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Abstract

Let T, = % For positive integers aq,as, ..., ax, a polynomial of the
form a,T,, + a1, + - - + a1}, is called a triangular form.

In this thesis, we study various properties of representations of integers by
ternary and quaternary triangular forms. A triangular form is called regular
if it represents all positive integers that are locally represented. We classify
the regular ternary triangular forms. We also prove several conjectures of
Sun regarding the number of representations of integers by ternary and qua-

ternary triangular forms.

Key words: representation of ternary quadratic forms, regular forms, trian-

gular numbers, Watson transformation
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Chapter 1

Introduction

Lagrange’s celebrated four squares theorem says that every positive integer is
a sum of four squares, that is, the quaternary quadratic form a2 +y? + 22 + 2
represents all positive integers. A positive definite integral quadratic form is
called universal if it represents all positive integers. In 1916, Ramanujan gave
in [29] the list of 55 diagonal quaternary universal quadratic forms. Later,
Dickson confirmed 54 forms among them are actually universal, whereas
the quaternary form 22 + 2y? + 522 4+ 5w? in the Ramanujan’s list turns
out to be non-universal for it does not represent 15. In 2000, Bhargava [5]
gave short proof of the Conway-Schneeberger’s, so called, “15-theorem”, and
proved that there are exactly 204 (classic integral) positive definite integral
quaternary universal quadratic forms. Bhargava and Hanke [6] also proved
the “290-theorem” and derived that there are exactly 6436 (non-classic inte-
gral) positive definite universal quaternary forms. A positive definite integral
quadratic form is called reqular if it globally represents every integer which is
locally represented. Dickson [12] who initiated the study of regular quadratic
forms first coined the term regular. Jones and Pall [19] gave the list of all
102 primitive diagonal regular ternary quadratic forms. Watson proved that
there are only finitely many equivalence classes of primitive positive definite
ternary regular forms in his thesis [32]. Jagy, Kaplansky and Schiemann [17]
succeeded Watson’s study and provide the list of 913 candidates for such
forms. All but 22 of them are already proved at the time. Recently, the reg-
ularities of 8 forms among 22 candidates were proved by Oh [25]. A condi-
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tional proof for the remaining 14 candidates under the Generalized Riemann
Hypothesis was given by Lemke Oliver [24].
Now we look into the representations of triangular forms. An integer of

the form T, = @ for some integer x is called a triangular number. For

positive integers ay, as, . .., ag, we call a polynomial of the form
r1(x1 +1 To(xo +1 Tz +1
Alar,az, ..., ap) (21,22, ..., k) == @1 1 12 )—i—az 2( 22 )+~~~+akk(;)

a k-ary triangular form. We define the universality and regularity of a
triangular form similarly to the case of a quadratic form. Gauss’ Eureka
Theorem says that every positive integer is a sum of at most three triangular
numbers. This is equivalent to say that the triangular form A(1,1,1) is
universal. In 1862, Liouville classified all ternary universal triangular forms
and in fact, they are the following seven forms:

A(1,1,1), A(1,1,2), A(1,1,4), A(1L,1,5),
A(1,2,2), A(1,2,3), A(1,2,4).

In 2013, Chan and Oh [10] showed that there are only finitely many ternary
regular triangular forms. In 2015, Chan and Ricci [11] proved the finiteness
of ternary regular triangular forms in a more general setting. They actually
proved that for any given positive integer ¢, there are only finitely many in-
equivalent positive ternary regular primitive complete quadratic polynomials
with conductor c¢. From this follows the finiteness of regular ternary m-gonal

—Nx2—(m—4 . .
W for some integer x is

forms. Note that an integer of the form
called an m-gonal number, and a ternary m-gonal form is defined similarly.

Now we move on to the subject of the number of representations by
a quadratic form or a triangular form. Given a positive definite integral
quadratic form, the problem of determining the representation number of
integers by the form is quite old and is still complicate, in general. If the
class number of a quadratic form is one, then a closed formula for the num-
ber of representations may be obtained from the Minkowski-Siegel formula
by calculating the local densities. The theory of theta function identities or
theory of modular forms gives some information about the number of rep-
resentations of certain quadratic forms. A closed formula for the number of
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representations of integers by a quadratic form is only known for some spe-
cific forms. As we will see later, the number of representations of an integer
by a triangular form can be transformed to the number of representations
of the corresponding integer by the corresponding diagonal quadratic forms
with certain congruence condition. For positive integers aq, as, ..., a; and n,
we define

r(n,{(a,...,a5)) = ‘{(xl,...,xk) EZk:alx%+-~~+aka:n}

Y

and
t(n,{ay,...,ax)) = H(ml,...,xk) cZF:a Ty + -+ Ty, = n}|
Legendre proved that
t(n,(1,1,1,1)) = 160(2n + 1),

where o is the sum of divisors function. In 2003, Williams [34] showed

tn, (1,1,2,2) =4 Y (d - (—1)d*%) .

Finding a closed formula for the number of representations of integers by
general triangular forms seems to be challenging and in fact, little is known.
There are some results on the relation between the number of representations
of a triangular form and the number of representations of some quadratic
forms. For example, Adiga, Cooper and Han [1] showed, for 5 < a+b+c+d <
7,

C(a,b,c,d)t(n,{(a,b,c,d)) =r(8n+a+b+c+d,{a,b,c d)),

where C'(a, b, ¢, d) is an explicit constant depending only on a,b,c and d. In
2008, Baruah, Cooper and Hirschhorn [2] proved that if a + b+ ¢+ d = 8,
then

C(a,b,c,d)t(n,{a,b,c,dy) =r(8n+8,{a,b,c,dy) —r(2n+2,{a,b,c,d)).

In 2016, Sun [30] verified several relations between the number of represen-
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tations of quaternary triangular forms and the number of representations of
corresponding quadratic forms. In that paper, he also proposed 23 intrigu-
ing conjectures on the relations between ¢(n, (a, b, c,d)) and r(n/, (a,b, ¢, d)),
where n' is a positive integer determined by a, b, ¢, d and n. Yao [37] proved
11 conjectures among them by using (p, k)-parametrization of theta func-
tions. Sun [31] himself proved 2 conjectures by using elementary method.
Xia and Zhong [35] proved 3 conjectures by using theta function identities.
Sun [31] discovered further relations on ternary and quaternary cases and
posed some conjectures some of which are on ternary triangular forms.

In the first part of the thesis, we prove that there are exactly 49 regular
ternary triangular forms. In the previous papers [10] and [11], the authors use
Burgess’ estimation of character sums (for this, see [7] and [14]) to prove the
finiteness of regular ternary triangular forms. It seems to be quite difficult to
find an explicit upper bound of the discriminant of regular ternary triangular
forms by using Burgess’ estimation. So, we use purely arithmetic method to
find such an explicit upper bound, and finally, we classify all regular ternary
triangular forms. We also prove five conjectures given in [31] on the number of
representations of ternary triangular forms. In fact, Xia, Zhang and Baruah,
Kaur proved these conjectures independently. However, our method is quite
different from their methods. Furthermore, we prove quite a generalized
version of the original conjectures. Finally, we prove Conjecture 2.5 given in
[30]. Most results were done by joint work with B.-K. Oh.

In Chapter 2, we present some basic notations and terminologies that will
be used throughout the thesis. The explicit definition of a triangular form
and its regularity will be given in the chapter. Some properties of the Watson
transformation on triangular forms will be presented in this chapter, which
will play a key role in classification.

In Chapter 3, we classify all regular ternary triangular forms. First of
all, we show that in some cases, Watson transformations preserve the reg-
ularity. Then we find all stable regular ternary triangular forms which are,
by definition, at the floor level with respect to Watson transformations. To
find stable regular ternary triangular forms, we obtain a nice upper bound
of the number of primes at which the corresponding ternary quadratic forms
are anisotropic and then proceed to find an upper bound of the discriminant
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of regular ternary triangular forms. After determining all candidates for sta-
ble regular forms, we prove the regularities of those candidates. Next, we
show there is no missing prime greater than 7 (for the definition of a miss-
ing prime, see Chapter 3). Then, we trace back Watson transformations for
primes 3,5, and 7 to enumerate all candidates of regular ternary triangular
forms. Finally, we verify the regularities of all candidates. The regularities of
most candidates are easily proved by using some elementary method. Only
five of the candidates need to be treated delicately and the proof of regular-
ity of each triangular form involves some techniques parallel to the ones ap-
peared in [25] and some properties of the graph defined on ternary quadratic
forms(cf. [4],[18]). Most results of this chapter are part of [22].

In Chapter 4, we discover some general relations between the number of
representations of a ternary triangular forms and the number of representa-
tions of the corresponding quadratic forms. We prove some relation between
r(n, f) and r(4n, f) for three binary quadratic forms f = (3,5),(1,7), and
(1,15). Using this relation, we generalize some conjectures. To prove the
conjectures, we first deform the representation of corresponding quadratic
form with congruence condition into the representation of subform. Then,
the main method of the proofs is to use certain rational isometries between
quadratic forms. Most results of this chapter are part of [21].

In Chapter 5, we prove Conjecture 2.5 given in [30]. Most results of this
chapter are part of [3].



Chapter 2

Preliminaries

In this chapter, we introduce some definitions, notations and well-known
results which we frequently use throughout the thesis.

2.1 Triangular numbers and triangular forms

A nonnegative integer of the form

1
2
is called a triangular number. For example, 0,1, 3,6, 10, 15, - - - are triangular

numbers. Since T, =T_,_1, T}, is a triangular number for any integer z. For
positive integers ay, as, ..., ax, we call a polynomial of the form

A(ay, ag, ... a;) == a Ty + aTy, + -+ + a1y,

a k-ary triangular form. A triangular form A(aq,as,...,ax) is called prim-
itwe if ged(aq, ag, ..., ax) = 1. Unless stated otherwise, we always assume
that

every triangular form is primitive.
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For an integer n and a k-ary triangular form A(aq, as, ..., ax), we say that n
is represented by A(aq,as, ..., a) if the Diophantine equation

arly, +adly, + -+ a1y, =n
has an integral solution. We also define
T(n,{ar,...,ar)) = {(z1,...,21) € 7F:a T, + -+ ap T, =n}

and t(n, (a1, as,...,a;)) to be the cardinality of the above set. Note that
t(n, (a1, as,...,ax)) is always finite since we are assuming a; > 0 for every i.

A triangular form A(ay, ag, . . ., ax) is called universal if it represents every
positive integer, that is,

arTy, + asTy, + -+ + axT,, = n is soluble in Z

for any positive integer n. A triangular form A(ay, ag, . .., ax) is called regular
if it globally represents every integer which is locally represented. In other
words, A(ay,as,...,ax) is regular if the following implication holds for any
positive integer n; if a; T, + a1}, + - - -+ a;1,, = n is soluble in Z, for any
prime p, then a1}, + a1y, + - - - + a1, = n is soluble in Z.

The following lemma appear in [10] says that we may ignore the prime 2
when we consider the regularity of triangular forms.

Lemma 2.1.1. Any primitive triangular form is universal over Zs.

Note that A(ay,ag, - ,ax) represents n if and only if the equation
a2z + 1)+ ag(2va + 1)? + -+ ap(2z, + 1) =8n+a; +az + - -+ + ay

is soluble in Z. This equivalence shows how the representation of a triangular
form is transformed into the representation of a diagonal quadratic form with
congruence conditions. Now we can reformulate the regularity in a practical
way. A ternary triangular form A(a, b, ¢) is regular if the following implication
holds for any positive integer n; if ax? + by* + cz? = 8n+a + b+ ¢ is soluble
in Z, for any odd prime p, then az? 4+ by? + c2* = 8n + a + b + ¢ for some
odd integers x,y and z.
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2.2 Quadratic spaces and lattices

Let Q be the field of rational numbers. For a prime number p, let Q, denote
the field of p-adic numbers and Q.. denote the field of real numbers R. We
always assume that F' = Q or F' = Q,. Let V be a finite dimensional vector

space over F'. Let
B:VxV—>F

be a symmetric bilinear form on V', which means that
B(z,y) = (y,x) and Blcx+y,z)=cB(z,z)+ By, 2)

for any z,y,z € V and ¢ € F. We call (V, B) be a quadratic space over F'.
We define the quadratic map ) : V — F associated with B by

Q(z) = B(x, z)

for x € V. Let V be a quadratic space over F with symmetric bilinear form
B and B = {z1,x9, -, 2 }(dimV = k) be a basis for V', where dimV = k.
The matrix

(B(xmxj))gi,jgk

is called the matriz presentation of V' and we write
V >~ (B(z;,x;)) in *B.

We define the discriminant dV of V' by the determinant of the matrix of V.
In other words,

dV = det(B(x;, z;)) € (F*/((F*)*) U {0},

where F'* is the multiplicative group of non-zero elements of the field F.
Note that dV is independent of the choice of basis for V.. We call V' a regular
quadratic space if dV # 0. In this thesis, the term quadratic space always
refer to a regular quadratic space and thus we omit the adjective reqular. Let
(V', B') be another quadratic space over F and let o : V' — V' be a linear
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transformation. We call o a representation if
B(z,y) = B'(cx,0y)

for all z,y € V. If further o is a linear isomorphism, then we say that o is an
isometry. The set of all isometries from V onto V itself is denoted by O(V).
Let Z be the ring of rational integers and Z,, be the ring of p-adic integers
where p is a prime number. Let R = Z or R = Z, for a prime p and let F'
be the field of fractions of R. An R-lattice L on V is a finitely generated
free R-module which spans V' over F'. Note that L has induced symmetric
bilinear map B and quadratic map @) from V. Let L be an R-lattice on a
quadratic space V over F. For an R-basis € = {y1,ys,...,yx} of L, we call

My = (B(yi, Y;))1<ij<k

the matriz presentation of L in €. If M is diagonal, then we simply write

L~ <Q(1’1), Q(x2)7 cee 7Q($k)>

We define the discriminant dL of L by the determinant of the k x k matrix

(B(Yi,y;))- The scale sL of L is defined by the ideal in R generated by the
set

{B(z,y) | z,y € L}

and the norm nlL of L is the ideal generated by the set

{Q(x) |z € L}.

