for future use. The encoded

vector is then taken as input by the decoding layer to reconstruct the original input

NBF vector. This reconstruction process may be a bit tricky in that it is not always

straightforward to restore all the information in the original vector some of which has

been lost during the encoding process. Fortunately, according to my experiments, the

decoding layer has been well trained such that it can recover the lost information in

most encoded vectors which are extracted from normal network behaviors. Moreover,

the decoding layer is trained to output large discrepancy (or error) between the original

and restructured vectors when the NBF vector represents anomalous behavior. Thanks

to such clearly different outputs of the trained decoding layer, the RMSE results cal-

culated by NBA would vary drastically depending on the input NBF vectors, which

provides a theoretical foundation for HC to determine anomaly of network behavior,

or equivalently the existence of intrusion.

90

In order to include the network context in its analysis of device behavior, DBA

requires the information about the network behavior history pertaining to its input

DBF matrix. NBA maintains this contextual information in the encoding layer as its

context vector. However, the values in the vector would not directly constitute the

network context because they are meant to represent the information needed to encode

future NBF vectors. Thus, this context vector is taken as input by CC that is trained

to extract the network behavior history embedded in the vector and generate a new

history vector representing the current network context. Lastly, within the network

context represented by the history vector, DBA can analyze a DBF matrix after setting

its initial state. The only objective of CC is to perform a vector conversion, and thus I

have implemented CC with a simple fully-connected layer.

As just mentioned, in order to discern device behavior anomaly from a DBF ma-

trix, DBA first makes use of the history vector to set the initial network context. To

relate contextual information between the sequence data, DBA also employs an LSTM

layer. DBA starts consuming the system call vectors delivered by HC as soon as CC

delivers the converted history vector. Just before entering the LSTM layer, the sys-

tem call vectors are projected into a continuous vector space by the embedding layer

which helps the LSTM layer to better recognize the data distribution within the vec-

tor. Now, this projected vector goes into the LSTM layer which is initialized with the

history vector from CC. Finally, the output vector of the LSTM layer is fed into the

softmax layer which calculates the probability of each system call occurring next in

the sequence. With this probability, DBA quantifies the degree of anomaly for the next

arriving system call vector by calculating its perplexity, the negative log-likelihood of

the system call’s occurrence. The calculated perplexity for each system call vector is

given to HC.

91

0

0.5

1

0 0.05

Hawknet DDoS

0

0.5

1

0 0.05

Hawknet Backdoor

0

0.5

1

0 0.05

Hawknet Miner

0

0.5

1

0 0.05

Hawk-Q DDoS

0

0.5

1

0 0.05

Hawk-Q Backdoor

0

0.5

1

0 0.05

Hawk-Q Miner

0

0.5

1

0 0.05

DBA-only Backdoor

0

0.5

1

0 0.5

Kitsune DDoS

0

0.5

1

0 0.5

Kitsune Backdoor

0

0.5

1

0 0.5

Kitsune Miner

0

0.5

1

0 0.5

NBA-only DDoS

0

0.5

1

0 0.5

NBA-only Backdoor

0

0.5

1

0 0.5

NBA-only Miner

0

0.5

1

0 0.05

DBA-only DDoS

0

0.5

1

0 0.05

DBA-only Miner

AUC 0.8465
EER 0.2949

AUC 0.6733
EER 0.3414

AUC 0.6932
EER 0.3165

AUC 0.6699
EER 0.3780

AUC 0.7189
EER 0.2788

AUC 0.6204
EER 0.3771

AUC 0.9964
EER 0.0044

AUC 0.9838
EER 0.0161

AUC 0.9671
EER 0.0328

AUC 0.9993
EER 0.0014

AUC 0.9996
EER 0.0161

AUC 0.9993
EER 0.0328

AUC 0.9991
EER 0.0016

AUC 0.9991
EER 0.0161

AUC 0.9991
EER 0.0328 X-axis: FPR

Y-axis: TPR

Figure 6.3: Detection accuracy of Hawknet, Kitsune and variations of Hawknet given

as the the receiver operating characteristic (ROC) curve alongside the area under curve

(AUC) and equal error rate (EER).

6.4 Evaluation

Implementation : I have implemented a prototype of Hawkware on a Raspberry Pi

Model B+ board, which has a 1.4 GHz quad-core ARM Cortex-A53 processor with 1

GB RAM. I target this device because its specifications are close to many ARM-based

smart IoT devices. This device can support a 64 bit OS, but in order to keep the envi-

ronment closer to real IoT devices, I have implemented Hawkware in a 32 bit Linux

OS. I bound Hawkware to a single core dedicated for its computation. Hawkware is

composed of five software components: SCL, PA, FP, HC and Hawknet. I incorpo-

rate Tshark1, a network packet capturing and analyzing tool, in implementing PA and

leverage ftrace, an event tracing framework available in Linux kernels, in SCL. FP is

implemented in Python to transform the outputs of PA and SCL and deliver the NBF

vector and DBF matrix to HC. HC is also implemented in Python so that it may handle

the inputs and outputs of Hawknet as described above. Hawknet is trained offline on a

separate server and then deployed on devices to perform detection. The training is done

with NBF vectors and DBF matrices extracted during various benign network activi-
1https://www.wireshark.org/docs/man-pages/tshark.html

92

ties. Hawknet and its training code are implemented with Tensorflow2, which is one of

the most popular frameworks for machine learning. However, as will be shown below,

directly deploying this model strains IoT devices. In order to mitigate this issue, I first

leverage ARM’s NEON SIMD instructions for their excellent parallel processing ca-

pability that can accommodate the high degree of parallelism inherent in the Hawknet

model. Unfortunately, due to the high memory pressure inherent in ANN computation

for loading its weight values, utilizing NEON alone still falls short of making Hawknet

efficient enough for IoT devices. Therefore, in addition, I capitalize on recent work on

ANN weight quantization [93], compressing the vector values of Hawknet from 32-bit

floating point numbers to 8-bit fixed point numbers. Employing the Tensorflowlite tool

to compress the original model of Hawknet, the compressed model of Hawknet only

occupies 60KB. Below I give the parameters set for the prototype Hawknet. The learn-

ing rate was set to 0.001, which is a standard starting point for typical deep learning.

