
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이학박사 학위논문

Classifications of regular
ternary triangular forms

(정규 삼변수 삼각형식의 분류)

2019년 8월

서울대학교 대학원

수리과학부

김 민 규



Classifications of regular
ternary triangular forms

(정규 삼변수 삼각형식의 분류)

지도교수 오 병 권

이 논문을 이학박사 학위논문으로 제출함

2018년 10월

서울대학교 대학원

수리과학부

김 민 규

김 민 규의 이학박사 학위논문을 인준함

2018년 12월

위 원 장 (인)

부 위 원 장 (인)

위 원 (인)

위 원 (인)

위 원 (인)



Classifications of regular
ternary triangular forms

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of
Seoul National University

by

Mingyu Kim

Dissertation Director : Professor Byeong-Kweon Oh

Department of Mathematical Sciences
Seoul National University

August 2019



c© 2019 Mingyu Kim

All rights reserved.



Abstract

Let Tx = x(x+1)
2

. For positive integers a1, a2, . . . , ak, a polynomial of the

form a1Tx1 + a2Tx2 + · · ·+ akTxk is called a triangular form.

In this thesis, we study various properties of representations of integers by

ternary and quaternary triangular forms. A triangular form is called regular

if it represents all positive integers that are locally represented. We classify

the regular ternary triangular forms. We also prove several conjectures of

Sun regarding the number of representations of integers by ternary and qua-

ternary triangular forms.

Key words: representation of ternary quadratic forms, regular forms, trian-

gular numbers, Watson transformation

Student Number: 2012-20244
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Chapter 1

Introduction

Lagrange’s celebrated four squares theorem says that every positive integer is

a sum of four squares, that is, the quaternary quadratic form x2 +y2 +z2 + t2

represents all positive integers. A positive definite integral quadratic form is

called universal if it represents all positive integers. In 1916, Ramanujan gave

in [29] the list of 55 diagonal quaternary universal quadratic forms. Later,

Dickson confirmed 54 forms among them are actually universal, whereas

the quaternary form x2 + 2y2 + 5z2 + 5w2 in the Ramanujan’s list turns

out to be non-universal for it does not represent 15. In 2000, Bhargava [5]

gave short proof of the Conway-Schneeberger’s, so called, “15-theorem”, and

proved that there are exactly 204 (classic integral) positive definite integral

quaternary universal quadratic forms. Bhargava and Hanke [6] also proved

the “290-theorem” and derived that there are exactly 6436 (non-classic inte-

gral) positive definite universal quaternary forms. A positive definite integral

quadratic form is called regular if it globally represents every integer which is

locally represented. Dickson [12] who initiated the study of regular quadratic

forms first coined the term regular. Jones and Pall [19] gave the list of all

102 primitive diagonal regular ternary quadratic forms. Watson proved that

there are only finitely many equivalence classes of primitive positive definite

ternary regular forms in his thesis [32]. Jagy, Kaplansky and Schiemann [17]

succeeded Watson’s study and provide the list of 913 candidates for such

forms. All but 22 of them are already proved at the time. Recently, the reg-

ularities of 8 forms among 22 candidates were proved by Oh [25]. A condi-
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CHAPTER 1. INTRODUCTION

tional proof for the remaining 14 candidates under the Generalized Riemann

Hypothesis was given by Lemke Oliver [24].
Now we look into the representations of triangular forms. An integer of

the form Tx = x(x+1)
2

for some integer x is called a triangular number. For
positive integers a1, a2, . . . , ak, we call a polynomial of the form

∆(a1, a2, . . . , ak)(x1, x2, . . . , xk) := a1
x1(x1 + 1)

2
+a2

x2(x2 + 1)

2
+· · ·+ak

xk(xk + 1)

2

a k-ary triangular form. We define the universality and regularity of a

triangular form similarly to the case of a quadratic form. Gauss’ Eureka

Theorem says that every positive integer is a sum of at most three triangular

numbers. This is equivalent to say that the triangular form ∆(1, 1, 1) is

universal. In 1862, Liouville classified all ternary universal triangular forms

and in fact, they are the following seven forms:

∆(1, 1, 1), ∆(1, 1, 2), ∆(1, 1, 4), ∆(1, 1, 5),

∆(1, 2, 2), ∆(1, 2, 3), ∆(1, 2, 4).