We say L is integral if s C R and primitive if sL = R. We call L isotropic
if there is a non-zero vector = € L such that Q(x) = 0, anisotropic otherwise.
The corresponding quadratic form of L is defined by

fr :fL($17$27~--,$k) = Z B(in,xj)xil'j.

1<i,j<k

We say that the quadratic form is primitive, integral, -- -, etc, if the corre-
sponding lattice is. Let L and K be R-lattices on quadratic spaces V and W,
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respectively. A representation of L by K is a space representationo : V. — W
such that o(L) C K. If o(L) = K, then we say that L is isometric to K and
write

L~K.

Let L be a Z-lattice on a quadratic space V over Q and rank(L) = k. We
say L is positive definite if the corresponding matrix My, is. For a prime p,
we define

L,=7,®L.
Note that L, is a Z,-lattice on the quadratic space V, = Q,®V. We say that

L is anisotropic(isotropic) at p if L, is anisotropic(isotropic, respectively). In
this thesis, we always assume that

every Z-lattice 1s positive definite and integral,

unless stated otherwise. Note that a Z-lattice is called unary, binary, ternary,
-+, k-ary, ---, if the rank of the lattice is 1,2,3,--- , k,---

Let V and W be quadratic spaces over Q and let L and K be Z-lattice on
V and W, respectively. The set of all representations of L by K is denoted by
R(L, K). For the case of L = K, we let O(L) = R(L, L) and o(L) = |O(L)|.
If rank(L) = 1, then we abuse the notation and make the following definition.
For a quadratic form f(xy,z,...,zx) over Z and an integer n, we define

R(n, f) = {(zl,zg,...,zk) cZF: flz,20,...,2) = n}

and define r(n, f) to be the cardinality of the above set. Clearly, R(n, f) =
R((n), Ky), where (n) is a unary lattice and K is a Z-lattice corresponding
to f. Note that r(n, f) is always finite since the quadratic form f is positive
definite. We use the notation

<a1,a2, RN ,ak>

for diagonal quadratic form a;z? + agz + - - - + axzi also. Now for a vector
d=(dy,...,dy) € (Z/2Z)%, we define

Ra(n, f) ={(z1,22,...,2¢) € R(n, ) : 2; = d; (mod 2) for i =1,2,... k}.

10



CHAPTER 2. PRELIMINARIES

The cardinality of the above set will be denoted by rq(n, f). For the diagonal
binary quadratic forms, we also define

Ry (N, (a,0)) = {(x,9) € Ruy(N, (a,b)) : x £y (mod 4)}.

Note that if we define the cardinality of }N%(lyl)(N, (a,b)) by 7a,1)(N, (a,b)),
then we have

ran(V, {a, b)) =2-ra1 (N, (a,b)).
Lemma 2.2.1. Let m be a positive integer.

(i) If m =1 (mod 4), then we have
2r(,0)(m, (1,3)) = ra,1(4m, (1,3)).
(i7) If m =3 (mod 4), then we have
2roa)(m, (1,3)) = ray(dm, (1,3)).
(i5i) If m =4 (mod 8), then we have
2r0,0)(m; (1,3)) = r1)(m, (1,3)).
Proof. (i) If we define a map
U1 Ry (m, 2 +3y°) — ﬁ(m)(élm, 22 +3y%) by i(z,y) = (x+3y, —z+y)

then one may easily check that it is bijective.
(ii) We define a map

Zﬁz : R(0,1)<m7$2+3y2) - é(l,l)(4max2+3y2) by %(337?4) = (.T+3y, _$+y)

Then one may show that it is bijective.
(iii) One may easily show that if we define a map

x + 3y —x+y)

Vs Ro)(m, @*+3y%) = Ry (m, ®+3y%) by ds(w,y) = ( 7 g

11

fx--! _CI:I_ 1_]| -_.fj]_ T]'I_
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then it is bijective. O]

Now for a triangular form A(ay,as, ..., a), the corresponding quadratic
form is defined by

2 2 2
(a1, az,...,ar) = @12y + agwy + - + apxy,

Using these notations, the number of representations of an integer n by a
triangular form can be rewritten as the number of representations of n by
the corresponding quadratic form with a congruence condition;

t(n, (a1, ag, ..., ax)) =1, 08+ ar +ax+ -+ ag, (a1, a2, . .., ax)).

Any unexplained notations and terminologies can be found in [23] or [28].

2.3 Watson transformations

Let L be a Z-lattice and m be a positive integer. We define the Watson
transformation of L modulo m by

An(L)={z € L:Q(x+z2) =Q(2) (mod m) for any z € L}.

We denote by A, (L) the primitive Z-lattice obtained from A,,(L) by scaling
Q ®z L by a suitable rational number. Throughout this section, we further
assume that

every Z-lattice is primitive and diagonal

for convenience.
Let A(a,b,c) be a ternary triangular form and let p be an odd prime. We
define
A(A(a, by c)) = A(d, b, ),

where (a/, V', ) ~ \,({(a,b, c)). Let p be an odd prime. Let L = (a,p™b,p"c)

12
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be a ternary Z-lattice, where (abc,p) =1 and 0 < m < n. Then we have

{a,b,c) ifm=n=0,
Mp(L) =~ < (pa, b, p"Lc) if 1 =m <n,

{a,p™2b,p"2c) if 1 <m<n.

13



Chapter 3

Regular ternary triangular
forms

In this chapter, we classify all regular ternary triangular forms. We adopt
some notations which will be used throughout the chapter. For an integer n

and a diagonal quadratic form (a,as, ..., ax), we write
2
n— <a17a27"'7ak‘>
if there is a vector (xy,xs,...,x;) € Z" with (zy25---x,2) = 1 such that

a17? + aswi + - - - + axri = n. We also use the notation
2
n —-» <(11,a2,...7ak>
if there is no such vector. Note that

n — (a1, aq,...,ar) ifand only if 7@ 1)(n, (a1,a9,...,a;)) > 0.

3.1 The descending trick

The following lemma is just a reformulation of [10, Lemma 3.3].

Lemma 3.1.1. Let p be an odd prime and a, b, c be positive integers which are
not divisible by p. If the ternary triangular form A(a, p"b, p*c) with1 < r < s

14
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is reqular, then A\,(A(a, p™b,p°c)) is also regular.

Though the proof of the next lemma is quite similar to the proof of Lemma
3.1.1, we provide the proof for completeness.

Lemma 3.1.2. Let p be an odd prime. Let a,b,c and s be positive integers
such that (p,abc) = 1 and <’T“b> = —1. If the ternary triangular form
Ala, b, p°c) is regular, then A\,(A(a,b,p°c)) is also regular.

Proof. Tt is enough to show that A(p%a, p*b, p°c) is regular. Let n be a positive
integer such that the equation

p*aTy, + p*bT, + p*cT. =n (3.1.1)
is soluble over Z,, for any prime p. Then
8n + p’a + p*b + p*c — gen({pa, p°b, p°c)).

Thus

21 21
8 (n—l—p a+?t b) +a+ b+ p’c — gen({a,b,p°c)).

8 8

Since A(a,b,pc) is regular, there is a vector (z,y,2) € Z3 with zyz =
1 (mod 2) such that az? + by* + p°cz® = 8n + p?a + p?b + p°c. Since n
is divided by p, we have az® + by? = 0 (mod p). From the assumption

—ab
(7(1) = —1, we have z = y = 0 (mod p). So

2 2
pa (%) +p?b (%) + pecz? = 8n + pPa + p*b + pic

with 2 - 2.2 =1 (mod 2). Thus Equation (3.1.1) is soluble in Z. This

p
completes the proof. O

For an odd prime p and a ternary Z-lattice L, we say that L is p-stable if

(1,-1) — L, or L,~{(1,—A,) L (pey)

15
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for some ¢, € Z;. Furthermore, we say that L is stable if L is p-stable
for every odd prime p. A ternary triangular form is called p-stable (sta-
ble) if the corresponding quadratic form is p-stable (stable, respectively).
Let A(a,b,c) be a regular ternary triangular form. By Lemma 3.1.1 and
Lemma 3.1.2, we may take \,-transformations to A(a, b, ¢) several times for
odd primes dividing the discriminant and obtain a stable regular ternary
triangular form A(d’,¥,c’). In general, the corresponding quadratic form
(@', b, ') has smaller discriminant and simpler local structure than (a, b, c).

3.2 Stable regular ternary triangular forms

In this section, we prove that there are exactly 17 stable regular ternary
triangular forms. Throughout this section, r; denotes the k-th odd prime so
that {r1 =3 <ry =5 < r3 =7 < ---} is the set of all odd primes. Let
A(a, b, c) be a stable regular ternary triangular form. We always assume that
O<a<b<ec

Lemma 3.2.1. For an integer s greater than 1, let py < ps < -+ < ps be
odd primes. Let u be an integer with (u,p1py---ps) = 1 and let v be an
arbitrary integer. Then there is an integer n with 0 < n < (s + 2)257! such
that (un + v, p1pa -+ ps) = 1.

Proof. See [20, Lemma 3]. O

Though Lemma 3.2.1 gives, in general, a nice upper bound of the longi-
tude of arithmetic progression satisfying the assumption, there is a shaper
bound in some restricted situation.

Lemma 3.2.2. Under the same notations given in Lemma 3.2.1, if s < pq,
then there is an integer n with 0 < n < s such that (un + v, p1ps---ps) = 1.

Proof. Trivial. O]

Lemma 3.2.3. Let p > 5 be a prime and let d be a positive integer with
(d,p) =1. Let L = (a, b, c) be a p-stable Z-lattice that is anisotropic over Z,.
Then there is an integer g such that

16
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(i) 0 < g <p*
(i1) dg+ a+b -+ (a,b) over Z,;
(11i) dg+a+b+c— (a,b,c) over Z,;
(iv) maz{ord,(dg+a+0b),ord,(dg+a+b+c)} <1.

Proof. Since L is p-stable and is anisotropic over Z, by assumption, we have
(a,b,c) ~ (1,—A,) L (pe,) over Z,,

for some €, € Z). First, we assume that p divides c. Since (a,b) ~ (1, —=4,),
it does not represent v € Z, satisfying ord,y = 1 (mod 2). Since p > 5, there
exists a positive integer g; with g; < p* such that

dgi + a + b = 3c (mod p?).

Then one may easily check that g, satisfies all conditions given above. Now,
assume that p divides ab. Without loss of generality, we may assume that p
divides b. Since p > 5, there exists an integer o’ with (p,a’) = 1 such that aa’
is not a square modulo p and @’ Z —c (mod p). We take a positive integer go
with go < p such that dg, + a + b = @’ (mod p). One may easily show that
go satisfies all conditions given above, which completes the proof. O

Let T be the set of odd primes p such that the diagonal ternary quadratic
form (a, b, ¢) is anisotropic over Z,. Since such primes are only finitely many,
we let

T ={p:p>3, (a,b,c) is anisotropic over Z,}
={p1 <p2 < <pi}.

Let
T'=T-{8}={a <q@<-<q}

Note that ¢ =t if 3¢ T, and t' =t — 1 otherwise.

Lemma 3.2.4. Under the assumptions given above, we have t' < 17.

17
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Proof. Note that (a, b, c) represents every integer of the form 24n+a+b+c
over Zs. Let g be a positive integer satisfying Lemma 3.2.3 in the case when
p=q and d = 24.

By Lemma 3.2.1, there is an integer h with 0 < h < (# 4+ 1)2¢~2 such
that (24¢2h +24g+a+b+c,qp---qy) = 1. If we let k = ¢g?h + g, then one
may easily show that

24k +a+b -+ (a,b) (3.2.1)

and
24k +a+ b+ ¢ — gen({a, b, c)).

Since A(a, b, ) is regular, there is a vector (z,y, 2) € Z> with zyz = 1 (mod 2)
such that ax? + by* + cz? = 24k + a + b+ c. From Equation (3.2.1), we have
22>9.Soa+b+9c <24k + a + b+ ¢ and we have ¢ < 3k. Now

Q12 g < abe < & < (3k)% < (3q(t +1)2" %)%,
Assume to the contrary that ¢’ > 18. Then one may easily show that
gty rpyn > (3(t 4 1)2872)3,
Since ¢; > r;41 for any i, we have
(g1 qe)aras -~ qu > q5 - Ts7o - - Tog1 > (3q; (¢ +1)2° %),

which is a contradiction. Therefore we have ¢/ < 17. This completes the
proof. O]

If we are able to use Lemma 3.2.2 instead of Lemma 3.2.1, then we may
have more effective upper bound of ¢ than the previous lemma.

Lemma 3.2.5. Under the same notations given above, if 0 < t' — j < gj11
for some j such that 1 < j <t' — 1, then we have

G qr < aBgige it — i+ 1)) < (Bgiqe gt — j+1))°

Proof. Note that (a, b, c) represents every integer of the form 24n+a+b+c
over Zs. Let g be a positive integer satisfying Lemma 3.2.3 in the case when

18
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p=q: and d = 24. Let

g if j =1,
9 =4 9+ead if j =2,
g+eaq +egiet o+ 6Gagiegs g ifj >3,

where for each i, ¢; is suitably chosen in {0,1} so that

24g; +a+b+c#0 (mod ¢ ---¢q;)

for any j > 2. Note that g; = g < ¢} and g; < ¢iqa - - - ¢; for any j > 2. Since
0 < t' —j < ¢j+1 by assumption, we apply Lemma 3.2.2 with odd primes
Gjv1 < Qjr2 < - < qu, u=24¢]q - - q; and v = 24g; + a + b+ ¢ so that we
may conclude that there is an integer s with 0 < s <t — j such that

(24q%q2 © g5 -+ 249] “+a—+ b -+ C,qj+195+2 " qt/) =1.

Therefore, by a similar reasoning to Lemma 3.2.4, we have ¢ < 3¢iga - - - ¢; (' —
j +1). The lemma follows directly from this. O

Lemma 3.2.6. Under the assumptions given above, we have t < 10.

