

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

ıY�¨Y⌅|8

The Design Method and Application of
Convolutional Neural Network

Specialized Hardware Accelerator
Utilizing Sparsity

Ë¸ËT⇣tÙ$∏ÃlX⌧\pt0|\©\⌅©

X‹Ë¥�ç0X$ƒ)ï`✏Q©

2019D 8‘

⌧∏�YP�Y–

ÙË0ıYÄ

@Ÿ�

Abstract

The Design Method and Application of
Convolutional Neural Network

Specialized Hardware Accelerator
Utilizing Sparsity

Dong Young Kim

Department of Computer Science and Engineering

The Graduate School

Seoul National University

Neural networks show ever-widening usage in various applications. Es-

pecially, convolutional neural networks (CNNs) show reliable accuracy

on various vision tasks from image classification to segmentation. Even

though CNNs offer reliable accuracy, they demand deep convolutional

layers which have considerable computations. Such deep layers are un-

suitable for real-time embedded systems for object recognition and de-

tection (e.g., virtual reality and autonomous car), since they require a

large number of computations with restricted hardware resources. Thus,

in order to realize real-time recognition systems on embedded systems,

it is critical to optimize the convolutional layers.

i

Typically, each convolutional layer takes three-dimensional data as

input, and performs convolution requiring a large number of multiplica-

tions and additions (e.g., ⇠ 103), resulting in three-dimensional output

data. Thus, reducing the amount of multiplications and additions is the

key to realize fast convolution as well as real-time recognition systems on

embedded devices. As a solution to high computation overheads of con-

volution, neural network accelerators have been widely studied in recent

years.

Based on the fact that CNNs can be characterized by a significant

amount of zero values in both kernel weights and activations, we propose

Zero-aware Neural Network Accelerator. Unlike previous approaches ex-

ploiting sparsity, we aim at utilizing zero values in both activations and

weights to reduce runtime and energy consumption of convolution. We

also introduce new problem of fine-grained zero-aware parallel hardware

architectures for CNN, which we call zero-induced load imbalance prob-

lem, and present solutions to mitigate this problem. In order to achieve

further energy reduction, we propose several optimization methods for

zero-aware architecture such as memory optimization.

We also take notice that the neural network becomes deeper to handle

more complicated tasks and to achieve higher accuracy. However, since

deeper layers prevent us from implementing real-time embedded appli-

cations, future hardware accelerators for neural networks are desirable to

support both zero-skipping and very low-precision scheme to meet tight

ii

performance requirement while satisfying restricted resource. Applying

both zero-skipping and very low-precision approach to current architec-

tures may incur new problems that prevent us from achieving fully op-

timized hardware accelerators, which however, has not been analyzed

quantitatively.

In this dissertation, we propose a novel Zero-aware Neural Network

Accelerator for CNNs named ZeNA. It aims at exploiting zero values in

both kernel weights and input activations thereby reducing the runtime

and energy consumption of convolution. The proposed architecture can

provide higher performance and lower energy consumption compared

with existing hardware accelerators, which are unaware of zero values

or utilize only one type of zero values. In addition, we propose vari-

ous optimization approaches for zero-aware hardware accelerator such

as solutions to mitigate zero-induced load imbalance problem and mem-

ory energy optimization methods. At the end of the dissertation, we pro-

pose quantitative analysis for zero-aware hardware accelerator including

impact of data compression on ZeNA and comparison between various

ZeNA architectures, which have distinct configurations of bit-width and

and zero data ratio.

Keywords: Neural network, neural network optimization, convolutional

neural network, low-precision, hardware accelerator architecture

Student Number: 2015-31048

iii

Contents

Abstract i

Contents viii

List of Tables ix

List of Figures xv

Chapter 1 Introduction 1

Chapter 2 Background 9

2.1 Neural Network . 9

2.1.1 Neuron . 9

2.1.2 Linear Classifier 10

2.1.3 Back Propagation 11

2.1.4 Basic Neural Network Topology 12

2.2 Convolutional Neural Network 15

2.2.1 Convolutional Neural Network 15

2.2.2 Layers in Convolutional Neural Network 15

v

Chapter 3 Related Work 21

3.1 Sparsity . 23

3.1.1 Deep Compression 23

3.2 Quantization . 25

3.2.1 Logarithmic Quantization 25

3.2.2 XNOR-Net . 26

3.2.3 DoReFaNet . 28

3.3 Hardware Accelerator (Zero-agnostic) 30

3.3.1 DianNao . 30

3.3.2 DaDianNao . 31

3.4 Hardware Accelerator (Zero-activation-aware) 33

3.4.1 Eyeriss . 33

3.4.2 Cnvlutin . 34

3.5 Hardware Accelerator (Zero-weight-aware) 37

3.5.1 Cambricon-X 37

Chapter 4 Zero-aware Neural Network Accelerator (ZeNA)

V1 39

4.1 Idea Overview . 39

4.2 Architecture . 45

4.2.1 Architecture Overview 45

4.2.2 Work Distribution 45

4.2.3 Dataflow and Computation 46

vi

4.2.4 Zero-aware Processing Element Architecture . . 51

4.3 Kernel Allocation . 59

4.3.1 Intra-WG Load Imbalance 59

4.3.2 Kernel Allocation 60

4.4 Evaluation . 64

4.4.1 Evaluation Methodology 64

4.4.2 Performance . 66

4.4.3 Energy . 66

Chapter 5 Zero-aware Neural Network Accelerator (ZeNA)

V2 71

5.1 Idea Overview . 71

5.1.1 Intra-/Inter-WG Load Imbalance 71

5.1.2 Appropriate Memory Architecture for Embedded

Systems . 72

5.1.3 Memory Optimization 74

5.2 Architecture . 75

5.2.1 Architecture Overview 75

5.3 Dynamic WG Allocation 78

5.3.1 Inter-WG Load Imbalance 78

5.3.2 Dynamic WG Allocation 78

5.4 Memory Optimization 80

5.4.1 Clock Gating 80

vii

5.5 Evaluation . 83

5.5.1 Evaluation Methodology 83

5.5.2 Performance . 85

5.5.3 Energy . 87

Chapter 6 Further Analysis 91

6.1 Impact of Data Compression on ZeNA 91

6.1.1 Data Compression Methodology 92

6.1.2 Evaluation and Analysis 93

6.2 Zero-aware Hardware Accelerator with Very Low-precision100

6.2.1 Prototyping . 101

6.2.2 Evaluation and Analysis 109

6.3 Comparison between Fine-grained Zero-aware Hardware

Accelerators . 119

6.3.1 SCNN . 119

6.3.2 Evaluation Analysis 120

Chapter 7 Conculsion 125

Bibliography 128

m8�] 136

viii

List of Tables

Table 1.1 Zero weight and activation ratio of AlexNet [1] . 8

Table 4.1 Architecture configuration of proposed architec-

ture (ZeNA V1 [2]) and baseline (Eyeriss [3]) . . 67

Table 4.2 The number of PEs in a PE group of each layer . 67

Table 5.1 Architecture configuration of proposed architec-

ture (ZeNA V2 [4]) and baseline (Eyeriss [3]) . . 86

Table 5.2 The number of PEs in a PE group of each layer . 86

Table 6.1 Environment setup 103

Table 6.2 Hardware configuration of ZeNA 107

ix

List of Figures

Figure 2.1 A 2-layer neural network including three inputs,

one hidden layer of four neurons, and one output

layer with two neurons. 14

Figure 2.2 A 3-layer neural network including three inputs,

two hidden layers of four neurons, and one out-

put layer with two neurons. 14

Figure 2.3 Convolutional neural network including two con-

volutional layers and a fully-connected layer. . . 19

Figure 2.4 Computation procedure of convolutional layer. . 20

Figure 4.1 Simplified operation diagram of Cnvlutin [5]. . . 43

Figure 4.2 Simplified operation diagram of Cambricon-X [6]. 43

Figure 4.3 Simplified operation diagram of ZeNA V1 [2]. . 44

Figure 4.4 Top-level architecture of the proposed ZeNA V1

where output FM denotes output feature map,

Bitvec denotes non-zero bit-vector, and Conv re-

sult represents convolutional result before ap-

plying nonlinear function. 54

xi

Figure 4.5 Structure of Work Group (WG), sub-WG and

activation/kernel tile. 55

Figure 4.6 Computation procedures of proposed architecture. 56

Figure 4.7 Kernel broadcast procedure. PEs which have the

same index but in the different PE group receive

the same kernel tile via broadcast. 56

Figure 4.8 Activation broadcast procedure where PEs in the

same PE group receives the same activation tile

via broadcast. Since previous activation tile is

stored in the local buffer of PE, ZeNA broad-

casts only the difference to perform convolution

with next activation tile while sliding the window. 57

Figure 4.9 Microarchitecture of zero-aware PE of ZeNA V1

(16-bit fixed-point). 57

Figure 4.10 Microarchitecture of zero-aware PE of ZeNA V1

(5-bit LoqQuant [7]). 58

Figure 4.11 (a) Non-zero weight ratio before kernel alloca-

tion is applied, (b) non-zero weight ratio after

kernel allocation is applied, and (c) non-zero weight

ratio of each kernel tile in sub-WG 0. 63

Figure 4.12 Speedup of proposed architecture (FIXEDPOINT)

in AlexNet and VGG-16. 67

xii

Figure 4.13 Energy consumption of the baseline and the pro-

posed architecture. 70

Figure 4.14 Energy consumption of FIXEDPOINT and LOGQUANT. 70

Figure 5.1 Simplified operation diagram of ZeNA which

suffers from intra-/inter-WG load imbalance. . . 73

Figure 5.2 Top-level architecture of the proposed ZeNA V2

where output FM denotes output feature map,

Bit-vector denotes non-zero bit-vector generated

by Bitvec module, and Conv result represents

convolutional result before applying nonlinear

function. 77

Figure 5.3 Four types of local register access in ZeNA. Each

line denotes local register access where mem-

ory accesses represented by the dotted line are

reduced exploiting benefit of zero-aware archi-

tecture in ZeNA V1. 82

Figure 5.4 Clock gating utilizing non-zero bit-vector as the

enable signal. Three consecutive operations oc-

cur at time t0, t1 and t2. 82

Figure 5.5 Speedup of proposed architecture in AlexNet and

VGG-16. 88

xiii

Figure 5.6 Speedup of multiple ZeNA clusters over the sin-

gle cluster in AlexNet. 88

Figure 5.7 Energy consumption of the ZeNA V2 in AlexNet

and VGG-16. 90

Figure 6.1 Origianl ZeNA architecture which compresses

data transferred between DRAM and on-chip SRAM. 94

Figure 6.2 On-chip SRAM energy optimized ZeNA archi-

tecture which compresses data transfered between

on-chip SRAM and PE array. 94

Figure 6.3 Data which should be accessed after adopting

Compression/decompression module between on-

chip SRAM and PE array together with struc-

ture of each data entry. 97

Figure 6.4 Energy breakdown after applying compression

between on-chip SRAM and PE array. 98

Figure 6.5 Magnified energy breakdown of on-chip SRAM.

Activation, weight and psum denote the source

of on-chip SRAM energy consumption. 99

Figure 6.6 Top-level architecture of ZeNA implemented on

FPGA. 103

Figure 6.7 PCIe and DMA engines for communication be-

tween host and FPGA. 107

xiv

Figure 6.8 FPGA resource usage of PE array in different

bit-widths. FPGA resource usage is divided into

flip-flop (FF), look up table (LUT) and block

SRAM (BRAM). 115

Figure 6.9 Area break down of PE array in different bit-

widths. 115

Figure 6.10 Speedup of 16-bit implementation in AlexNet

with various sparsity where weight sparsity range

is 0.4 to 0.8 and activation sparsity range is 0.1

to 1. 116

Figure 6.11 Speedup of 2-bit implementation in AlexNet with

various sparsity where weight sparsity range is

0.4 to 0.8 and activation sparsity range is 0.1 to 1. 116

Figure 6.12 OPS/area in AlexNet with various bit-width (2-

bit to 8-bit). 117

Figure 6.13 Simplified operation diagram of SCNN [8]. . . . 121

Figure 6.14 Throughput/area comparison between SCNN and

ZeNA. 124

xv

Chapter 1

Introduction

Deep neural networks are ubiquitous in computer vision [1,9–15], natural

language processing [16–19], and speech recognition [20,21]. Especially,

convolutional neural networks (CNNs) show reliable results on real-time

object recognition and detection applications including virtual reality

(VR by Oculus [22]), augmented reality (AR by HoloLens [23]), and au-

tonomous car (self driving technology by Tesla [24]). The superior accu-

racy of CNNs is mainly achieved by deep convolutional layers. However,

as the convolutional layers become deeper to achieve higher accuracy

(e.g., GoogLeNet [10] and ResNet [14]), the portion of convolutions in

total execution time has continuously increased, thereby dominating the

total execution time of a CNN [25]. For this reason, CNN based recogni-

tion systems perform well on large devices (e.g., GPU server) which have

abundant resources but they are unsuitable for mobile devices which are

not. Recently, dedicated hardware accelerator for neural networks has

been widely studied to accelerate [3, 5, 6, 26–29]. Proposed dedicated

hardware accelerators utilize characteristics of neural network such as

1

data flow, sparsity and quantization to efficiently execute neural network.

In a CNN, each convolutional layer takes three-dimensional data as

input (called input activation), performs convolution requiring a large

number of multiplications between kernel weights and input activations,

and applies a non-linear activation function (e.g., rectified linear unit

(ReLU) [1]) to the sum of multiplication results, resulting in three-dimensional

output data (called output feature maps or channels). Typically, produc-

ing one value in the three-dimensional output requires ⇠ 103 multipli-

cations and additions. Thus, reducing the amount of multiplications and

additions is the key to realize fast convolution as well as implementing

CNNs on real-time embedded systems. As a solution to high computa-

tion overheads of multiplication and addition of the convolution, recent

studies mainly utilize sparsity and/or reduced precision approach to re-

duce computation complexity of neural networks, thereby achieving bet-

ter performance and energy efficiency.

Sparsity. Recent studies show that a significant portion of kernel

weights and input activations in a convolutional layer are zero [5,30] and

they can be leveraged to reduce the amount of computation. Table 1.1

shows the ratio of zero weights and activations in a representative CNN,

AlexNet [1] 1. The abundance of zero weights and input activations is due

1We obtained the ratio of zero activations by applying 100 randomly selected images
from ImageNet validation set to the pruned AlexNet.

2

to the following two reasons. First, pruning techniques [30] increase the

portion of zero weights without losing the quality of CNN result. Second,

input activation is usually produced by the ReLU function, which returns

zero for any negative input value [1].

Han et al. [30] report that the majority of kernel weights (by up to

66.5% and 66.8% in AlexNet and VGG-16, respectively) of convolu-

tional layers can be pruned. CNNs can be accelerated by skipping inef-

fectual computations associated with either zero weights or zero activa-

tions. In terms of exploiting zero values, previous approaches are classi-

fied into zero-agnostic ones [26–28] or partially zero-aware ones [3, 5, 6,

29].

Chen et al. [26], Chen et al. [27] and Zidong et al. [28] accelerate

CNNs utilizing regular data access patterns and computation structures

of CNNs. These accelerators focus on accelerating dense models. Thus,

they exploit wide SIMD-like architectures to achieve high parallelism.

However, such a synchronously parallel execution prevents us from uti-

lizing zero data for performance improvement.

Chen et al. [3] propose a CNN accelerator exploiting zero activa-

tions to save power. It applies clock-gating on computation path and local

buffer when zero activation is detected. However, in order to accumulate

partial sums from neighbor processing elements (PEs), they perform con-

volutions in a synchronous manner, and thus, cannot exploit zero values

for performance improvement.

3

Albericio et al. [5] decouple the parallel lanes of DaDianNao [27]

into finer-grain groups to utilize zero activation for skipping computa-

tions. Thus, their accelerator gives runtime reduction proportional to the

amount of zero activations. However, as will be explained in Chapter 4.1,

it cannot exploit abundant zero weights for improving performance due

to the synchronously parallel execution scheme.

Han et. al [29] propose a hardware accelerator for sparse matrix-

vector multiplication (for fully connected layers in a CNN). It skips com-

putation for zero weights thereby improving performance. However, it is

limited only to matrix-vector multiplication (e.g., fully connected layers).

Thus, it cannot be utilized for speeding up convolution.

As described above, previous neural network specialized hardware

accelerators are unable to fully utilize advantages of sparsity. Unlike pre-

vious approaches [3,5,6,26–29] we aim at exploiting zero values in both

kernel weights and input activations in order to reduce the runtime and

energy consumption of convolution.

Reduced precision. By applying reduced precision approach, hard-

ware accelerators can utilize more computation units and buffers within

the same area, thereby achieving higher performance and energy effi-

ciency. Binary [31] and ternary [32] weight quantization approaches are

proposed for medium-sized neural networks. Moreover, Migacz report

that 8-bit quantization is possible without affecting accuracy in deep neu-

4

ral networks [33].

The neural network becomes deeper to handle more complicated tasks

and to achieve higher accuracy. Thus, in order to apply emerging deeper

neural networks on real-time embedded systems executed with limited

hardware resources, future hardware accelerators for neural networks are

desirable to support both zero-skipping and very low-precision scheme.

Applying both zero-skipping and very low-precision approach to current

architectures may incur new problems that prevent us from achieving

fully optimized hardware accelerators. However it has not been analyzed

quantitatively.

In this dissertation, we focus on optimizing dataflow and computa-

tion of convolutions to apply CNNs on high performance and real-time

embedded systems. To achieve this goal, we propose a novel Zero-aware

Neural Network Accelerator named ZeNA. It aims at exploiting zero val-

ues in both kernel weights and input activations in order to reduce the

runtime and energy consumption of convolution. Compared with exist-

ing hardware accelerators, which are unaware of zero values [26–28] or

utilize only one type of zero values (e.g., zero activation [3, 5] or zero

weight [6,29]), the proposed architecture can provide higher performance

and lower energy consumption. Our contributions are as follows:

• The proposed architecture is the first hardware accelerator that

skips ineffectual computation caused by either zero weights or ac-

5

tivations to improve the performance and energy consumption of

convolutional layers of CNNs.

• We identify zero-induced load imbalance, a new problem that pre-

vents us from achieving the full parallelism of convolution in a

zero-aware CNN hardware architecture consisting of parallel pro-

cessing elements. In order to mitigate this problem, we propose

methods called zero-aware kernel allocation and dynamic work

group allocation.

• To maximize opportunity of sparsity, we propose several optimiza-

tion methods for zero-aware architecture including on-the-fly bit-

vector generation and memory optimization.

• We propose quantitative analysis for zero-aware hardware acceler-

ator including impact of data compression and impact of varying

bit-width and zero data ratio on zero-aware hardware architecture.

• We evaluate our proposed architecture with real deep CNNs, AlexNet [1],

VGG-16 [9] based on the synthesized chip layout of the hard-

ware accelerator as well as our in-house cycle-accurate architec-

ture model.

This dissertation is organized as follows. Chapter 2 introduces ba-

sics of the neural network. Chapter 3 reviews related work. Chapter 4

6

explains architecture of ZeNA V1 which applies kernel allocation to mit-

igate load-imbalance problem. Chapter 5 describes architecture of ZeNA

V2 which further reduces memory access energy and improves load-

imbalance problem using dynamic work group allocation. Chapter 6 de-

scribes further analysis for proposed architecture. Chapter 7 concludes

the dissertation.

7

Table 1.1 Zero weight and activation ratio of AlexNet [1]
Layer Zero Weight [%] Zero Activation [%]
conv1 15.7 0
conv2 62.1 50.9
conv3 65.4 76.3
conv4 62.8 61.8
conv5 63.1 59.0

8

Chapter 2

Background

2.1 Neural Network
2.1.1 Neuron

Neural Networks is originally inspired by biological neural systems, neu-

ron and synapse. Neuron and synapse are basic computational units of the

brain. In biological neural systems, each neuron receives input signals

and produces output signals which are transfered to the other neurons.