In 2013, Chan and Oh [10] showed that there are only finitely many ternary

regular triangular forms. In 2015, Chan and Ricci [11] proved the finiteness

of ternary regular triangular forms in a more general setting. They actually

proved that for any given positive integer c, there are only finitely many in-

equivalent positive ternary regular primitive complete quadratic polynomials

with conductor c. From this follows the finiteness of regular ternary m-gonal

forms. Note that an integer of the form (m−2)x2−(m−4)x
2

for some integer x is

called an m-gonal number, and a ternary m-gonal form is defined similarly.

Now we move on to the subject of the number of representations by

a quadratic form or a triangular form. Given a positive definite integral

quadratic form, the problem of determining the representation number of

integers by the form is quite old and is still complicate, in general. If the

class number of a quadratic form is one, then a closed formula for the num-

ber of representations may be obtained from the Minkowski-Siegel formula

by calculating the local densities. The theory of theta function identities or

theory of modular forms gives some information about the number of rep-

resentations of certain quadratic forms. A closed formula for the number of

2



CHAPTER 1. INTRODUCTION

representations of integers by a quadratic form is only known for some spe-

cific forms. As we will see later, the number of representations of an integer

by a triangular form can be transformed to the number of representations

of the corresponding integer by the corresponding diagonal quadratic forms

with certain congruence condition. For positive integers a1, a2, . . . , ak and n,

we define

r(n, 〈a1, . . . , ak〉) =
∣∣{(x1, . . . , xk) ∈ Zk : a1x

2
1 + · · ·+ akx

2
k = n

}∣∣ ,
and

t(n, 〈a1, . . . , ak〉) =
∣∣{(x1, . . . , xk) ∈ Zk : a1Tx1 + · · ·+ akTxk = n

}∣∣ .
Legendre proved that

t(n, 〈1, 1, 1, 1〉) = 16σ(2n+ 1),

where σ is the sum of divisors function. In 2003, Williams [34] showed

t(n, 〈1, 1, 2, 2〉) = 4
∑
d|4n+3

(
d− (−1)d−

1
2

)
.

Finding a closed formula for the number of representations of integers by

general triangular forms seems to be challenging and in fact, little is known.

There are some results on the relation between the number of representations

of a triangular form and the number of representations of some quadratic

forms. For example, Adiga, Cooper and Han [1] showed, for 5 ≤ a+b+c+d ≤
7,

C(a, b, c, d)t(n, 〈a, b, c, d〉) = r(8n+ a+ b+ c+ d, 〈a, b, c, d〉),

where C(a, b, c, d) is an explicit constant depending only on a, b, c and d. In

2008, Baruah, Cooper and Hirschhorn [2] proved that if a + b + c + d = 8,

then

C(a, b, c, d)t(n, 〈a, b, c, d〉) = r(8n+ 8, 〈a, b, c, d〉)− r(2n+ 2, 〈a, b, c, d〉).

In 2016, Sun [30] verified several relations between the number of represen-

3



CHAPTER 1. INTRODUCTION

tations of quaternary triangular forms and the number of representations of

corresponding quadratic forms. In that paper, he also proposed 23 intrigu-

ing conjectures on the relations between t(n, 〈a, b, c, d〉) and r(n′, 〈a, b, c, d〉),
where n′ is a positive integer determined by a, b, c, d and n. Yao [37] proved

11 conjectures among them by using (p, k)-parametrization of theta func-

tions. Sun [31] himself proved 2 conjectures by using elementary method.

Xia and Zhong [35] proved 3 conjectures by using theta function identities.

Sun [31] discovered further relations on ternary and quaternary cases and

posed some conjectures some of which are on ternary triangular forms.

In the first part of the thesis, we prove that there are exactly 49 regular

ternary triangular forms. In the previous papers [10] and [11], the authors use

Burgess’ estimation of character sums (for this, see [7] and [14]) to prove the

finiteness of regular ternary triangular forms. It seems to be quite difficult to

find an explicit upper bound of the discriminant of regular ternary triangular

forms by using Burgess’ estimation. So, we use purely arithmetic method to

find such an explicit upper bound, and finally, we classify all regular ternary

triangular forms. We also prove five conjectures given in [31] on the number of

representations of ternary triangular forms. In fact, Xia, Zhang and Baruah,

Kaur proved these conjectures independently. However, our method is quite

different from their methods. Furthermore, we prove quite a generalized

version of the original conjectures. Finally, we prove Conjecture 2.5 given in

[30]. Most results were done by joint work with B.-K. Oh.

In Chapter 2, we present some basic notations and terminologies that will

be used throughout the thesis. The explicit definition of a triangular form

and its regularity will be given in the chapter. Some properties of the Watson

transformation on triangular forms will be presented in this chapter, which

will play a key role in classification.