The number of parameters in each layer of Hawknet is set as following: NBA’s embed-

ding layer, encoding layer, decoding layer and reconstruction layer each respectively

have 297, 3840, 567 and 297 parameters, DBA’s embedding layer, LSTM layer and

softmax layer each have 3160, 840 and 3476 parameters and there are 210 parameters

for CC.

Training Hawknet : In order to facilitate faster training of the Hawknet model,

I collect benign data on the Raspberry Pi and then train the model offline on a more

powerful server. To obtain benign data, I run, on the device, various network-based

processes commonly found in IoT environments and collect their behavioral data with

Hawkware’s MM. From the collected data I randomly select 40% of the data to train

the model while using the rest to validate the trained model. Note that, in this selection

process, I make sure to exclude a random set of processes from the training data so that

their data can be used to validate the model in its detection against unknown benign
2https://www.tensorflow.org

93

processes.

Detection accuracy : I first evaluate the comprehensive detection accuracy of

Hawkware against attacks commonly found in IoT devices. In my experiments, I test

Hawkware against attack samples of three classes of malware gathered from Virus-

Total3: DDoS botnets (DDoS), bitcoin miners (Miner) and backdoors (Backdoor).

Though Hawkware would be capable of detecting any unusual method of sending

these malware over the network, in my evaluation, I simply run their code directly

on the device as it is assumed the binaries of the malware can be introduced into the

system through legitimate channels by employing attack methods such as social engi-

neering. This is done to evaluate whether, even in such a case, Hawkware would be

capable of detecting the malware.

In Figure 6.3, to facilitate a systematic comparison, alongside the receiver operat-

ing characteristic (ROC) curves for Hawknet and Kitsune [81], a state-of-the-art NIDS

for low-cost IoT devices, I also display ROC curves for several variants of Hawknet:

Hawknet with quantization (Hawk-Q), NBA of Hawknet (NBA-only) and DBA of

Hawknet (DBA-only). I run the publicly available Kitsune code to train and evaluate

Kitsune on the same data that my models use. NBA-only and DBA-only are trained

separately from Hawknet with only network behavior and NBA (NBA-only) or de-

vice behavior and DBA (DBA-only). The ROC curves plot the true positive rate (TPR)

against the false positive rate (FPR) over various detection thresholds of the models.

Instead of plotting the whole ROC curve, the left-side portion of the curve is magnified

to better show the difference between the models. To provide a better understanding

of the results I also give the area under the ROC curve (AUC) and equal error rate

(EER). EER is the false positive rate when the threshold is set to a value where the

detection FPR is equal to the false negative rate (1-TPR) and therefore a lower EER

value typically indicates better detection accuracy with lower false alarm rate. Note
3https://www.virustotal.com

94

Y-axis: Degree of Anomaly

0

0.5

1

1.5

2

2.5

3

3.5

4

Benign DDoS Backdoor Miner

Kitsune

0

0.1

0.2

0.3

Benign DDoS Backdoor Miner

NBA-only

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

Benign DDoS Backdoor Miner

DBA-only

1.E+00

1.E+02

1.E+04

1.E+06

Benign DDoS Backdoor Miner

Hawknet

1.E+00

1.E+02

1.E+04

1.E+06

Benign DDoS Backdoor Miner

Hawk-Q

mean traffic mimicry syscall mimicry traffic+syscall mimicry

Figure 6.4: Degrees of anomaly (RMSE for Kitsune and NBA-only, perplexity for the

rest) of Kitsune, Hawknet and its variations.

that, in order to make a fair comparison, I perform anomaly detection with the vari-

ous models over the same collected data from the devices while Kitsune is deployed

in a similar manner to its implementation in its original paper. As Hawknet has two

thresholds (one for NBA and another for DBA), to provide a clear comparison, I show

the ROC curve for changing the NBA threshold while fixing the DBA threshold to

the value when Hawknet shows optimal accuracy. In Figure 6.4, I depict the degree of

anomaly (RMSE values for Kitsune and NBA-only and perplexity values for the rest)

of each model with their mean value and standard error of the mean (SEM). Note that,

though Hawknet has two degrees of anomaly, one for NBA and another for DBA, the

NBA score is the same to that of NBA-only because Hawknet does not use additional

information from the device in calculating network behavior anomaly. On the other

hand, as DBA in Hawknet leverages network behavior context and therefore gives

different values from that of DBA-only, I display the degree of anomaly of DBA for

Hawknet and Hawk-Q. The mimicry attacks depicted in Figure 6.4 will be discussed

below separately.

In Figure 6.3, NBA-only shows comparable accuracy to that of Kitsune as both

examine similar network behavior data. Both perform poorly against coinminer and

backdoor due to the fact that, as the main function of these malware run on the device

95

and only the results are relayed via network, there is little visibility of the malware

behavior over the network which makes it difficult for Kitsune and NBA to differenti-

ate the behavior of the malware from around 30% of benign network-based processes.

This is also supported by the SEM depicted in Figure 6.4 where a portion of benign

and backdoor/miner would overlap in their degrees of anomaly. The high values of the

average degree of anomaly for backdoor in NBA-only and DDoS in Kitsune are due

to the fact that a portion of malware in these classes show high degrees of anomaly,

which are reflected in the left-side portion of their respective ROC curves in 6.3. On

the other hand, DBA-only shows good accuracy against all three classes of malware.