Similarly, in the artificial neural model, the input signal (e.g., input acti-

vation, x0) is multiplied by synaptic strength (e.g., weight, w0) resulting

in a multiplication result (e.g., x0w0) which are transferred to other neu-

rons. The basic idea of a computational model for neural systems is that

the weights are learnable.

In primitive computational model, a neuron adds up every input sig-

nal via synapses and transfers the result signal to neighboring neurons

if the sum is above a threshold. The number of signals activated from

a neuron within the unit time (i.e., firing rate) is modeled as activation

9

which is determined by the activation function. Conventionally, sigmoid

function was used as the activation function but recently ReLU has been

commonly used for vision tasks.

2.1.2 Linear Classifier

The classifier memorizes training data and classifies test data that will be

given in the future. In order to classify a test data set, the linear classifier

adopts a score function and a loss function. The first step in designing

a linear classifier is to define the score function which maps the input

data to score for each class. Assume that image classification task has a

training dataset, xi 2 RD, and each of them associates with a target label,

yi. If N samples and K distinct classes exist, the score function is denoted

as f : RD ! RK . The linear classifier predicts which sample is contained

in each class.

Commonly, the linear classifier is represented as follows: f (xi,W,b)=

Wxi + b where image xi maps to a single column vector of shape RD⇥1.

The matrix W 2 RK⇥D (called weight) and vector b 2 RK⇥1 (called bias)

are parameters of the function.

The linear classifier is trained to predict ground truth while perform-

ing the training process by minimizing the loss function which represents

the difference between ground truth and prediction result. One of the

widely used loss function is softmax which produces normalized class

probabilities as an output. In softmax function, unnormalized log proba-

10

bilities for each class is represented as follows:

Li =�log(
e fyi

Â j e f j
) (2.1)

where f j is j-th element of the vector of class scores f and i represents

each class.

2.1.3 Back Propagation

Since given training data is fixed, only gradient for the trainable parame-

ters, weight and bias, can be computed by updating them. Assume that a

simple multiplication function of two values, f (x,y) = xy, exists. Partial

derivative for either input is derived as follows:

∂ f
∂x

= y,
∂ f
∂y

= x (2.2)

The derivative on each variable represents sensitivity of the whole ex-

pression on its value.

However, since the loss function of a neural network consists of mul-

tiple composed functions, it is complicated to derive gradient directly.

Exploiting back propagation, the gradient of the complicated function

can be computed. We will describe the basic concept of back propaga-

tion with a simplified example. Assume there is an expression that in-

volves multiple composed functions such as f (x,y,z) = (x+ y)z. It can

be divided into two sub-expressions: q = x+ y and f = qz. Derivative of

each expression is computed as follows: ∂ f
∂q = z, ∂ f

∂ z = q, ∂q
∂x = 1, ∂q

∂y = 1.

11

Specifically, in order to update trainable parameters, gradient of f with

respect to its inputs (e.g., x,y,z) is necessary. Utilizing the chain rule,

gradient of f is derived with derivative of sub expressions as follows:
∂ f
∂x = ∂ f

∂q
∂q
∂x .

Back propagation is a local process to calculate gradient of given

function which updates trainable parameters. In this process, every gate

in a neural network computes both output value and local gradient of its

inputs with respect to its output value. Exploiting the chain rule, the total

gradient is computed from and utilized for parameter update.

2.1.4 Basic Neural Network Topology

Neural networks are modeled as an acyclic graph consisting of collec-

tions of neurons. Typically, neural networks are organized into distinct

layers of neurons without chaotic connections between them. The most

common type of layer in a neural network is a fully-connected layer

where neurons between two adjacent layers are fully connected. Fig-

ure 2.1 and Figure 2.2 illustrate a neural network with stacked fully-

connected layers. More specifically, Figure 2.1 illustrates a 2-layer neu-

ral network including three inputs, one hidden layer of four neurons and

one output layer with two neurons, and Figure 2.2 illustrates a 3-layer

neural network including three inputs, two hidden layers of four neurons

and one output layer with two neurons. Note that the neurons are con-

nected across layers and each layer is connected via an activation func-

12

tion. Since neurons in the output layer denote target result such as class

scores in classification or real-valued number in regression, typically, the

output layer does not include an activation function like most layers in

the neural network.

As the number of layer in a neural network increases, the capacity of

the model rises. Thus, larger neural networks represent more complicated

functions. However, as the size of the model grows, it becomes easier to

overfit the training data. Overfitting occurs in models with high capacity

where the model fits the noise in the training data instead of the original

target. In order to mitigate this problem, various regularization methods

(e.g., L1/L2 regularization, dropout and input augmentation) can be ap-

plied.

13

Input layer Hidden layer 1 Output layer

Figure 2.1 A 2-layer neural network including three inputs, one hidden
layer of four neurons, and one output layer with two neurons.

Input layer Hidden layer 1 Output layerHidden layer 2

Figure 2.2 A 3-layer neural network including three inputs, two hidden
layers of four neurons, and one output layer with two neurons.

14

2.2 Convolutional Neural Network
2.2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) shows unprecedented accuracy

in vision tasks such as imagery and video. Unlike conventional neural

network, input data and neurons of each layer are arranged in three di-

mensions in CNN: width, height and channel. For instance, input size

(i.e., width⇥height⇥channel) of representative open image dataset, Im-

ageNet [1], is 128⇥128⇥3. Figure 2.3 illustrates a simplified topology

of CNN. The building block of CNN is convolutional layer. The con-

volutional layer receives 3D input data (called input feature map) and

generates 3D output data (called output feature map). Instead of con-

necting neurons between layers in fully-connected manner, neurons in a

convolutional layer are connected to a sub-region of the layer ahead.

2.2.2 Layers in Convolutional Neural Network

A CNN includes sequence of several types of layers to generate target

result from input data. A basic CNN is constructed by stacking following

layers: convolutional layer, nonlinear function layer, pooling layer and

fully-connected layer. We will describe the basic operation flow of CNN

using a simple CNN. Note that the following example assumes one of the

general usage of CNN: image classification.

1. Input. Input holds the raw pixel values of input image. The width

15

and height of input data represent spatial dimension of the image,

and the channel represents RGB color of the image.

2. Convolutional layer. Convolutional layer consists of multiple fil-

ters. Each filter is associated with the channel dimension of a out-

put feature map. More precisely, a convolutional layer convolves

each filter across the width and height of the input data (i.e., com-

putes dot products between the filter and input data), thereby gen-

erating a 2D output feature map. This procedure is repeated on

every filter resulting in multiple 2D output feature maps (i.e., 3D

output feature map).

3. Nonlinear function layer. Nonlinear function layer performs acti-

vation function of a neural network. Rectified Linear Unit (ReLU)

which performs f (x) = max(0,x) in an elementwise manner is

widely used in CNN as a nonlinear function.

4. Pooling layer. Pooling layer performs a downsampling operation

along the spatial dimensions.

5. Fully-connected layer. Fully-connected layer computes scores of

each class. Thus, each output neuron of fully-connected layer rep-

resents the score of the target class.

The convolutional layer and the fully-connected layer include learn-

able parameters (e.g., weight and bias) while the nonlinear function and

16

pooling layers do not. We will describe the convolutional layer and the

pooling layer in details.

Convolutional layer. The convolutional layer is a basic building block

of CNN which performs heavy computations, convolution between 3D

input feature map and 4D filters to generate a 3D output feature map.

Figure 2.4 illustrates convolutional layer and its computation procedure.

A convolutional layer typically consists of multiple 3D filters which in-

cludes learnable parameters such as weights and biases. In order to per-

form regular convolution, at first step, the convolutional layer performs

inner product between first block of input feature map (1� in Figure 2.4a)

and filter, thereby generating a pixel of output feature map (2� in Fig-

ure 2.4a). Then, the convolutional layer slides the filter over the width

(or height) of the input volume to produce the next pixel of output fea-

ture map (1� in Figure 2.4b), and this process is repeated until the spatial

dimension of the output feature map is finished. Note that the same pro-

cedure is repeated with the other filters to generate the other 2D output

feature maps (i.e., channel dimension out output feature map, 2� in Fig-

ure 2.4).

Pooling layer. The pooling layer progressively reduces the spatial

size of the feature maps, thereby reducing both computations and param-

eters of CNN. Basically, the pooling layer spatially resizes input feature

17

map using average or max operation. Assuming that the pooling layer

receives input feature map where the size is Wi ⇥Hi ⇥Ci. In this case,

output width Wo, height Ho and channel Co size after pooling layer are as

follows:

• Note that stride is S and pooling size is F .

• Wo = (Wi �F)/S+1

• Ho = (Hi �F)/S+1

• Co =Ci

18

Input Convolutional
layer 1

Convolutional
layer 2

Fully-connected
layer

Width

Height Channel

1

1

Figure 2.3 Convolutional neural network including two convolutional
layers and a fully-connected layer.

19

①

Input feature map Filter Output feature map

* =
②

(a)

Input feature map Filter Output feature map

* =

(b)

①②

②

Figure 2.4 Computation procedure of convolutional layer.

20

Chapter 3

Related Work

Deep neural networks are ubiquitous in various computer tasks due to its

superior accuracy compared to the conventional machine learning tech-

niques. Specifically, convolutional neural networks (CNNs) show an un-

precedented level of accuracy for various vision tasks from image clas-

sification and segmentation to object detection. The exceptional accu-

racy of CNNs is mainly achieved by deep convolutional layers, which,

however, make CNN-based recognition systems require large amounts

of computational and memory resources. For this reason, it is challeng-

ing to implement CNN-based recognition systems on embedded devices

such as cell phones, VR and autonomous car. Two approaches are widely

used to accelerate neural networks: Model optimization and dedicated

hardware accelerator.

Model optimization. In algorithm area, model optimization has been

widely studied in recent years [7, 31, 34, 34]. Those approaches mainly

utilize characteristics of neural network where computations in neural

21

networks are able to be approximated. To optimize a neural network,

Han et al. [30] utilize sparsity where a large number of activations and

weights in neural networks can be zero. In addition, various approaches

utilizing quantization where neural networks can be represented with

lower-precision data without losing quality have been proposed [7, 31,

34].

Dedicated hardware accelerator. In hardware area, designing ded-

icated hardware for neural networks has been widely studied in recent

years [3, 5, 6, 26, 27, 29]. They utilize characteristics of neural network

such as data flow, sparsity and quantization to design hardware accel-

erator. Hardware accelerators for dense neural networks which utilize

regular data access patterns and computation structures of the neural

network have been proposed [26, 27]. Since they focus on accelerat-

ing dense models, they exploit wide SIMD-like architectures to achieve

high parallelism. However, such a synchronously parallel execution pre-

vents us from utilizing zero data for performance improvement (i.e.,

zero-agnostic). Exploit abundant zero values in neural network, some ac-

celerators exploit zero activations to save energy and/or enhance perfor-

mance (i.e., zero-activation-aware) [3, 5], and some others skip memory

accesses and computations associated with zero weights thereby acceler-

ate neural networks (i.e., zero-weight-aware) [6, 29].

22

3.1 Sparsity

3.1.1 Deep Compression

Han et al. [30] propose a three stage pipeline named deep compression

including pruning, quantization and Huffman coding. Deep compression

reduces the storage requirement of neural networks while preserving ac-

curacy. Each pipeline stage consists as follows:

Pruning. In order to achieve pruned network, first, they trained net-

work as usual and pruned the small weights below the threshold and re-

train the network while preserving sparse connections. Pruned network

is stored with compressed sparse row (CSR) or compressed sparse col-

umn (CSC) format. According to their experiments, pruned AlexNet and

VGG-16 reduce the number of parameters by 9x and 13x, respectively.

Quantization. Pruned network is further compressed by network quan-

tization and weight sharing which reduces bit-width of each weight. They

reduce the number of weights by sharing the same weights between mul-

tiple connections. According to their experiments in pruned AlexNet,

they quantize weights to 8-bits (i.e., 256 shared weights) for convolu-

tional layers, and 5-bits (i.e., 32 shared weights) for fully-connected lay-

ers without losing accuracy.

23

Huffman coding. A Huffman code is an optimal prefix code which

uses variable-length codewords to encode source data [35]. In Huffman

code, commonly emerged stymbols are represented with smaller bits to

maximize compression ratio. Applying Huffman code, they reduce extra

20%-30% of network storage.

As a result of deep compression, the majority of kernel weights (by

up to 66.5% and 66.8% in AlexNet and VGG-16, respectively) of convo-

lutional layers can be pruned on the Imagenet dataset, thereby reducing

the size of AlexNet and VGG-16 by 35x and 49x, respectively.

24

3.2 Quantization
3.2.1 Logarithmic Quantization

Miyashita et al. [7] explore the use of communicating activations, storing

weights, and computing the dot-product in the logarithmic domain. Their

approach is based on the following two observations: (1) logarithmic en-

coding allows large dynamic range in fewer bits than fixed-point repre-

sentation [36], and (2) dot-product which is the key operation of CNNs

can be processed with fewer hardware resource after applying logarith-

mic encoding.

Logarithmic quantization in activation. Transforming activation

into log domain replaces multiplication into shift operation as shown in

Equation 3.1 where the weight is w and log-domain activation is exi =

Quantize(log2(xi)). Quantize(·) quantizes · to an integer and Bitshi f t(a,b)

is the function which shifts a value a by an integer b in fixed-point arith-

metic.

wT x '
n

Â
i=1

wi ⇥2exi =
n

Â
i=1

Bitshi f t(wi,exi) (3.1)

By applying logarithmic quantization in activation, memory footprint of

activation decreases and simple shift operation replaces multiplication

which requires expensive digital multipliers.

25

Logarithmic quantization both in activation and weight. The first

method (i.e., logarithmic quantization in activation) can be extended to

compute dot products in the log-domain for both activation and weight.

After applying logarithmic quantization to both activation and weight,

the dot-product is transformed into Equation 3.2 where the log-domain

weight is ewi = Quantize(log2(wi)) and log-domain activation is exi =

Quantize(log2(xi)).

wT x '
n

Â
i=1

2Quantize(log2(wi))+Quantize(log2(xi)) =
n

Â
i=1

Bitshi f t(1, ewi +exi)

(3.2)

On the evaluation with AlexNet and VGG-16, logarithmic quantization

with 5-bits shows 1.7% accuracy drop in AlexNet and 0.5% drop in

VGG-16 which show higher test accuracy compared to linear 5-bit quan-

tization.

3.2.2 XNOR-Net

Rastegari et al. [31] propose Binary weight networks and XNOR net-

works where weight and/or activation of convolutional layers are binary.

They aim at finding the best approximations of the convolutions utiliz-

ing binary operations while preserving compatible accuracy. Their bi-

nary network requires smaller memory and achieves speedup by replac-

ing costly floating point operations into binary operations.

26

Binary weight network. Every weight value in Binary weight net-

work is approximated with binary values. In binary approximation, con-

volution can be approximated by Equation 3.3 where
L

indicates a con-

volution without multiplication, W is full precision weights, B2 {+1,�1}c⇥w⇥h

is binary weights and a is a scaling factor.

I ⇤W ⇡ (I
M

B)a (3.3)

XNOR network. In XNOR-Net, both weight and activation values

are approximated with binary values. Fully binarization for both weights

and activations allows replacing conventional convolution operations into

XNOR and bitcount operations. A convolutional operation can be approx-

imated by Equation 3.4 where K contains the scaling factor for all sub-

tensors in the activation.

I ⇤W ⇡ (sign(I)~ sign(W))�Ka (3.4)

According to their evaluation with various CNNs (e.g., AlexNet, GoogleNet

and etc.), Binary weight network requires ⇠ 32x smaller memory than an

equivalent network with single-precision weights, and it achieves ⇠ 2x

speedup by performing convolution only with addition and subtraction.

XNOR-Net achieves ⇠ 58x speedup by performing convolution with

XNOR and bitcount operations.

27

3.2.3 DoReFaNet

Zhou et al. [34] propose DoReFa-Net, quantization method for train-

ing CNNs which have low-precision weights, activations and gradients.

They generalize the method for neural network quantization, and exploit

the advantage of quantization both in inference and training. Since op-

erations between low-precision values can be implemented on hardware

efficiently, their approach enables to accelerate low-precision neural net-

work inference and training on hardware.

Activation quantization. In order to generate k-bit quantized acti-

vation ao 2 [0,1], they performed linear quantization for input activation

ai 2 [0,1] as shown in Equation 3.5.

ao =
1

2k �1
round((2k �1)ai) (3.5)

Weight quantization. They quantized weights as shown in Equa-

tion 3.6 where quantizek is linear quantization shown in Equation 3.5,

wo is k-bit weights and wi is fullprecision weights. Since both quantized

activations ao and qauntized weights wo are k-bit fixed-point integer, con-

volution between those two values can be efficiently caculated by fixed-

28

point multiplication and add operations.

wo = 2qunatizek(
tanh(ri)

2max(|tanh(wi)|)
+

1
2
)�1 (3.6)

According to their experiments on SVHN and ImageNet datasets,

DoReFa-Net achieves comparable accuracy as fullprecision counterparts.

AlexNet derived from DoReFa-Net which has 1-bit weights, 4-bit acti-

vation, and 32-bit gradient shows 2.9% accuracy drop compared to full-

precision network on ImageNet dataset.

29

3.3 Hardware Accelerator (Zero-agnostic)
3.3.1 DianNao

Chen et al. [26] focus on neural network accelerator as well as its control

which minimize memory transfers. They propose synthesized design for

their accelerator. Their accelerator consists of three main components:

storages including an input and output buffers, a neural functional unit

which performs computation, and the control logic.

Neural Functional Unit (NFU). Computations of each layer in neu-

ral network can be divided into three stages: multiplications between acti-

vations and weights, additions of all multiplications, and nonlinear func-

tion. To utilize this characteristic, Chen et al. designed a 3-stage pipeline

for neural network computation where each pipeline stage is executed

gradually while generating final output.

Storages. In order to reuse input and output data, unlike general-

purpose processor, they adopt scratchpad memory and split them into

three parts: an input buffer (NBin), an output buffer (NBout) and a synapse

buffer (SB). Each of them has DMA to utilize spatial locality thereby

optimizing memory access. All activations and weights are split into

chuncks and stored in NBin and SB, respectively. Utilizing NBin and SB

as circular buffer, split inputs are reused while executing neural network.

30

In addition, a dedicated output buffer (i.e., NBout) stores partial sums

and reuses them for accumulation, thereby eliminating inefficiency.

3.3.2 DaDianNao

In order to overcome limitations of previous neural network specialized

hardware accelerators where only small neural networks can be exe-

cuted [26, 37, 38], Chen et al. [27] propose neural network accelerator

consisting of multiple nodes. Each node consists of computational logic,

distributed memory and router, and different nodes are tightly intercon-

nected by dedicated mesh.

Distributed memory. They exclude main memory but adopt eDRAM

based distributed memory which has sufficient capacity to store weights.

To store whole neural networks, multiple nodes share distributed mem-

ory and attain adequate capacity to store whole neural network. Providing

sufficient eDRAM capacity where combined eDRAM of all nodes holds

whole neural network, their architecture saves off-chip DRAM accesses

which prevents us from implementing fast and energy efficient neural

network accelerator. They store activations close to associated weights

thereby minimizing data movement. In addition, since moving weights

requires relatively smaller off-chip (i.e., across nodes) bandwidth, they

transfer weights rather than activations.

31

Neural Functional Unit (NFU). NFU consists of four blocks and

each block is executed gradually. An adder block contains of 256 paral-

lel adders, a multiplier block consists of 256 parallel multipliers, a max

block can perform 16 parallel max operations in parallel, and a trans-

fer block includes two independent sub-blocks performing 16 piecewise

linear operations. Its pipelines can be reconfigured for each layer and

purpose (e.g., inference or training).