Proof. By Lemma 3.2.4, we may assume that ¢ < 17. First, assume that
g1 > 13. Since t' — 1 < 17 < @9, we may apply Lemma 3.2.5 so that

Qg2 qr < (3qit’)>.

From this, one may easily show that ¢’ < 8.

Now, assume that ¢; = 11. Since ¢’ — 2 < 17 < g3, we may apply Lemma
3.2.5 so that we may conclude that

3
7192 - qr < (361%612(75/ - 1)) .
Suppose that ¢ > 11. Since rg = 23,79 = 29,719 = 31,..., one may directly
show that
1 -rgrg- g > (3- 112 (1 = 1))°.
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Since ¢; > r;,3 for any i, we have

3
g2 qp > 11garsrg - rpqs > (3-11% - qo - (¢ — 1)),

which is a contradiction. Therefore we have ¢ < 10. Now, since t' — 1 <
13 < ¢o, we deduce, similarly to the above, that

Qa2 qr < (3qit')?,

and thus ¢ < 7.
Assume that ¢; = 7. Since ¢’ — 3 < 17 < ¢4 in this case, one may deduce

that
3
ag g < (3t —2))”,
and thus we have ¢’ < 12. Now, since t' — 2 < 13 < ¢3, we may have
3
G2 qr < (Bgige(t’ — 1)),
and hence ¢/ < 9. Since t' — 1 < 11 < ¢,
3

a2 qr < (3git)

Therefore, we have ¢/ < 7.

Finally, assume that ¢; = 5. Since t/ — 4 < 17 < ¢5, we have
qQ1q2- - qpr < (Squ2q3q4(t' — 3))3 and thus ' < 14.
Now, since t' — 3 < 13 < ¢4, we have
q1q2 -+ qp < (3Q%Q2Q3(t/ — 2))3 and t' < 12.
Then, since t' — 2 < 11 < g3, we have
G1q2 - qr < (3q%q2(t’ — 1))3, and finally we have ¢’ < 9.

The lemma follows directly from this. m

Recall that we are assuming that A(a,b, c) is stable. Hence for any odd
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prime p,
(1,—1) — (a,b,c) over Z, or (a,b,c)~(1,—A,) L (pe,) over Z,,

for some €, € Z;. In the former case, every element in Z, is represented by
(a,b,c) over Z,. In the latter case,

{v€Z,:~v-»{(ab,c) over Z,}
_ {pzw—lép LweN, 5, € ZX, b6, & (25)2}.

Recall that r; is the j-th odd prime. Let u be a positive integer not divisible
by r; and let v be an integer. Let n,, € {1,A,,}. For a positive integer i, we
define

\Iju,v(iaj;nrj)
= }{un+v 1<n<id, un+v-»(1,-A.) L (n, -rj) over ZWH.

We also define
Wow(i, J) = max{ Wy, (7, j; 1), Vuu(i, j; Ar)) }-
Let ¢ = be_1be—z . .. bo(m be the base-r; representation of ¢, that is,
1= be_lrj_l + be_grj_2 + -+ by

with 0 < b, <rjforv=1,2,...,e —1 and b._; > 0. We define

) 0 ifi=0 (mod ri*™),
€4 =
! 1 if i # 0 (mod r2*71).

21
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We also define

min <b2k—1 + € ;(k), Tj;) if k < [e+1]
wi,j(k) - min <b25_1 + 61'7]‘(5), %) ife=20and k = 5,
1 ife=20—1and k =29.

Lemma 3.2.7. Under the notations and assumptions given above, we have

uvZ] SZ [] wl,]()

Proof. Since both cases can be done in a similar manner, we only provide the
proof of the case when e = 20 for some positive integer 6. Without loss of

generality, we may assume that u = 1. We have to show that the number of
=, (75 2k 177; ) in the set {1+v,2+wv,...,i4v} is less
than or equal to the rlght hand Slde where 7, (77;],) is a square (nonsquare,

integers of the form r;

respectively) in Z;° .
For any integer k such that 1 < k <4, let

1= szk_l(rjak +boe_1) + B, (0< B < T?k—l —1).

Let r?k_l(x + 1) be the smallest integer greater than v that is divisible by
T?k_l. Then any integer in the set {rjzk_l(x +5): 1 <s <rjap+ by}
is less than or equal to ¢ + v. Note that there is at most one more integer

other than these integers that is divisible by 7"2'c !

, and that is less than or
equal to ¢ + v. Note that such an integer ex1sts only when ¢, (k) # 0 (or
Bk # 0). Furthermore, if such an integer exists then it must be T%_l(l’ +
TJOék + b2k 1+ 1)

TJ quadratlc non re81dues in the consecutlve Tj 1ntegers Therefore there

Ll quadratic non-residues in

{r?k’l(x +5):1<s<rja;}.

Note that o = [j] for any 1 < k < 9. The remaining multiples of er !
j
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are contained in

{rgkfl(x—i—rjozk—i— 1), rzkfl(:ijrjak +2),... r%*l(x%—rjak +boi—1+€5(k))}

J J g

Among them, there are at most 1; ;(k) quadratic residues, and at most 1; ; (k)
quadratic non-residues. Note that there is at most one multiple of 7“32.‘”rl in
{14+ v,2+wv,...,i4+ v} which is, if exists, contained in the set

{rjz‘s_l(x +1), rjz‘s_l(x +2),... ,r?‘s_l(x + bos—1 +€;(9))}-
Note that there are at most v, ;(§) quadratic residues or a multiple of r;,
and at most v, ;(6) quadratic non-residues or a multiple of r; in the set
{r+1,2+2,..., 2+ by_1+¢€;(0)} The lemma follows from this. O

For the sake of brevity, we let

for positive integers ¢ and j.

1
Remark 3.2.8. One may easily show that a;; < {——‘ for any positive inte-
T,

j
gers i and j, where [-] is the ceiling function. It is a little bit complicate to
compute an upper bound of V., (i, j) by using Lemma 3.2.7. Instead of that,
one may easily show that

ri+11 1
\I[uv '7. < ! N
i) < P

Recall that T is the set of all odd primes at which (a, b, ¢) is anisotropic,
and |T'| =t < 10 by Lemma 3.2.6.

Lemma 3.2.9. Let i be a positive integer. For any integer s > t, we define

bij(s) = max (aij, [L—D for j=1,2,...,s—1. Then we have
r

{1<n<i:8nta+tb+c—s (a,bc)}| >i—bsy(s)—bia(s)—- —bse1(s).

23



CHAPTER 3. REGULAR TERNARY TRIANGULAR FORMS

Proof. Let s be any integer greater than t and let J ={j e N:r; € T'}. We
alsolet ={jeJ:j<s—1}, h=J—J,and J3={1,2,...,s—1}—J;.

Note that |Jo| < |J3] and for any j € J5, ‘< b;;(s) by assumption. From
T

S

Remark 3.2.8, for any j € Jy, we have a;; < [i—‘ < [i—‘ Thus we have
] Ts

Do =Y gt Y i <Y aig + D] {H

jedJ J1€J1 Jj2€J2 J1€J1
s—1
<D b () D bigy(s) < ) big(s).
J1€J1 Jjs€Js j=1

Since A(a, b, c) is stable regular, we have

{1<n<i:8n+a+b+c—> (abc)}
={l1<n<i:8+a+b+c— gen((a,b,c))}

s—1
Z 1 — Zai’j Z 1 — Zb@j(S).
j=1

jed
This completes the proof. O

Remark 3.2.10. In the remaining of this section, we need the exact values
of ai;’s for some integers i and j. We provide some of these values in Table
3.1 below.

Lemma 3.2.11. Under the assumptions given above, we have t < 7.

Proof. By Lemma 3.2.9 with ¢ = 25 and s = 11, one may easily show that
8y +a-+b+c 2, (a,b,c) for some 1 < ny < 25. From our assumption of
a <b<c wehave 9a + b+ c < 8n; +a+ b+ ¢, and thus we have a < 25.
To prove the lemma, we will use Lemma 3.2.5 repeatedly.

First, assume that ¢; > 7. Since ¢’ — 1 < 11 < ¢, we may apply Lemma
3.2.5 so that

Qg2 qr < 25 (3Q%t1)2 .
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Table 3.1: Some values of a;;

11

9

10

11

9

11

8

12

10

11

13

16

13

41 | 29 | 22

19
20
25
26
29
32

35
41

47

49

83
314

This is possible only when ¢ < 6. Now, assume that ¢; = 5. Since t/ — 2 <

11 < ¢3, one may deduce that

%%(t/ - 1))2

Sqp < 25 (3q

q1q2 - -
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and thus ¢ < 7. Finally, since ' — 1 < 7 < ¢, we have
Q@2 qr < 25(3¢it)?
and thus ¢’ < 6. This completes the proof. H

Lemma 3.2.12. For any stable regqular ternary triangular form A(a,b, c)
with 0 < a < b < ¢, we have a =1 or 2.

Proof. For any positive integer n, we define s,, = 8n 4+ a + b + ¢. Since

{Sn 80 <2Ba+0b+c, sy 2 (a,b,c)}
C{9a+b+c, a+9+c, a+b+9c, 9a+9b+ ¢, 9a + b+ 9¢, a+ 9b+ 9c}
we have

{1 <n<3a—1:s, — (a,b,c)}| < 6.

On the other hand, by Lemma 3.2.9 with ¢ = 32 and s = 8, one may check
that
H1<n<32:s, N (a,b,c)}| > 7.

By comparing these two inequalities, we have a < 10.
Now, we will show that if 3 < a < 10, then ¢ is bounded. For each
positive odd integer k, we let

k*—1

Uk(a,b,c):{1§n< a:sniﬂa,b,c)},

k*—1

Vk(a,b,c):{lgn< a:sn—ci><a,b>},

and we also let uy, = |U| and vy = |Vi|. Note that V; does not depend
on c. For each integer a with 3 < a < 10, we will choose an integer k
suitably so that v; < uy. Note that if this inequality holds, then a +b+9c <
8(%@ — 1) 4+ a+ b+ c and therefore, we have

k> —1
c<

a—1.

26
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In fact, we choose

(a,k) = (10,5), (9,5), (8,7), (7,7), (6,7), (5.9), (4,13) and (3,29).

Now, by using Lemma 3.2.9 with ¢ =

compute the lower bound of wuy:

2

(a, F)

(10,5)

(9,5)

(8,7)

(7,7)

(5,9)

(4,13)

(3,29)

U

> 15

> 11

(6,7)
8

> 17

> 31

> 164

To compute an upper bound of vy, note that

Vi={a*a+pB*:a+b<a’a+ B’ <ka+b af=1(mod2)}

Hence one may easily show that

(Y% S 3, (Vrd S 7, Vg S 14, V13 S 30 and V29 S 161.

a — 1 and s = 8, one may easily

By comparing the lower bound for u, and the upper bound for v, we have

an upper bound of ¢ for each a = 3,4, --- , 10, as follows:
a| 10 9 8 7 6 5 3
] <291 <26 | <47 <41 | <35 |<49| <83 |<314

Now, by using MAPLE program, one may check that there is no stable

regular ternary triangular form A(a, b, ¢) for 3 < a < 10. Therefore, we have

a < 2.

Lemma 3.2.13. Under the assumptions given above, we have t < 5.

]

Proof. By the proof of Lemma 3.2.11, we have ' < 6. First, assume that
a = 2. By Lemma 3.2.9 with + = 29 and s = 8, one may easily show, by

using Table 1, that

{1<n<29:s, —(2,b,c)} > 5.
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On the other hand,

{1 <n<29:8n+2+b+c=2a+b+ cfor some odd integer a}|
=H{a>3:2024+b+¢<8-294+2+b+c, a=1 (mod 2)}| = 4.

Thus we have 2490+ ¢ < 8-29+4+2+ b+ cand b < 29. Let g be a positive
integer satisfying Lemma 3.2.3 in the case when p = ¢; and d = 24. Note
that

24¢Pn + 249 +2+b+c — (2,b,c) over Zs

for any integer n. For any positive integer r, define

h(r) =24¢(r —1)+24g+2+b+c.

Clearly h(r) is represented by (2,b,c) over Z, for any ¢ € {2,3,¢:}. Note
that
t'—1<5, bra(6)=2 and b7;;(6)=1 for any j >3,

where b;;(s) is an integer defined in Lemma 3.2.9. From this, similarly with
the proof of Lemma 3.2.9, one may easily show that there exists a positive
integer r with 1 <r < 7 such that h(r) is represented by (2, b, ¢) over Z,, for
any i = 2,3,...,t'. Therefore, we have

h(r) =24¢ (r — 1) +24g +2 + b+ c — gen((2,b,¢)).
Furthermore, since A(2,b, ¢) is regular, we have
h(r) = 24¢2(r — 1)+ 249 + 2+ b+ ¢ — (2, b, c).

From our choices of g and r, we have h(r)—c - (2,b). Thus, 2-+b+9c < h(r),
which implies that ¢ < 21¢?. Therefore we have

q192 - qv < abe < 58¢ < 1218¢;.

This implies that ¢’ < 4.
Now, assume that a = 1. By Lemma 3.2.9 with ¢ = 35 and s = 8, one
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may easily show that
{1<n<35:s, — (1,b,c)} > 8.
On the other hand,
{1<n<35:8n+1+b+c=a?+b+c for some odd integer a}|

—Ha>3:a+b+c<8-35+1+b+¢, a=1(mod2)} =T7.

Thus we have 1+90+¢ < 8-35+ 1+ b+ c and b < 35. Similarly to the case
when a = 2, one may deduce that ¢ < 21¢?. Therefore, we have

Q1q2 -+ q < abe < 35¢ < 73543,

which implies that ¢ < 4. This completes the proof. m

Lemma 3.2.14. For any stable regqular ternary triangular form A(a,b, c)
with 0 < a < b < ¢, we have a + b < 21.

Proof. Note that a =1 or 2 by Lemma 3.2.12. First, assume that a = 2. By
Lemma 3.2.9 with ¢« = 19 and s = 6, one may easily show that

{1<n<19:8n+2+b+c— (2,b,c)}| >5.
On the other hand,

{1<n<19:8n+2+b+c=2a%+b+c for some odd integer o}
=Ha>3:202+b+¢<8-194+2+b+c, a=1 (mod 2)}| = 3.