As these malware act as agents within the device and perform malicious activities on

their own or as a response to messages from external command & control servers, their

behavior likely deviates from that of a typical network-based process. The figure also

demonstrates the positive effect on the detection accuracy that Hawknet can obtain

by leveraging both device behavior and network behavior in its detection task. Though

the curves seem similar, the difference between DBA-only and Hawknet can be seen in

their AUC and EER values. Though the difference may seem little, when considering

that recent work in NIDS strive to gain every little advantage in improving accuracy,

the improved accuracy of Hawknet over DBA-only and NBA-only supports my initial

assumption in that modeling device behavior is a good substitute for DPI in improving

NIDS accuracy. It is also encouraging that even after quantization, Hawknet suffers

little in its detection accuracy and thus would be deployable on IoT devices.

Against advanced attacks : The superiority of Hawknet comes from the fact that

it can even detect advanced attacks adopting a mimicry scheme to evade the exist-

ing detection systems that observe similar data as NBA-only or DBA-only. To clarify

this point, I conducted another experiment using a DDoS and Miner malware which

I modified to incorporate certain mimicry schemes. I specifically generate three ver-

sions of both malware that each respectively incorporates traffic mimicry [92], system

96

call mimicry [40] and both mimicry techniques into the malware. The traffic mimicry

scheme divides the packet payload of the malware into smaller sizes, which makes the

packet headers similar to those seen in normal network traffic. The system call mimicry

scheme pads the malware’s runtime behavior with negligible system calls to make its

system call sequence appear similar to those found in normal device behavior. Though

system call mimicry does not affect typical NIDSes, I include it here so that we can

evaluate Hawknet’s capability of relating network and device behavior. As can be seen

in Figure 6.4, when each mimicry attack scheme is incorporated into the malware,

Kitsune, NBA-only and DBA-only become vulnerable to the attacks. The degrees of

anomaly calculated by the models show little difference from those of benign activ-

ities. Kitsune, NBA-only or DBA-only alone will be helpless against such advanced

attacks. On the other hand, Hawknet stays resilient against the advanced attacks. Even

when both system call sequence and network packet headers mimic those of benign

activity, as their relationship (the correlation between system call invocation and net-

work behavior) has not been mimicked, Hawknet can successfully detect the attack

by perceiving the abnormality of their coexistence. Though theoretically, it might be

possible to craft a mimicry attack that can even bypass Hawknet, I believe Hawknet’s

resilience gives little leeway to adversaries in crafting such mimicry attacks and thus,

makes it much more difficult to launch such attacks.

Monitor Module performance : As Hawkware is designed to run on a dedicated

core, the overhead Hawkware incurs on the host device is mainly due to the mon-

itoring components of MM for PA’s capturing network packets and SCL’s logging

system calls. As the amount of the overhead would obviously depend on the charac-

teristics of operations performed in a device, I tried to measure worst-cases through

the network-intensive and system call-intensive workloads, respectively. Specifically,

I observed that PA incurs an average of 3.7% overhead on a test process configured

to continuously send and receive network messages and SCL incurs an average of

97

Table 6.2: Average performance of each component of Hawknet (in cycles per input)

NBA CC DBA

CPU 767498 94116.8 448689

NEON 11566.9 1422.33 6486.07

Quantization 203.034 108.962 372.120

2.62% overhead on sysbench4 fully occupying the remaining three CPU cores. Alto-

gether, Hawkware incurs an average of 6.6% overhead on the host device with both

workloads.

Detection Module performance : When evaluating DM, I focus only on measur-

ing the detection speed of Hawknet, excluding HC. This is because when compared

to Hawknet, HC has a negligible impact on detection speed as its code simply steers

the NBF vector and DBF matrix towards Hawknet and compares Hawknet’s outputs

with predefined threshold values. Table 6.2 shows the average number of CPU cycles

required to process a single input (described in Section 6.4) for each component of

Hawknet as well as the impact of each optimization applied in its implementation. The

results indicate that, if Hawkware opts for SCB buffers to maintain ten recent system

calls, for every network packet captured by PA, Hawknet would consume up to an

average of 2.7 ms on a 1.4 GHz processor to fully process its related device behavior.

Considering that the amount of network traffic directed towards a typical end-point IoT

device is low, I believe that processing around 370 packets a second would be practical

to be used in the real world.

6.5 Summary

Hawkware is an ANN-based NIDS that incorporates network and device behavior

analysis for detecting attacks on IoT devices. my evaluations have shown that Hawk-
4https://launchpad.net/sysbench

98

ware can successfully correlate network and device behaviors for network intrusion

detection. Furthermore, it was shown that via this correlation of behaviors, Hawkware

is resilient against advanced attacks including techniques like traffic mimicry or sys-

tem call mimicry. The prototype on a Raspberry Pi has shown that, by capitalizing on

ARM’s NEON SIMD architecture and ANN weight quantization techniques, Hawk-

ware’s implementation can be efficient enough to be deployed on embedded devices

in an IoT system while outperforming state-of-the-art lightweight NIDS for IoT [81]

against network-based malware.

99

Chapter 7

Conclusion

In this thesis, four issues in deploying anomaly detection have been explored and I

have proposed and evaluated four new approaches to handle the issues. First, DADE

was designed to better provide kernel data anomaly detection with kernel data fea-

tures that stayed the same across system reboots. This was achieved by naming kernel

data with the function call stack at their allocation event. With this new data naming

scheme, transient specifications were turned into persistent specifications. To general-

ize my findings here to apply to different domains would be that even with the same

data and machine learning algorithm, just by changing the feature collection and repre-

sentation method, anomaly detection can become much more realistically deployable.

Second, DeePBM was designed to model program branch behavior which according

to my preliminary findings, shows natural resilience against mimicry attacks. The pro-

posed LSTM branch language model performed well enough to distinguish benign

and malicious behavior in programs. Here we have seen that exploring features of

finer granularity could help countering mimicry attacks. Third, RTAD was designed to

facilitate real-time anomaly detection by providing acceleration for feature collection,

preprocessing, transfer and inference. It was found that the timeliness of inference

benefits greatly even from such simple dedicated HW support. Lastly, Hawkware was

100

proposed to perform lightweight anomaly detection in IoT devices where packet in-

spection is not a realistic option. By correlating two different streams of features, even

with a simple lightweight model, malicious behavior was easily distinguishable even

when masked with mimicry techniques. This provides further insight in countering

mimicry attacks through feature correlation that is usually non trivial to mimic. As

each research addresses specific realistic issues in anomaly detection, I believe the

proposed solutions will be beneficial in the development of real anomaly detection

security solutions. Furthermore, though the proposed solutions are tailored for a spe-

cific security domain, I believe the general lessons learned from each research may

also be applicable to various other security domains, especially the insights learned

on mimicry attacks would provide guidance to building resilient anomaly detection

solutions regardless of security domain.