DianNao and DaDianNao [26, 27] focus on accelerating dense mod-

els. They exploit wide SIMD-like NFU which performs multiple multi-

plications, additions and nonlinear operations gradually to generate an

output feature map. However, such a synchronously parallel execution

prevents us from achieving further improvement utilizing zero data (i.e.,

zero-agnostic)

32

3.4 Hardware Accelerator (Zero-activation-
aware)

3.4.1 Eyeriss

Chen et al. [3] propose a neural network accelerator which adopts spa-

tial architecture using an array of 168 processing elements (PEs). Since

memory consumes a large portion of energy while running neural net-

work, they adopt hierarchical memory architecture to maximize low-cost

data movement while reducing high-cost data movement. In order to

maximize advantages from hierarchical memory architecture, they also

adopt a new dataflow for CNN, named row stationary (RS), which recon-

figures the spatial architecture to map the computation of a given layer

efficiently.

Processing Element (PE) and data gating. Each PE consists of

three local buffers and the datapath. Each local buffer stores an input

feature map, weights and partial sums, respectively, and they are used

at the I/O of each PE. Input feature maps, weights, and partial sums are

reused internally thereby reducing high-cost external data movement. In

order to exploit zeros in the input feature map, data gating logic is imple-

mented in the data path. For instance, if a zero input feature map value is

detected, the gating logic disables to read both the input feature map and

the associated weight thereby preventing the datapath from switching. It

33

saves energy while performing computations.

Row Stationary (RS) dataflow. In addition, Chen et al. propose row

stationary data flow to minimize high-cost data access (e.g., DRAM ac-

cess) by maximally reusing data from low-cost data transfer such as data

movement between computation logic and scratch pad memory within

PE, and inter PE communication. In order to take advantage of the re-

usability of neural network computation, the main controller utilizes mul-

ticasts which broadcasts data from high-cost memory to PEs, and point-

to-point data delivery which occurs between multiple PEs:

Multicast

• Rows of weights are reused across PEs horizontally.

• Rows of input feature maps are reused across PEs diagonally.

Point-to-point data delivery

• Rows of partial sums are accumulated cross PEs vertically.

3.4.2 Cnvlutin

Albericio et al. [5] propose hardware accelerator for neural network which

eliminates ineffectual computations associated with zero activations thereby

34

improving both performance and energy consumption. They utilize hier-

archical parallel units where groups of lanes utilize shared activations

and skip ineffectual computations. Unlike DaDianNao [27] which utilize

wide SIMD lanes to take advantage of the regular access pattern of neu-

ral network computation, Albericio et al. [5] decouple these lanes into

finer-grain groups thereby enabling skipping over the zero activations.

Architecture for zero skipping. DaDianNao units [27] consists of

two parts: (1) front-end SIMD lanes including the activation buffer, weight

buffer and multipliers, and (2) back-end adder trees and partial sum buffer.

Albericio et al. [5] divide front-end SIMD lanes into 16 subunits, and

then, they further divide each subunits into 16 datapath which generate

multiplication result for their own output feature map. In other words, a

SIMD lane which includes 16 subunits generates 16 partial sums at once,

and each subunit generates 16 multiplication results for each partial sum

utilizing the same activation but different weights. To accelerate neu-

ral network computation, they skip ineffectual multiplications associated

with zero activations within each subunit.

Eyeriss [3] utilizes zero activations to reduce energy consumption

and Cnvlutin [5] improves both runtime and energy efficiency by ex-

ploiting zero activations. However, they only take advantage of zero ac-

tivations (i.e., zero-activation-aware) and do not exploit abundant zero

35

weights for improving performance due to the synchronously parallel

execution scheme.

36

3.5 Hardware Accelerator (Zero-weight-
aware)

3.5.1 Cambricon-X

Zhang et al. [6] propose a neural network accelerator which can effi-

ciently cope with sparse network named Cambricon-X. It consists of

multiple Processing Elements (PEs) coupled with a Buffer Controller

(BC) which exploits the sparsity of the neural network. More precisely,

Indexing Module (IM) in BC selects only non-zero weights from cen-

tralized weight buffers, and then transfers such weights to PEs. After

receiving only non-zero weights, PEs perform computation with locally

stored compressed activations.

Overall architecture. Cambricon-X is composed of a Control Pro-

cessor (CP), a Buffer Controller (BC), two buffers (NBin and NBout),

a Direct Memory Access module (DMA) and a Computation Unit (CU)

including multiple Processing Elements (PEs). The BC selects necessary

weights (i.e., non-zero weights) for each PE and transfers them to PEs

for skipping computation associated with zero weights. IM in the BC

performs key role in zero-skipping. CU is designed for accelerate vector

multiplication-addition operation utilizing multiple PEs, and PE is fur-

ther divided into multiple multipliers for parallel execution.

37

Buffer Controller (BC) and Indexing Module (IM). The BC in-

cludes IM which is utilized to index non-zero weights. By indexing only

non-zero weights and transferring them to PEs, Cambricon-X skips com-

putation associated with zero weights (i.e., zero-weight-aware). In order

to reduce overhead due to IM, they centralize IM on BC instead of adopt-

ing it on each PE, which, however, prevent us from utilizing zero activa-

tions for further improvement.

38

Chapter 4

Zero-aware Neural Network
Accelerator (ZeNA) V1

4.1 Idea Overview

We explain our basic idea to exploit sparsity by comparing state-of-the-

art hardware accelerators, Cnvlutin [5] and Cambricon-X [6], where each

of them take advantage of utilizing sparsity in activations and weights, re-

spectively. Figure 4.1 and Figure 4.2 illustrate how previous architectures

which are aware of only one type of zero value (e.g., zero activations or

zero weights) compute two convolutions, K0 ⇤A0 and K1 ⇤A0, in parallel,

where K and A denote kernel weights and activations, respectively. As-

sume that each set of kernel weights is associated with an output feature

map. The PE produces the partial sums of output feature maps, P00 and

P10, as the result of convolutions.

Figure 4.1 illustrates Cnvlutin which aims at saving computation in-

volving zero activations. Parallel lanes in the same PE utilize the same

activation data (A0) stored in shared memory to perform two parallel con-

39

volutions with two different sets of kernel weights, K0 and K1. Thus,

computations associated with zero activations can be skipped in those

two convolutions in a synchronous manner. Simplified mechanism for

exploiting zero activations is illustrated in Figure 4.1 where the solid re-

gion in the rectangle of activation A0 represents the amount of non-zero

activations. Cnvlutin skips multiplications and accumulations associated

with zero activations represented by the empty region in the rectangle of

activation. Thus, its execution time is proportional to the amount of non-

zero activations. However, the design of Cnvlutin misses the opportunity

to utilize zero weights for further reduction in runtime and energy con-

sumption. As illustrated in total runtime in Figure 4.1, Cnvlutin cannot

utilize zero weights represented by patterned regions in the rectangle of

kernel weights, K0 and K1, to reduce runtime. This is because different

lanes within the same PE share activations to perform two convolutions,

and thus, computation associated with zero weights can be skipped only

if all the kernel weights are zero during the same cycle. However, ob-

serving all-zero kernel weights in a cycle is rare in a typical Cnvlutin

configuration which runs multiple (e.g., 16 in [5]) convolutions in a syn-

chronous manner to provide enough performance.

Figure 4.2 illustrates Cambricon-X which utilizes zero weights to

save computation. Each PE receives a set of non-zero weights (solid

region in rectangular K0 and K1) together with associated activations,

and then PEs execute two convolutions in parallel. Each PE consists of

40

multiplication-and-adder-tree which computes set of computations syn-

chronously. Figure 4.2 shows how Cambricon-X exploits zero weights to

save runtime. Each PE of Cambricon-X skips computations associated

with zero weights represented by the empty regions in the rectangle of

kernel weights, K0 and K1. Due to synchronous execution of set of PEs

(PE 0 and PE 1 in Figure 4.2), execution time of Cambricon-X is propor-

tional to the amount of non-zero weights of straggler PE (i.e., PE who

finishes its execution late). In addition, since each PE computes multiple

multiplications and additions synchronously to generate an output fea-

ture map (denoted as SIMD-like in Figure 4.2), Cambricon-X is unable

to exploit the opportunity of zero activations represented by the patterned

regions in the rectangle of kernel weights, K0 and K1 for speedup.

Figure 4.3 illustrates our proposed architecture. Instead of synchronously

executing multiple convolutions (or computations) which prevents us

from exploiting both zero weights and activations, each PE of our ar-

chitecture performs a signle computation for a single convolution at each

cycle. Providing independent control to each convolution execution al-

lows each PE to individually skip computations associated with either

zero weights or activations without being limited by synchronization.

Figure 4.3 visualizes the benefit of the proposed approach. As the figure

shows, the execution time of our architecture is proportional to the inter-

section of non-zero kernel weights and activations, and thus our proposed

architecture achieves further runtime reduction compared to accelerators

41

which exploit only one type of zero values. In Chapter 4.2, we will de-

scribe the architecture of our proposed design in detail.

Exploiting zero values to skip computations introduces a new prob-

lem to the hardware design, which we call zero-induced load imbalance.

As shown in Figure 4.3, PE 1 finishes the convolution computation much

earlier than PE 0. However, PE 1 has to wait until PE 0 completes its

execution, thereby degrading the efficiency of the proposed architecture.

This load imbalance occurs because K0 has more non-zeros than K1, and

thus, PE 0 has more computation to perform than PE 1 for a single con-

volution. In Chapter 4.3 we will propose zero-aware kernel allocation as

a solution to mitigate this problem.

42

K: kernel weights
A: input activations

Cnvlutin

Lane 0
𝑲𝟎

𝑲𝟏

Lane 1

𝑨𝟎
*

𝑨𝟎
*

𝑨𝟎 𝑷𝟎𝟎

𝑷𝟏𝟎

𝑻𝒐𝒕𝒂𝒍 𝒕𝒊𝒎𝒆Proportional to
non-zero activations

P: partial sums

Shared

PE 0
SIMD like

Figure 4.1 Simplified operation diagram of Cnvlutin [5].

PE 0

PE 1

Cambricon-X

𝑷𝟎𝟎

𝑷𝟏𝟎

𝑻𝒐𝒕𝒂𝒍 𝒕𝒊𝒎𝒆Proportional to
non-zero weights

𝑲𝟎

𝑲𝟏

SIMD like

𝑨𝟎
*

𝑨𝟎
*

𝑲𝟎

𝑲𝟏

K: kernel weights
A: input activations
P: partial sums

Figure 4.2 Simplified operation diagram of Cambricon-X [6].

43

PE 0

PE 1

Proposed architecture (ZeNA)

𝑷𝟎𝟎

𝑷𝟏𝟎

𝑻𝒐𝒕𝒂𝒍 𝒕𝒊𝒎𝒆Proportional to
intersection of
non-zero inputs

K: kernel weights
A: input activations
P: partial sums

𝑷𝟎𝟎

𝑷𝟏𝟎

𝑻𝒐𝒕𝒂𝒍 𝒕𝒊𝒎𝒆
Cambricon-X

𝑷𝟎𝟎

𝑷𝟏𝟎

𝑻𝒐𝒕𝒂𝒍 𝒕𝒊𝒎𝒆

Cnvlutin

Broadcast

ZeNA

Zero-induced
load imbalance

𝑨𝟎

𝑲𝟎

𝑲𝟏

*

*
𝑨𝟎

𝑨𝟎

Non-zero bit-vectors

Non-zero bit-vectors

Figure 4.3 Simplified operation diagram of ZeNA V1 [2].

44

4.2 Architecture
4.2.1 Architecture Overview

Figure 4.4 illustrates the top-level architecture of ZeNA V1 [2] consist-

ing of on-chip SRAM, PE array and ReLU module. Inter-cluster control

module (not shown in the figure for brevity) orchestrates the data trans-

fer between the SRAM, the PE array and the ReLU module where every

component communicates via global bus. On-chip SRAM is further di-

vided into Act SRAM which stores activations, output partial sums and

output feature maps (i.e., the final result of a convolutional layer), and

Weight SRAM which stores kernel weights. In order to skip computation

associated with either zero weights or activations, we utilize non-zero

bit-vector which stores the information about whether each weight/acti-

vation is zero or not. Act SRAM and Weight SRAM store data together

with non-zero bit-vectors. ReLU module performs the non-convolutional

operations such as nonlinear function, normalization and maximum op-

erations, and generates non-zero bit-vectors of activations.

4.2.2 Work Distribution

Figure 4.5 illustrates how we distribute data to each PE. Work Group

(WG) is a spatial partition of activations (1� in Figure 4.5) which is al-

located to a set of PEs called PE group (e.g., dotted box in Figure 4.4).

Similarly, a WG is further divided into multiple subsets called sub-WG

45

in the vertical (i.e., channel) dimension (2� in Figure 4.5). Each sub-

WG consists of associated subset of activations called activation tiles

and weights called kernel tiles (3� in Figure 4.5).

4.2.3 Dataflow and Computation

ZeNA performs partial convolution between kernel and activation tiles

iteratively to compute output feature maps. ZeNA first computes partial

sums for the current sub-WG by sliding over the tiles (1� in Figure 4.6).

Utilizing the next set of activation tiles, kernel tiles and associated par-

tial sums computed previously, ZeNA generates new partial sums for the

current sub-WG (2� in Figure 4.6). Above procedures are repeated until

a complete output feature map of assigned sub-WG is generated (3� in

Figure 4.6).

Figure 4.7 and Figure 4.8 illustrate how WGs and sub-WGs are mapped

to each PE together with the execution flow of the proposed architecture.

The overall execution flow of the proposed architecture can be summa-

rized as follows:

1. Given a convolutional layer, we first divide the spatial dimension

of activations into WGs, and then, each WG is further divided

into sub-WGs. The WG including several sub-WGs is assigned

to group of PEs named PE group to perform convolution. (e.g.,

PE group 0/1 surrounded by dotted box in Figure 4.7 process WG

0/1).

46

2. Activation and kernel tiles in a sub-WG are broadcast from on-

chip SRAM to PEs. All PEs assigned the same WG receive the

same activation (e.g., every PE in PE group 0 receives the same

activation tile, A0, in Figure 4.8), while PEs in different PE groups

but with the same index receive the same weights (e.g., PE 0 of

PE group 0 and PE group 1 receive the same kernel tile, K0, in

Figure 4.7).

3. Utilizing assigned activation and kernel tiles, each PE calculates

the partial sums of convolution and accumulate them in Act SRAM.

4. After a PE completes the sub-WG whose result is a set of output

feature maps, the convolution result (Conv result in Figure 4.4) is

transferred to the ReLU module. The ReLU module generates out-

put of the convolutional layer (Output feature map in Figure 4.4)

as well as a non-zero bit-vector, and stores them in Act SRAM.

5. Step 2 to 4 are repeated until all activations tiles in a sub-WG are

consumed.

6. Step 2 to 5 are repeated until all sub-WGs in a WG are consumed

to complete a convolutional layer.

7. The output feature maps are used as the input activations for the

next layer in the CNN.

47

The following describes the details of the above steps based on the

example in Figure 4.7 and Figure 4.8.

Kernel broadcast. At the beginning of a sub-WG, each PE fetches

kernel tiles associated with the current sub-WG into the local buffer

(named Weight buffer) of each PE. In order to reduce the bandwidth

requirements of Weight SRAM, ZeNA determines which kernel tile is

stored in the PE based on the PE index (of different PE groups). At the

beginning of Step 2 shown above, ZeNA fetches kernel tiles from Weight

SRAM and broadcasts them to the PEs with the same index. As shown in

Figure 4.7 which shows the example of kernel tile broadcast, PE 0 of PE

group 0 and PE group 1 where each of them is assigned WG 0 and WG

1, respectively, stores the same kernel, K0. Broadcasting kernel tile to all

PE groups, our architecture reduces the memory traffic between Weight

SRAM and PE array. In order to take advantage of skipping computation

associated with zero weights at the PE side, each kernel tile has its own

non-zero bit-vector (i.e., a bit-vector that stores the information about

whether each weight is non-zero or not). Since our proposed architec-

ture aims to accelerate inference, trained model is fixed before execution.

Thus, we pre-compute non-zero bit-vectors for kernel tiles at design time

and store them in Weight SRAM together with the associated kernel tiles.

They are also broadcast to PEs when the kernel tiles are broadcast.

48

Activation broadcast and partial convolution. Activations are broad-

cast after kernel broadcast. Figure 4.8 shows an example of activation

broadcast as well as procedures of executing convolution in proposed ar-

chitecture. Taking advantage of our work distribution model where all the

PEs in the same PE group perform convolution for the same activations,

activation tiles of the current sub-WG are broadcast to PEs in the same

PE group to reduce memory traffic between Act SRAM and PEs. For in-

stance, PEs in PE group 0 receive the same activation A0 in Figure 4.8. In

order to exploit zero values in the activation, each activation tile is also

paired and broadcast with a non-zero bit-vector. Since the output feature

maps of the previous layer are utilized as input feature maps of the next

layer in CNN, we generate activation non-zero bit-vectors for the next

layer while storing output feature maps of the current layer. ReLU mod-

ule generates non-zero bit-vector when activation (i.e., the output feature

map of the previous layer) is generated by it (shown as Bitvec in Fig-

ure 4.4).

After both activation and kernel tiles (as well as non-zero bit-vectors)

are received by the PEs, each PE performs convolution and produces the

partial sum for its associated output feature map as a result. As shown

in Figure 4.8, PE 0 in PE group 0 performs convolution with A0 and

K0, and then, produces partial sum result for its associated output feature

map, Y00. Partial sum result is stored into a local buffer in the PE called

Psum buffer which is initially filled during activation broadcast with the

49

previous partial sums associated with the current activation tile. Psum

buffer is flushed back to Act SRAM during the idle period of the bus to

avoid bus contention between activation broadcast and partial sum flush.

In addition, to optimize partial sum flush, we prioritize PE groups with

the largest difference between the number of broadcast activation tiles

and the number of flushed partial sums.

After finishing the convolution for the current activation tile in the

current sub-WG, the next activation tile is broadcast to the PEs. There is

an overlap between the next and current activation tiles (1� in Figure 4.8)

because convolution operations slides over the activations. ZeNA reuses

the activation by broadcasting only the difference between the current

and the next activation tiles, thereby reducing the data traffic between Act

SRAM and PEs. This is illustrated in Figure 4.8 where only the difference

of the activation tile, patterned region in 1�, is broadcast to the PEs of PE

group 0.

In addition, ZeNA broadcasts activation tiles in the WG in zig-zag

order, thereby increasing overlap between the current and the next acti-

vation tiles. We first move the window horizontally by a stride to the right

or left and process the next activation tile after the current activation tile

is processed. When it reaches the horizontal edge of the input activation,

we move the window down by a stride and again move horizontally in

the opposite direction in a zigzag fashion to choose the next activation

tile (2� in Figure 4.8).

50

After finishing convolution for all activation and kernel tiles in the

current sub-WG, the final convolution result is transferred to the ReLU

module. ReLU module performs non-convolutional operations such as

nonlinear function, normalization and maximum operations whose result

(i.e., a set of output feature maps) is stored into Act SRAM. Note that

non-zero bit-vectors of activations are also generated and stored together

with the result.

Executing next sub-WG. After finishing convolution for the cur-

rent sub-WG, the PEs load data to execute the next sub-WG and per-

form convolution for the next set of output feature maps associated with

the assigned WG. First, the PEs receive new kernel tiles via broadcast

as explained in Kernel broadcast. Then, following the same procedure

explained in Activation broadcast and partial convolution, PEs perform

convolution for the new sub-WG. When all sub-WGs in the current WG

are processed, the PEs start convolution for the next WG. This process

continues until all WGs are processed.