Thus we have 2+ 90+ ¢ < 8-19+ 2+ b+ ¢, and b < 19. Now, assume that
a = 1. By Lemma 3.2.9 with ¢ = 20 and s = 6, one may check that

{1<n<20:8n+1+b+c—(1,bc)}| >6.

29



CHAPTER 3. REGULAR TERNARY TRIANGULAR FORMS

On the other hand,

{1<n<20:8n+1+b+c=a?+b+c for some odd integer a}|
=NHa>3:a>+0+¢c¢<8-20+1+b+c, a=1 (mod 2)}| =5.

Thus we have 1 + 90 +¢ < 8-20+ 1+ b+ ¢, and b < 20. O

Now, we are ready to classify all stable regular ternary triangular forms.
The following lemma which is a direct consequence of Lemma 2.2.1(iii) is
very useful to prove the regularity.

Lemma 3.2.15. Let m be a positive integer congruent to 4 modulo 8. Then

rn(ms (1,3)) = %r(m, (1,3)).

Theorem 3.2.16. There are exactly 17 stable reqular ternary triangular
forms.

A =A(1,1,1), Ay=A(1,1,2), A;=A(1,1,3), As=A(1,1,4),
As=A(1,2,2), Ag=A(1,1,5), A;=A(116), As=A(1,2,3),
Ao =A(1,2,4), Ap=A(1,25), A;=A(1,1,12), Ap=A(1,3,4),
A =A(2,2,3), A =A(1,2,10), Ay =A(1,1,21), Ay =A(1,4,6),
Arr = A(1,3,10).

Proof. By Lemmas 3.2.12, 3.2.13 and 3.2.14, we have
t<b5, 1<a<2, and a+0b<21.

First, we want to find an upper bound for ¢ for each possible pair (a,b).
Since all the other cases can be done in a similar manner, we only consider
3 representative cases here.

(i) (a,b) = (2,2). Let By = {4-3,4-7,4-11,4-19,4-23,4-31}. Suppose
that ¢ > 16. For any e; € Ej, e; is not represented by (2,2). Furthermore,
since e; + ¢ < 4 4+ 9¢ by assumption, e; + ¢ N (2,2,¢). Since A(2,2,c¢) is
stable regular, there is an odd prime divisor p of e; + ¢ such that (2,2, ¢) is
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anisotropic over Z,. Therefore, p divides ¢ and also divides e;. Furthermore,
since |E4| = 6, there are at least six such odd primes. This is a contradiction
to the fact that t < 5. Thus, we have ¢ < 15 if (a,b) = (2,2).

(ii) (a,b) = (2,3). Let By = {69,117,141,213,285,333}. Suppose that
¢ > 42. Since we are assuming that A(2, 3, ¢) is 3-stable, ¢ is not divisible by
3. Any element of Ej is of the from 8n+2+3 for some positive integer n, and
the elements of F5 share no odd prime divisors other than 3. Let ey € Ej.
From the assumption that ¢ > 42, one may easily check that eo+c =N (2,3, ¢).
Since A(2, 3, ¢) is stable regular, there is an odd prime p dividing e + ¢ and
(2,3, ¢) is anisotropic over Z,. Hence p is greater than 3 and divides e;. Thus
there are at least six such odd primes. This is a contradiction, and we have
c <A41.

(iii) (a,b) = (2,6). Since A(2,6,c) is 3-stable, ¢ is not a multiple of 3.
Note that 48 + ¢ =8 -5+ 2+ 6+ ¢ = (2,6,c). Thus there is an odd prime
p > 3 dividing 48 4+ ¢ and (2,6, ¢) is anisotropic over Z,. Therefore, 48 is
divisible by p, which is a contradiction. Therefore, the pair (a,b) = (2,6) is
impossible.

All the other cases can be done in a similar manner to one of the above
three cases, and one may obtain an upper bound for ¢ in each case. After
that, with the help of MAPLE program, one may show that there are 17
candidates of stable regular ternary triangular forms given above.

For each i = 1,2,--- 17, we write A; = A(a;, b;, ¢;) and L; = {(a;, b;, ;).
For any : € U = {1,2,4,5,6,8,9}, it is well known that A; is universal (see
[13, p.23]). Hence we may assume that ¢ & U. Let n; be any positive integer
such that

n; = 8n; + a; + b; + ¢; — gen(L;).

Note that L; has class number 1 for any 1 < ¢ < 17 and thus n; — L;.
For i € {11,13,14, 15,16}, one may easily check that

R(ﬁ/’n L’L) - R(l,l,l) (ﬁ/h LZ)7
that is, if a;2% + biy® + ;2 = n;, then xyz = 1 (mod 2). Assume that

i € {7,10}. Since the class number of L; is 1 and it primitively represents
n; over Zy, there is a vector (x,y,z) € R(n;, L;) with (z,y,2,2) = 1. One
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may easily check that (z,y, z,2) = 1 implies zyz = 1 (mod 2) in this case. If
1 = 12, then one may easily show that

7 (Mis Li) = 7(0,0,0) (M, Li) 4+ 7(0,01) (7, Li) + 71,1,1) (75, Li).

Similarly to the previous case, the existence of a vector (x,y,z) € R(n;, L;)
with (z,y,2,2) = 1 implies that

7(0,0,1) (M5 L) + 11,1y (16, L) > 0.
By Lemma 3.2.15,

7“(1,1,1)(87% + 8,22 + 3y? + 42%) = Z 7“(1,1)(87% 18422 2%y 3y2)
z:odd
2
= Z 57”(8711‘ + 8 — 422, 2+ 3y2)
z:odd
2

- 2 -
= gr(0,0,l)(nh Lz) + 57“(171’1)(7%, LZ)

Therefore we have r(; 11y (7, * +3y* +42%) = 2r o 0.1) (7, 2° 4+ 3y*> +427) > 0.
If + = 3, then one may easily check that
(13, Li) = 270,00y (Mis L) + ra,1,0)(6, L).

By Lemma 2.2.1(iii), we have

raan(8n; 4+ 5,22 + y* + 32%) = Z ran(8n; +5 — 2%, y* + 327)
z:0dd

— Z 2r(0,0)(8n; + 5 — 22 y° + 322)
x:0dd

= 27’(170?0) (871/1 + 5, .232 + y2 + 32’2)

Thus we have 7 1,1)(1;, 2 + y* + 32%) = %7‘(@, 2?2 + 3% + 32%) > 0. Finally,

assume that i = 17. Note that if z2+3y*+10z% = 8n+14, then z = y (mod 2)
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and z = 1 (mod 2). By Lemma 3.2.15 again, we have

raa)(8n; + 14, 2% 4+ 3y* 4+ 102%) = Z P (8n; + 14 — 1022, 22 + 34)
2€Z

2
- Z §T(8ni + 14 — 1022, 2% + 3y?)

2€EZ

2
= 57“(8711- + 14, 2% + 3y* + 102%).

This completes the proof. n

3.3 Classifications of regular ternary triangu-

lar forms

In this section, we prove that there are exactly 49 regular ternary triangular
forms. Let A(d/,V, ) be a regular ternary triangular form and let A(a, b, ¢)
be the stable regular ternary triangular form obtained from it by taking A-
transformations, if necessary, repeatedly. Here, we are not assuming that
a < b < c¢. It might happen that there is an odd prime [ dividing a'b'c
such that (abc,l) = 1. We call such a prime [ a missing prime. Note that
Ap 0 Ay = A\; o\, for any odd primes p and ¢. Thus if [ is a missing prime,
then one of the followings holds:

(i) A(a,I%b,1?c) is regular.

—ab
(ii) A(a,b,l?c) is regular and (Ta) =—1.

Lemma 3.3.1. There is no missing prime l greater than 7.

Proof. Let | be a missing prime. Then there is a stable regular ternary
triangular form A(a, b, ¢) such that (abc,l) = 1, and (i) or (ii) given above
holds.

Assume that the case (i) holds, that is, A(a,?b, [?c) is regular. We let

sp,=8n+a+Pb+0Pc for n=1,2,3,---.
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First, we prove that [ < 131. Assume to the contrary that [ > 137. One may
easily check that if

ofa+ BAPb + 4 1Pc < 8l +a+ 1*b+ IPc

with odd integers o, 3 and v, then 32 = 42 = 1. Thus we have

N 0 1 1 1
<n<l: <2422 < =
‘{1_71_1 sn—><a,lb,lc)}‘_[\/a+4 S| <2+

On the other hand, by Theorem 3.2.16, the set of odd primes at which (a, b, c)
is anisotropic is

0, {3}, {5}, {7}, {3,5} or {3,7}.

From Remark 3.2.8, we have
( ‘l ‘
2 —-‘ if p=3,

3 L-‘ if p=>5,
H1<n<l:s,» {(a,?b%c) over Z,}| <

4 L-‘ if p=717,

49
[+1 .
|5 if p=1.
. 3 4 )
From the assumption that [ > 137, we have 2—5l +3> El + 4. Since
2 3 [+1 71 11
B (et B S R R At
l (9l+ +25l+3+ 2) 450l 5
we must have
2 9 12 71 11
1< < - Sp ) ) }‘Z AT A
H <n<l:sy -2 (a, 12, 1%) {4505 5
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450 2
\/2l + ﬂ This is a contradiction and hence we have [ < 131. Now, by

71 11
However, one may directly show that if [ > 137, then {—l — —-‘

a direct calculation with the help of MAPLE, one may check that for any
prime 11 < ¢ < 131 and any stable regular ternary triangular form A(a, b, ¢),
all of the triangular forms A(a, ¢°b, ¢*c) are not regular.

Now, assume that A(a,b,*c) (a < b) is regular with (—Tab) = —1. By
Theorem 3.2.16, (a,b) is one of the following pairs:

(L1), (1,2), (1,3), (L4), (2,2), (1,5), (1,6), (2,3), (2,4),
(1,10), (2,5), (1,12), (3,4), (2,10), (1,21), (4,6), (3,10).

First, suppose that [ > 29. Since all the other cases can be done in a similar
manner, we only consider the cases when (a,b) = (1,1) or (1,5). Assume
that (a,b) = (1,1). Since

418 + Pc=8-52+ 1+ 14 I*c — gen((1,1,1%c)),

and A(a, b, [%c) is regular, there is a vector (x,y, 2) € 2® with zyz = 1 (mod 2)
such that 22 + y? + [2c2® = 418 + [?c. From the assumption that [ > 29,
we have 22 = 1. This is a contradiction, for 418 is not a sum of two integer
squares. Next, assume that (a,b) = (1,5). Note that

110 + P =8- 13+ 1+ 5+ [*c — gen((1,5,1%c)).

Since we are assuming that A(1, 5, [%c) is regular, there is a vector (1, y1, 21) €
Z3 with z1y121 = 1 (mod 2) such that 2% 4+ 5yf + [?c2? = 110 + [?c. Since
[ > 29, we have 22 = 1. This is a contradiction, for 110 is not represented by
(1,5). Therefore, we have [ < 23. Now, by a direct calculation with the help
of MAPLE, one may check that for any prime 11 <[ < 23 and any stable
regular ternary triangular form A(a, b, c), all of the forms A(a, b, [*c) are not
regular. This completes the proof. m

Remark 3.3.2. From Theorem 3.2.16 and Lemma 3.53.1, one may easily de-
duce that any prime divisor of the discriminant of a reqular ternary triangu-
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lar form is less than or equal to 7.

Let A(d,b',c) be a regular ternary triangular form. Then there are
nonnegative integers es, es and e; such that

A5 (A5 (AT (A, ) = Ala, b, o),

is stable regular. Hence, to find all regular ternary triangular forms, it suffices
to find all regular ternary triangular forms in the inverse image of the A,-
transformation of each regular triangular form for each p € {3,5,7}. Note
that any triangular form in the inverse image A\ YA(a,p b, p°c)), for abc #
0 (mod p) and 0 < r <'s, is given in Table 3.2.

Table 3.2: Inverse image of \,-transformations

Cases Triangular forms in A, (A(a, p'b, p°c))
A(p?a, b, c), Ala, p*b, c), Ala, b, p*c),

A(p*a, p*b, c), A(p*a, b, p°c), Aa, p°b, p°c)

r=0,s=1| A(pa,pb,c), Ala, p?b, p*c), A(p*a, b, p*c), Ala, b, p*c)

r=0,s>2 A(a, p?b, p*T2c), A(p2a, b, p*™2c), A(a, b, p*T2c)

r=s= A(pa, b, p*c), A(pa, p*b, ¢), A(pa, b, ¢), A(a, p°b, pc)
r=1,s>2 A(pa,b,p*c), Ala, p?b, p*+3c)
r Z 2 A(a7pr+2b’ps+2)

First, we find all regular triangular forms in the inverse images of stable
regular ternary triangular forms via A -transformation for each p € {3,5, 7},
and then we repeat this process again until any inverse image does not contain
a regular triangular form. As a sample, ternary triangular forms lying over
A(1,1,1) are given in Figure 3.1. In that figure, if the triangular form is not
regular, then the smallest positive integer which is represented locally, but
not globally by the triangular form is given in parentheses.

Finally, one may have a list of 49 candidates for the regular ternary
triangular forms including 17 stable regular forms, which is given in Table
3.4. The regularities of 32 forms except 17 stable regular forms will be proved

36



CHAPTER 3. REGULAR TERNARY TRIANGULAR FORMS

28523835 A(1,81,81)(19)
A3 lAs
A(1,1,25)(5) A1, 1,49)(3)
A(L,1,9) ALY A1 25 95)(5) A(1.49, 49)(8)

Figure 3.1: Triangular forms lying over A(1,1,1) via A-transformations

here. Before doing that, we need some lemmas.

Let p be an odd prime and let k& be a positive integer relatively prime to
p. Assume that p is represented by the binary quadratic form 22 + ky?. In
1928, B. W. Jones proved in his unpublished thesis that if the Diophantine
equation z? + ky®> = N(N > 0) has an integral solution, then it also has
an integral solution z,y with (z,y,p) = 1. The following lemma follows
immediately from this.