101

Bibliography

[1] S. Forrest, S. A. Hofmeyr, A. Somayaji and T. A. Longstaff, ”A sense of self

for unix processes,” in 1996 IEEE Symposium on Security and Privacy, Oakland,

USA, May 1996, pp. 120-128.

[2] AV-Test, https://www.av-test.org

[3] S. Hochreiter and J. Schmidhuber, ”Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735-1780, 1997.

[4] A. P. Bradley, ”The use of the area under the ROC curve in the evaluation of

machine learning algorithms,” Pattern recognition, vol. 30, no. 7, pp. 1145-1159,

1997.

[5] Arndale development board, http://www.arndaleboard.com/

[6] bzip2, http://www.bzip.org/

[7] GCC, the GNU Compiler Collection, https://gcc.gnu.org/

[8] Kernel-based Virtual Machine, https://www.linux-kvm.org/

[9] Mcafee labs threats report: May 2015, http://www.mcafee.com/us/resources/reports/rp-

quarterly-threat-q1-2015.pdf

[10] ProFTPD, http://www.proftpd.org/

102

[11] The spec cpu 2006 benchmark suite, http://www.spec.org

[12] A. Baliga, V. Ganapathy and L. Iftode, ‘’Automatic inference and enforcement of

kernel data structure invariants,’’ in 2008 Annual Computer Security Applications

Conference, ACSAC 2008, Anaheim, USA, Dec 2008. pp. 77-86.

[13] J. Bickford, H. A. Lagar-Cavilla, A. Varshavsky, V. Ganapathy and L. Iftode,

‘’Security versus energy tradeoffs in host-based mobile malware detection,’’ in

Proceedings of the 9th international conference on Mobile systems, applications,

and services, MobiSys 2011, Washington D.C., USA, Jun 2011. pp 225-238.

[14] J. Bonwick, ‘’The slab allocator: An object-caching kernel memory allocator,’’

in USENIX summer, vol 16, Boston, USA, 1994.

[15] D. P. Bovet and M. Cesati, Understanding the linux kernel, 2 ed,’ OReilly and

Associates, 2002.

[16] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado and X. Jiang, ‘’Mapping kernel

objects to enable systematic integrity checking,’’ in Proceedings of the 16th ACM

conference on Computer and communications security, CCS 2009, Chicago,

USA, Nov 2009, pp. 555-565.

[17] W. Cui, M. Peinado, Z. Xu and E. Chan, ‘’Tracking rootkit footprints with a

practical memory analysis system,’’ in USENIX Security Symposium, Bellevue,

USA, Aug 2012, pp. 601-615.

[18] C. Dall and J. Nieh, ‘’Kvm/arm: The design and implementation of the linux arm

hypervisor,’’ in Proceedings of the 19th international conference on Architec-

tural support for programming languages and operating systems, ASPLOS 2014,

Salt Lake City, USA, March 2014, pp. 333-348.

[19] B. Dolan-Gavitt, A. Srivastava, P. Traynor and J. Giffin, ‘’Robust signatures for

kernel data structures,’’ in Proceedings of the 16th ACM conference on Computer

103

and communications security, CCS 2009, Chicago, USA, November 2009, pp.

566-577.

[20] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin and W. Lee, ‘’Virtuoso: Narrow-

ing the semantic gap in virtual machine introspection,’’ in 2011 IEEE Symposium

on Security and Privacy, Oakland, USA, May 2011, pp. 297-312.

[21] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz

and C. Xiao, ‘’The daikon system for dynamic detection of likely invariants,’’

Science of Computer Programming, vol. 69, no. 1-3, pp. 35-45, 2007.

[22] Y. Fu and Z. Lin, ‘’Space traveling across vm: Automatically bridging the se-

mantic gap in virtual machine introspection via online kernel data redirection,’’

in 2012 IEEE Symposium on Security and Privacy, San Francisco, USA, May

2012, pp. 586-600.

[23] Y. Fu and Z. Lin, ‘’Exterior: using a dual-vm based external shell for guest-os

introspection, configuration, and recovery,’’ in ACM SIGPLAN Notices, vol. 48,

pp. 97-110, 2013.

[24] U. Fiore, F. Palmieri, A. Castiglione and A. De Santis ‘’Network anomaly detec-

tion with the restricted Boltzmann machine,’’ in Neurocomputing, vol. 122, pp.

13-23, 2013.

[25] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy and E. Witchel, ‘’Ensuring operating

system kernel integrity with osck,’’ in ACM SIGPLAN Notices, vol. 46, pp. 279-

290, 2011.

[26] B. Kolosnjaji, A. Zarras, G. Webster and C. Eckert, ’’Deep Learning for Classi-

fication of Malware System Call Sequences,’’ in Australasian Joint Conference

on Artificial Intelligence, Hobart, Australia, December 2016, pp. 137-149.

104

[27] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek and B. B. Kang, ‘’Ki-mon:

A hardware-assisted event-triggered monitoring platform for mutable kernel ob-

ject,’’ in USENIX Security Symposium, Washington D.C., USA, August 2013,

pp. 511-526.

[28] Z. Lin, J. Rhee, X. Zhang, D. Xu and X. Jiang, ‘’Siggraph: Brute force scan-

ning of kernel data structure instances using graph-based signatures,’’ in Annual

Network and Distributed System Security Symposium, NDSS, San Diego, USA,

February 2011.