4.2.4 Zero-aware Processing Element Architecture

Figure 4.9 and Figure 4.10 show the microarchitecture of a zero-aware

PE. Each PE consists of a fetch controller, data path, and three local

buffers including Act buffer, Weight buffer and Psum buffer. The fetch

controller is the key to skipping computations associated with zero val-

51

ues. It receives activations and weights as well as associated non-zero bit-

vectors from Act SRAM and Weight SRAM. As illustrated in Figure 4.9,

it performs a logical AND operation of the two non-zero bit-vectors to

generate indices of Act and Weight buffers where both activation and

weight are non-zero. Then, it determines which entries to read from the

Act and Weight buffers at each cycle. This allows us to skip the multi-

plications whose results will be zero due to either zero activation or zero

weight. In Figure 4.9, curridx and nextidx denotes entries to be loaded to

the current and the next cycle, respectively. Note that the ‘1’ in non-zero

bit-vectors represents associated activations or weights that are non-zero.

Implementing two types of zero-aware PEs, we briefly analyzed the

impact of quantization on zero-aware hardware accelerator. Note that

detailed analysis of correlation between zero-aware architecture and re-

duced precision will be described in Chapter 6. In terms of the data path,

we implemented two flavors of a zero-aware hardware accelerator by ap-

plying different low precision methods: 16-bit fixed-point (Figure 4.9)

and 5-bit logarithmic quantization (LogQuant [7]) (Figure 4.10).

In order to meet the clock frequency constraint, the PE based on

16-bit fixed-point implementation consists of 4-stage pipeline including

fetch, computation, and write stages (Figure 4.9). However, PE based on

LogQuant implementation adopts a 3-stage pipeline where data path con-

sists of a shifter and an accumulator. Figure 4.10 illustrates zero-aware

PE where data path aims to compute neural networks applied logarithmic

52

quantization [7]. In order to perform convolution, the PE loads non-zero

activation, a, and weight, w (pointed by curraddr in Figure 4.10). Then,

it shifts activation, a, by the amount of weight, w, to perform multiplica-

tion, since the weight is quantized by a log scale (i.e., a⇥w = a ⌧ w).

53

Weight

Act
SRAM

ReLU
module

Activation

Conv result

Psum

Bitvec

Output FM

Weight
SRAM

PE array

PE group 0
PE 0 PE 1

PE 2 PE 3

PE 0 PE 1

PE 2 PE 3

(WG 0 is assigned)

PE group 1
(WG 1 is assigned)

Figure 4.4 Top-level architecture of the proposed ZeNA V1 where out-
put FM denotes output feature map, Bitvec denotes non-zero bit-vector,
and Conv result represents convolutional result before applying nonlinear
function.

54

Activation Kernel

𝑲𝟎 𝑲𝟏 𝑲𝟐 𝑲𝟑

𝑲𝟒 𝑲𝟓 𝑲𝟔 𝑲𝟕

Activation Kernel

𝑲𝟎 𝑲𝟏 𝑲𝟐 𝑲𝟑

𝑲𝟒 𝑲𝟓 𝑲𝟔 𝑲𝟕

WG 1

Activation Kernel

𝑲𝟎 𝑲𝟏 𝑲𝟐 𝑲𝟑

𝑲𝟒 𝑲𝟓 𝑲𝟔 𝑲𝟕

WG 0

①

𝑲𝟒 𝑲𝟓

𝑲𝟔 𝑲𝟕

Activation Kernel

𝑲𝟎 𝑲𝟏

𝑲𝟐 𝑲𝟑

Sub-WG 0 of WG 0

Activation Kernel

Sub-WG 1 of WG 0

𝑲𝟒 𝑲𝟓

𝑲𝟔 𝑲𝟕

Activation Kernel

𝑲𝟎 𝑲𝟏

𝑲𝟐 𝑲𝟑

Sub-WG 0 of WG 1

Activation Kernel

Sub-WG 1 of WG 1

②

Sub-WG 0 of WG 0

𝑲𝟎 𝑲𝟏

𝑲𝟐 𝑲𝟑

Activation tiles Kernel tiles

Sub-WG 0 of WG 1

𝑲𝟎 𝑲𝟏

𝑲𝟐 𝑲𝟑

Activation tiles Kernel tiles

③

Figure 4.5 Structure of Work Group (WG), sub-WG and activation/kernel
tile.

55

Activation

Kernel

Output feature map

WG 0

WG 1

𝑲𝟎 𝑲𝟏 𝑲𝟐 𝑲𝟑

𝑲𝟒 𝑲𝟓 𝑲𝟔 𝑲𝟕

𝑲𝟎 𝑲𝟏 𝑲𝟐 𝑲𝟑

𝑲𝟒 𝑲𝟓 𝑲𝟔 𝑲𝟕

Sub-WG 0

Sub-WG 1

①

②

③

Figure 4.6 Computation procedures of proposed architecture.

Weight SRAM

Weight

Activation Output feature mapKernel

* =

𝑲𝟎𝑲𝟏𝑲𝟐 𝑲𝟎

Broadcast

𝑲𝟏𝑲𝟐𝑲𝟑𝑲𝟑

WG 1

WG 0
𝑲𝟎 𝑲𝟏 𝑲𝟐 𝑲𝟑

𝑲𝟒 𝑲𝟓 𝑲𝟔 𝑲𝟕

Sub-WG 0

Sub-WG 1

PE array

PE group 0
PE 0 PE 1

PE 2 PE 3

PE 0 PE 1

PE 2 PE 3

(WG 0 is assigned)

PE group 1
(WG 1 is assigned)

𝑲𝟎 𝑲𝟏

𝑲𝟐 𝑲𝟑

𝑲𝟎 𝑲𝟏

𝑲𝟐 𝑲𝟑

Figure 4.7 Kernel broadcast procedure. PEs which have the same index
but in the different PE group receive the same kernel tile via broadcast.

56

Act SRAM

Broadcast only the difference

Previous activation stored in local buffer

Zing-zag scan

Activation Output feature mapKernel

* =

WG1

WG0
𝑲𝟎 𝑲𝟏 𝑲𝟐 𝑲𝟑

𝑲𝟒 𝑲𝟓 𝑲𝟔 𝑲𝟕

Sub-WG 0

Sub-WG 1

Activation

PE array

PE group 0
PE 0 PE 1

PE 2 PE 3

PE 0 PE 1

PE 2 PE 3

(WG 0 is assigned)

PE group 1
(WG 1 is assigned)

①

②

𝑨𝟎

𝑨𝟏

𝒀𝟎𝟎

Figure 4.8 Activation broadcast procedure where PEs in the same PE
group receives the same activation tile via broadcast. Since previous ac-
tivation tile is stored in the local buffer of PE, ZeNA broadcasts only the
difference to perform convolution with next activation tile while sliding
the window.

Non-zero index

Act buffer

1 1 0 0 1

0 1 0 1 1

Fetch controller

Weight buffer

𝒄𝒖𝒓𝒓𝒊𝒅𝒙

Psum buffer+
𝒏𝒆𝒙𝒕𝒊𝒅𝒙

AND

× ×

PE (16-bit fixed-point)

3 0

Act non-zero bit-vector

Weight non-zero bit-vector

Figure 4.9 Microarchitecture of zero-aware PE of ZeNA V1 (16-bit fixed-
point).

57

Non-zero index

Act buffer

1 1 0 0 1

0 1 0 1 1

Fetch controller

Weight buffer

𝒄𝒖𝒓𝒓𝒊𝒅𝒙

Psum buffer+
𝒏𝒆𝒙𝒕𝒊𝒅𝒙

AND

<<

PE (5-bit LogQuant)

3 0

Act non-zero bit-vector

Weight non-zero bit-vector

Figure 4.10 Microarchitecture of zero-aware PE of ZeNA V1 (5-bit Lo-
qQuant [7]).

58

4.3 Kernel Allocation

4.3.1 Intra-WG Load Imbalance

In order to support independent control for PEs while maximizing data

reuse, ZeNA performs convolutions with two levels. First, ZeNA spa-

tially divides input activations into WGs which are further divided into

sub-WGs and assigns them to a set of PEs called PE group. Until fin-

ishing processing a WG, each PE in the PE group computes an output

feature map from its own kernel weights and the activations in the sub-

WG iteratively. However, since each PE in the same PE group is assigned

a distinct set of kernel tiles with varying proportion of zero weights, they

have different amounts of effective computations where both activation

and weights are non-zero. Thus, some PEs can finish computation later

than others in the zero-aware architecture while executing a single sub-

WG, even though all PEs in the PE group perform convolutions with

the same activations. We call this uneven work distribution across PEs,

intra-WG load imbalance.

Figure 4.3 illustrates an example of intra-WG load imbalance where

PE 0 finishes execution much later than PE 1, and thus, other PEs in the

same PE gorup (i.e., PE 1) have to wait until the straggler PE complete

its execution. This load imbalance degrades the efficiency of the zero-

aware architecture. The main reason for intra-WG load imbalance is that

K0 has more non-zeros than K1, and thus, PE 0 has more computation to

59

perform than PE 1 for a single convolution.

4.3.2 Kernel Allocation

As shown in Figure 4.7, typically, kernel weights are allocated to PEs

based on the kernel index (e.g., K0 is allocated to PE 0 in the PE group).

In order to mitigate intra-WG load imbalance problem, we propose zero-

aware kerenl allocation which allocates kernel weights to PEs in a zero-

aware manner. In this method, given a convolutional layer we apply the

following procedures:

1. We first sort all the sets of kernel tiles in the increasing order of the

number of non-zero weights in the sets.

2. Then, we allocate sets of kernel tiles to sub-WG in the sorted order.

Figure 4.11 illustrates the intra-WG load imbalance problem and our

proposed solution with a simplified example of a WG containing 384

kernel tiles (size of 3⇥3⇥14) from the third convolutional layer (conv3)

of the pruned AlexNet. Assuming that 33 PEs are allocated to the WG

(i.e., PE group contains 33 PEs), the WG is divided into 12 (= d384/33e)

sub-WGs. As described in Chapter 4.1, in this case, 33 PEs in the same

PE group perform convolution on a sub-WG consisting of a set of 33

kernel tiles and proceed to the next sub-WG. This process continues until

the convolution of 12rd sub-WG (with 21 kernels tiles) is completed.

60

Figure 4.11a shows the non-zero weight ratio per kernel tiles in each

sub-WG. Each narrow bar corresponds to the non-zero weight ratio of

each kernel tile, which is proportional to the execution time of the asso-

ciated PE. Note that typically a set of kernel tiles is assigned to a sub-WG

based on the kernel index. As shown in the Figure 4.11a, there is a signif-

icant variance in the non-zero weight ratio of kernel tiles in a single sub-

WG. Since a PE group proceeds to the next sub-WG only after all PEs

finish convolution for the current sub-WG, the runtime of each sub-WG

is determined by the straggler PE which finishes computation last (kernel

tile which has the largest number of non-zero weights at each sub-WG

is pointed by arrow in Figure 4.11). Thus, conventional kernel allocation

policy which assigns kernels without considering non-zero weight ratio

suffers from severe load imbalance, thereby degrading performance of

the zero-aware architecture.

Figure 4.11b illustrates the result of proposed zero-aware kernel al-

location. Unlike conventional kernel allocation policy, kernel tiles are

sorted in the ascending order of non-zero weight ratio and allocated to

sub-WGs. Each sub-WG contains more uniformly distributed kernel tiles

where non-zero weight ratio is balanced. As shown in the Figure 4.11c

which shows magnified graph for sub-WG 0, zero-aware kernel alloca-

tion policy distributes non-zero weights more uniformly inside each sub-

WG, thereby acheiving better load balance across PEs in the same sub-

WG. It enables further improvement in both runtime and energy con-

61

sumption.

62

0

10

20

30

40

50

0

10

20

30

40

50

N
on

-z
er

o
ra

tio

(a)

Before kernel allocation is applied

After kernel allocation is applied

sub-WG index
0 2 3 4 5 61 7 8 9 10 11

0

10

20

30

40

50

47 172
99 231
86 372
65 44 55 179
306
312
21 34 59 100
137
163
183
371
37 119
132
161
166
314
330
48 106
139
169
263

0 2 3 4 5 61 7 8 9 10 11

N
on

-z
er

o
ra

tio

(b)
sub-WG index

N
on

-z
er

o
ra

tio

Kernel tile index
(c)

Sub-WG 0

Figure 4.11 (a) Non-zero weight ratio before kernel allocation is applied,
(b) non-zero weight ratio after kernel allocation is applied, and (c) non-
zero weight ratio of each kernel tile in sub-WG 0.

63

4.4 Evaluation

4.4.1 Evaluation Methodology

We developed RTL implementations of the baseline (Eyeriss [3]) and two

flavors of our architecture, including 16-bit fixed-point based (which we

call FIXEDPOINT) and LogQuant [7] based (5-bit activations and 5-bit

weights, which we call LOGQUANT) ones, to measure the area, power,

and critical path delay. For fast performance evaluation, we also imple-

mented an in-house cycle-accurate model of our architecture. We used

Synopsys Design Compiler under the TSMC 65nm library to synthesize

the RTL designs and obtained the chip layout (1.53/1.66/1.63mm2) for

the baseline / FIXEDPOINT / LOGQUANT) using Synopsys Astro. We

used PrimeTime PX for power estimation and CACTI v6.0 [39] for mod-

eling SRAM energy/area. We performed iso-area comparisons (taking

both on-chip SRAM and logic area into account) between the baseline

(Eyeriss) and ZeNA V1. Table 4.1 gives the details of our architectural

configuration. Our architectures adopt 11⇥ 15 and 8⇥ 45 PE arrays for

FIXEDPOINT and LOGQUANT, respectively. The bus width of all de-

signs is fixed to 512 bits. Operating clock frequency is 200MHz. Due to

control logics and registers for supporting zero-aware computation skip-

ping, FIXEDPOINT and LOGQUANT have the area overhead of 8.5% and

6.9%, respectively, compared to the baseline. Comparison between the

baseline and our architecture can be complicated when off-chip memory

64

traffic is involved. Thus, in order to focus on comparing on-chip architec-

tures, we selected the size of on-chip SRAM to be large enough to store

all the input and output data of a convolutional layer (see Table 4.1).

Thus, during the execution of a convolutional layer, there is no access to

the off-chip memory. When smaller on-chip SRAM (of the same size for

both architectures) is used, both architectures will suffer from the same

amount of performance/energy overhead from off-chip memory access.

We used a pruned model of AlexNet in [30] and a pruned version of

VGG-16, which was obtained by thresholding kernel weights to meet the

reported ratio of zero weights in [30]. We obtained the logarithm-based

quantization of activations and weights for LOGQUANT by following the

procedure described in [7]. To run AlexNet and VGG-16 on the pro-

posed architecture, we allocated PEs to WGs as shown in Table 4.2. For

instance, in conv1 in AlexNet, FIXEDPOINT has 5 WGs (=165 PEs / 33

PEs), each of which is allocated 33 PEs. We used Eyeriss as the zero-

agnostic baseline of 16-bit architecture. In order to evaluate the effect of

skipping computation associated with zero values, we ran our accelerator

with four modes:

• Zero-weight-aware mode (WZ).

• Zero-activation-aware mode (AZ). Note that AZ corresponds to

the idea of Cnvlutin [5].

• Zero-weight- and zero-activation-aware mode (WAZ).

65

• WAZ with the zero-aware kernel allocation method (WAZ+KA).

Note that WAZ+KA is proposed in ZeNA V1.

4.4.2 Performance

Figure 4.12 shows the speedup of ZeNA V1 (FIXEDPOINT) over the

baseline (16-bit Eyeriss) for the execution of all convolutional layers in

AlexNet and VGG-16. Our proposed architecture (WAZ+KA) achieves

4x and 5.2x speedup in AlexNet and VGG-16, respectively. The fig-

ure also shows the effect of WZ and AZ separately. In both AlexNet

and VGG-16, the zero-activation-aware method (AZ) shows higher per-

formance improvement over the zero-weight-aware method (WZ) due

to the zero-induced load imbalance problem in WZ. Zero-aware kernel

allocation mitigates such a problem and gives a 19.6% additional gain

(w.r.t. WAZ) in AlexNet (25.8% in VGG-16). Compared with the zero-

activation-aware method (AZ) like Cnvlutin, our architecture (WAZ+KA)

gives 1.8x and 2.1x speedup in AlexNet and VGG-16, respectively.

4.4.3 Energy

Although Eyeriss cannot skip computations associated with zero val-

ues (i.e., no performance improvement), it can save energy by clock-

gating computation units when activation is zero. Compared with Ey-

eriss, ZeNA V1 (WAZ+KA) achieves higher energy reduction since it

exploits both zero weights and zero activations to skip the operation of

66

Table 4.1 Architecture configuration of proposed architecture (ZeNA
V1 [2]) and baseline (Eyeriss [3])

Eyeriss [3] ZeNA V1 (FIXEDPOINT) ZeNA V1 (LOGQUANT [7])
PEs 168 165 (11⇥15) 360 (8⇥45)

Precision 16-bit fixed 16-bit fixed 5-bit LogQuant

Local buffer (per PE)
Act 12⇥16b REG 121⇥16b SRAM 121⇥5b SRAM

Weight 225⇥16 b SRAM 121⇥16b SRAM 121⇥5b SRAM
Partial sum 24⇥16b REG 16⇥16b REG 16⇥11b REG

SRAM (AlexNet) Act 2.03MB 2.06MB 1.22MB
Weight 1.65MB 1.75MB 634KB

SRAM (VGG-16) Act 12.25MB 12.63MB 6.13MB
Weight 28.06MB 29.81MB 8.77MB

Table 4.2 The number of PEs in a PE group of each layer
conv1 conv2 conv3 conv4 conv5

AlexNet FIXEDPOINT 33 33 55 11 11
LOGQUANT 32 32 40 24 24

VGG-16 FIXEDPOINT 33 33 33 77 77
LOGQUANT 48 48 48 88 48

0

2

4

6

Alexnet VGG-16

Sp
ee
du
p

WZ AZ WAZ WAZ+KA

Figure 4.12 Speedup of proposed architecture (FIXEDPOINT) in AlexNet
and VGG-16.

67

the local buffer and logic. Thus, as Figure 4.13 shows, the proposed ar-

chitecture (WAZ+KA) reduces overall energy by 11.3% (in AlexNet)

compared to the baseline. Note that the total energy consumption of

WAZ+KA in the figure includes additional SRAM energy consumption

(4.1% of SRAM energy) due to non-zero bit-vectors. Figure 4.13 shows

that the proposed architecture consumes lower SRAM energy than the

baseline in VGG-16.

There are two reasons. First, our architecture accesses SRAM less

frequently (by 5.8%) than the baseline. This is because the proposed ar-

chitecture allocates more PEs to a WG in VGG-16 (than in AlexNet),

especially, for conv4 and conv5 layers, as shown in Table 4.2. This im-

proves the efficiency of broadcast (i.e., the ratio of data reuses), which is

proportional to the number of PEs in a WG. Second, VGG-16 requires

larger on-chip SRAM than AlexNet (Table 4.1), which makes leakage

power consumption of on-chip SRAM more dominant. Since the leak-

age energy consumption is proportional to the total runtime and the pro-

posed architecture achieves higher speedup in VGG-16 than in AlexNet,

it consumes lower SRAM energy in VGG-16. LOGQUANT (WAZ+KA)

achieves 8.3x / 2.1x speedup in AlexNet (9.8x / 1.9x speedup in VGG-16)

compared to the baseline (Eyeriss) and our FIXEDPOINT (WAZ+KA),

respectively. This is because the 5-bit PEs of LOGQUANT replace multi-

pliers with shifters and have narrower bit width, leading to 53.6% smaller

area than FIXEDPOINT. As a result, LOGQUANT contains 195 more PEs

68

than the 16-bit one, which enables a higher degree of parallel execution

of convolution.

As Figure 4.14 shows, LOGQUANT gives a 2.9x energy reduction

over the 16-bit one. This is because (1) smaller on-chip SRAM is used

to store narrow input/output data (in 5-bits), (2) lower traffic to on-chip

SRAM (in terms of the total amount of accessed bits) due to narrow

data, and (3) lower traffic to on-chip SRAM due to higher efficiency of

broadcast over PEs, i.e., higher data reuse ratio (= # PEs in a WG).