In Chapter 3, we classify all regular ternary triangular forms. First of

all, we show that in some cases, Watson transformations preserve the reg-

ularity. Then we find all stable regular ternary triangular forms which are,

by definition, at the floor level with respect to Watson transformations. To

find stable regular ternary triangular forms, we obtain a nice upper bound

of the number of primes at which the corresponding ternary quadratic forms

are anisotropic and then proceed to find an upper bound of the discriminant

4



CHAPTER 1. INTRODUCTION

of regular ternary triangular forms. After determining all candidates for sta-

ble regular forms, we prove the regularities of those candidates. Next, we

show there is no missing prime greater than 7 (for the definition of a miss-

ing prime, see Chapter 3). Then, we trace back Watson transformations for

primes 3,5, and 7 to enumerate all candidates of regular ternary triangular

forms. Finally, we verify the regularities of all candidates. The regularities of

most candidates are easily proved by using some elementary method. Only

five of the candidates need to be treated delicately and the proof of regular-

ity of each triangular form involves some techniques parallel to the ones ap-

peared in [25] and some properties of the graph defined on ternary quadratic

forms(cf. [4],[18]). Most results of this chapter are part of [22].

In Chapter 4, we discover some general relations between the number of

representations of a ternary triangular forms and the number of representa-

tions of the corresponding quadratic forms. We prove some relation between

r(n, f) and r(4n, f) for three binary quadratic forms f = 〈3, 5〉, 〈1, 7〉, and

〈1, 15〉. Using this relation, we generalize some conjectures. To prove the

conjectures, we first deform the representation of corresponding quadratic

form with congruence condition into the representation of subform. Then,

the main method of the proofs is to use certain rational isometries between

quadratic forms. Most results of this chapter are part of [21].

In Chapter 5, we prove Conjecture 2.5 given in [30]. Most results of this

chapter are part of [3].

5



Chapter 2

Preliminaries

In this chapter, we introduce some definitions, notations and well-known

results which we frequently use throughout the thesis.

2.1 Triangular numbers and triangular forms

A nonnegative integer of the form

Tx =
x(x+ 1)

2
(x ∈ N)

is called a triangular number. For example, 0, 1, 3, 6, 10, 15, · · · are triangular

numbers. Since Tx = T−x−1, Tx is a triangular number for any integer x. For

positive integers a1, a2, . . . , ak, we call a polynomial of the form

∆(a1, a2, . . . , ak) := a1Tx1 + a2Tx2 + · · ·+ akTxk

a k-ary triangular form. A triangular form ∆(a1, a2, . . . , ak) is called prim-

itive if gcd(a1, a2, . . . , ak) = 1. Unless stated otherwise, we always assume

that

every triangular form is primitive.

6



CHAPTER 2. PRELIMINARIES

For an integer n and a k-ary triangular form ∆(a1, a2, . . . , ak), we say that n

is represented by ∆(a1, a2, . . . , ak) if the Diophantine equation

a1Tx1 + a2Tx2 + · · ·+ akTxk = n

has an integral solution. We also define

T (n, 〈a1, . . . , ak〉) =
{

(z1, . . . , zk) ∈ Zk : a1Tz1 + · · ·+ akTzk = n
}

and t(n, 〈a1, a2, . . . , ak〉) to be the cardinality of the above set. Note that

t(n, 〈a1, a2, . . . , ak〉) is always finite since we are assuming ai > 0 for every i.

A triangular form ∆(a1, a2, . . . , ak) is called universal if it represents every

positive integer, that is,

a1Tx1 + a2Tx2 + · · ·+ akTxk = n is soluble in Z

for any positive integer n. A triangular form ∆(a1, a2, . . . , ak) is called regular

if it globally represents every integer which is locally represented. In other

words, ∆(a1, a2, . . . , ak) is regular if the following implication holds for any

positive integer n; if a1Tx1 + a2Tx2 + · · ·+ akTxk = n is soluble in Zp for any

prime p, then a1Tx1 + a2Tx2 + · · ·+ akTxk = n is soluble in Z.

The following lemma appear in [10] says that we may ignore the prime 2

when we consider the regularity of triangular forms.

Lemma 2.1.1. Any primitive triangular form is universal over Z2.