[29] L. W. McVoy and C. Staelin, ‘’lmbench: Portable tools for performance analy-

sis,’’ in USENIX annual technical conference, ATC, San Diego, USA, January

1996, pp. 279-294. .

[30] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek and B. B. Kang, ‘’Vigilare: toward

snoop-based kernel integrity monitor,’’ in Proceedings of the 2012 ACM con-

ference on Computer and communications security, CCS 2012, Raleigh, USA,

October 2012, pp. 28-37.

[31] F. Palmieri, U. Fiore and A. Castiglione, ‘’A distributed approach to network

anomaly detection based on independent component analysis,’’ in Concurrency

and Computation: Practice and Experience, vol. 26, no. 5, pp. 1113-1129, 2014.

[32] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu and A. Thomas, ‘’Malware

classification with recurrent networks,’’ in 2015 IEEE International Conference

on Acoustics, Speech and Signal Processing, ICASSP 2015, Brisbane, Australia,

April 2015, pp. 1916-1920.

[33] N. L. Petroni Jr and M. Hicks, ‘’Automated detection of persistent kernel control-

flow attacks,’’ in Proceedings of the 14th ACM conference on Computer and

105

communications security, CCS 2007, Alexandria, USA, October 2007, pp. 103-

115.

[34] N. L. Petroni Jr, T. Fraser, J. Molina and W. A. Arbaugh, ‘’Copilot-a coprocessor-

based kernel runtime integrity monitor,’’ in USENIX Security Symposium, San

Diego, USA, August 2004, pp. 179-194.

[35] N. L. Petroni Jr, T. Fraser, A. Walters and W. A. Arbaugh, ‘’An architecture for

specification-based detection of semantic integrity violations in kernel dynamic

data,’’ in Usenix Security Symposium , Vancouver, Canada, July 2006, Article no.

20.

[36] J. Rhee, R. Riley, D. Xu and X. Jiang, ‘’Kernel malware analysis with un-

tampered and temporal views of dynamic kernel memory,’’ in Recent Advances

in Intrusion Detection Symposium, RAID, Ottawa, Canada, September 2010, pp.

178-197.

[37] R. Wu, P. Chen, P. Liu and B. Mao, ‘’System call redirection: A practical ap-

proach to meeting real-world virtual machine introspection needs,’’ in 44th An-

nual IEEE/IFIP International Conference on Dependable Systems and Networks,

DSN 2014, Atlanta, USA, June 2014, pp. 574-585.

[38] F. Maggi, M. Matteucci and S. Zanero, ‘’Detecting intrusions through system

call sequence and argument analysis,’’ IEEE Transactions on Dependable and

Secure Computing, vol. 7, no. 4, pp. 381-395, 2010.

[39] D. Mutz, F. Valeur, G. Vigna and C. Kruegel, ”Anomalous system call detec-

tion,”, ACM Transactions on Information and System Security, vol. 9, no. 1, pp.

61-93, 2006.

106

[40] D. Wagner and P. Soto, ”Mimicry attacks on host-based intrusion detection sys-

tems,” in Proceedings of the 9th ACM Conference on Computer and Communi-

cations Security, Washington D.C., USA, November 2002, pp. 255-264.

[41] H. H. Feng,O. M. Kolesnikov, P. Fogla, W. Lee and W. Gong, ”Anomaly detec-

tion using call stack information,” in 2003 Symposium on Security and Privacy,

Oakland, USA, May 2003, pp. 62-75.

[42] Y. Gu, Q. Zhao, Y. Zhang and Z. Lin, ”PT-CFI: Transparent backward-edge con-

trol flow violation detection using intel processor trace,” in Proceedings of the

Seventh ACM on Conference on Data and Application Security and Privacy,

Scottsdale, USA, March 2017, pp. 173-184.

[43] Y. Liu, P. Shi, X. Wang,H. Chen, B. Zang and H. Guan, ”Transparent and ef-

ficient cfi enforcement with intel processor trace,” in 2017 IEEE International

Symposium on High Performance Computer Architecture, HPCA 2017, Austin,

USA, February 2017, pp. 529-540.

[44] G. Creech and J. Hu, ”A semantic approach to host-based intrusion detection

systems using contiguous and discontiguous system call patterns,” IEEE Trans-

actions on Computers, vol. 63, no. 4, pp. 807-819, 2014.

[45] R. C. Staudemeyer, ”Applying long short-term memory recurrent neural net-

works to intrusion detection,” South African Computer Journal, vol. 56, no. 1,

pp. 136-154, 2015.

[46] X. Shu, D. Yao, and N. Ramakrishnan, ”Unearthing stealthy program attacks

buried in extremely long execution paths,” in Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, CCS 2015,

Denver, USA, October 2015, pp. 401-413.

107

[47] Y. Bengio, P. Simard and P. Frasconi, ”Learning long-term dependencies with

gradient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no.

2, pp. 157-166, 1994.

[48] S. A. Hofmeyr, S. Forrest, and A. Somayaji, ”Intrusion detection using sequences

of system calls,” Journal of computer security, vol. 6, no. 3, pp. 151-180, 1998.

[49] X. D. Hoang, J. Hu and P. Bertok, ”A multi-layer model for anomaly intrusion

detection using program sequences of system calls,” The 11th IEEE International

Conference on Networks, ICON 2003, Sydney, Australia, September 2003.

[50] J. Hu, X. Yu, D. Qiu and H. H. Chen, ”A simple and efficient hidden Markov

model scheme for host-based anomaly intrusion detection,” IEEE Network, vol.

23, no. 1, pp. 42-47, 2009.

[51] E. N. Yolacan, J. G. Dy and D. R. Kaeli, ”System call anomaly detection using

multi-hmms,” 2014 IEEE Eighth International Conference on Software Security

and Reliability-Companion, San Francisco, USA, June 2014, pp. 25-30.