69

0

0.2

0.4

0.6

0.8

1

Alexnet VGG-16

No
rm

al
ize

d
en

er
gy

 /
Im

ag
e

Eyeriss WAZ WAZ+KA

0

0.2

0.4

0.6

0.8

1

Alexnet VGG-16

No
rm

al
ize

d
en

er
gy

 /
Im

ag
e

Eyeriss WAZ WAZ+KA

0

0.2

0.4

0.6

0.8

1

Alexnet VGG-16

No
rm

al
ize

d
en

er
gy

 /
Im

ag
e

Eyeriss WAZ WAZ+KA

0

0.2

0.4

0.6

0.8

1

Alexnet VGG-16

No
rm

al
ize

d
en

er
gy

 /
Im

ag
e

Eyeriss WAZ WAZ+KA

0

0.2

0.4

0.6

0.8

1

Alexnet VGG-16

No
rm

al
ize

d
en

er
gy

 /
Im

ag
e

Eyeriss WAZ WAZ+KA

Eyeriss WAZ+KA Eyeriss WAZ+KA
0

0.2

0.4

0.6

0.8

1

Alexnet VGG-16N
or

m
al

iz
ed

 e
ne

rg
y

/
Im

ag
e

SRAM leakage SRAM dynamic Local buffer Logic Bus

WAZ WAZ

AlexNet VGG-16

Figure 4.13 Energy consumption of the baseline and the proposed archi-
tecture.

0

0.2

0.4

0.6

0.8

1

FixedPoint LogQuant

N
or

m
al

iz
ed

 e
ne

rg
y

/
Im

ag
e

SRAM Local buffer Logic Bus

FIXEDPOINT LOGQUANT

Figure 4.14 Energy consumption of FIXEDPOINT and LOGQUANT.

70

Chapter 5

Zero-aware Neural Network
Accelerator (ZeNA) V2

5.1 Idea Overview
5.1.1 Intra-/Inter-WG Load Imbalance

ZeNA parallelizes convolution operations in two levels to enable inde-

pendent control of each PE while reducing data movement. Input ac-

tivations are devided into WGs and they are assigned to a set of PEs

called a PE group. The WG is further divided into sub-WGs, and each

PE in the PE group generates an output feature map from its own kernel

weights and activations in the sub-WG. Under this parallelization model,

we observe the uneven work distribution which we call intra-WG load

imbalance and propose a solution to mitigate this problem as described

in Chapter 4.3.

However, we observe other types of uneven work distribution which

prevent us from fully utilizing tbe potential of zero-aware hardware ar-

chitecture. Different WGs can exhibit different execution cycles, which

71

we call inter-WG load imbalance. This is because each WG takes a dis-

tinct set of activations as input, and thus, the intersection of non-zero

kernel weights and activations can vary from one WG to another. Such a

difference makes some WGs finish earlier than others.

Figure 5.1 illustrates how ZeNA performs four convolutions, K0 ⇤A0,

K1 ⇤A0, K0 ⇤A1 and K1 ⇤A1 in parallel with two PE groups, where K and

A denotes kernel weights and activations, respectively. Since each PE in

ZeNA is assigned a kernel tile associated with an output feature map,

four PEs in the two PE groups produce partial sums of four output fea-

ture maps, P00, P01, P10 and P11 as the result of convolutions. As shown

in Figure 5.1, PE group 1 finishes earlier than PE group 0. In this case,

PE group 1 has to wait unitl PE group 0 completes its execution, thereby

degrading the efficiency of the proposed architecture. In Chapter 5.3 we

will propose dynamic WG allocation as a solution to mitigate this prob-

lem.

5.1.2 Appropriate Memory Architecture for Em-
bedded Systems

While 40MB of on-chip main memory (i.e., Act SRAM and Weight

SRAM) is feasible in large-scale server architectures, it might not be

favorable for embedded applications. Since our architecture aims to ac-

celerate CNN which is largely used in real-time embedded systems for

vision tasks such as VR, AR and autonomous car, we reduce on-chip

72

PE 0 PE 1

Proposed architecture (ZeNA)

𝑷𝟎𝟎

𝑷𝟏𝟎

𝑻𝒐𝒕𝒂𝒍 𝒕𝒊𝒎𝒆

K: kernel weights
A: input activations
P: partial sums

Broadcast

Intra-WG
load imbalance

𝑨𝟎

𝑲𝟎 𝑲𝟏

**
𝑨𝟎 𝑨𝟎

Zero bit-vectors Zero bit-vectors

PE group 0 (WG 0 is assigned)

PE 0 PE 1

𝑷𝟎𝟏

𝑷𝟏𝟏

𝑻𝒐𝒕𝒂𝒍 𝒕𝒊𝒎𝒆
Broadcast

Intra-WG
load imbalance

𝑨𝟏

𝑲𝟎 𝑲𝟏

**
𝑨𝟏 𝑨𝟏

Zero bit-vectors Zero bit-vectors

PE group 1 (WG 1 is assigned)

Inter-WG
load imbalance

Figure 5.1 Simplified operation diagram of ZeNA which suffers from
intra-/inter-WG load imbalance.

73

SRAM of ZeNA V1 to fit on embedded devices. We revise the mem-

ory configuration in ZeNA V1 so that the on-chip SRAM is sized to be

just enough to store all current/next activations in the current WGs for

double buffering in off-chip memory accesses and the rest of the data is

brought from external DRAM. This results in shrinking on-chip SRAM

size down to 407KB (AlexNet) and 4.82MB (VGG-16) which is feasible

in embedded applications. When external DRAM is taken into account,

ZeNA is expected to achieve even higher energy efficiency compared to

the results. This is because the idle energy consumption of DRAM is pro-

portional to the total runtime and ZeNA shows shorter runtime compared

to the baseline (Eyeriss).

5.1.3 Memory Optimization

According to our experiment result shown in Chapter 4.4, ZeNA shows

4-5x speedup compared to the baseline and reduces energy consumption

in computation logics dramatically. However, since a large portion of en-

ergy is consumed in memory including on-chip SRAM (e.g., Act SRAM

and Weight SRAM) and local buffers (e.g., Act buffer, Weight buffer and

Psum buffer in the PE), ZeNA V1 gives us only 11.3-18% energy re-

duction. In order to reduce energy consumption in on-chip SRAM, we

shrink on-chip memory size and adopt external memory (i.e., DRAM)

as described in Chapter 5.1.2. In addition, we propose clock gating to

reduce energy consumed by local buffers in PE.

74

5.2 Architecture

Recently, due to the increasing use of high resolution images and videos

on embedded systems such as VR, AR and autonomous car, computation

requirement of mobile recognition systems has been increasing. To cope

with such applications which contains a tremendous amount of compu-

tations, we also propose multi-cluster architecture for ZeNA V2 [4].

5.2.1 Architecture Overview

Each ZeNA cluster consists of a PE array, on-chip SRAM for activa-

tions (i.e., Act SRAM) and weights (i.e., Weight SRAM), and ReLU and

Bitvec modules. Figure 5.2 illustrates the architecture of ZeNA V2 con-

sisting of multiple ZeNA clusters and a global memory. Inter-cluster (or

intra-cluster) control modules (not shown for brevity) orchestrate the data

transfer between global (or local) memory and ZeNA clusters (or PEs)

via a global (or intra-cluster) bus. The intra-cluster bus is connected to the

PE rows via row controllers. Each row controller has a small buffer (242-

byte) named Row buffer and receives data and row ID from the intra-

cluster bus. Then, it broadcasts data to PEs in the row after ID matching.

In a ZeNA cluster, Act SRAM stores input activations and output partial

sums/feature maps, whereas Weight SRAM stores kernel weights. ReLU

module performs the ReLU activation function, normalization, and max-

imum operations.

75

In order to skip computation associated with zero weights and activa-

tions, each PE receives a zero bit-vector (i.e., a bit-vector that stores the

information about whether each weight/activation is zero or not). Utilz-

ing non-zero bit-vectors, ZeNA skips ineffectual computation associated

with either zero activations or zero weights. Since neural networks go

deeper to be applied to more complex applications, future hardware ac-

celeratsors for neural networks may require to utilize both sparsity and

very low-precision methods. However, the size of non-zero bit-vector (or

non-zero indices) is determined by the number of input data, not by the

bit-width. Thus, as the bit-width gets reduced, the overhead of control

path tends to remain the same, thereby possibly occupying a significa-

tion portion of the total cost in very low-precision.

In order to reduce on-chip SRAM energy due to non-zero bit-vectors,

Bitvec module of ZeNA V2 reads activations and weights from the on-

chip SRAM and generates non-zero bit-vectors from them unlike ZeNA

V1. On-the-fly non-zero bit-vector generation can save on-chip SRAM

resource otherwise required for non-zero bit-vector storage.

76

Act
SRAM

Weight
SRAM

ReLU
module

PE array

Activation

Weight

Conv result

Output Psum

Output FM

Bitvec
module

Activation

Weight

Bit-vector

ZeNA clusters

Global bus

Global
memory

I/O
controller

PE group 0
(WG 0 is assigned)

PE group 1
(WG 1 is assigned)

Intra-cluster bus

Row buffer

Figure 5.2 Top-level architecture of the proposed ZeNA V2 where output
FM denotes output feature map, Bit-vector denotes non-zero bit-vector
generated by Bitvec module, and Conv result represents convolutional
result before applying nonlinear function.

77

5.3 Dynamic WG Allocation
5.3.1 Inter-WG Load Imbalance

Since each WG performs convolution with its own activation tiles, the

execution time of a WG can vary across different WGs, which we call

inter-WG load imbalance. It occurs due to the following two reasons:

1. Different WGs have different amounts of zero activations.

2. ZeNA divides the spatial dimension of activations into WGs, and

thus, the number of activation tiles in each WG can be different

depending on the configuration of the convolutional layer and that

of the PE array.

For instance, if 14 activation tiles are grouped into four WGs, the first

two WGs have four activation tiles, while the last two have only three

tiles (i.e., 4+4+3+3=14). Mitigating inter-WG load imbalance enhances

performance gain from zero-aware architecture.

5.3.2 Dynamic WG Allocation

In order to address the inter-WG load imbalance, we propose dynamic

WG allocation, which is conceptually similar to work-stealing queues [40].

Intra-cluster control module of ZeNA V2 adopts down counters, each of

which is associated with a WG, and stores the number of remaining ac-

tivation tiles to execute. When a WG completes its computation for the

current sub-WG and there are other running WGs, a leader WG whose

78

counter value is zero steals an activation tile that was originally assigned

to a straggler WG (i.e., WG with the biggest counter value) and produces

an output activation for it. This can be efficiently implemented because

all WGs share the same kernel tiles, and thus, the leader WG can pro-

cess the newly assigned activations with its current kernel tiles without

fetching any additional kernel tiles. In dynamic WG allocation, mem-

ory port contention may occur if multiple leader WGs try to fetch the

same input activations from memory at the same time. To address this

problem, we adopt a strategy that re-assigns only one activation tile at

a time and restricts activation tile reassignment to happen only during

bus idle time. Through this, our architecture can avoid memory port con-

tention between leader WGs as well as bus contention between normal

activation tile transfer and irregular transfer triggered by dynamic WG

allocation.

79

5.4 Memory Optimization
5.4.1 Clock Gating

ZeNA adopts three-level hierarchical memory architecture as follows: (1)

On-chip main memory named on-chip SRAM including Act SRAM and

Weight SRAM, (2) Local register of PE row named Row buffer, and (3)

Local registers of each PE including Act buffer, Weight buffer and Psum

buffer. In order to reduce runtime and energy consumption utilizing zero

activations and weights, each PE stores data into their local registers (i.e.,

Act buffer and Weight buffer). Adopting local registers in each PE, ZeNA

maximizes data reuse and replaces high cost on-chip SRAM and DRAM

accesses into local register accesses. As a result, ZeNA consumes a large

portion of energy in local registers among total energy consumption as

described in Chapter 4.4.3. Thus, optimizing local registers of the PE is

the key to implementing efficient memory architecture for ZeNA. Fig-

ure 5.3 illustrates the type of on-chip memory accesses that occurs in

ZeNA. Local registers of ZeNA has following four types of accesses:

• Act/Weight buffer to Computation unit access.

• Row buffer to Act/Weight buffer access.

• Computation unit to Psum buffer access.

• Psum buffer to Row buffer access.

80

Since ZeNA only loads non-zero inputs to perform computations,

memory accesses from Act/Weight buffer to Computation unit (dotted ar-

row in Figure 5.3) can be reduced, thereby reducing energy consumption.

However, the other types of memory access have not been utilized to op-

timize energy consumption in ZeNA V1. Utilizing clock gating shceme

in local registers, ZeNA V2 aims to further reduce energy consumption

in local registers.

Taking advatage of the fact that input data (e.g., activation and weight)

is coupled with non-zero bit-vector in ZeNA, we utilize non-zero bit-

vector as the enable signal of clock gating, thereby avoiding ineffectual

local register accesses. Figure 5.4 illustrates exmaple of clock gating uti-

lizing non-zero bit-vector as the enable signal where three consecutive

operations occur at time t0, t1 and t2. Input data a is fed to local register

at t0, and after, input data b comes in at t1. In this case, non-zero bit-

vector is ‘1’, and thus, local register is enabled. However, when the input

data is zero at next time step, t2, the local register is disabled to prevent

unnecessary data toggling, thereby reducing energy consumption.

81

Act buffer

Weight buffer

Psum buffer

Computation
unit

Ro
w

bu
ff

er

PE

SR
AM

Figure 5.3 Four types of local register access in ZeNA. Each line denotes
local register access where memory accesses represented by the dotted
line are reduced exploiting benefit of zero-aware architecture in ZeNA
V1.

Input data

Bit-vector

d q

en

local register

a a

1

𝒕𝟎

Input data

Bit-vector

d q

en

local register

b b

1

𝒕𝟏
Consuming energy

Input data

Bit-vector

d q

en

local register

0 b

0

𝒕𝟐
Saving energy

Figure 5.4 Clock gating utilizing non-zero bit-vector as the enable signal.
Three consecutive operations occur at time t0, t1 and t2.

82

5.5 Evaluation

5.5.1 Evaluation Methodology

We implemented RTL designs of the baseline (Eyeriss [3]) and two types

of our accelerator, including 16-bit fixed-point based (called FIXEDPOINT)

and LogQuant [7]based (5-bit activations and 5-bit weights, which we

call LOGQUANT) ones, to measure the area, energy consumption, and

speed. We also implemented an in-house cycle-accurate model of our

accelerators for fast performance evaluation. We used Synopsys Design

Compiler under the TSMC 65nm library to synthesize the RTL designs

and obtained the chip layout (1.53/1.69/1.65mm2 for the logic circuit of

the baseline/FIXEDPOINT/LOGQUANT) using Synopsys Astro. We used

PrimeTime PX for power estima-tion and CACTI v6.0 [11] for SRAM

energy and area. We used 8Gb dual-channel mobile LPDDR3 as off-

chip DRAM and modeled its access energy with Micron’s DRAM Power

Calculator [41]. In our experiment, peak off-chip bandwidth of FIXED-

POINT and LOGQUANT is 1.98GB/s and 0.8GB/s in AlexNet (1.5GB/s

and 1.64GB/s in VGG-16), respectively, which are well below the max-

imum bandwidth of off-chip DRAM (i.e., 12GB/s). Therefore, off-chip

memory bandwidth is not a performance bottleneck in our configuration.

Table 5.1 shows the details of architectural configuration for a single

ZeNA cluster equipped with 11⇥ 15 and 8⇥ 45 PE arrays for FIXED-

POINT and LOGQUANT, respectively. On-chip SRAM is sized to be just

83

enough to store all current/next activations in the current WGs for dou-

ble buffering in off-chip memory accesses. By applying on-the-fly non-

zero bit-vector generation, ZeNA V2 uses 3.6%/5.0% (FIXEDPOINT)

and 7.5%/12.8% (LOGQUANT) smaller SRAM in AlexNet/VGG-16. We

set the operating frequency to 200MHz to meet the timing constraint.

The bus width of all designs is fixed to 512 bits. Compared to the base-

line, FIXEDPOINT and LOGQUANT have additional logic and buffers

for zero-aware computation skipping (10.5% and 8.3% area overhead

in FIXEDPOINT/ LOGQUANT). We used pruned AlexNet in [30] and

pruned VGG-16, which was obtained by thresholding kernel weights

to meet the reported ratio of zero weights in [30]. In order to obtain

logarithm-based quantization of activations and weights for LOGQUANT,

we followed the procedure described in [7]. We used Eyeriss as the zero-

agnostic baseline for fixed-point architectures. In order to evaluate the

advantages of zero-skipping computation, we ran our accelerator with

five modes:

• Zero-weight-aware mode (WZ)

• Zero-activation-aware mode (AZ, corresponding to Cnvlutin [5]).

• Zero-weight- and zero-activation-aware mode (WAZ).

• WAZ with the zero-aware kernel allocation (KA, corresponding to

ZeNA V1)

84

• KA with dynamic WG allocation and Bitvec module (ZeNA, cor-

responding to ZeNA V2).

For each convolutional layer, we found the number of WGs (each

having the same number of rows in the PE arrray) giving the largest

speedup through exhaustive search at design time. We allocated PEs to

WGs at the granularity of a row of the PE array. Thus, the number of pos-

sible PE allocations is small, i.e., the number of rows. Table 5.2 shows PE

allocation to run AlexNet and VGG-16 (with batch size of 1) on ZeNA.

5.5.2 Performance

Figure 5.5 shows the speedup of ZeNA over the baseline (fixed-point Ey-

eriss) for the execution of all convolutional layers in AlexNet and VGG-

16. FIXEDPOINT (ZeNA) shows 4.4x/5.6x speedup in AlexNet/VGG-16

over the baseline. Compared to the zero-activation-aware method (AZ,

corresponding to Cnvlutin), ZeNA achieves 2x/2.4x speedup in AlexNet/

VGG-16. Reducing inter-WG load imbalance, ZeNA V2 (ZeNA) achieves

10.1%/9.2% additional improvement in AlexNet/VGG-16, compared to

ZeNA V1 (KA). LOGQUANT (ZeNA) achieves 9x/2x speedup in AlexNet

(10.5x/1.9x speedup in VGG-16) compared to the baseline (Eyeriss) and

FIXEDPOINT (ZeNA), respectively, since LOGQUANT contains 195 more

PEs than FIXEDPOINT due to its lower cost from narrow bit width and

use of shifters instead of multipliers.

Zig-zag scan reduces up to 14% (FIXEDPOINT) and 11.9% (LOGQUANT)

85

Table 5.1 Architecture configuration of proposed architecture (ZeNA
V2 [4]) and baseline (Eyeriss [3])

Eyeriss [3] ZeNA V2 (FIXEDPOINT) ZeNA V2 (LOGQUANT [7])
PEs 168 165 (11⇥15) 360 (8⇥45)

Precision 16-bit fixed 16-bit fixed 5-bit LogQuant

Local buffer (per PE)
Act 12⇥16b REG 121⇥16b SRAM 121⇥5b SRAM

Weight 225⇥16 b SRAM 121⇥16b SRAM 121⇥5b SRAM
Partial sum 24⇥16b REG 16⇥16b REG 16⇥11b REG

SRAM (AlexNet) Act 391KB 391KB 180KB
Weight 16KB 16KB 5KB

SRAM (VGG-16) Act 4.8MB 4.8MB 2.51MB
Weight 22KB 22KB 7KB

Table 5.2 The number of PEs in a PE group of each layer
conv1 conv2 conv3 conv4 conv5

AlexNet FIXEDPOINT 33 33 55 11 11
LOGQUANT 32 32 40 24 24

VGG-16 FIXEDPOINT 33 33 33 77 77
LOGQUANT 48 48 48 88 48

86

of input activation reads from on-chip SRAM in AlexNet (5.5% and 6.2%

in VGG-16), respectively. Zig-zag scan gives a higher reduction in on-

chip SRAM traffic for smaller spatial dimension of an input feature map.