Note that ∆(a1, a2, · · · , ak) represents n if and only if the equation

a1(2x1 + 1)2 + a2(2x2 + 1)2 + · · ·+ ak(2xk + 1)2 = 8n+ a1 + a2 + · · ·+ ak

is soluble in Z. This equivalence shows how the representation of a triangular

form is transformed into the representation of a diagonal quadratic form with

congruence conditions. Now we can reformulate the regularity in a practical

way. A ternary triangular form ∆(a, b, c) is regular if the following implication

holds for any positive integer n; if ax2 + by2 + cz2 = 8n+ a+ b+ c is soluble

in Zp for any odd prime p, then ax2 + by2 + cz2 = 8n + a + b + c for some

odd integers x, y and z.

7



CHAPTER 2. PRELIMINARIES

2.2 Quadratic spaces and lattices

Let Q be the field of rational numbers. For a prime number p, let Qp denote

the field of p-adic numbers and Q∞ denote the field of real numbers R. We

always assume that F = Q or F = Qp. Let V be a finite dimensional vector

space over F . Let

B : V × V → F

be a symmetric bilinear form on V , which means that

B(x, y) = (y, x) and B(cx+ y, z) = cB(x, z) +B(y, z)

for any x, y, z ∈ V and c ∈ F . We call (V,B) be a quadratic space over F .

We define the quadratic map Q : V → F associated with B by

Q(x) = B(x, x)

for x ∈ V . Let V be a quadratic space over F with symmetric bilinear form

B and B = {x1, x2, · · · , xk}(dimV = k) be a basis for V , where dimV = k.

The matrix

(B(xi, xj))1≤i,j≤k

is called the matrix presentation of V and we write

V ' (B(xi, xj)) in B.

We define the discriminant dV of V by the determinant of the matrix of V .

In other words,

dV = det(B(xi, xj)) ∈ (F×/((F×)2) ∪ {0},

where F× is the multiplicative group of non-zero elements of the field F .

Note that dV is independent of the choice of basis for V . We call V a regular

quadratic space if dV 6= 0. In this thesis, the term quadratic space always

refer to a regular quadratic space and thus we omit the adjective regular. Let

(V ′, B′) be another quadratic space over F and let σ : V → V ′ be a linear

8



CHAPTER 2. PRELIMINARIES

transformation. We call σ a representation if

B(x, y) = B′(σx, σy)

for all x, y ∈ V . If further σ is a linear isomorphism, then we say that σ is an

isometry. The set of all isometries from V onto V itself is denoted by O(V ).

Let Z be the ring of rational integers and Zp be the ring of p-adic integers

where p is a prime number. Let R = Z or R = Zp for a prime p and let F

be the field of fractions of R. An R-lattice L on V is a finitely generated

free R-module which spans V over F . Note that L has induced symmetric

bilinear map B and quadratic map Q from V . Let L be an R-lattice on a

quadratic space V over F . For an R-basis C = {y1, y2, . . . , yk} of L, we call

ML := (B(yi, yj))1≤i,j≤k

the matrix presentation of L in C. If ML is diagonal, then we simply write

L ' 〈Q(x1), Q(x2), . . . , Q(xk)〉.

We define the discriminant dL of L by the determinant of the k × k matrix

(B(yi, yj)). The scale sL of L is defined by the ideal in R generated by the

set

{B(x, y) | x, y ∈ L}

and the norm nL of L is the ideal generated by the set

{Q(x) | x ∈ L}.

We say L is integral if sL ⊂ R and primitive if sL = R. We call L isotropic

if there is a non-zero vector x ∈ L such that Q(x) = 0, anisotropic otherwise.

The corresponding quadratic form of L is defined by

fL = fL(x1, x2, . . . , xk) =
∑

1≤i,j≤k

B(xi, xj)xixj.

We say that the quadratic form is primitive, integral, · · · , etc, if the corre-

sponding lattice is. Let L and K be R-lattices on quadratic spaces V and W ,

9



CHAPTER 2. PRELIMINARIES

respectively. A representation of L by K is a space representation σ : V → W

such that σ(L) ⊂ K. If σ(L) = K, then we say that L is isometric to K and

write

L ' K.

Let L be a Z-lattice on a quadratic space V over Q and rank(L) = k. We

say L is positive definite if the corresponding matrix ML is. For a prime p,

we define

Lp = Zp ⊗ L.