[52] R. C. Staudemeyer and C. W. Omlin, ”Evaluating performance of long short-term

memory recurrent neural networks on intrusion detection data,” in Proceedings

of the South African Institute for Computer Scientists and Information Technolo-

gists Conference, East London, South Africa, October 2013, pp. 218-224.

[53] Intel 64 and IA-32 architectures software developer’s manual,

https://software.intel.com/en-us/articles/intel-sdm

[54] K. Xu, D. D. Yao, B. G. Ryder and K. Tian, ”Probabilistic program modeling for

high-precision anomaly classification,” in 2015 IEEE 28th Computer Security

Foundations Symposium, CSF 2015, Verona, Italy, July 2015, pp. 497-511.

[55] K. Xu, K. Tian, D. Yao and B. G. Ryder, ”A sharper sense of self: Probabilistic

reasoning of program behaviors for anomaly detection with context sensitivity,”

108

in 2016 46th Annual IEEE/IFIP Dependable Systems and Networks, DSN 2016,

Toulouse, France, June 2016, pp. 467-478.

[56] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena and Z. Liang, ”Data-oriented

programming: On the expressiveness of non-control data attacks,” in 2016 IEEE

Symposium on Security and Privacy, San Jose, USA, May 2016, pp. 969-986.

[57] C. Parampalli, R. Sekar and R. Johnson, ”A practical mimicry attack against

powerful system-call monitors,” in Proceedings of the 2008 ACM symposium on

Information, computer and communications security, Tokyo, Japan, March 2008,

pp. 156-167.

[58] M. Sharif, K. Singh, J. Giffin and W. Lee, ”Understanding precision in host based

intrusion detection,” in Recent Advances in Intrusion Detection 2007 10th Inter-

national Symposium, RAID 2007, Gold Coast, Australia, September 2007, pp.

21-41.

[59] Data-Oriented Programming, http://huhong-nus.github.io/advanced-DOP

[60] CVE- 2016-6663 Privilege Escalation and Race Condition PoC Exploit,

https://www.exploit-db.com/exploits/40678

[61] CVE- 2016-6664 Root Privilege Escalation PoC Exploit, https://www.exploit-

db.com/exploits/40679

[62] CVE- 2016-9565 Nagios Core ¡ 4.2.0 Curl Command Injection and Code Execu-

tion PoC Exploit, https://www.exploit-db.com/exploits/40920

[63] CVE-2016-9566 Nagios Core ¡ 4.2.4 Root Privilege Escalation PoC Exploit,

https://www.exploit-db.com/exploits/40921

[64] EDB-ID:41154 GNU Screen 4.5.0 Local Privilege Escalation,

https://www.exploit-db.com/exploits/41154

109

[65] MySQL, https://www.mysql.com

[66] Nagios, https://www.nagios.org

[67] S. Forrest, S. Hofmeyr and A. Somayaji, ”The evolution of system-call monitor-

ing,” in 2008 Annual Computer Security Applications Conference, ACSAC 2008,

Anaheim, USA, December 2008, pp. 418-430.

[68] H. Yi, G. Kim, J. Lee, S. Ahn, Y. Lee, S. Yoon and Y. Paek, ”Extended Abstract:

Mimicry Resilient Program Behavior Modeling with LSTM based Branch Mod-

els,” in 1st Deep Learning and Security Workshop, DLS 2018, San Francisco,

USA, May 2018, arXiv preprint arXiv:1803.09171.

[69] S. Das, Y. Liu, W. Zhang and M. Chandramohan, ”Semantics-Based Online

Malware Detection: Towards Efficient Real-Time Protection Against Malware,”

IEEE Transactions on Information Forensics and Security, vol. 11, no. 2, pp.

289-302, 2016.

[70] Z. Chiba, N. Abghour, K. Moussaid, A. El Omri and M. Rida, ”A survey of intru-

sion detection systems for cloud computing environment,” in 2016 International

Conference on Engineering MIS, Agadir, Morocco, September 2016.

[71] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan

and S. Stolfo, ”On the Feasibility of Online Malware Detection with Performance

Counters,” in Proceedings of the 40th Annual International Symposium on Com-

puter Architecture, ISCA 2013, Tel-Aviv, Israel, June 2013, pp. 559-570.

[72] L. Chen, S. Sultana and R. Sahita, ”Henet: A deep learning approach on intel®

processor trace for effective exploit detection,” in 2018 IEEE Security and Pri-

vacy Workshops, San Francisco, USA, May 2018, pp. 109-115.

[73] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh and D. Ponomarev,

”Malware-aware processors: A framework for efficient online malware detec-

110

tion,” in 2015 IEEE 21st International Symposium on High Performance Com-

puter Architecture, Burlingame, USA, February 2015, pp. 651-661.

[74] M. Rahmatilong shortan, H. Kooti, I. G. Harris and E. Bozorgzadeh, ”Hardware-

Assisted Detection of Malicious Software in Embedded Systems,” IEEE Embed-

ded Systems Letters, vol. 4, no. 4, pp. 94-97, 2012.

[75] A. V. Fidalgo,M. G. Gericota, G. R. Alves and J. M. Ferreira, ”Real-time Fault

Injection Using Enhanced On-chip Debug Infrastructures,” Microprocessors and

Microsystems, vol. 35, no. 4, pp. 441-452, 2011.

[76] Y. Lee, J. Lee, I. Heo, D. Hwang and Y. Paek, ”Using CoreSight PTM to Integrate

CRA Monitoring IPs in an ARM-Based SoC,” ACM Transactions on Design Au-

tomation of Electronic Systems, vol. 22, no. 3, pp. 52:1-52:25. 2017.

[77] P. S. Kenkre, A. Pai and L. Colaco, ”Real Time Intrusion Detection and Preven-

tion System,” in Proceedings of the 3rd International Conference on Frontiers of

Intelligent Computing: Theory and Applications, Bhubaneswar, India, November

2014, pp. 405-411.

[78] P. Duarte, P. Tomas and G. Falcao, ”SCRATCH: An End-to-end Application-

aware soft-GPGPU Architecture and Trimming Tool,” in Proceedings of the 50th

Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge,

USA, October 2017, pp. 165-177.