Figure 5.6 shows the scalability of FIXEDPOINT (ZeNA) in AlexNet.

Batch size represents the number of input images. For each convolutional

layer, all ZeNA clusters repeatedly process convolution for the layer in-

put of one image at a time until all images in the batch are processed

for the layer. In large batch sizes (e.g., 16), ZeNA shows good scalabil-

ity with speedup proportional to the number of ZeNA clusters. On the

other hand, smaller batches degrade the scalability because the maxi-

mum degree of parallelism in each layer is proportional to the batch size,

i.e., smaller batches can keep fewer PEs busy in parallel. The batch size

of modern CNN workloads is quite large (e.g., 512), in which case the

large-scale configuration of ZeNA clusters is promising.

5.5.3 Energy

Figure 5.7 compares the energy consumption of various architectures.

Eyeriss cannot improve performance by skipping zero values in convo-

lution but saves energy by applying clock-gating to computation units

when activations are zero. ZeNA V2 (ZeNA) achieves higher energy re-

duction compared to Eyeriss (FIXEDPOINT: 25.4%/25.2% reduction in

AlexNet/VGG-16, LOGQUANT: 77.4%/84.5% reduction in AlexNet/VGG-

16) because of the following two reasons. First, ZeNA skips the opera-

87

0

3

6

9

12

FIXEDPOINT LOGQUANT FIXEDPOINT LOGQUANT

ALEXNET VGG

Sp
ee
du
p

WZ AZ WAZ KA ZeNA

VGG-16AlexNet

Figure 5.5 Speedup of proposed architecture in AlexNet and VGG-16.

0

4

8

12

16

2 4 8 16

N
or

m
al

iz
e

sp
ee

du
p

The number of ZeNA clusters

batch 1 batch 2 batch 4 batch 8 batch 16

Figure 5.6 Speedup of multiple ZeNA clusters over the single cluster in
AlexNet.

88

tion of the local buffer and logic associated with zero weights and/or

zero activations. Second, shorter execution time of ZeNA compared to

the baseline contributes to reducing the static energy consumption, par-

ticularly, the idle energy consumption of DRAM. Figure 5.7 shows that

FIXEDPOINT (ZeNA) and LOGQUANT (ZeNA) give 1.4% and 2% addi-

tional energy reduction (w.r.t. KA) in AlexNet (2.2% and 7.5% in VGG-

16), respectively. This further energy reduction is mainly achieved by

bit-vector generation mechanisms. In order to skip ineffectual operations

associated with zero values, both KA and ZeNA require zero bit-vectors.

Unlike on-the-fly bit-vector generation of ZeNA V2 (ZeNA), ZeNA V1

(KA) stores pre-computed zero bit-vectors in on-chip SRAM, thereby

consuming additional resource and energy. LOGQUANT achieves larger

gain than FIXEDPOINT from this because zero bit-vectors occupy a rel-

atively larger portion of on-chip SRAM under narrower bit width. Thus,

we expect that on-the-fly zero bit-vector generation will become more

useful in future designs with more aggressive reduced precision, e.g.,

1–4 bits.

89

0

0.2

0.4

0.6

0.8

1

Alexnet VGG

Alexnet VGG

계열1 계열2 계열3 계열4 계열5
계열6 계열7 계열8 계열9

0

0.2

0.4

0.6

0.8

1

Alexnet VGG

Alexnet VGG

계열1 계열2 계열3 계열4 계열5
계열6 계열7 계열8 계열9

0

0.2

0.4

0.6

0.8

1

Alexnet VGG

Alexnet VGG

계열1 계열2 계열3 계열4 계열5
계열6 계열7 계열8 계열9

0

0.2

0.4

0.6

0.8

1

Alexnet VGG

Alexnet VGG

계열1 계열2 계열3 계열4 계열5
계열6 계열7 계열8 계열9

0

0.2

0.4

0.6

0.8

1

Alexnet VGG

Alexnet VGG

계열1 계열2 계열3 계열4 계열5
계열6 계열7 계열8 계열9

0

0.2

0.4

0.6

0.8

1

Alexnet VGG

Alexnet VGG

계열1 계열2 계열3 계열4 계열5
계열6 계열7 계열8 계열9

0

0.2

0.4

0.6

0.8

1

Alexnet VGG

Alexnet VGG

계열1 계열2 계열3 계열4 계열5
계열6 계열7 계열8 계열9

0

0.2

0.4

0.6

0.8

1

- -

AlexNet VGG-16

DRAM static DRAM dynamic SRAM static SRAM dynamic Local buffer Logic Bus

Eyeriss WAZ KA Eyeriss
FIXEDPOINT LOGQUANT FIXEDPOINT LOGQUANT

AlexNet VGG-16

ZeNA WAZ KA ZeNA WAZ KA ZeNA WAZ KA ZeNA

N
or

m
al

iz
ed

 e
ne

rg
y

/
Im

ag
e

Figure 5.7 Energy consumption of the ZeNA V2 in AlexNet and VGG-
16.

90

Chapter 6

Further Analysis

6.1 Impact of Data Compression on ZeNA

In order to reduce external memory access energy, exploiting abundant

zero values in both activation and weights, ZeNA V1 and ZeNA V2

architecture trasfer data between on-chip SRAM and external memory

in compressed format. ZeNA stores data on on-chip SRAM in decom-

pressed format for simplicity. However, storing data on on-chip SRAM

in decompressed format may prohibit further energy reduction utilizing

data compression. To analyze the impact of compression on fine-grained

zero-aware architecture such as ZeNA, we implemented two types of de-

signs: (1) Applying compression/decompression between external DRAM

and on-chip SRAM, which is the original ZeNA design, and (2) apply-

ing compression/decompression occurs between on-chip SRAM and PE

array.

91

6.1.1 Data Compression Methodology

We utilize non-zero bit-vector which coupled with associated data (e.g.,

activation and weight) as metadata for compression and decompression.

Since compression on ZeNA aims to compress abundant duplicated zero

values, we only apply compression on activation and weight excluding

partial sums due to lack of zero values. Figure 6.1 shows original ZeNA

V2 architecture which adopts the Compression/decompression module

between external memory (e.g., DRAM) and on-chip SRAM. Note that

ZeNA V1 contains the compression/decompression module at the same

position. Figure 6.2 illustrates modified ZeNA architecture which adopts

the compression/decompression module between on-chip SRAM and PE

array. Since we utilize non-zero bit-vector as metadata for compression

and decompression, on-the-fly bit-vector generation is excluded in archi-

tecture which adopts the compression/decompression module between

on-chip SRAM and PE array.

Figure 6.3 illustrates how data is stored in on-chip SRAM after ap-

plying compression. Input activations and weight (as well as non-zero

bit-vector coupled with associated input) are stored as a 1⇥1⇥n tensor

where n denotes channel dimension. Each SRAM entry includes multi-

ple tensors in compressed format after applying the compression/decom-

pression module between on-chip SRAM and PE array (on-chip SRAM in

Figure 6.3). Each entry includes metadata, non-zero bit-vector and data

92

(SRAM entry in Figure 6.3). Details are described as follows:

• Metadata stores the number of tensors and non-zero data, and it is

utilized while performing compression and decompression.

• Non-zero bit-vector is utilized to decompress data as well as to

skip computations associated with zero values in ZeNA architec-

ture.

• Data represents packed input activations or weights.

6.1.2 Evaluation and Analysis

To evaluate the impact of storing data on on-chip SRAM in compressed

format, we compare the following four designs:

• Eyeriss. Baseline design which only exploits zero activations for

saving energy consumption.

• ZeNA V1. Proposed zero-aware hardware accelerator described in

Chapter 4 where extra optimization methods are not applied.

• ZeNA V2. Proposed zero-aware hardware accelerator described in

Chapter 5 where clock gating is applied on local buffers including

Row buffer, Act buffer, Weight buffer and Psum buffer.

• ZeNA + Comp. ZeNA adopting the compression/decompression

module between on-chip SRAM and PE array described in Chap-

ter 6.1.1.

93

PE array

ZeNA clusters

Global bus

Global
memory

I/O
controller

Compression/
decompression

module

Compressed

Act
SRAM

Weight
SRAM

ReLU
module

Activation

Weight

Conv result

Output Psum

Output FM

Bitvec
module

Activation

Weight

Bit-vector

Figure 6.1 Origianl ZeNA architecture which compresses data trans-
ferred between DRAM and on-chip SRAM.

Act
SRAM

Weight
SRAM

ReLU
module

PE array

Activation

Weight

Conv result

Output Psum

Output FM

ZeNA clusters

Global bus

Global
memory

I/O
controller

Compression/
decompression

module

Compressed

Figure 6.2 On-chip SRAM energy optimized ZeNA architecture which
compresses data transfered between on-chip SRAM and PE array.

94

Figure 6.4 shows energy consumption comparison between Eyeriss,

ZeNA V1, ZeNA V2 and ZeNA + Comp. ZeNA + Comp gives 12.8% and

4.5% energy reduction in on-chip SRAM (3.4% and 2.5% in total energy

consumption) while executing AlexNet and VGG-16, respectively, com-

pared to ZeNA V2. The energy reduction of data compression is below

our expectation due to the following two reasons:

• Performing compression and decompression in the middle of exe-

cution consumes extra energy. It incurs 2.1% and 1.5% additional

energy consumption in AlexNet and VGG-16, respectively.

• Compression is applied on activations and weights except partial

sums.

We take advantage of ZeNA architecture where data is always coupled

with associated non-zero bit-vector. Proposed compression method gen-

erates compressed data by packing only non-zero data and decompresses

it using non-zero bit-vector. Thus, we only applied compression on acti-

vations and weights where zero data is abundant.

Figure 6.5 shows magnified energy breakdown of on-chip SRAM

shown in Figure 6.4. Due to the lack of duplicated data (e.g., zero data),

partial sum is difficult to take advantage of compression, and thus, we

exclude partial sum compression. However, partial sum movement dom-

inates energy consumed on on-chip SRAM in ZeNA architecture. As

95

shown in Figure 6.5, energy consumed by activation movement is re-

duced 45.8% and 39.8% in AlexNet and VGG-16, respectively. In addi-

tion, energy consumed by weight movement also is reduced 55.1% and

40% in AlexNet and VGG-16, respectively. However, at the same time,

that of partial sum remains, and thus, total on-chip SRAM energy is re-

duced only 12.8% and 4.5% in AlexNet and VGG-16, respectively.

96

Non-zero value Zero value

On-chip SRAM
of original ZeNA

On-chip SRAM
after modification

Metadata and non-zero bit vector

Accessed

Accessed

Metadata Non-zero
bit vector Data

Each SRAM entry

Figure 6.3 Data which should be accessed after adopting Compres-
sion/decompression module between on-chip SRAM and PE array to-
gether with structure of each data entry.

97

0

0.2

0.4

0.6

0.8

1

Eyeriss ZeNA V1 ZeNA V2 ZeNA + Comp

N
or

m
al

iz
ed

 e
ne

rg
y

AlexNet

DRAM On-chip SRAM Local buffer Logic

0

0.2

0.4

0.6

0.8

1

Eyeriss ZeNA V1 ZeNA V2 ZeNA + Comp

N
or

m
al

iz
ed

 e
ne

rg
y

VGG-16

DRAM On-chip SRAM Local buffer Logic

Figure 6.4 Energy breakdown after applying compression between on-
chip SRAM and PE array.

98

0

0.2

0.4

0.6

0.8

1

ZeNA V2 ZeNA + Comp

N
or

m
al

iz
ed

 e
ne

rg
y

AlexNet

activation weight psum

0

0.2

0.4

0.6

0.8

1

ZeNA V2 ZeNA + Comp

N
or

m
al

iz
ed

 e
ne

rg
y

VGG-16

activation weight psum

Figure 6.5 Magnified energy breakdown of on-chip SRAM. Activation,
weight and psum denote the source of on-chip SRAM energy consump-
tion.

99

6.2 Zero-aware Hardware Accelerator
with Very Low-precision

The neural network becomes deeper to handle more complicated tasks

and to achieve higher accuracy. Thus, in order to apply emerging deeper

neural networks to real-time mobile and/or data center applications, fu-

ture hardware accelerators for neural networks are desirable to support

both zero-skipping and very low-precision scheme. Applying both zero-

skipping and very low-precision approach to current architectures may

incur new problems that prevent us from achieving fully optimized hard-

ware accelerators, which however, have not been analyzed quantitatively.

We propose quantitative analysis for neural network accelerators which

support both fine-grained zero-skipping (e.g., ZeNA) and very low-precision.

Low-precision can offer better area/energy efficiency by allowing us

to perform more computations (with more compute units) with smaller

energy consumption (with smaller compute and memory units) on the

same silicon area. However, such benefits are limited only to the data

path. The control path does not scale with the bit-width of the data path.

For instance, the size of zero bit-vector (or zero indices) is determined

by the number of input data, not by the bit-width. Thus, as the bit-width

gets reduced, the overhead of control path tends to remain the same,

thereby possibly occupying a signification portion of total cost in very

low-precision. In order to analyze the impact of low-precision approach

100

in ZeNA, we both implement FPGA and ASIC based design and propose

analysis result.

6.2.1 Prototyping

Architecture Overview

Figure 6.6 shows an overall flow of FPGA prototpying from high-

level description to FPGA implementation. The neural network is de-

signed in a neural network framework like Caffe [42] where data is pro-

cessed in the form of solver, net and layer. Each of them performs the

following functions:

• Solver leads the training process by solving net parameters on

training data.

• Net consists of layers of which adjacent layers are connected to

each other.

• Layer defines computations which input undergoes (e.g., convo-

lution, inner product, and softmax) and produces output which is

delivered to the next layer.

The FPGA device includes PCIe core, Direct Memory Access (DMA)

core, device memory and ZeNA implementation. The PCIe core is de-

signed to support PCIe specifications, a high-speed serial expansion bus,

101

and additional functions (e.g., packet decoding, error handling, and etc.).

The DMA core mainly performs memory copy between host memory

(not shown in the figure for brevity but every data in host-side applica-

tion is stored in host memory) and device memory. The device memory

is far smaller than the host memory but is sufficiently large (e.g., a few

megabytes) for running a small hardware accelerator on FPGA. The data

in the device memory might be the computation result of ZeNA or the

duplicate of data stored in the host memory.

The neural network framework first divides input data stored in the

host memory into data chunks that are suitable for operations on ZeNA.

Then, the framework drives the DMA core to move the data chunks to

the device memory. After ZeNA finishes its computation, the framework

drives the FPGA device again to gather the result back to the host mem-

ory, and merges it with partial results if necessary. The process is repeated

until the neural network framework completes its desired work.

In our implementation, Caffe [42] is chosen due to its extensibility

as a neural network framework for the whole process including train-

ing (i.e., generating kernel weights), handling the input data (i.e., input

image) and performing layer functionality. We implemented a resource

manager and custom Caffe layers with a set of API functions which in-

teract with the FPGA device. Table 6.1 shows details of the environment

setup for the proposed implementation.

102

Table 6.1 Environment setup
Host FPGA

CPU Intel i7 7700 Board Alpha Data ADM-PCIE-KU3
Memory DDR4-2400 32 GB Tools Vivado 2016.3
Storage SSD 1 TB Driver adb3-driver-linux-1.4.18 (1.4.19b5)

OS CentOS 7 (Ubuntu 16.04) SDK admpcieku3 sdk-2.0.0
Kernel 3.10 (4.13)

Neural Network Framework
Solver

Net

Layer
Data 1st layer output volume Nth layer output volume

PCIe
Core

Device Driver

FPGA DEVICE

API

Device
Memory ZeNADMA

Core

RX

TX

Figure 6.6 Top-level architecture of ZeNA implemented on FPGA.

103

PCIE and DMA

Communication between the host and FPGA is implemented with

PCIe-based DMA. DMA engines enable transferring data chunks from

the host memory (i.e., DRAM of PC in our implementation) to the device

memory (i.e., BRAM of FPGA in our implementation), and vice versa.

In order to simplify implementation, and to achieve high performance,

we built our system based on commercial PCIe hard IPs and drivers. We

modified reference designs of Alpha Data which includes a fully func-

tional PCIe bridge, a DMA engine, and a corresponding API library [43].

By avoiding high level synthesis tools, we designed our system to gain

tight control over low level signals.

Figure 6.7 shows a block diagram of the system architecture for the

communication between host and FPGA. PCIe endpoint translates the

PCIe transaction layer to internal memory mapped ports. A direct slave

(DS) port forwards a set of host initiated PCIe transactions, up to 256-

bit at once. In contrast, DMA ports generate burst transactions to support

high data transfer rates. Note that burst transaction includes only 1 header

(12 or 16 bytes) per 128 bytes. Since the DMA port is more efficient than

the DS port in both speed and energy, we designed the system archi-

tecture in a way that a small number of control signals are transferred

through the DS port while most data are transferred by DMA engines at

high throughput.

DMA engines transfer data chunks from the host memory into the

104

device memory, and then, ZeNA performs following executions until it

finishes partial convolutions associated with data currently stored in the

device memory:

1. Reading the chunks of data from the device memory (i.e., BRAM).

2. Performing partial convolution executions.

3. Writing the partial result back to the device memory.

After ZeNA finishes its executions, DMA engines transfer the result

back to the host memory. In our experiment, a single DMA engine sup-

ports about 4GB/s in half duplex transactions, four DMA engines support

up to about 6GB/s in half duplex and about 8GB/s in full duplex transac-

tions.

ZeNA Implementation

We implemented a single ZeNA cluster on FPGA. On-chip SRAMs

of ZeNA (i.e., Act SRAM and Weight SRAM) are implemented with the

device memory (shown in Figure 6.6) of FPGA called block random ac-

cess memory (BRAM). Local buffers are also implemented with remain-

ing BRAMs (e.g., Act buffer and Weight buffer) or piles of flip-flops (e.g.,

Psum buffer). Computation units in PE could be implemented with a spe-

cialized hardware called the digital signal processor (DSP) in FPGA.

However, since the DSP generally supports operations with fixed large

105

bit-width, e.g., 16-bit, merely using it in a low-precision computing is not

area-efficient. Thus, we implemented PE computation units using logic

fabric and performed sensitivity analysis without utilizing DSP slices.

Neural Network Framework

We extend Caffe [42] to include functionality of managing and run-

ning the FPGA device. In order to make Caffe import necessary API

functions, the contents of Alpha Data SDK [43] are bundled up into a

shared object. We implemented the FPGA resource manager with single-

ton pattern in the top-level object. Thus, only one manager object inter-

acts with the FPGA device while the object can be used from Caffe lay-

ers. Custom Caffe layers utilize input data produced from the previous

layer, and generate chunks of data (as shown in Chapter 4.2) for running

partial convolutions in FPGA. Partial convolutions are performed itera-

tively until convolution executions for each layer are completed. In order

to run PCIe-based DMA, custom Caffe layers utilize a series of C/C++

API functions given by the Alpha Data. For example, the read/write ac-

cess for the DS port is accomplished by a custom mmap function which

utilizes a simple pointer as an input. In addition, the write of a DMA en-

gine works as a custom memcpy function which has three inputs: a source

pointer in host virtual address space, a destination address in device ad-

dress space, and a transfer size in bytes. The read of a DMA engine works

in a similar way.

106

PCIe
Wrapper

PCIe TRN(AXI-S)
To MMAP

DMA
Engine

DMA
Engine

DMA
Engine

DMA
Engine

Device
Memory

Direct Slave

DMA

PC
Ie

Ge
n

3
x8

ZeNA

FPGAHOST

PCIe Endpoint

H
os

t M
em

or
y

Figure 6.7 PCIe and DMA engines for communication between host and
FPGA.