Note that Lp is a Zp-lattice on the quadratic space Vp = Qp⊗V . We say that

L is anisotropic(isotropic) at p if Lp is anisotropic(isotropic, respectively). In

this thesis, we always assume that

every Z-lattice is positive definite and integral,

unless stated otherwise. Note that a Z-lattice is called unary, binary, ternary,

· · · , k-ary, · · · , if the rank of the lattice is 1, 2, 3, · · · , k, · · · .
Let V and W be quadratic spaces over Q and let L and K be Z-lattice on

V and W , respectively. The set of all representations of L by K is denoted by

R(L,K). For the case of L = K, we let O(L) = R(L,L) and o(L) = |O(L)|.
If rank(L) = 1, then we abuse the notation and make the following definition.

For a quadratic form f(x1, x2, . . . , xk) over Z and an integer n, we define

R(n, f) =
{

(z1, z2, . . . , zk) ∈ Zk : f(z1, z2, . . . , zk) = n
}

and define r(n, f) to be the cardinality of the above set. Clearly, R(n, f) =

R(〈n〉, Kf ), where 〈n〉 is a unary lattice and Kf is a Z-lattice corresponding

to f . Note that r(n, f) is always finite since the quadratic form f is positive

definite. We use the notation

〈a1, a2, . . . , ak〉

for diagonal quadratic form a1x
2
1 + a2x

2
2 + · · · + akx

2
k also. Now for a vector

d = (d1, . . . , dk) ∈ (Z/2Z)k, we define

Rd(n, f) = {(x1, x2, . . . , xk) ∈ R(n, f) : xi ≡ di (mod 2) for i = 1, 2, . . . , k}.

10



CHAPTER 2. PRELIMINARIES

The cardinality of the above set will be denoted by rd(n, f). For the diagonal

binary quadratic forms, we also define

R̃(1,1)(N, 〈a, b〉) = {(x, y) ∈ R(1,1)(N, 〈a, b〉) : x 6≡ y (mod 4)}.

Note that if we define the cardinality of R̃(1,1)(N, 〈a, b〉) by r̃(1,1)(N, 〈a, b〉),
then we have

r(1,1)(N, 〈a, b〉) = 2 · r̃(1,1)(N, 〈a, b〉).

Lemma 2.2.1. Let m be a positive integer.

(i) If m ≡ 1 (mod 4), then we have

2r(1,0)(m, 〈1, 3〉) = r(1,1)(4m, 〈1, 3〉).

(ii) If m ≡ 3 (mod 4), then we have

2r(0,1)(m, 〈1, 3〉) = r(1,1)(4m, 〈1, 3〉).

(iii) If m ≡ 4 (mod 8), then we have

2r(0,0)(m, 〈1, 3〉) = r(1,1)(m, 〈1, 3〉).

Proof. (i) If we define a map

ψ1 : R(1,0)(m,x
2 +3y2)→ R̃(1,1)(4m,x

2 +3y2) by ψ1(x, y) = (x+3y,−x+y)

then one may easily check that it is bijective.

(ii) We define a map

ψ2 : R(0,1)(m,x
2+3y2)→ R̃(1,1)(4m,x

2+3y2) by ψ2(x, y) = (x+3y,−x+y).

Then one may show that it is bijective.

(iii) One may easily show that if we define a map

ψ3 : R(0,0)(m,x
2+3y2)→ R̃(1,1)(m,x

2+3y2) by ψ3(x, y) =

(
x+ 3y

2
,
−x+ y

2

)
,

11



CHAPTER 2. PRELIMINARIES

then it is bijective.

Now for a triangular form ∆(a1, a2, . . . , ak), the corresponding quadratic

form is defined by

〈a1, a2, . . . , ak〉 = a1x
2
1 + a2x

2
2 + · · ·+ akx

2
k

Using these notations, the number of representations of an integer n by a

triangular form can be rewritten as the number of representations of n by

the corresponding quadratic form with a congruence condition;

t(n, 〈a1, a2, . . . , ak〉) = r(1,1,...,1)(8n+ a1 + a2 + · · ·+ ak, 〈a1, a2, . . . , ak〉).

Any unexplained notations and terminologies can be found in [23] or [28].

2.3 Watson transformations

Let L be a Z-lattice and m be a positive integer. We define the Watson

transformation of L modulo m by

Λm(L) = {x ∈ L : Q(x+ z) ≡ Q(z) (mod m) for any z ∈ L}.

We denote by λm(L) the primitive Z-lattice obtained from Λm(L) by scaling

Q ⊗Z L by a suitable rational number. Throughout this section, we further

assume that

every Z-lattice is primitive and diagonal

for convenience.