Lemma 3.3.3. Let N be a positive integer. If 2 + 2y> = N for some
(z,y) € Z2, then there is a vector (%,y) € Z* such that

F# ¢ (mod 3), 2 =2z (mod 4), j=y (mod 2) and >+ 2j* = N.

We also need the following lemma which appeared in the middle of the
proof of [25, Theorem 3.1].

Lemma 3.3.4. Let S € M3(7Z) be a positive-definite symmetric matriz and
let T € M3(Q) such that 'TST = S. Let (u,v,w) € Z* and define

U, u
v | =T" (v ], n=1,23,---.
Wy, w
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Assume that
(1) T has an infinite order.
(i) (Up,Vp, wy) € Z3 for any n.
Then (u,v,w) € ker (T' — det(T")I) and dimgker ((T"— det(T7)I)) = 1.

In the following 5 consecutive propositions, we prove the regularities of
5 candidates, all of whose corresponding quadratic forms are not regular(see
[19]).

Proposition 3.3.5. The ternary triangular form A(1,4,9) is reqular.

Proof. Let L = (1,4,9) be a ternary quadratic form and let ¢ = 8n + 14
be an integer such that £ — gen(L). One may easily check that R(¢, L) =
R 1,1y(¢, L). Thus it suffices to show that £ — L. Since

gen(L) ={L,K =(1,1,36)},

we may assume that { — K.

First, assume that ¢ = 0,1 (mod 3). Since { — K, there is a vector
(z,y,2) € Z? such that z* + y? + 362° = . We have x = 0 (mod 3) or
y =0 (mod 3) and thus £ — (1,9,36) — L.

Now, assume that ¢ = 2 (mod 3). We assert that there is a vector
(1,1, 21) € R({, K) such that x; Z +y; (mod 9) or z; # 0 (mod 3). Assume
to the contrary that there is no such vector. Then, we may assume that there
is a vector (u,v,w) € R(¢, K) such that u = v (mod 9) and w = 0 (mod 3).
Let

1 3 6 36
T:§ 6 3 —36
-1 1 -3
Note that
1 0 0
Mg=10 1 0 and "TMgT = M.
0 0 36
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If we let
U1 u
v | =Tv ],
w1 w

then one may check that (uy,vy,w;) € Z* and thus (up, vy, w;) € R({, K).
Thus u; = vy (mod 9) and w; = 0 (mod 3) by assumption. Since

—Uu+v

U — v = + 8w =0 (mod 3),

we have u; = v; (mod 9). From this, one may easily check that 7" satisfies all
conditions given in Lemma 3.3.4 with S = M, and thus we have (u,v,w) €
ker(T" — I). Since ker(T' — I) = ((1,1,0)), we have (u,v,w) = k(1,1,0)
for some integer k and u? + v? + 36w? = 2k% This is a contradiction to
the fact that £ = 6 (mod 8), and we may conclude that there is a vector
(22, Y2, 22) € R({, K) such that

Ty # £yo (mod 9) or 2z # 0 (mod 3).

By changing signs of xs, 12, 29 and by interchanging the role of x5 and vy, if
necessary, we may assume that there is a vector (x3,ys, 23) € R(¢, K) such
that 2z3 + y3 + 1223 = 0 (mod 9). If we let

T3 + 2y3 - 1223 T3 — Ys — 323 2]73 + Ys + 122’3
(x47y4724> - 3 ) 3 ) 9 )

then one may easily show that (z4,vs4,24) € R(¢,L). This completes the
proof. O]

Proposition 3.3.6. The ternary triangular form A(1,3,27) is regular.

Proof. Let L = (1,3,27) be a ternary quadratic form and let ¢ = 8n + 31 be
an integer such that ¢ — gen(L). Note that

gen(L) = {L,K _3) 1 (‘1‘ ;)}

By [25, Theorem 2.3] one may show that any integer congruent to 7 modulo 8
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that is represented by K is also represented by L. Therefore, ¢ is represented
by L. Note that if 2% + 3y? + 272 = /, then

(2%, 3y%,272%) = (1, 3,3),(0,4,3),(4,0,3),(0,3,4) or (4,3,0) (mod 8).

Therefore, if there is a vector (x,y,2) € R({, L) with z = y (mod 2), then
we are done by Lemma 3.2.15. Thus we may assume that for any (z,y, z) €
R(¢, L),

y=1(mod?2), z=2=0 (mod 2) and x # z (mod 4).

Suppose that zy # 0 (mod 3) for any (x,y,z2) € R({,L). Let (u,v,w) €
R (¢, L) with u = v (mod 3). For a rational isometry

L [3 18 27
T=o|6 0 -18].
1 2 9

of My, we apply Lemma 3.3.4. Then we have (u,v,w) € ker(T + I). Since
ker(T'+ I) = ((2,—1,0)), we have (u,v,w) = k(2,—1,0) for some integer k.
One may easily check that |k| > 1 and (k,6) = 1. Hence there is a prime
g > 5 such that k = ¢s and s € Z. Then

(=’ + 30° + 2Tw? = T¢°s*. (3.3.1)

On the other hand,

) 9 4 2
ra (L) = 37 (6 (y = 20)° +3y° +272%) = 27 (67 (27) L (2 4)) '
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4 2
If we let My = (27) L (2 4), then

711
4 2
gen(My) = q My, My= |1 7 1| ,M3=(3) L ;
117 2 28

spn(Ml) = {Ml, MQ}

Note that 7 — My. By [4, Proposition 1], we have 7¢> — M; and thus
( =T7¢*s* — M. Thus r(1,1,1y(¢,L) > 0 and we are done with this case.

Now, suppose that there is a vector (x1, 41, 21) € R (¢, L) such that z1y, =
0 (mod 3). We define

9 — 3
(xl—; Zl,yl, $1g— Zl) if ;1 =0 (mod 3),
($2, Y2, 22) =
T 95—t 3s b otherwise
2 ’ 2 "3 '
Then, one may easily check that (z2,¥2,22) € Ra 1,1y (4, L). O

Proposition 3.3.7. The ternary triangular form A(1,6,27) is regular.

Proof. Let L = (1,6,27) be a ternary quadratic form and let ¢ = 8n + 34 be
an integer such that ¢ — gen(L). Note that

gen(L)

Il
—N
&~
Il
=
|_
VR
—
3
N——
——

Since Ao(L) ~ (3) L (

)
r(6,1) =1 (g 3) L G 114>) _ r(t, M)

and thus ¢ — L. If (z,y,2) € R({, L), then
(2%, 6y%,272%) = (0,6,4), (4,6,0) or (1,6,3) (mod 8).

41



CHAPTER 3. REGULAR TERNARY TRIANGULAR FORMS

Thus we may assume that for any (z,y,2) € R (¢, L),
y=1(mod?2), x=2=0 (mod2), and z # z (mod 4).

First, suppose that there is a vector (z1,y1,21) € R({,L) with x; =
0 (mod 3). If we let

1+ 92 -1 + 321
<x2uy27z2) = 9 » Y1, 6 9

then one may easily check that (z2,y,22) € Ru,11)(¢,L). Hence we may
further assume that for any (x,y,z) € R({, L), x # 0 (mod 3).

Now, suppose that there is a vector (z3,ys,23) € R({,L) with y3 =
0 (mod 3). Let y3 = 3y;. Then we have x3 + 27(2y + 22) = (. Since
v = 1 (mod 2), we have 2y5 + 25 # 0. By Lemma 3.3.3, there is a vector
(74,y4, z2) € Z* with y4 # 24 (mod 3) such that z% + 27(2y3 + 22) = ¢. Thus
(24, 3Y4, 24) € R(¢, L) such that ys #Z 0 (mod 3) or z4 # 0 (mod 3). By chang-
ing signs of x4, y4, 24, if necessary, we may assume that x4 = ys + 24 (mod 3).
If we let

Ty + 12y4 + 324 —3y4 + 624 —3.2134 + 12y4 + 324
(z5,Ys, 25) = )

2 ’ 3 ’ 18
then one may easily check that (z5,vs,25) € Ra1,1)(¢, L). Therefore, we
further assume that for any (z,y,z) € R(¢, L), zy #Z 0 (mod 3).

Suppose that there is a vector (zg,ys,26) € R(¢,L) such that ys #

+4xg (mod 9) or zg # 0 (mod 3). Then one may check that by chang-
ing signs of xg, ye, 26, if necessary, we may assume that

ze + Yo — 326 = 0 (mod 9) or xg — 4ys — 326 = 0 (mod 9).

If 26 + ys — 326 = 0 (mod 9), then we define

(@7, Y7, 27) = (

T + 926 —Ze — Ys + 326 —Zg + 8y6 + 326
2 ’ 3 ’ 18 ’
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If 26 — 4ys — 326 = 0 (mod 9), then we define

Te¢ +4ys + 326 —x6 + Ys + 326 Te — 4ys + 152
(w7,y7,27) = 9 ) 3 ) 18 .

Then one may easily check that (z7,y7, 27) € R1,1)(¢, L) in each case. Now,
we further assume that for any (z,y,z2) € R((, L),
y = +4z (mod 9) and z =0 (mod 3). (3.3.2)

Suppose that there is a vector (xg,ys,23) € R(¢,L) such that zg #
0 (mod 9). By changing signs of ys and zg, if necessary, we may assume

that ys = 4xg (mod 9) and Ts s 23 # +t4ag (mod 9). If we let

(9, Y9, 29) = (298 + 325, 2 y; i 328, - 29y8 - 6Z8) ;
then (z9,v9, 29) € R(¢, L) and yg # +4xe (mod 9). This contradicts to our
assumption (3.3.2). Therefore, we further assume that for any (z,y,z) €
R(¢, L),

y = +4x (mod 9) and z =0 (mod 9).

Take a vector (u,v,w) € R({, L) with v = v (mod 3) so that u + 2v 4 6w =
0 (mod 9). If we let

0 18 -—27
T—=_ _3 _
5 3 =3 91,
1 2 6

then one may easily check that

o O

1
ML: 0 and tTMLT:ML.
0

o o O
[\
J
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If we let
U1 u
v | =Tv ],
w1 w

then clearly, (uy,vi,w;) € Z3, and thus (uy,vy,w;) € R({,L). Note that
u; —v; = 0 (mod 3). From this, one may show that T satisfies all conditions
given in Lemma 3.3.4 with S = M, and thus we have (u, v, w) € ker(T' +1I).
Since ker(T' + I) = ((2,—1,0)), we have (u,v,w) = k(2,—1,0) for some
integer k with |k| > 1 and (k,6) = 1. Thus there is a prime divisor ¢ > 5 of
k. Now ¢ = 10¢*s? for some odd integer s. Note that

raan (6 L) =2r (€ (2 — 42) + 6y + 2727) = 2r (f, (6) L (146 248)) .

16 4

Let M; = L

) . Then

gen(M;) = spn(M;) = { My, My = (4,6,108)} .

Note that 10 — M,. By [4, Proposition 1], we have r(10¢*s?, M;) > 0, and
this completes the proof. O

Proposition 3.3.8. The ternary triangular form A(1,9,18) is reqular.

Proof. Let L = (1,9,18) be a ternary quadratic form and let £ = 8n + 28 be
an integer such that ¢ — gen(L). Note that

1 -1
gen(L)=< L, K= 1 7 2
-1 2 7

Since \o(L) ~ (9) L (f ;
R(¢, L). We may assume that x =y = 2 = 0 (mod 2). Then z # y (mod 4).

First, assume that x #Z 0 (mod 3) and y* + 222 > 0. Then by Lemma
3.3.3, there is a vector (yi,21) € Z* with y; # 2; (mod 3), y; = y (mod 4)

) ~ \(K), we have { — L. Let (z,y,2) €
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and z; = z (mod 2) such that y? + 227 = y? + 222, So 22 + 9y? + 1827 = /.
By replacing = by —z, if necessary, we may assume = + y; — 23 = 0 (mod 3).
If we let

3¢+ 9y1 +1821 —x +dy1 — 221 —x —y; +42
(xZay27Z2) = 6 , 6 , 5 ,

then one may easily check that (z2,¥2,22) € R0y (¢, L).

Now, assume that  # 0 (mod 3) and y = z = 0. Note that

ray (6 L) = 2r (6 (v — 4u)® + 9v? + 18w?) = 2r (gv 9) L (; z)) :

2
If we let My = (9) L (g 8)’ then

gen(M,) = spn(M,) = {Ml,MQ — (36) L G ;) } |

Then by [4, Proposition 1], 2p*> — M, for any prime p > 5. Note that

gzg(f)Q, <§,6>:1 and §>1.

l
So there is a prime divisor ¢ of ; with ¢ > 5. Thus we have r (5, Ml) > 0.

Finally, assume that z = 0 (mod 3). If we let

3xr+9y+ 182 —z—3y+62z —z+ 3y
<$3ay3723) = 6 ) 6 3 6 9

then one may easily check that (z3,ys, z3) € Ra1,1)(¢, L). O
Proposition 3.3.9. The ternary triangular form A(1,1,18) is regular.

Proof. Let L = (1,1,18) be a ternary quadratic form and let £ = 8n + 20 be
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an integer such that ¢ — gen(L). Note that

gen(L) — {L,K — )1 G é)}

Since \o(L) =~ (1,1,9) =~ \y(K), we have £ — L. Let (z,y,2) € R({, L).
First, assume that £ = 0 (mod 3). Then x = y = 0 (mod 3) and thus

¢ =0 (mod 9). So , ) ,
() +(5) +2*=5

l ¢
Note that 5 > 4 and 9= 4 (mod 8). Since the triangular form A(1,1,2)

1
is universal, there is a vector (z1,11,21) € Ra 11 (5, (1, 1,2>) and thus

(321,3y1,21) € Ry (¢, L).

Now, assume ¢ = 1 (mod 3). Note that zy = 0 (mod 3). Without loss of
generality, we may assume that y = 0 (mod 3). Then

(=249 (%)2 +182%.

Note that ¢ > 28, ¢ = 4 (mod 8). Since A(1,9,18) is regular by Propo-
sition 3.3.8, there is a vector (z9,¥2,22) € Raa (¢,(1,9,18)) and thus
(xg, 3o, Zg) S R(1,171) (f, <1, 1, 18)).