Table 6.2 Hardware configuration of ZeNA
PEs 256 (8 ⇥ 32) Bus width 512 bit SRAM 512 kB

Precision 16-bit 8-bit 4-bit 2-bit
Row buffer
(per row)

Act/weight 12 ⇥ 128 b 12 ⇥ 64 b 12 ⇥ 32 b 12 ⇥ 16 b
Partial sum 4 ⇥ 128 b 4 ⇥ 64 b 4 ⇥ 32 b 4 ⇥ 16 b

Local buffer
(per PE)

Act/weight 12 ⇥ 128 b 12 ⇥ 64 b 12 ⇥ 32 b 12 ⇥ 16 b
Partial sum 2 ⇥ 32 b 2 ⇥ 16 b 2 ⇥ 8 b 2 ⇥ 4 b

107

Pseudocode 1 shows a simplified version of a forward function in the

custom Caffe layer. The execution can be summarized as follows:

1. Crop data and allocate temporal resources. When starting the

execution of each layer, it processes the input data (i.e., hostData),

and pre-determined configurations for the FPGA (i.e., fpgaCon-

fig) including size of device memory, PE array configuration, and

etc. hostData contains input activations and kernel weights which

were delivered from external data (e.g., kernel weight and input

activations of first layer) or generated by the previous layer (e.g.,

input activations excepting first layer). As a result of CropLayer,

input data are converted into chunks of data which fit on the de-

vice memory of FPGA. Then, the application allocates temporal

resources such as additional memory used by the DMA (line 5). In

order to prevent coherency problem, the system locks the memory

region within DmaBuffer before running the DMA (line 6). Map-

Window maps the memory region that can be referenced by the

address space of a DS port (line 7).

2. DMA (host to FPGA). At this step, a chunk of data for partial con-

volution is transferred from the host memory to the device mem-

ory. The data to be transferred are located in the host memory indi-

cated by DmaBuffer pointer (line 12). Then, WriteDMALockedEx

is executed to transfer the data (line 13).

108

3. Run FPGA. Once data are transferred, the layer uses memory

space for storing trigger signal (called RUNCODE) to activate the

FPGA (line 16). If RUNCODE is asserted via a DS port, ZeNA

starts to run its routines to execute partial convolutions. After fin-

ishing its routine, ZeNA changes the RUNCODE to zero to indi-

cate that it finished its routine. In while loop, the application detects

whether RUNCODE is changed or not (line 17).

4. DMA (FPGA to host). The application runs ReadDMALockedEx

to gather the results stored in device memory through the DMA

(line 20) and stores partial result in fpgaData. Steps 2 to 4 are

repeated until all partial convolutions are done.

5. Deallocate temporal resources and generate the input of the

next layer. After finishing all the partial convolutions, the layer

deallocates temporal resources and gathers the partial convolution

results to generate output feature maps (i.e., input activations for

next layer). Steps 1 to 5 are repeated to compute every layer of a

given neural network.

6.2.2 Evaluation and Analysis

Figure 6.8 shows the resource usage of the FPGA in various levels of

bit precision (16-bit, 8-bit, 4-bit, and 2-bit). We reported the resource

usage in terms of flip-flop (FF), look-up table (LUT), and block random

109

access memory (BRAM). Resource usage of each implementation is nor-

malized by that of 16-bit implementation, and each bar shows a resource

breakdown of controller, computation unit, and buffer.

FF usage varies significantly across different functional blocks. In the

controllers including intra-cluster controller, row controller and zero-skip

controller, the flip-flops are deployed for pipeline stages and control sig-

nals. Their resource usage does not change when bit-width gets reduced.

Similarly, the size of the bit-vector used by the zero-skip controller is

not influenced by the reduced precision. In 2-bit implementation, the bit-

vector requires 50% additional capacity compared to the input data (each

element is 2-bit data). In contrast, the number of flip-flops for computa-

tion unit and buffers can be reduced in low-precision. FF usage of com-

putation unit in 2-bit implementation shows 80% reduction compared to

16-bit implementation. At the same time, FF occupation of controllers

increases from 40% in 16-bit to 76.3% in 2-bit implementation.

LUT usage gets shrunk in both computation unit and most controllers

in low-precision. Note that the zero-skip controller is an exception be-

cause its combinational logic remains unchanged. Compared to 16-bit

implementation, 2-bit implementation shows 90.4% and 39.4% reduc-

tion in LUT usage in computation unit and controller, respectively. The

amount of reduction in a computation unit is larger than that of a con-

troller. Thus, the LUT occupation of controllers increases from 24.4%

up to 67.1%. In addition, BRAM usage is almost linearly proportional

110

to bit-width since most of the buffers (Psum buffer is an exception) are

implemented with BRAM.

As bit-width gets reduced, controllers occupy most of the FF and

LUT resource usage, thereby preventing us from achieving optimized

zero-skipping neural network accelerator in low-precision. In order to

further investigate the impact of controller overhead in zero-skip archi-

tecture, we employed the ASIC approach because comparing areas among

different primitives, LUT, FF and BRAM, in FPGA is limited due to

the resource diversity and implementation characteristics (e.g., LUT for

logic gates). Thus, we used Synopsys Design Compiler under 65nm li-

brary to synthesize the RTL design into ASIC design and used CACTI

v6.0 [39] for SRAM cost.

Figure 6.9 shows the area of PE array in various bit-widths. The area

of each implementation is normalized by the 16-bit implementation. The

figure shows that 2-bit implementation achieves 84.6% area reduction

(90.4% in computation unit, 87.4% in buffer and 39.4% in controller)

compared to 16-bit implementation. Again, the reduction ratio of the

controllers is the smallest, and thus, its occupancy in total area increases

from 7.4% to 29% while the occupancy of the computation unit decreases

from 22.8% to 14.2%. Note that the relative size between controllers and

the computation unit is reversed (size of controller is two times larger

than computation unit) in 2-bit implementation.

When fine-grained zero-skipping and very low-precision are both

111

applied, the area cost of a controller becomes comparable to or larger

than that of a computation unit. In order to mitigate this problem of in-

creasing control overhead in low-precision, the zero-skipping operation

could be applied in a more coarse-grained manner. However, the coarse-

grained zero-skipping can hurt the benefits of zero-skipping by reducing

the chance of exploiting zero values.

Analyzing performance between the hardware implemented with dif-

ferent reduced precision under various networks which have different

zero-ratio can be complicated when software and FPGA communication

overhead is involved. Moreover, the neural network, which heavily ap-

plies reduced precision methods (i.e., 4-bit or less) and various levels of

sparsity, is not available yet. Thus, in order to focus on on-chip archi-

tecture and analyze performance trend of zero-skipping architecture un-

der various bit-widths and sparsity levels, we implemented an in-house

cycle-accurate model and estimated performance. We generated synthe-

sized layers which have the same configuration with five convolutional

layers from AlexNet [1] (e.g., conv1 to conv5). Then, we randomly gen-

erated activations and weights based on the zero data ratio in each case.

Figs. 6.10 and 6.11 show the speedup of 2-bit and 16-bit implemen-

tation, respectively, under the various sparsity settings, compared to the

performance of the zero-agnostic accelerator. We varied zero ratio of

weight from 0.4 to 0.8 corresponding to WZ(0.4) to WZ(0.8) in Figs.

6.10 and 6.11, and then, in each case, we varied zero ratio of activation

112

from 0.1 to 1 (x-axis).

Figure 6.10 shows speedup of 16-bit implementation. Even though

the zero ratio of activation is changed, the speedup of WZ(0.8) is sat-

urated at 4.5x. When the activation zero ratio is 0.1, it shows higher

speedup as weight zero ratio goes higher. However, after the activation

zero ratio passes 0.7, speedup is saturated at 4.5x. In other words, the

zero-skipping architecture can not fully exploit the advantage of zero data

if the network has very high sparsity. This is due to the communication

contention between on-chip memory and PE array. PE array can process

more data as it finishes its computation earlier, however, communication

bandwidth (e.g., intra-cluster bus bandwidth of ZeNA) is limited. Thus,

PE array gets stall waiting for new input data, which prevents further

speedup.

Figure 6.11 shows the speedup of 2-bit implementation. Compared

with 16-bit implementation, speedup of WZ(0.8) is not saturated regard-

less of the activation zero ratio. The speedup of every case is saturated

at 18.7x when the activation zero ratio is 1 (speedup of WZ(0.8) is stuck

when activation zero ratio is 0.9). Until this point, the speedup continues

to increase as either of the two zero ratios increases. Since we utilized the

same bus width in every bit-width, the communication bandwidth of 2-

bit implementation is effectively 8 times higher than that of 16-bit imple-

mentation. Thus, the effectively larger bus width mitigates the speedup

problem of 16-bit implementation due to communication contention.

113

Figure 6.12 shows operations-per-second (OPS)/area of each imple-

mentation while running convolutional layers of prunned AlexNet [30].

Each PE of ZeNA should contain its own controller to enable fine-grained

zero-skipping. The size of a controller does not decrease linearly as the

bit-width of input data is reduced. Thus, 2-bit implementation shows 6.7x

higher OPS/area compared to that of 16-bit implementation, not ⇡8x.

114

Ar
ea

 b
re

ak
do

w
n

(n
or

m
al

iz
ed

 b
y

16
-b

it)

FF LUT BRAM

Computation Controller Buffer

0

0.2

0.4

0.6

0.8

1

16-bit 8-bit 4-bit 2-bit 16-bit 8-bit 4-bit 2-bit 16-bit 8-bit 4-bit 2-bit

Figure 6.8 FPGA resource usage of PE array in different bit-widths.
FPGA resource usage is divided into flip-flop (FF), look up table (LUT)
and block SRAM (BRAM).

0

0.2

0.4

0.6

0.8

1

16-bits 8-bits 4-bits 2-bits

Ar
ea

 b
re

ak
 d

ow
n

(n
or

m
al

iz
ed

 b
y

16
-b

it)

Bit width

Computation Controller Buffer

Figure 6.9 Area break down of PE array in different bit-widths.

115

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sp
ee

d
up

Activation zero ratio

WZ(0.8) WZ(0.7) WZ(0.6) WZ(0.5) WZ(0.4)

Figure 6.10 Speedup of 16-bit implementation in AlexNet with various
sparsity where weight sparsity range is 0.4 to 0.8 and activation sparsity
range is 0.1 to 1.

0

4

8

12

16

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sp
ee

d
up

Activation zero ratio

WZ(0.8) WZ(0.7) WZ(0.6) WZ(0.5) WZ(0.4)

Figure 6.11 Speedup of 2-bit implementation in AlexNet with various
sparsity where weight sparsity range is 0.4 to 0.8 and activation sparsity
range is 0.1 to 1.

116

0

1

2

3

4

5

6

7

16-bit 8-bit 4-bit 2-bit

O
PS

/A
re

a
(n

or
m

al
iz

ed
 b

y
16

-b
it)

Bit-width

conv1 conv2 conv3 conv4 conv5

Figure 6.12 OPS/area in AlexNet with various bit-width (2-bit to 8-bit).

117

Pseudocode 1 Forward function in the custom Caffe layer

/ / Crop da ta
CropLayer (fpgaData , hos tDa ta , l a y e r I d) ;

/ / A l l o c a t e t e m p o r a l r e s o u r c e s
void * DmaBuffer = ma l l oc (DMASIZE) ;
Lock (DmaBuffer , DMASIZE) ;
MapWindow (FpgaCont ro l , MAPSIZE) ;

/ / Main f o r loop
f o r (i = 0 ; i < f p g a D a t a . s i z e () ; i ++) {

/ / DMA (h o s t t o FPGA)
memcpy (DmaBuffer , f p g a D a t a [i] , DMASIZE) ;
WriteDMALockedEx (DMASIZE, DEVICEADDR) ;

/ / Run FPGA
* F p g a C o n t r o l = RUNCODE;
whi le (* F p g a C o n t r o l == RUNCODE) ;

/ / DMA (FPGA t o h o s t)
ReadDMALockedEx (DMASIZE, DEVICEADDR) ;
memcpy (h o s t D a t a [i] , DmaBuffer , DMASIZE) ;

}

/ / D e a l l o c a t e t e m p o r l r e s o u r c e s
UnmapWindow (F p g a C o n t r o l) ;
Unlock (DmaBuffer) ;
f r e e (DmaBuffer) ;

/ / Genera te i n p u t t o n e x t l a y e r
GenNextLayer (fpgaData , hos tDa ta , l a y e r I d) ;

118

6.3 Comparison between Fine-grained
Zero-aware Hardware Accelerators

Parashar et. al [8] studied activation/weight zero-aware hardware accel-

erator for convolutional neural network (called SCNN) in parallel with

proposed ZeNA [2, 4]. We will compare two different fine-grained zero-

aware hardware accelerators in this section.

6.3.1 SCNN

SCNN employs a dataflow that enables maintaining the sparse weights

and activations in a compressed encoding, thereby reducing unnecessary

data transfers and storage requirements. The key component for zero-

skipping on SCNN is a processing element (PE) with multiplier array. In

order to accelerate CNN skipping multiplication associated with either

zero activation or weight, the SCNN only delivers non-zero weights and

activations to the multiplier array which performs the Cartesian product.

Moreover, SCNN adopts input stationary dataflow which holds an input

activation stationary at the computation units and multiplies with all the

kernel weights.

SCNN should accumulate the partial products generated by multi-

plier array at last due to perform convolution with small chunk of data.

However, since SCNN performs Cartesian products between only non-

zero activations and weights, it should track the output coordinate as-

sociated with each multiplication result and accumulate it on a proper

119

buffer.

Figure 6.13 illustrates a simplified operation diagram of SCNN which

only convolves between non-zero activations and weigths (colored in

black with alphabats) with stride one and results in the output feature

map. Since non-zero intersections between activations and weights is

roughly 20-50% per layer, sliding window based convolution may be

wasteful due to useless multiplications (patterned region in Figure 6.13a).

The basic idea of SCNN is that all non-zero activations (a, b, c, d, e

and f in Figure 6.13) should be multiplied by all non-zero weights (x, y

and z in Figure 6.13) at some point in time. SCNN applies the Cartesian

product (i.e., all-to-all) based convolution as shown in Figure 6.13b. Mul-

tiplier array in PE (PE frontend in Figure 6.13b) performs the Cartesian

product between non-zero activations and non-zero weights. The output

coordinate of each multiplication is traced and utilized to accumulate it

on buffers via a scatter network (PE backend in Figure 6.13b).

6.3.2 Evaluation Analysis

We evaluated throughput/area to compare two different fine-grained

zero-aware hardware accelerators: SCNN [8] and proposed ZeNA V2 [4].

Since the original ZeNA contains a smaller number of multipliers (e.g.,

165) compared to SCNN (e.g., 1024), to focus on comparing architecture

itself, we implemented two flavors of ZeNA architecture by applying dif-

ferent number of multipliers as follows:

120

z

Activations

(a)

a b c
d

e
f

*
x y

z
=

Weights Output feature map

Activations

a
b
c
d
e
f

x
y
z

Weights

=

a
a
a

*
*
*

f
f
f

*
*
*

…

Multiplication
result

PE frontend

Scatter
network

Output feature map

PE backend

(b)

x
y
z

x
y
z

Figure 6.13 Simplified operation diagram of SCNN [8].

121

• ZeNA-165. Original ZeNA V2. PE array includes 165 (11⇥ 15)

PEs.

• ZeNA-1023. ZeNA V2 where PE array includes 1023 (11⇥ 93)

PEs.

Note that PE in ZeNA contains only one multiplier each.

For the performance evaluation, we implemented an in-house behav-

ior model of SCNN and our architecture. We assumed both architectures

operate on the same clock frequency and estimated throughput. Since

SCNN and ZeNA implemented with different standard cell library, we

scaled area for comparison [44]. We used the pruned model of AlexNet

in [30] and a pruned version of VGG-16, which was obtained by thresh-

olding kernel weights to meet the reported ratio of zero weights in [30].

To run AlexNet and VGG-16 on the ZeNA-165, we allocated PEs to WGs

as shown in Table 5.2. Note that ZeNA-1023 allocates 6x PEs shown in

Table 5.2 to WGs.

Figure 6.14 shows throughput/area comparison between SCNN and

ZeNA. In AlexNet, ZeNA-165 and ZeNA-1023 achieves 3.3x and 9.2x im-

provement in throughput/area compared to SCNN. However, in VGG-16,

ZeNA-165 shows 0.2x throughput/area compared to SCNN. This is be-

cause ZeNA utilizes sufficient on-chip SRAM to store current and next

WG, thereby simplifying memory control and optimizing energy con-

sumption. Since ZeNA-165 has on-chip SRAM which occupies a large

122

portion of area (85.7% and 98.6% in AlexNet and VGG-16, respec-

tively), computing power (i.e., the number of multipliers) within the same

area is degraded. Adopting more PEs while maintaining other hardware

configurations improves throughput/area. On-chip SRAM area of ZeNA-

1023 occupies smaller portion of area compared to ZeNA-165 (49.5%

and 92% in AlexNet and VGG-16, respectively). As a result, ZeNA-1023

achieves 9.2x and 1.2x throughput/area on AlexNet and VGG, respec-

tively, compared to SCNN.

Recently, CNNs which adopt depth-wise convolutional layers are widely

used for vision tasks due to exceptional accuracy. Since the most on-

chip memory area of ZeNA is utilized to store partial sums and depth-

wise convolutional layers can be computed without storing partial sums,

ZeNA requires smaller on-chip memory to execute CNN consisting of

depth-wise convolutional layers. Thus, we expect that ZeNA shows bet-

ter throughput/area compared to SCNN in CNNs consisting of depth-

wise convolutional layers.

123

0

2

4

6

8

10

SCNN ZeNA-165 ZeNA-1023

Th
ro

ug
hp

ut
/A

re
a

(n
or

m
al

ize
d

by
 S

CN
N

)

AlexNet

0

0.3

0.6

0.9

1.2

1.5

SCNN ZeNA-165 ZeNA-1023

Th
ro

ug
hp

ut
/A

re
a

(n
or

m
al

ize
d

by
 S

CN
N

)

VGG-16

Figure 6.14 Throughput/area comparison between SCNN and ZeNA.

124

Chapter 7

Conculsion

In this dissertation, we propose a novel Zero-aware Neural Network Ac-

celerator for CNNs named ZeNA. Unlike previous studies utilizing spar-

sity, we exploit both zero activations and weights to reduce runtime and

energy consumption of convolution. We propose two versions of ZeNA

architecture: ZeNA V1 and ZeNA V2. In addition, we introduce two differ-

ent types of zero-induced load imbalance problems, intra-/inter-WG load

imbalance, which prevent us from achieving full opportunity of zero-

aware parallel hardware architectures for CNN.

ZeNA V1 applies zero-aware kernel allocation as the solution for

mitigating intra-WG load imbalance. We first sorted all the sets of kernel

tiles in the increasing order of the number of non-zero weights in the

sets, and then, allocated sets of kernel tiles to sub-WG in the sorted order.

Applying zero-aware kernel allocation, we uniformly distributed kernel

tiles thereby improving runtime and energy efficiency. According to our

experiments, ZeNA V1 achieves 4x and 5.2x speedup while achieving

11.3% and 18% energy reduction in AlexNet and VGG-16, respectively,

125

compared to baseline (Eyeriss).

We propose further optimized ZeNA architecture, ZeNA V2 which

adopts multi-cluster architecture. ZeNA V2 applies dynamic WG alloca-

tion, which is conceptually similar to work-stealing queues, as the solu-

tion for mitigating inter-WG load imbalance. In addition, to achieve fur-

ther energy reduction on on-chip SRAM and local buffer, we applied on-

the-fly bit-vector generation and clock gating. According to our exper-

iments, ZeNA V2 achieves 4.4x/5.6x speedup and reduces energy con-

sumption by 25.4%/25.2% in AlexNet/VGG-16 over the baseline (Eye-

riss).

We also perform quantitative analysis for zero-aware hardware archi-

tecture. We analyzed the impact of data compression on ZeNA and com-

pared various ZeNA architectures, which have distinct configurations of

bit-width and and zero data ratio, to verify the impact of reduced pre-

cision on zero-aware hardware architecture. According to our analysis,

zero-aware architecture which does not apply output stationary data flow

might be unsuitable for storing data on on-chip SRAM in compressed

format. We also report overhead of fine-grained zero-aware hardware ar-

chitecture such as ZeNA after applying very-low precision.