[79] L. Codrescu, ”Architecture of the Hexagon™ 680 DSP for mobile imaging and

computer vision,” in 2015 IEEE Hot Chips 27 Symposium, Cupertino, USA, Au-

gust 2015.

[80] R. Balasubramanian, V. Gangadhar, Z. Guo, C. Ho, C. Joseph, J. Menon et al,

”Enabling GPGPU Low-Level Hardware Explorations with MIAOW: An Open-

111

Source RTL Implementation of a GPGPU,” ACM Transactions on Architecture

and Code Optimization, vol. 12, no. 2, pp. 21:21:1-21:21:25, 2015.

[81] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, ”Kitsune: an ensemble of au-

toencoders for online network intrusion detection,” in 25th Annual Network and

Distributed System Security Symposium, NDSS 2018, San Diego, USA, February

2018.

[82] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández and E. Vázquez,

”Anomaly-based network intrusion detection: Techniques, systems and chal-

lenges,” computers & security, vol. 28, no. 1-2, pp. 18-28, 2009.

[83] A. L. Buczak and E. Guven, ”A survey of data mining and machine learning

methods for cyber security intrusion detection,” IEEE Communications Surveys

& Tutorials, vol. 18, no. 2, pp. 1153-1176, 2016.

[84] F. Tegeler, X. Fu, G. Vigna and C. Kruegel, ”Botfinder: Finding bots in network

traffic without deep packet inspection,” in Proceedings of the 8th international

conference on Emerging networking experiments and technologies, Nice, France,

December 2012, pp. 349-360.

[85] T. H. Ptacek and T. N. Newsham, ”Insertion, evasion, and denial of service: Elud-

ing network intrusion detection,” SECURE NETWORKS INC, Calgary, Canada,

1998.

[86] K. Wang and S. J. Stolfo, ”Anomalous payload-based network intrusion detec-

tion,” in International Workshop on Recent Advances in Intrusion Detection,

Sophia Antipolis, France, September 2004, pp. 203-222.

[87] S. Dharmapurikar, P. Krishnamurthy,T. Sproull and J. Lockwood, ”Deep packet

inspection using parallel bloom filters,” in 11th symposium on High performance

interconnects, Stanford University, USA, August 2003, pp. 44-51.

112

[88] T. AbuHmed, A. Mohaisen and D. Nyang, ”A survey on deep packet inspection

for intrusion detection systems,” arXiv preprint, arXiv:0803.0037, 2008.

[89] A. A. Diro and N. Chilamkurti, ”Distributed attack detection scheme using deep

learning approach for Internet of Things,” Future Generation Computer Systems,

vol. 82, pp. 761-768, 2018.

[90] A. Abeshu and N. Chilamkurti, ”Deep learning: the frontier for distributed attack

detection in Fog-to-Things computing,” IEEE Communications Magazine, vol.

56, no. 2, pp. 169-175, 2018.

[91] P. Narang, V. Khurana and C. Hota, ”Machine-learning approaches for P2P bot-

net detection using signal-processing techniques,” in Proceedings of the 8th ACM

International Conference on Distributed Event-Based Systems, Mumbai, India,

May 2014, pp. 338-341.

[92] O. Kolesnikov and W. Lee, ”Advanced polymorphic worms: Evading ids by

blending in with normal traffic,” Georgia Institute of Technology, 2005.

[93] S. Shin, K. Hwang and W. Sung, ”Fixed-point performance analysis of recurrent

neural networks,” in 2016 IEEE International Conference on Acoustics, Speech

and Signal Processing, Shanghai, China, March 2016, pp. 976-980.

[94] N. Srivastava, E. Mansimov and R. Salakhudinov, ”Unsupervised learning of

video representations using lstms,” in International conference on machine learn-

ing, ICML 2015, Lille, France, July 2015, pp. 843-852.

113

초록

컴퓨터 보안에서 이상징후탐지는 이전에 알려지지 않은 새로운 공격을 탐지할

수 있는 가능성 때문에 오랫동안 연구되어 왔다. 이 연구들에서는 이상징후 탐지

의 성능을 향상시키지 위한 다양한 기계학습 모델 및 feature engineering 기법들이

제안되었다.하지만이러한연구들에도불구하고아직까지대부분의이상징후탐지

기법은 실제 시스템에 적용하기는 이르다고 여겨지고 있다. 이 논문에서는 이상징

후탐지 기법을 실제 시스템에 적용할 수 있도록하기 위하여 다양한 기법들을 탐

색하고자 한다. 우선 기존의 기계학습 기법을 향상시키지 위하여 운영체제의 커널

데이터에 대한 이상징후탐지 기법을 위한 새로운 feature를 제안할 것이다. 이어서

프로그램의수행행위를모델링하기위하 LSTM언어모델을활용하는방법론을탐

색하면서 오랫동안 프로그램 수행행위 모델링 기법의 약점으로 여겨졌던 mimicry

attack에 대한 방어능력을 향상시킬 것이다. 이에 더해 앞서 제안한 LSTM 언어모

델의 실시간 운용을 위한 새로운 하드웨어 아키텍쳐를 제안할 것이다. 마지막으로

IoT의행위를더올바르게모델링하기위해네트워크와단말의행위를함께고려하

는 모델을 제안할 것이다. 이 논문에서는 앞서 언급한 연구들에 대한 설계 및 구현

상세와함께다양한실험결과들로그효용성을입증할것이다.