Finally, assume that ¢ = 2 (mod 3). Since 2%+ y*+182? = 4 (mod 8), we
may assume that x = 0 (mod 4), y = 2 (mod 4) and z = 0 (mod 2). Since
xy #Z 0 (mod 3), we may further assume that x = y (mod 3). If we let

(I’g,yg, Zd) = (xT_Fy + 3Za _x —2i_ Y + 3Z7 _x6+ y) )
then one may easily check that (z3,ys,23) € Raa,1) (¢, L). O

Theorem 3.3.10. There are exactly 49 reqular ternary triangular forms,
which are listed in Table 4.

Proof. For 1 <i <49, we write A; = A(a;, b;,¢;). Let L; = (a;,b;,¢;) be a
ternary quadratic form and let ¢;(n) = 8n + a; + b; + ¢; be any integer such
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Table 3.3: Regular ternary triangular forms

A = A(1,1,1), Ay = A(1,1,2), As = A(1,1,3),
Ay =A(1,1,4), As = A(1,1,5), A = A(1,1,6),
Ar = A(1,2,2), As = A(1,2,3), Ag = A(1,2,4),
Ay = A(1,1,9), Ay = A(1,3,3), A = A(1,2,5),
Ay = A(1,1,12), A = A(1,3,4), Ay = A(2,2,3),
Ag = A(1,1,18), Ay = A(1,3,6), A = A(2,3,3),
Arg = A(1,2,10), Ago = A(1,1,21), Aoy = A(1,4,6),
Ag = A(1,5,5), Aoy = A(1,3,9), Aoy = A(1,3,10),
Aos = A(1,3,12), Aog = A(1,4,9), Aoy = A(1,6,6),
Nos = A(3,3,4), Aoy = A(1,5,10), Ago = A(L,3,18),
As = A(L,6,9), Asp = A(2,3,9), Ass = A(3,3,7),
Asy = A(2,3,12), Ass = A(1,3,27), Ase = A(1,9,9),
Asr = A(1,3,30), Ass = A(2,5,10), Asg = A(1,9,12),
Ay = A(2,3,18), A = A(1,5,25), Ap = A(3,7,7),
Ay = A(2,5,15), Ay = A(1,6,27), Ags = A(1,9,18),
Ag = A(1,9,21), A = A(1,21,21), Ay = A(5,6,15),
Ay = A(3,7,63).

that ¢;(n) — gen(L;). In Theorem 3.2.16 and Propositions 3.3.5~3.3.9, we
have already proved the regularity of each A; when

ie{k:1<k<9,12<k<16, or k=19,20,21,24,26,35,44, 45}.

Hence we may assume that ¢ is not contained in the above set. Note that for
any integer ¢ which is not contained in {16, 26, 35,44, 45}, which we alreay
considered in Propositions 3.3.5~3.3.9, the corresponding quadratic form L;
has class number 1 and thus ¢;(n) — L,. If i € {10, 36,39, 40, 41,49}, then
one may easily show that R(¢;(n), L;) = Ra1,1)(li(n), L;). Hence €;(n) N L,
in this case.
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Now, we consider the case when 7 = 30. Note that if 2% + 3y* + 1822 =
8n + 22, then we have z = 1 (mod 2) and x = y (mod 2). By Lemma 3.2.15,
we have

rasn(8n+22,(1,3,18)) =) ran(8n+22—182° (1,3))

Z€Z

2
= gr(Sn +22,(1,3,18)).
Since the proof of the case when ¢ = 48 is quite similar to this, we omit the
proof.

Assume that ¢ = 31. Since the quadratic form (1,6,9) has class number
1 and it primitively represents 8n + 16 over Zs, there is a vector

(x,y,2) € R(8n +16,(1,6,9)), (z,y,2,2) = 1.

Since 22 + 6y? + 922 = 0 (mod 8), we have ryz =1 (mod 2).
For the remaining ¢, that is,

i € {11,17,18,22,23,25,27,28,29, 32, 33, 34, 37, 38, 42, 43, 46, 47},

one may check that A(a;,b;,¢;) can be obtained from a ternary triangular
form whose regularity is already proved by taking A,-transformations several
times for some p € {3,5,7}. Furthermore, one may easily check that the
regularity is preserved during taking the A,-transformation. This completes
the proof. O]
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Chapter 4

The number of representations
of ternary triangular forms

4.1 The number of representations of ternary
triangular forms

Let a,b and ¢ be positive integers such that (a,b,c) = 1. Throughout this
section, we assume, without loss of generality, that a is odd. We show that the
number t(n, (a,b, c)) is equal to the number of representations of a subform
of the ternary diagonal quadratic form az? + by? + cz?, if a + b + ¢ is not
divisible by 8, or a difference of the numbers of representations of two ternary
quadratic forms otherwise.

Let f(z,y,2) = ax® + by* + cz? be a ternary diagonal quadratic form.
Recall that

t(n, {a,b,c)) = {(z,y,2) € Z*: f(z,y,2) = Sn+a+b+tc, ryz =1 (mod 2)}|.

Lemma 4.1.1. Assume that a+ b+ c is odd. For any positive integer n, we
have
t(n,{a,b,c)) =r(8n+a+b+c, f(x,r — 2y, — 22)).
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In particular, if a = b = ¢ (mod 4), then we have

t(n,(a,b,c)) =r(@n+a+b+c, f(z,y,2)).

Proof. Let g(x,y,2) = f(z,x—2y,x—2z). Define a map ¢ : T'(n, (a,b,c)) —
R(n,g) by ¢(z,y,2) = (z, 5%, %5%). Then one may easily show that it is a

bijective map.

Now, assume that a = b = ¢ (mod 4). If az? + by* + c2> =8n+a+b+c
for some integers x,y and z, then one may easily show that x,y and z are all

odd. The lemma follows directly from this.

]

Lemma 4.1.2. Assume that S = a + b+ ¢, both a and b are odd and c is
even. Then, for any positive integer n, we have

t(n, {a,b,cy)
r8n+S, f(x,y,2))
r(8n+S, f(x,y,y — 2z))
2r(8n+ S, f(z,x — 4y, 2))
2r(8n + S, f(z,x — 4y, x — 22))

and if S =0 (mod 8), then

t(n,(a,b,c)) =r8n+ S, f(z,x —2y,x —2z2)) —r (Qn + %, f(z,y, z)) )

if S =2 (mod 4) and ¢ =4 (mod 8),
if S=2 (mod 4) and ¢ # 4 (mod 8
if S =4 (mod 8) and ¢ =2 (mod 4
if S =4 (mod 8) and ¢ =0 (mod 4),

Proof. Since the proof is quite similar to each other, we only provide the proof
of the fourth case, that is, the case when S =4 (mod 8) and ¢ = 0 (mod 4).
Let g(x,y,2) = f(z,x — 4y, x — 2z). We define a map

Y {(x,y,2) € Rui11)(8n+ 95, f), v =y (mod 4)}

— R(8n+S,g) by ¥(x,y,2) = (x

r—y
4 7 2

r—Zz

From the assumption, it is well defined. Conversely, assume that g(x,y, z) =
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8n + S for some (z,y,z) € Z3. Since
fle,o — 4y, — 22) = ax® + b(x — 4y)? + (v — 22)?
= az’ + br® + cx? = S2? = S (mod 8)

and S = 4 (mod 8), the integer z is odd. Therefore, the map (x,y,z) —
(x,x — 4y, x — 2z) is an inverse map of ¥. The lemma follows from this and
the fact that

t(n,{a,b,c)) =2{(z,y,2) € Rua1yBn+ 5, f) : 2 =y (mod 4)}].

This completes the proof. O

4.2 'Triangular forms and diagonal quadratic

forms

In this section, we generalize some conjectures given by Sun in [31] on the
relations between t(n, (a, b, ¢)) and the numbers of representations of integers
by some ternary quadratic forms, and prove these generalized conjectures.

Lemma 4.2.1. Let a,b (a < b) be positive odd integers such that ged(a,b) = 1
and a +b =0 (mod 8). Then

ra,n(m, (a, b)) = raq)(d4m, (a,b)) (4.2.1)

for any integer m divisible by 8 if and only if (a,b) € {(3,5),(1,7), (1,15)}.

Proof. Assume that Equation (4.2.1) holds for any integer m divisible by 8.
Let a + b = 2%k for some integer v > 3 and an odd integer k. Note that
1<a<2v k.

First, we assume u > 5. Since

a-124 (2" —a)-12=4-2""2k and 2“2k =0 (mod 8),

there exist odd integers x and y satisfying ax? + (2“k — a)y? = 2“2k, which
is a contradiction.
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Next, assume that u = 4. Since
a-7*+ (16k —a) - 1> = 4(4k + 12a) and 4k + 12a = 0 (mod 8),

there exist two odd integers xy,; such that az? + (16k — a)y} = 4k + 12a.
Thus, 4k+12a > 16k and hence k < a. Now, since a-12+(16k—a)-1?> = 16k,
there are two positive odd integers xo,y, with az3 + (16k — a)ys = 64k.
Since 16k — a > 8k by assumption, we have y3 = 1. Furthermore, since
ard = a + 48k < 49a, (z9,a) = (3,6k), (5,2k) or (7,k). Since a is odd, we
have (a,b) = (1,15) in this case.

Finally, we assume that v = 3. Since a - 1? + (8k — a) - 1* = 8k, there are
positive odd integers 3, y3 such that az3 + (8k —a)ys = 32k. Hence we have

y3=1 and ax;=a+ 24k. (4.2.2)

Note that if x3 = 3, then (a,b) = (3,5) and if z3 = 5, then (a,b) = (1,7).
Assume that x3 > 7, that is, 2a < k. Since a - 3% + (8k — a) - 1> = 8k + 8a,
there are two odd integers x4, ys such that az? + (8k — a)y? = 32k + 32a.
If y2 > 9, then a + 72k — 9a < 32k + 32a, which is a contradiction to the
assumption that 2a < k. Hence we have

yi =1 and ar;=33a+ 24k. (4.2.3)

Now, by Equations (4.2.2) and (4.2.3), we have 23 — 2 = 32. Therefore,
73 =49, 27 = 81, and k = 2a. which is a contradiction to the assumption
that k is odd.

To prove the converse, we define three maps

X1t Raay(m, 322 + 5y2) — Ry (4m, 322 + 5y°)
by xi(z,y) = (

r—05y 3xr+vy
2 72 ’

X2 ¢ E(l,l) (m, 1’2 + 7y2) — fi(l’l) (4m, Q’Iz + 7y2)
by xa(z,y) = (

3r— Ty x4+ 3y
2 72 ’
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and
X3 E(Ll)(m, 2?2 + 15y%) — §(171)(4m, x? + 15y?)
by X3('T7y) = <

r+ 15y —x+vy
2 72 '

One may easily show that the above three maps are all bijective. O

a,b,c) # (1,1,1)

g are contained

Theorem 4.2.2. Let a,b,c be positive integers such that (

and ged(a, b, c) = 1. Assume that two of three fractions g,g

mn {1, %, 7, 15}. Then, for any positive integer n, we have
2t(n, (a,b,¢)) =r(48n+a+b+c),{a,b,c)) —r(8n+a+b+c, {a,b,c)).

Proof. Note that all of a, b and ¢ are odd. Furthermore, from the assumption,
one may easily show that

—a=b=c (mod8), a=-b=c(mod8) or a=b=—c (mod 8).

By switching the roles of a,b and c if necessary, we may assume a = b =
—c (mod 8). Then we have

((aac)’ (acc)> ’ ((bbc)’ (bcc)> = {(37 5)> (57 3)7 (1, 7), (7, 1), (1, 15), (15, 1)}

Let
f=f(r,y,2)=ax’* + by’ +cz* and N=8n+a-+b+ec
One may easily show that if f(z,y,2) = 4N, then

(07 07 4)? (07 47 0)7 (a’? 47 C)7 (47 07 0)7 (4? b? C)?

(axQ,byQ,CZQ) =
or (4,4,4) (mod 8).
Let

A={(z,y,2) € R4N, f):y=2 (mod 4),zz =1 (mod 2)},
cx =2 (mod 4),yz =1 (mod 2)}.
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Note that
r(4N, f) — (N, f) = |A| + |B|.

Thus it is sufficient to show ¢(V, (a,b,c)) = |A| and (N, {(a,b,c)) = |B|. To
show the first equality, we apply Lemma 4.2.1 to show that

raayN, ) =Y ran(N = by az® + c2?) (4.2.4)
YyEZ

= ran (AN = by?), a2’ + ¢2°) = |A]. (4.2.5)
YEZ

The proof of (N, (a,b,c)) = |B| is quite similar to this. This completes the
proof. O]

Remark 4.2.3. All triples (a,b,c) satisfying the assumption of Theorem
4.2.2 are listed in Table 4.1 below. The triples marked with asterisks are
exactly those that are listed in Congecture 6.1 of [31].

1,1,7)% (1,1,15)%, (3,3,5), (1,7,7)%, (3,5,5), (1,7,15)*, (L,9,15)*
1,15,15)%, (3,5,21), (1,7,49), (1,15,25)*, (3,5,35), (3,5, 45)
1,7,105), (3,5,75), (1,15,105), (3,21,35), (1,15,225), (9,15,25)
5,21,35), (7,15, 105)

(
(
(
(

Table 4.1:

Theorem 4.2.4. Let a,b be relatively prime positive odd integers such that

: b a 3a b
one of four fractions ., ¢, 5", 3=

positive integer n, we have

is contained in {%,7, 15}. Then, for any

2t(n, (a,3a,b)) = 3r(8n + 4a + b, (a, 3a, b)) — r(4(8n + 4a + b), {(a, 3a, b)).
Proof. Since all the other cases can be treated in a similar manner, we only
consider the case when % = %, that is, (a,3a,b) = (1,3,5). One may easily
show that if 2% + 3y? 4+ 522 = 4(8n + 9), then

(2*,3y%,52%) = (0,0,4),(1,3,0), (4,0,0), (4,3,5), or (4,4,4) (mod 8).
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Let
f=flz,y,2)=2>+3y*+5z> and N =8n+9.
From the above observation, we have
3r(N, f) = (4N, f) = 31,00 (4N, f) = (4N, f)
= 27(0,0,0) (4N, f) — 7'(1,1,0) (4N, f) - 7”(0,1,1)(4N, f)-

Therefore, it suffices to show that
2r1,) (N, f) = 270,00 (4N, f) = ra,1,0(4N, f) = ro1,1) (4N, f).
Since 7(0,0,0y(4N, f) = (N, f) and

(N, f) =rain(N, f) +raoen(N, f) +reon (N, ),

it is enough to show that

1 1
7’(100)(N f) 2 110(4N f) and 7"(0,0,1)(]\7,f):57’(0,1,1)(4]\77]0)-

To prove the first assertion, we apply (i) of Lemma 2.2.1 to show that

ra00)(N, f) = ZT(I,O)(N —52% 2 + 3y?)