Recently, neural network specialized hardware accelerators have been

applied on products such as cell phones. Qualcomm (e.g., Snapdragon

855) and Apple (e.g., A11) provide a neural processing unit (NPU) and

its APIs. Huawei (e.g., Kirin 970) provides a NPU and an API which are

126

restricted to specific applications. Samsung Galaxy S10 adopts a NPU

which is utilized for internal functions.

We expect that competition in the NPU market is going to be more

intense in the coming years. In this era, we expect two types of NPU

approaches will exist. The first is a NPU for general purpose. Utiliz-

ing APIs, application developers can exploit the NPU for accelerating

their own tasks. In order to achieve this goal, the NPU for general pur-

pose should concentrate on supporting and accelerating various neural

networks. Moreover, these NPUs should support good programability to

be utilized. The other way is utilizing the NPU for accelerating specific

task which cannot be controlled by users (i.e., internal functions). Those

NPUs can be utilized for accelerating specific tasks such as face recog-

nition (for unlocking the phone) and enhancing camera resolution us-

ing deep learning. For this purpose, the NPU should be more optimized

for target neural network in manner of runtime and power consumption.

Since various types of neural network specialized hardware accelerators

will be required in the competitive era of NPUs, more researches and

analysis for various NPU architectures are necessary.

127

Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-

fication with deep convolutional neural networks,” in Advances in

neural information processing systems, pp. 1097–1105, 2012.

[2] D. Kim, J. Ahn, and S. Yoo, “A novel zero weight/activation-aware

hardware architecture of convolutional neural network,” in Design,

Automation & Test in Europe Conference & Exhibition (DATE),

2017, pp. 1462–1467, IEEE, 2017.

[3] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural

networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1,

pp. 127–138, 2017.

[4] D. Kim, J. Ahn, and S. Yoo, “Zena: Zero-aware neural network

accelerator,” IEEE Design & Test, vol. 35, no. 1, pp. 39–46, 2018.

[5] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and

A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural net-

128

work computing,” ACM SIGARCH Computer Architecture News,

vol. 44, no. 3, pp. 1–13, 2016.

[6] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,

and Y. Chen, “Cambricon-x: An accelerator for sparse neural net-

works,” in The 49th Annual IEEE/ACM International Symposium

on Microarchitecture, p. 20, IEEE Press, 2016.

[7] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-

ral networks using logarithmic data representation,” arXiv preprint

arXiv:1603.01025, 2016.

[8] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,

B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An

accelerator for compressed-sparse convolutional neural networks,”

in 2017 ACM/IEEE 44th Annual International Symposium on Com-

puter Architecture (ISCA), pp. 27–40, IEEE, 2017.

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” arXiv preprint arXiv:1409.1556,

2014.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with

convolutions,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 1–9, 2015.

129

[11] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-

Cun, “Overfeat: Integrated recognition, localization and detection

using convolutional networks,” arXiv preprint arXiv:1312.6229,

2013.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hi-

erarchies for accurate object detection and semantic segmentation,”

in Proceedings of the IEEE conference on computer vision and pat-

tern recognition, pp. 580–587, 2014.

[13] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-

time object detection with region proposal networks,” in Advances

in neural information processing systems, pp. 91–99, 2015.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pp. 770–778, 2016.

[15] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated resid-

ual transformations for deep neural networks,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 1492–1500, 2017.

[16] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-

based learning applied to document recognition,” Proceedings of

the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

130

[17] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learn-

ing with neural networks,” in Advances in neural information pro-

cessing systems, pp. 3104–3112, 2014.

[18] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware

neural language models,” in Thirtieth AAAI Conference on Artificial

Intelligence, 2016.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”

in Advances in Neural Information Processing Systems, pp. 5998–

6008, 2017.

[20] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudan-

pur, “Recurrent neural network based language model,” in Eleventh

annual conference of the international speech communication as-

sociation, 2010.

[21] T. Sainath and C. Parada, “Convolutional neural networks for small-

footprint keyword spotting,” 2015.

[22] “Oculus vr.” https://www.oculus.com. Accessed: 2019-03-18.

[23] “Hololens ar.” https://www.microsoft.com/en-us/hololens.

Accessed: 2019-03-18.

131

https://www.oculus.com
https://www.microsoft.com/en-us/hololens

[24] “Tesla self driving.” https://www.tesla.com. Accessed: 2019-

03-18.

[25] J. Cong and B. Xiao, “Minimizing computation in convolutional

neural networks,” in International conference on artificial neural

networks, pp. 281–290, Springer, 2014.

[26] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and

O. Temam, “Diannao: A small-footprint high-throughput acceler-

ator for ubiquitous machine-learning,” in ACM Sigplan Notices,

vol. 49, pp. 269–284, ACM, 2014.

[27] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,

Z. Xu, N. Sun, et al., “Dadiannao: A machine-learning supercom-

puter,” in Proceedings of the 47th Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 609–622, IEEE Computer

Society, 2014.

[28] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng,

Y. Chen, and O. Temam, “Shidiannao: Shifting vision processing

closer to the sensor,” in ACM SIGARCH Computer Architecture

News, vol. 43, pp. 92–104, ACM, 2015.

[29] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.

Dally, “Eie: efficient inference engine on compressed deep neural

132

https://www.tesla.com

network,” in 2016 ACM/IEEE 43rd Annual International Sympo-

sium on Computer Architecture (ISCA), pp. 243–254, IEEE, 2016.

[30] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing

deep neural network with pruning, trained quantization and huff-

man coding,” ICLR, 2016.

[31] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-

net: Imagenet classification using binary convolutional neural net-

works,” in European Conference on Computer Vision, pp. 525–542,

Springer, 2016.

[32] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quanti-

zation,” arXiv preprint arXiv:1612.01064, 2016.

[33] S. Migacz, “Nvidia 8-bit inference with tensorrt,” GPU Technolo-

gyConference, 2017.

[34] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-

net: Training low bitwidth convolutional neural networks with low

bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016.

[35] J. Van Leeuwen, “On the construction of huffman trees.,” in ICALP,

pp. 382–410, 1976.

[36] M. Gautschi, M. Schaffner, F. K. Gürkaynak, and L. Benini, “4.6 a

65nm cmos 6.4-to-29.2 pj/flop@ 0.8 v shared logarithmic floating

133

point unit for acceleration of nonlinear function kernels in a tightly

coupled processor cluster,” in 2016 IEEE International Solid-State

Circuits Conference (ISSCC), pp. 82–83, IEEE, 2016.

[37] O. Temam, “A defect-tolerant accelerator for emerging high-

performance applications,” in ACM SIGARCH Computer Architec-

ture News, vol. 40, pp. 356–367, IEEE Computer Society, 2012.

[38] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural ac-

celeration for general-purpose approximate programs,” in Proceed-

ings of the 2012 45th Annual IEEE/ACM International Symposium

on Microarchitecture, pp. 449–460, IEEE Computer Society, 2012.

[39] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti

6.0: A tool to model large caches,” HP Laboratories, HPL-2009-

85, 2009.

[40] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementa-

tion of the cilk-5 multithreaded language,” ACM Sigplan Notices,

vol. 33, no. 5, pp. 212–223, 1998.

[41] “[12] micron dram calculator.” http://www.micron.com/

support/tools-and-utilities/power-calc/. Accessed:

2019-04-14.

[42] Y. Jia et al., “Caffe: Convolutional architecture for fast feature em-

bedding,” ICME, 2014.

134

http://www.micron.com/support/tools-and-utilities/power-calc/
http://www.micron.com/support/tools-and-utilities/power-calc/

[43] “Reference design – rd-ku3.” https://www.alpha-data.com/

dcp/rd.php?product=rd-ku3. Accessed: 2018-06-16.

[44] A. Stillmaker, Z. Xiao, and B. Baas, “Toward more accurate scaling

estimates of cmos circuits from 180 nm to 22 nm,” VLSI Computa-

tion Lab, ECE Department, University of California, Davis, Tech.

Rep. ECE-VCL-2011-4, vol. 4, 2011.

135

https://www.alpha-data.com/dcp/rd.php?product=rd-ku3
https://www.alpha-data.com/dcp/rd.php?product=rd-ku3

m8�]

tÙ$∏Ãlî‰ë\¥�¨�tX–⌧⇣¨t‡à‰.πà, Con-

volutional Neural Network (CNN)@ �¡ x› ✏ ÑX ‹§\–⌧ ⌅

©`Ã\�Uƒ|Ùt‡à‰.D] CNNt‰ë\¥�¨�tX–

⌧í@�Uƒ|Ùt‡à¿Ã,tÏ\�Uƒ|ª0⌅t⌧îŒ@

convolutional layer�D⇠�t‰.X¿ÃtÏ\ networkîŒ@ƒ∞

…D îlX0 L8– ⌧\⌧ X‹Ë¥ ê–D �¿‡ àî VR9@

ê(¸â êŸ(ÒX <¥ x› ✏ ⇣¿| ⌅\ ‰‹⌅ Ñ†‹ ‹

§\– CNND�©XîÉ@0 �<\⇠¥|`•Ωtt¨\‰.

¯⌥0 L8– <¥ x› ✏ ⇣¿| ⌅\ ‰‹⌅ Ñ†‹ ‹§\–

CNND�©X0⌅t convolutional layer\�Tî‰∞⌘îX‰.

|⇠�<\ convolutional layerî XòX ∞¸✓D ƒ∞X0 ⌅t

3(– pt0| Ö%<\ �D ⇠ú⌧X ÒH ✏ gHD ⇠âX‡, 3

(– ú%D ›1X0 ⌅t tÏ\ ¸�D ⇠ı\‰. 0|⌧ convolu-

tional layer|⇠âXîpî‰∞Œ@ëX∞tDîXp,ÒH✏

gHXëD⌅Ï`x convolutionDl⌅h<\h<¥x›✏⇣¿

| ⌅\ ‰‹⌅ Ñ†‹ ‹§\– CNND �©XîÉt �• ` ⇠

à‰.tÙ$∏Ãl�çD⌅t\¸áD⌅⌅©X‹Ë¥�ç0–

�\l�\⌧àƒâ⇠‡à‰.⌧H⌧tÙ$∏Ãl⌅©X‹Ë

¥�ç0‰@¸\tÙ$∏Ãl–⌧\pt0�Œ‰îπ1 (spar-

136

sity)¸ëêT�©ƒ–ƒ�Uƒê‰t�‰îπ1 (low-precision)

D\©XÏtÙ$∏Ãl|\�T\‰.

CNNX Ö% activation✏ weight– Œ@ ⌧\ pt0� à‰î ¨

‰D \©XÏ ∞¨î ⌧\ pt0| \©\ tÙ$∏Ãl ⌅© X‹

Ë¥ �ç0| ⌧H\‰. 0t tÙ$∏Ãl ⌅© X‹Ë¥ �ç0@

Ï¨ ∞¨î activation ✏ weightX ⌧\ pt0| ®P \©XÏ �

ç0X ⇠â‹⌅ ✏ –�¿ å®…D ⇣ï\‰. ⇣\ ⌧\ pt0|

\©\ ⌅© X‹Ë¥ �ç0X —,1D ù�‹¨ L ⌧›Xî »\

¥8⌧x zero-induced load imbalance|å⌧X‡t|DTX0⌅\

)HD⌧‹\‰.¯|8@⌧\pt0|\©\D§Mò–⌧î�

�x–�¿å®⇣å|⌅\‰ë\\�T0ï⇣\⌧H\‰.

∞¨î tÙ$∏Ãl� T ı°\ ¥�¨�tXD ò¨X‡ í@

�Uƒ|ª0⌅tJ¥¿‡àî⌅¡–¸©\‰.tÙ$∏Ãlî

•ƒ layer⇠� ù�`⇠] ƒ∞…t 0X ⇠�<\ ù�XÏ \�

T ∆t X‹Ë¥ ê–t ⌧\⌧ ‰‹⌅ Ñ†‹ ‹§\– �©X0

¥$Ã»É<\�¡⌧‰.0|⌧∞¨î¯òtÙ$∏Ãl⌅©X

‹Ë¥ �ç0� sparsity@ low-precision ®P �©Xî Ò ˘ƒX \

�T| ƒât| ⌧\⌧ X‹Ë¥ ê– ¡–⌧ –Xî 1•D Ï1`

⇠àDÉ<\�¡\‰.tÏ\\�T)ïD⌅tXîtÙ$∏Ã

l�ç0lp–¯�\�©`Ω∞0�1•DªD⇠∆ƒ]Xî

»\¥8⌧�⌧›`⇠à¿ÃD¡t–�\Ñ�tÄqX‰.

¯|8–⌧∞¨î⌧\pt0|\©\tÙ$∏Ãl⌅©X‹

Ë¥ �ç0 (ZeNA)| ⌧H\‰. ZeNAî CNNX activtion¸ weight

137

®PX⌧\pt0|\©XÏtÙ$∏ÃlX⇠â‹⌅@<`å

® ⌅% ⇣\ ⇣ï\‰. ⌧H⌧ ⌅© X‹Ë¥ �ç0î ⌧\ pt0

| ⌅� \©X¿ ªXpò, activation¸ weightX ⌧\ pt0 ⌘ \

ÖXX ⌧\ pt0Ã \©Xî 0tX tÙ $∏Ãl ⌅© X‹Ë¥

�ç0 �D T í@ 1•¸ Æ@ ⌅% å®…D Ùx‰. ⇣\ ∞¨î

zero-induced load imbalanceXt∞ï,T®¨⌅%\�T0ïÒ⌧

\pt0|\©\⌅©X‹Ë¥�ç0|⌅\‰ë\\�T0ï

✏ sparsity@ low-precisonD®P\©Xî¯òXtÙ$∏Ãl⌅©

�ç0–�\Ñ�⇣\⌧‹\‰.

¸î¥:tÙ$∏Ãl,tÙ$∏Ãl\�T,Ë¸ËXtÙ$∏Ãl,

ëêT,X‹Ë¥�ç0lp

Yà: 2015-31048

138

	Chapter 1 Introduction
	Chapter 2 Background
	2.1 NeuralNetwork
	2.1.1 Neuron
	2.1.2 LinearClassifier
	2.1.3 BackPropagation.
	2.1.4 BasicNeuralNetworkTopology

	2.2 ConvolutionalNeuralNetwork
	2.2.1 Convolutional Neural Network
	2.2.2 Layers in Convolutional Neural Network

	Chapter 3 Related Work
	3.1 Sparsity
	3.1.1 DeepCompression

	3.2 Quantization
	3.2.1 LogarithmicQuantization.
	3.2.2 XNOR-Net
	3.2.3 DoReFaNet

	3.3 Hardware Accelerator (Zero-agnostic)
	3.3.1 DianNao
	3.3.2 DaDianNao

	3.4 Hardware Accelerator (Zero-activation-aware)
	3.4.1 Eyeriss
	3.4.2 Cnvlutin

	3.5 Hardware Accelerator (Zero-weight-aware)
	3.5.1 Cambricon-X .

	Chapter 4 Zero-aware Neural Network Accelerator (ZeNA) V1
	4.1 IdeaOverview.
	4.2 Architecture
	4.2.1 ArchitectureOverview
	4.2.2 WorkDistribution.
	4.2.3 DataflowandComputation
	4.2.4 Zero-aware Processing Element Architecture . .

	4.3 KernelAllocation .
	4.3.1 Intra-WGLoadImbalance
	4.3.2 KernelAllocation.

	4.4 Evaluation.
	4.4.1 EvaluationMethodology .
	4.4.2 Performance
	4.4.3 Energy.

	Chapter 5 Zero-aware Neural Network Accelerator (ZeNA) V2
	5.1 IdeaOverview.
	5.1.1 Intra-/Inter-WG Load Imbalance
	5.1.2 Appropriate Memory Architecture for Embedded Systems
	5.1.3 MemoryOptimization

	5.2 Architecture
	5.2.1 ArchitectureOverview

	5.3 DynamicWGAllocation .
	5.3.1 Inter-WGLoadImbalance
	5.3.2 DynamicWGAllocation.

	5.4 MemoryOptimization.
	5.4.1 ClockGating .

	5.5 Evaluation.
	5.5.1 EvaluationMethodology .
	5.5.2 Performance
	5.5.3 Energy.

	Chapter 6 Further Analysis
	6.1 ImpactofDataCompressiononZeNA
	6.1.1 Data Compression Methodology
	6.1.2 EvaluationandAnalysis .

	6.2 Zero-aware Hardware Accelerator with Very Low-precision
	6.2.1 Prototyping
	6.2.2 EvaluationandAnalysis .

	6.3 Comparison between Fine-grained Zero-aware Hardware Accelerators
	6.3.1 SCNN.
	6.3.2 EvaluationAnalysis

	Chapter 7 Conclusion
	Bibliography
	국문초록

<startpage>20
Chapter 1 Introduction 1
Chapter 2 Background 9
 2.1 NeuralNetwork 9
 2.1.1 Neuron 9
 2.1.2 LinearClassifier 10
 2.1.3 BackPropagation. 11
 2.1.4 BasicNeuralNetworkTopology 12
 2.2 ConvolutionalNeuralNetwork 15
 2.2.1 Convolutional Neural Network 15
 2.2.2 Layers in Convolutional Neural Network 15
Chapter 3 Related Work 21
 3.1 Sparsity 23
 3.1.1 DeepCompression 23
 3.2 Quantization 25
 3.2.1 LogarithmicQuantization. 25
 3.2.2 XNOR-Net 26
 3.2.3 DoReFaNet 28
 3.3 Hardware Accelerator (Zero-agnostic) 30
 3.3.1 DianNao 30
 3.3.2 DaDianNao 31
 3.4 Hardware Accelerator (Zero-activation-aware) 33
 3.4.1 Eyeriss 33
 3.4.2 Cnvlutin 34
 3.5 Hardware Accelerator (Zero-weight-aware) 37
 3.5.1 Cambricon-X . 37
Chapter 4 Zero-aware Neural Network Accelerator (ZeNA) V1 39
 4.1 IdeaOverview. 39
 4.2 Architecture 45
 4.2.1 ArchitectureOverview 45
 4.2.2 WorkDistribution. 45
 4.2.3 DataflowandComputation 46
 4.2.4 Zero-aware Processing Element Architecture . . 51
 4.3 KernelAllocation . 59
 4.3.1 Intra-WGLoadImbalance 59
 4.3.2 KernelAllocation. 60
 4.4 Evaluation. 64
 4.4.1 EvaluationMethodology . 64
 4.4.2 Performance 66
 4.4.3 Energy. 66
Chapter 5 Zero-aware Neural Network Accelerator (ZeNA) V2 71
 5.1 IdeaOverview. 71
 5.1.1 Intra-/Inter-WG Load Imbalance 71
 5.1.2 Appropriate Memory Architecture for Embedded Systems 72
 5.1.3 MemoryOptimization 74
 5.2 Architecture 75
 5.2.1 ArchitectureOverview 75
 5.3 DynamicWGAllocation . 78
 5.3.1 Inter-WGLoadImbalance 78
 5.3.2 DynamicWGAllocation. 78
 5.4 MemoryOptimization. 80
 5.4.1 ClockGating . 80
 5.5 Evaluation. 83
 5.5.1 EvaluationMethodology . 83
 5.5.2 Performance 85
 5.5.3 Energy. 87
Chapter 6 Further Analysis 91
 6.1 ImpactofDataCompressiononZeNA 91
 6.1.1 Data Compression Methodology 92
 6.1.2 EvaluationandAnalysis . 93
 6.2 Zero-aware Hardware Accelerator with Very Low-precision 100
 6.2.1 Prototyping 101
 6.2.2 EvaluationandAnalysis . 109
 6.3 Comparison between Fine-grained Zero-aware Hardware Accelerators 119
 6.3.1 SCNN. 119
 6.3.2 EvaluationAnalysis 120
Chapter 7 Conclusion 125
Bibliography 128
국문초록 136
</body>