주요어:보안,기계학습,이상징후탐지

학번: 2012-20844

114

ACKNOWLEGEMENT

많은분들의도움으로박사논문을완성하고박사학위를취득할수있었기에이

곳에서감사의말씀을전합니다.석박통합과정으로 7년반동안긴시간동안지도해

주신 백윤흥 교수님께 감사드립니다. 중간에 건강 문제로 연구에 집중하지 못했던

시기에도 계속 이끌어주시며 가르쳐주신 올바른 연구법과 연구자로서 가져야 할

태도를 항상 기억하도록 하겠습니다. 공동연구로 또 조언을 구하고 지도를 받았던

윤성로교수님께도감사드립니다.처음기계학습의방법론으로보안을접근하려고

했을때함께진행했던공동연구로부터이후제연구들이만들어진것같습니다.함

께 삶과 연구의 고민을 나누던 연구실 동료들에게도 감사드립니다. 혼자서 연구의

벽에부딪혔으면진작에낙담하고물러섰을것같은데,함께같은어려움을헤쳐나

가는여러분이있었기에저도끝까지물러서지않고도전할수있었던것같습니다.

특히 함께 많은 연구와 업무를 같이 했던 오현영, 안선우 그리고 이영한 연구원에

게는 정말 많은 도움을 받았기에 깊이 감사드립니다. 대학원 과정 동안 곁에서 이

야기를 들어준 친구들에게 감사드립니다. 7년 넘는 시간동안 계속 똑같은 연구실

이야기를 듣느라 지겨웠을텐데도 들어준 덕에 심적으로 많이 안정될 수 있었던 것

같습니다. 마지막으로 가족에게 감사드립니다. 어떤 상황에서도 어떤 선택에도 늘

지지해주신부모님께감사드립니다.언제나끝까지저를믿어주셨기에박사학위에

모든것을던질수있었던것같습니다.또한제가별로대단한사람이아님에도늘

가족의자랑으로생각해주신외할머니와친척분들께감사드립니다.앞으로는그동

안받아온사랑에걸맞는한사람의박사로서살아가도록하겠습니다.

115

	1. Introduction
	2. Preliminaries
	2.1 LSTM network
	2.2 ROC curve

	3. DADE: A fast data anomaly detection engine for kernel integrity monitoring
	3.1 Background
	3.2 Motivation
	3.2.1 Overview of memory introspection system for kernel data anomaly detection
	3.2.2 Object identification & naming

	3.3 The DADE approach
	3.3.1 Backtrace-naming
	3.3.2 Limitations of backtrace-naming

	3.4 Design and implementation
	3.4.1 Security assumptions and threat model
	3.4.2 Overview
	3.4.3 Generating integrity specifications
	3.4.4 Extracting backtrace
	3.4.5 Verifying object integrity
	3.4.6 Deallocations

	3.5 Evaluation
	3.5.1 Performance
	3.5.2 Data anomaly detection

	3.6 Related work
	3.7 Summary

	4. Mimicry resilient program behavior modeling with LSTM based branch models
	4.1 Background
	4.2 Prototype design
	4.2.1 Components of DeePBM
	4.2.2 LSTM branch model

	4.3 Preliminary findings
	4.3.1 Branch sequences and mimicry attacks
	4.3.2 Branch sequence model for anomaly detection

	4.4 Summary

	5. Real-time anomalous branch behavior inference with a GPU-inspired engine for machine learning models
	5.1 Background
	5.2 Related work
	5.3 RTAD architecture
	5.3.1 Input generation module
	5.3.2 ML computing module
	5.3.3 Anomaly detection with RTAD SoC

	5.4 Evaluation
	5.4.1 Synthesis results
	5.4.2 Performance analysis
	5.4.3 Detection speed of ML models

	5.5 Summary

	6. Hawkware: network intrusion detection based on behavior analysis with ANNs on an IoT device
	6.1 Background
	6.2 Related work
	6.3 Hawkware design
	6.3.1 Threat models and assumptions
	6.3.2 Monitor module
	6.3.3 Detector module

	6.4 Evaluation
	6.5 Summary

	7. Conclusion
	Bibliography

<startpage>11
1. Introduction 1
2. Preliminaries 4
 2.1 LSTM network 5
 2.2 ROC curve 6
3. DADE: A fast data anomaly detection engine for kernel integrity monitoring 8
 3.1 Background 8
 3.2 Motivation 12
 3.2.1 Overview of memory introspection system for kernel data anomaly detection 12
 3.2.2 Object identification & naming 14
 3.3 The DADE approach 18
 3.3.1 Backtrace-naming 19
 3.3.2 Limitations of backtrace-naming 21
 3.4 Design and implementation 22
 3.4.1 Security assumptions and threat model 23
 3.4.2 Overview 23
 3.4.3 Generating integrity specifications 24
 3.4.4 Extracting backtrace 25
 3.4.5 Verifying object integrity 28
 3.4.6 Deallocations 28
 3.5 Evaluation 31
 3.5.1 Performance 31
 3.5.2 Data anomaly detection 35
 3.6 Related work 40
 3.7 Summary 42
4. Mimicry resilient program behavior modeling with LSTM based branch models 44
 4.1 Background 44
 4.2 Prototype design 46
 4.2.1 Components of DeePBM 46
 4.2.2 LSTM branch model 49
 4.3 Preliminary findings 50
 4.3.1 Branch sequences and mimicry attacks 50
 4.3.2 Branch sequence model for anomaly detection 53
 4.4 Summary 55
5. Real-time anomalous branch behavior inference with a GPU-inspired engine for machine learning models 56
 5.1 Background 56
 5.2 Related work 60
 5.3 RTAD architecture 62
 5.3.1 Input generation module 63
 5.3.2 ML computing module 64
 5.3.3 Anomaly detection with RTAD SoC 67
 5.4 Evaluation 68
 5.4.1 Synthesis results 69
 5.4.2 Performance analysis 71
 5.4.3 Detection speed of ML models 73
 5.5 Summary 75
6. Hawkware: network intrusion detection based on behavior analysis with ANNs on an IoT device 76
 6.1 Background 76
 6.2 Related work 80
 6.3 Hawkware design 82
 6.3.1 Threat models and assumptions 83
 6.3.2 Monitor module 83
 6.3.3 Detector module 87
 6.4 Evaluation 92
 6.5 Summary 98
7. Conclusion 100
Bibliography 102
</body>