2€E7

1 1
) Z 7“(1,1)(4(N - 522): z? + 3y2) = 57"(1,1,0) (4N, f).

1Y/

For the second assertion, we apply (iii) of Lemma 2.2.1 and Lemma 4.2.1 to
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show that
7“(070,1)(N7 f) = Z T(o,o)(N — 522, 2% + 3y2)
2EZ
1
=5 D ran(N =52 2° + 3°)
2€Z
1
= 57”(1,1,1)<N7 z? + 3y2 + 522)
1
) Z ran(N — 2% 3y° + 52°)
TEZL
1
) Z 71,1 (4(N — 2%, 3y + 52°)
TEZL
1
= 57"(07171) (4N, f)
This completes the proof. O

Remark 4.2.5. All triples (a, 3a,b) satisfying the assumption of the Theorem
4.2.4 are listed in Table 4.2 below. Those triples marked with asterisks are
exactly those that are listed in Congjecture 6.2 of [31].

(1,3,5)%, (1,3,7)%, (1,3,15)*, (1,3,21)*, (1,5,15)%, (1,3,45)
(3,5,9)%, (1,7,21)%, (3,5,15)", (3,7,21)*, (1,15,45), (5,9,15)

Table 4.2:

Theorem 4.2.6. Let (a,b,c) € {(1,2,15),(1,15,18),(1,15,30)}. For any
positive even integer n, we have

2t(n, (a,b,c)) = r(4(8n+a+b+c), (a,b,c))—r(8n+a+b+c, (a,b,c)). (4.2.6)
Proof. First, assume that (a,b,c) = (1,2,15). Let

f=f(z,y z2)=2+2y* +152> and N =8n +18.
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One may easily show that if f(z,y,z) = 4N, then
(2*,2y%,152%) = (0,0,0),(1,0,7), or (4,0,4) (mod 8).
Hence the right-hand side of Equation (4.2.6) is

T(4N, f) — T(N, f) = 7"(17071) (4N, f)

Note that
ran(NV, ) =Y ran((N = 2¢°), 2% +152%)
YyEZ
= ran(d(N —2¢%), 2% + 152°)
YyEZL

= ra1) (AN, 2% 4 8y* + 152?)

= |{(z,y,2) € RN, f) : 2z =1 (mod 2), y =2 (mod 4)}|

by Lemma 4.2.1. Since
{(z,y,2) € R4N, f) : 2z =1 (mod 2),y =0 (mod 4)}| = r(4N, (1,32, 15)),
it suffices to show that
ran(N, f) = r(4N, (1,32, 15)). (4.2.7)
It is well known that
gen(fy = 42* + 4y* + 822 + 229) = {f1, fo, f3},

where fy = 42?4+ 6y? +622+4yz+ 222+ 22y, f3 = 222 +6y> +1222+6y2+212,
and

gen(g; = 4% + 8y* + 182% + Syz + 4x2) = {g1, g» = 22 + 10y* + 242%}.

o7
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Note that
rain(N, f) =r(N,2° + 2(z — 2y)* 4+ 15(z — 22)*) = r(N, 1)
On the other hand, the right-hand side of Equation (4.2.7) is

r (4N, 2% + 15y% + 322%) = r (4N, 3z +y)? + 15(x + y)? + 322?)
=7 (2N, 122% + 8y* + 162° + 18zy)
=1 (2N, 4822 + 8y* + 1622 + 36xy) + r (2N, 1227 + 32y + 1622 4 36xy)
=2r (N, f1).
Therefore, it suffices to show that for any positive even integer n = 2m,
2r(16m + 18, f1) = r(16m + 18, ¢1). (4.2.8)

By the Minkowski-Siegel formula, we have

r(16m + 18, fi) + 2r(16m + 18, fo) + r(16m + 18, f3)
=r(16m+ 18, ¢91) + r(16m + 18, g2).
If fi(xz,y,2) = 16m + 18, then one may easily check that = + 3y — 4z

0 (mod 8), and if fo(x,y, z) = 16m + 18, then z — 6y + 2z = 0 (mod 8).
we define a map

=

o1 {(z,y,2) € R(16m+ 18, f1) : . + 3y — 4z =0 (mod 16)}
— {(z,y,2) € R(16m + 18, f3) : . — 6y + 22 = 0 (mod 16)}

122 + 4y + 162 —1lx —y + 122 =z — 13y — 4=
by ¢1($,y, Z) = 16 ) 16 ) 16

is bijective. Furthermore, the map

) , then it

o9 {(z,y,2) € R(16m + 18, f1) :  + 3y — 42 = 8 (mod 16)}
— {(z,y,2) € R(16m + 18, f5) : . — 6y + 22 = 8 (mod 16)}

o8
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4 12y — 162 —13 4z —xr — 11y — 12
deﬁnedby¢2($,y72):<x+ Yy z r+y+4z —x Y z)

16 ’ 16 ’ 16
is also bijective. Therefore, we have

r(16m + 18, f1) = r(16m + 18, f»). (4.2.9)

Note that the above equation does not hold, in general, if n is odd. If we
define two maps

o3 : R(16m + 18, (8,10,24)) — R(16m + 18, f,)

by ¢3($,y,2) = (y+ 2Zay - 22,1’)
and

s R(16m + 18, (2,24,40)) — R(16m + 18, f;)
by ¢4(£L’, Y, Z) - (fE + 2y 2y + Z, —22’),

then one may easily check that both of them are bijective. Hence we have

r(16m + 18, g2) = r (16m + 18, (8, 10, 24)) + r (16m + 18, (2, 24, 40))
=r(16m + 18, f1) + r(16m + 18, f3),

for any non negative integer m. Therefore, from the Minkowski-Siegel for-
mula given above, we have 2r(16m + 18, fo) = r(16m + 18, g;) for any non-
negative integer m. Equation (4.2.8) follows directly from this and Equation
(4.2.9).

For the other two cases, one may easily show Equation (4.2.6) by replacing
N, f;, g; and ¢; with the following data:
(1) (a,b,¢) =(1,15,18). In this case, we let N = 8n + 34 and

fi = 42® + 4y* + 7222 + 2y,

fo = 42 + 169% + 2222 + 14yz — 22z + 4ay,
f3 = 622 + 169* + 1622 — 8yz + 62z + 6y,
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and
g1 = 42 4 34y% + 3427 + 8yz + daz + 4y, go = 102 + 18y% + 2422

Define

o1 {(z,y,2) € R(16m + 34, f1) : 3x + y+ 42 =0 (mod 16)}
— {(z,y,2) € R(16m + 34, f2) : 3x —y + 22 =0 (mod 16)}

b1 ( ) r—5y —68z —dr —Ty+ 20z —4zr+ 4y — 162
Ty, 2) =
Y 6 16 ’ 16 !
oo {(x,y,2) € R(16m + 34, f1) : 3x + y + 4z = 8 (mod 16)}

— {(z,y,2) € R(16m + 34, f2) : 3x —y + 22 = 8 (mod 16)}

by

bol,y, 2) = 9z — 5y — 52z 3z + 9y + 42 4x — 4y + 162
2\ T, Y, - 16 ) 16 ) 16 )

and
b5 : R(16m + 34,102 + 24y? + 7222)
— R(16m + 34, f1) by ¢3(z,y,2) = (v — 2y, z + 2y, 2),

b4 1 R(16m + 34, 1822 + 24y? + 402?)
— R(16m + 34, f3) by ¢u(z,y,2) = (x + 2y, —x + 2, —x — 2).
(2) (a,b,c) =(1,15,30). In this case, we let N = 8n + 46 and
f1 =422 + 4y* + 12022 + 22y,
fo = 42% + 169% + 342° + 14yz — 222 + 4ay,
f3 = 102% + 169> + 1622 + 8yz + 10xz + 10zy,

and

g1 = 42 + 4617 + 4622 + 32yz + 4wz + dzy,  go = 627 + 30y? + 4022
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Define

¢ {(z,y,2) € R(16m + 46, f1) : 3z —y — 4z =0 (mod 16)}
— {(z,y,2) € R(16m + 46, f3) : 3x — y + 22 =8 (mod 16)}

b1 ( ) Tx — 13y —4z —3x+y— 442 —4v — 4y + 162
T,Y,2) =
e 6 16 ’ 16 ’

o2 {(z,y,2) € R(16m +46, f) : 3x —y — 4z = 8 (mod 16)}
— {(z,y,2) € R(16m + 46, f2) : 3x —y + 22 =0 (mod 16)}

¢2(5U7?/, Z) = ( 16 s 16 5 16

9x — 11y + 20z 3z + Ty + 282 —4x—4y+16z)

and
¢3 : R(16m + 46,622 + 40y + 1202?)
— R(16m +46, fi) by ¢3(z,y,2) = (v + 2y, —v + 2y, 2),

¢4 1 R(16m + 46, 2422 4 30y + 402?)
This completes the proof. O

Theorem 4.2.7. For any positive integer n such that n # 1 (mod 3), we
have

2t(n, (1,1,27)) = r(4(8n + 29), 2% + y* + 272%) — r(8n + 29, 2% + 3 + 2722).
(4.2.10)

Proof. Let N = 8n + 29 and
f=flz,y,z2)=2>+y>+ 2722
g=g(r,y,2) = 82? + 20y* + 292% + 4yz + 8xz + 8xy,
h = h(z,y, z) = 222 + 5y* + 272% + 2zy.
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For any positive integer m # 1 (mod 3), we let

5 1 if m =0 (mod 3),
" 2 if m =2 (mod 3).

Note that

r(m, f) = om [{(,y,2) € R(m, f) : 2 =y (mod 3)}|. (4.2.11)
Since

7(4N, f) = 6n - 7(4N,2* + (z — 3y)* + 272%) = 65 - 7(4N, h)

and

{(z,y,2) € RN, f) : y = 0 (mod 2)}|
=y 74N, 2% + 4(x — 3y)? + 272%) = 6y - r(4N, 822 + 5y? + 272% + 4xy)
=0n {(z,y,2) € R(AN,h) : x =0 (mod 2)}|,
we have
|{(z,y,2) € R(4N, f) : y is odd} | = én| {(z,y,2) € R(4N,h) : z is odd} |.
(4.2.12)
One may easily show that if (z,y,2) € R(4N, f), then
(2%,y%,272%) = (0,0,4),(0,1,3),(0,4,0), (1,0,3), (4,0,0), (4,4,4) (mod ).

From this and Equation (4.2.12), the right hand side of Equation (4.2.10)
becomes

R(AN, f) — R(N, f) =265 |[{(z,y,2) € R(4N,h) : x =1 (mod 2)}|.
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On the other hand, by Equation (4.2.11),
t(na <17 17 27>) =T@1,1,1) (N7 f)

{(:v,y, 2 e R(N.J)

=y (N, 2% + (z — 6y)? + 27(x — 22)?) = dy - (N, g).

ey}

Therefore, it is enough to show that

r(N,g) = {(z,y,2) € R4N,h): =1 (mod 2)}|.
Now, we let

A={(z,y,2) € R(N,g) : =0 (mod 2)},
B ={(z,y,2) € R4N,h): =1 (mod 2),x+ 2z =0 (mod 8)}.

Note that x + z = 8 (mod 16) if (z,y,2) € B. Define a map ¢ : A — B by
O(r,9,2) = (@ — Tz, —0—dy+ 2, —o—2).

Then, one may easily show that ¢ is a bijection. Since g(z + z,y,—2) =
g(x,y, z) and z is odd for any (z¢, yo, 20) € R(V, g), we have

{(z,y,2) € R(N,g) : x =0 (mod 2)}|
= H{(z,y,2) € R(N,g) : 2 =1 (mod 2)}|

and thus
r(N,g9) =2{(x,y,2) € R(N,g) : x =0 (mod 2)}|.

Now, we are ready to prove the assertion. Note that if (x,y, z) € R(4N, h)
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and x =1 (mod 2), then z = £z (mod 8). Therefore, we have
{(x,y,2) € R(AN,h): x =1 (mod 2)}|
=2|{(z,y,2) € R(AN,h): x =1 (mod 2), z+ z =0 (mod 8)}|
= 2|B| = 2|A] = r(N, g).
This completes the proof. O

Since the ternary quadratic form z? + y? + 622 has class number 1, the
following Conjecture 6.7 in [31] follows directly from Theorem 3.2.16.

Theorem 4.2.8. For a positive integer n, the Diophantine equation

z(z+1) yly+1) z(z+1)
2 + 2 +6 2

7?17176)(1',:%2) = =n

has an integer solution if and only if n £ 2 -3*~1 — 1 (mod 3?") for any
positive integer r.
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The number of representations
of quaternary triangular forms

In this chapter, we prove Conjecture 2.5 in [30]. To prove this, we need a
proposition which relates the representation numbers between two quater-
nary quadratic forms in the genus of (1,2,4,17).

Proposition 5.0.1. For any positive integer n = 3,5 (mod 8), we have

2 2 2 2\ _ 2 2 2 2
r(n,x” +2y° + 42"+ 17w”) = r(n, 22° + 3y~ + 42° + 8w” + 2xy + 2yz + 2yw).
Proof. Let

f=f(z,y,z,w) =22+ 2y* + 422 + 1Tw?,
g=g(z,y,z,w) = 22 + 3y + 422 + 8w’ + 2zy + 2yz + 2yw.

First, we consider the case when n is a positive integer congruent to 3 modulo
8. Note that if (z,y, z,w) € R(n, f), then 2 # w (mod 2). Furthermore, one
may easily show that if (z,y,z,w) € R(n,f) and x = 1 (mod 2), then
2r 42y —2z — 3w =0 (mod 4). Since f(—=z,y,z,w) = f(z,y, z,w), the map
m : R(n, f) — R(n, f) defined by

771(557?/, va) = (_ﬂij,z,w),
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is a well-defined bijective map. Hence we have

H{(z,y,2z,w) € R(n, f) : 2 =1 (mod 2), 2z + 2y — 2z — 3w = 0 (mod 8)}|

z=1 (mod 2), }M

B H(a:,y,z,w) € Rn. f): 22 + 2y — 22 — 3w = 4 (mod 8)

which implies that

{(z,y,z,w) € R(n, f) : 2 =1 (mod 2)}|

r=1 (mod 2), }W

=2
2+ 2y — 2z — 3w =0 (mod 8)

{zw € RO

Note that if (z,y, z,w) € R(n, f) and x = 0 (mod 2), then 46y — 62+ 6w =
0 (mod 4). Since f(z,y,z,—w) = f(x,y,z,w), the map no : R(n, f) —
R(n, f) defined by

772(55» Y, 2, w) = (1’, Y, %, _w)7

is a well-defined bijective map. Hence we have

{(z,y,z,w) € R(n, f) : 2 =0 (mod 2), x4+ 6y — 62z + 6w =0 (mod 8)}|

=0 (mod 2),

= R :

H(%%Zaw) € R(n, f) x4 6y — 62 + 6w =4 (mod 8) }"
which implies that

H{(x,y,z,w) € R(n, f) : 2 =0 (mod 2)}|

B . z =0 (mod 2),
_2'{(x,y,z,w)€R(n,f). x + 6y — 62 + 6w = 0 (mod 8) }‘
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Now, if we define

r =1 (mod 2),
Fo— :
1 {(:E,y,z,w)GR(nyf) 2x+2y_22_3w50(m0d8) }’
z =0 (mod 2),
F, = :
2 {(gj,y,z,w)eR(n,f) x4 6y — 62 + 6w = 0 (mod 16) }’
z =0 (mod 2),
Fy= :
3 {(q;,y,z,w)ER(n,f) r + 6y — 62 + 6w = 8 (mod 16) }’

then we have
R(n, f) = 2(|F1| + |Fy| + |F3)).

Now, we analyze the set R(n,g). First, we note that y = 1 (mod 2) for any
($a Y, %, w) < R(n>g) Since g(l’ T Y, =Y, —Z, —'lU) = g(as, Y, z, UJ), the map
ns : R(n,g) — R(n,g) defined by

773($7 Y, =, w) = (.’L' T Y, —Y, —%, —U)>
is a well-defined bijective map. Therefore, we have

R(n,g) =2|{(z,y,z,w) € R(n,g) : x =0 (mod 2)}|.

One may easily check that for (z,y,z,w) € R(n,g), if x = 0 (mod 2), then
x—z+w = 0 (mod 4). Furthermore, if x — z + w = 4 (mod 8), then
Tr — 4y + 9z — w = 0 (mod 8). Thus if we define

G1 ={(z,y,z,w) € R(n,g) : =0 (mod 2), z — z+w =0 (mod 8)},

z=0 (mod 2), z — z+w =4 (mod 8), }

ng{(:v,y,z,w)ER(n,g): 7r — 4y + 92 — w = 8 (mod 16)

G3:{($,y,z,w)€R(n,g); =0 (mod 2), z —z+w =4 (mod 8), }7

7r —4y + 9z —w = 0 (mod 16)

then the set {(z,y,z,w) € R(n,g):x =0 (mod 2)} is a disjoint union of
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GG1, G5 and GG3. Hence we have

R(n, g) = 2(|G1| + |Ga| + |Gs]).

Now, for 1 = 1,2, 3, we define maps ¢; : G; — F; by

¢1($a Y, =, ’LU) -

4 8

-2 =8

1
81-3 0
2 0
2
~10
16 | —3
4

6
2
16 | 7

-8
-8
12

4 0

—4
—6

-5 5

2
24
-8
—4
0
—6
14
9
—4

—2

-2
—6

—13

4
—42
2
-1
4

—12
—10

18
22
—11
—4

S <« 8

E v e 8

f v e 8

Then one can easily check that all of them are well-defined bijective maps.
Therefore, we have

R(n, f) = 2(|[F1] + [Fo| + [F3]) = 2(|G1| + |G| + [Gs]) = R(n, g).

Next, we consider the case when n is a positive integer congruent to 5
modulo 8. Note that if (z,y,2z,w) € R(n,f) and z = 1 (mod 2), then
2x + 2y — 2z + 5w = 0 (mod 4). Since f(—=z,y,z,w) = f(x,y,z,w), we have

H{(x,y,z,w) € R(n, f) :x =1 (mod 2), 22+ 2y — 22 + 5w = 0 (mod 8)}|

' r =1 (mod 2),
{(w,y,z,w)eR(naf)- 2x + 2y — 22 + 5w = 4 (mod 8) }

)
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which implies that

H{(x,y,z,w) € R(n, f) : 2 =1 (mod 2)}|

r=1 (mod 2), H

:2'{(%%27“)) € Rn. f): 22z + 2y — 22+ 5w = 0 (mod 8)

For (z,y,z,w) € R(n, f), if x = 0 (mod 2), then we have w = 1 (mod 2) and
x4+ 6y — 62+ 6w =0 (mod 4). Since f(z,y,z,—w) = f(z,y, z,w),

{(z,y,2z,w) € R(n, f) : 2 =0 (mod 2), x + 6y — 62z + 6w =0 (mod 8)}|
= [{(z,y,z,w)€R(n, f) : 2 =0 (mod 2), x + 6y — 6z + 6w =4 (mod 8)}|,

which implies that

{(z,y,z,w) € R(n, f) : x =0 (mod 2)}|

B ‘ z =0 (mod 2),
—2‘{(x,y,z,w) € R(n, f): x4 6y — 62 + 6w =0 (mod 8) H

Thus if we define

B . le(mod?),
X1—{(Ji,y,2,w)€R(n,f). 2x 4 2y — 22 4+ 5w = 0 (mod 8) }’
x =0 (mod 2),
X, — :
2 {(xvyvzaw)eR(n%f) x + 6y — 62+ 6w =0 (mod 16) }’
=0 (mod 2),
X, — :
3 {(Q;,y,z,w)ER(n,f) x + 6y — 62 + 6w = 8 (mod 16) }’

then we have
R(n, f) = 2(1X1| + [ Xa| + | X3]).

Now, we analyze the set R(n,g). One may check the followings;

(i) if (z,y,2,w) € R(n,g) and x = 0 (mod 2), then z +y + 2z —w =
0 (mod 4);

(ii) if (z,y,z,w) € R(n,g) and x = 1 (mod 2), then z —z+w = 0 (mod 4).
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Since g(x + y, —y, —z, —w) = g(z,y, z,w), we have

H{(x,y,z,w) € R(n,g) : =0 (mod 2), z+y+ 2z —w =0 (mod 8)}
= H{(z,y,z,w) € R(n,g) : x =1 (mod 2), z — 2z +w =0 (mod 8)}|

and

H{(z,y,z,w) € R(n,g) :2 =0 (mod 2), z+y+ 2z —w =4 (mod 8)}
= H{(z,y,z,w) € R(n,g): =1 (mod 2), z — z+w =4 (mod 8)}|.

Therefore, we have

R(n,g) =2{(z,y,z,w) € R(n,g) : x =0 (mod 2)}|

z =0 (mod 2),
H(x,y,z,w)ER(n,g) r+y+z—w=0 (mod 8) H
x =0 (mod 2),
+2H(x,y7z,w)€R(nag)i w_|_y_|_z_@(uz4()mod 8) H
x =0 (mod 2),
H(:)j,y,z,w)eR(n,g) x+y+z—w50(m0d 8) H
=1 (mod 2),

One may easily show that for (z,y,z,w) € R(n,g), if = 1 (mod 2) and
x—z+w =4 (mod 8), then 7z —4y+ 9z —w = 0 (mod 8). Thus if we define

Y1 ={(z,y,z,w) € R(n,g) : x =0 (mod 2), x +y+ 2z —w =0 (mod 8)},

r=1 (mod 2), z — z+w =4 (mod 8),
Tr—4y+9z2 —w =8 ( mod16 }

r=1 (mod 2), z — z+w =4 (mod 8),
7r —4y + 9z —w =0 (mod 16) }

Y, = {(J;,y,z,w) € R(n,g) :

Y; = {(x,y,z,w) € R(n,g) :

then we have
R(n,g) = 2(|Y1| + |Ya| + |Y3]).
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For i = 1,2, 3, if we define maps v; : Y; — X; by
4 —4 4 12 z
11-2 6 6 10 Y
nloyzw) =gl o 5 5 5|
-2 =2 -2 2 w
2 24 =2 18 x
1 —-10 -8 —6 22 Y
vy zw) =l 5 3 | ]
—4 0 4 —4 w
6 —8 —6 —42 z
12 -8 14 2 y
4 0 -4 4 w

then one may check that they are all bijective. Therefore, we have

R(n, f) = 2(1X1| + | Xo| + [Xs]) = 2([V1| + [Ya| + [Y3]) = R(n, g),
which completes the proof. O
Theorem 5.0.2. For any positive integer n = 0,2 (mod 8), we have

t(n,(1,2,4,17)) = 4r(n+ 3,(1,2,4,17)).

Proof. Let

f=flz,y,z,w) =22+ 2y* + 422 + 1Tw?,

g=g(z,y,z,w) = 22 + 3y + 42% + 8w? + 2zy + 2yz + 2yw,

hy = hi(z,y, 2, w) = 222 + 4y* + 42% + 6w? + 22w + 2yw + 42w,
hy = ho(z,y, 2, w) = 2 + 2y* + 222 + 9w? + 2z2w.
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First, note that

H{(z,y,2,w) € R(2n+6,hy) : w =0 (mod 2)}|
= |{(x,y,2,w) € Z*: 2 hy(z + w, 2z + w,y,w) = 2n + 6}| = r(n + 3, hy).

Note that for (z,y,z,w) € R(2n + 6,hy), if w = 1 (mod 2), then y =
0 (mod 2). Hence we have

H{(z,y,2z,w) € R2n+6,h) : 2=y =0 (mod 2), w=1 (mod 2)}|
= {(z,y,2,w) € Z' : h1(22,2y, 2, w) = 2n + 6}
= |{(x,y,2,w) € Z*: 2 g(z,w,x,y) = 2n + 6} =r(n+3,9).

Finally, since hy(w — 22,2y, z,w) = 2 - g(z,w,z — w,y), we have,

H(z,y,2z,w) € R2n+6,h) :z=w =1 (mod 2), y =0 (mod 2)}|
= {(x,y,2,w) € Z*: hy(w — 22,2y, z,w) = 2n + 6}| = r(n+ 3,9).

Therefore, we have
r(2n 4 6,hy) =r(n+ 3, he) + 2r(n+ 3, 9), (5.0.1)

for any nonnegative even integer n.
By Proposition 5.0.1 and Equation (5.0.1), we have

2r(n+3, f) =r(2n+6,hy) —r(n+3,hy) for any n = 0,2 (mod 8). (5.0.2)

Now, note that if 822 + y? + 222 + 9w? — 4dzw = 0 (mod 4), then y = 2 =
w (mod 2). Since hy(y,r, z, —w) = 42 +2y* + 42 + 6w? — 2xw — 2yw — 42w,
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we have

{(z,y,2z,w) € R(8n+ 24, f) : x = w (mod 4)}|

=r(8n + 24, (w — 4x)?* + 2y* + 42 + 1Tw?)

r(4n +12,82% + y* + 222 + 9w? — 4zw)

r(dn +12,82% + (w — 2y)% + 2(w — 22)? + Yw? — dzw)
(
(

r(2n + 6, 42% + 2y* + 422 + 6w? — 2w — 2yw — dzw)
r(2n + 6, hy).

Note that if 22 + 8y* + 162% + 17w? = 8n + 24, then x = w = 0 (mod 2).
Since 2 - hy(y, 2,7, —w) = (w — 2x)%* + 29> + 422 + 17w?,

H(z,y,z,w) € Z* : 22 + 8y* + 162% + 17Tw? = 8n + 24}|

= |{(x,y, z,w) € Z* : 42* + 8y + 162 + 68w? = 8n + 24}|
=7r(2n+ 6, 2% + 2y* + 42% + 17w?)

=7r(2n+6, (w — 2z)? + 2y* + 42 + 17Tw?)

=r(n+ 3, h).

From these equalities and Equation (5.0.2), we have

2r(n+3, f) ={(z,y,z,w) € R(8n+ 24, f) : = w (mod 4)}| (5.0.3)
— |{($,y,z,w) e 7 2% + 8y* + 162° + 17w’ = 8n + 24}|

for any n = 0,2 (mod 8). Note that if 2%+ 2y? +42% + 17w? = 8n + 24, then

(22,292, 42° 17Tw?) = (0,0,0,0), (4,0,0,4), (4,0,4,0), (0,0, 4, 4)
or (1,2,4,1) (mod 8).
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From this and Equation (5.0.3), we may easily deduce that

%t(n7 <172747 17>) - H(l‘,y,z,w) - R(8n+ 247 f) : r=w (mOd 4)7 }’

y=z=1 (mod 2)
=N{(z,y,2,w) € R(8n+24, f) : 2 = w (mod 4)}|
— {(z,y,z,w) € R(8n+24, f) : y =2 =0 (mod 2)}|
=|{(z,y,2,w) € RBn+24, f) : 2 = w (mod 4)}|
—r(8n 4 24, 2% + 8y? + 1622 + 17Tw?)
=2r(n+ 3, f).

This completes the proof. n
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