Let ∆(a, b, c) be a ternary triangular form and let p be an odd prime. We

define

λp(∆(a, b, c)) = ∆(a′, b′, c′),

where 〈a′, b′, c′〉 ' λp(〈a, b, c〉). Let p be an odd prime. Let L = 〈a, pmb, pnc〉

12
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be a ternary Z-lattice, where (abc, p) = 1 and 0 ≤ m ≤ n. Then we have

λp(L) '


〈a, b, c〉 if m = n = 0,

〈pa, b, pn−1c〉 if 1 = m ≤ n,

〈a, pm−2b, pn−2c〉 if 1 < m ≤ n.

13



Chapter 3

Regular ternary triangular

forms

In this chapter, we classify all regular ternary triangular forms. We adopt

some notations which will be used throughout the chapter. For an integer n

and a diagonal quadratic form 〈a1, a2, . . . , ak〉, we write

n
2−→ 〈a1, a2, . . . , ak〉

if there is a vector (x1, x2, . . . , xk) ∈ Zn with (x1x2 · · ·xk, 2) = 1 such that

a1x
2
1 + a2x

2
2 + · · ·+ akx

2
k = n. We also use the notation

n
29 〈a1, a2, . . . , ak〉

if there is no such vector. Note that

n
2−→ 〈a1, a2, . . . , ak〉 if and only if r(1,1,...,1)(n, 〈a1, a2, . . . , ak〉) > 0.

3.1 The descending trick

The following lemma is just a reformulation of [10, Lemma 3.3].

Lemma 3.1.1. Let p be an odd prime and a, b, c be positive integers which are

not divisible by p. If the ternary triangular form ∆(a, prb, psc) with 1 ≤ r ≤ s

14
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is regular, then λp(∆(a, prb, psc)) is also regular.

Though the proof of the next lemma is quite similar to the proof of Lemma

3.1.1, we provide the proof for completeness.

Lemma 3.1.2. Let p be an odd prime. Let a, b, c and s be positive integers

such that (p, abc) = 1 and
(
−ab
p

)
= −1. If the ternary triangular form

∆(a, b, psc) is regular, then λp(∆(a, b, psc)) is also regular.

Proof. It is enough to show that ∆(p2a, p2b, psc) is regular. Let n be a positive

integer such that the equation

p2aTx + p2bTy + pscTz = n (3.1.1)

is soluble over Zp for any prime p. Then

8n+ p2a+ p2b+ psc −→ gen(〈p2a, p2b, psc〉).

Thus

8

(
n+

p2 − 1

8
a+

p2 − 1

8
b

)
+ a+ b+ psc −→ gen(〈a, b, psc〉).

Since ∆(a, b, psc) is regular, there is a vector (x, y, z) ∈ Z3 with xyz ≡
1 (mod 2) such that ax2 + by2 + pscz2 = 8n + p2a + p2b + psc. Since n

is divided by p, we have ax2 + by2 ≡ 0 (mod p). From the assumption(
−ab
p

)
= −1, we have x ≡ y ≡ 0 (mod p). So

p2a

(
x

p

)2

+ p2b

(
y

p

)2

+ pscz2 = 8n+ p2a+ p2b+ psc

with x
p
· y
p
· z ≡ 1 (mod 2). Thus Equation (3.1.1) is soluble in Z. This

completes the proof.

For an odd prime p and a ternary Z-lattice L, we say that L is p-stable if

〈1,−1〉 −→ Lp or Lp ' 〈1,−∆p〉 ⊥ 〈pεp〉

15
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for some εp ∈ Z×p . Furthermore, we say that L is stable if L is p-stable

for every odd prime p. A ternary triangular form is called p-stable (sta-

ble) if the corresponding quadratic form is p-stable (stable, respectively).

Let ∆(a, b, c) be a regular ternary triangular form. By Lemma 3.1.1 and

Lemma 3.1.2, we may take λq-transformations to ∆(a, b, c) several times for

odd primes dividing the discriminant and obtain a stable regular ternary

triangular form ∆(a′, b′, c′). In general, the corresponding quadratic form

〈a′, b′, c′〉 has smaller discriminant and simpler local structure than 〈a, b, c〉.

3.2 Stable regular ternary triangular forms

In this section, we prove that there are exactly 17 stable regular ternary

triangular forms. Throughout this section, rk denotes the k-th odd prime so

that {r1 = 3 < r2 = 5 < r3 = 7 < · · · } is the set of all odd primes. Let

∆(a, b, c) be a stable regular ternary triangular form. We always assume that

0 < a ≤ b ≤ c.

Lemma 3.2.1. For an integer s greater than 1, let p1 < p2 < · · · < ps be

odd primes. Let u be an integer with (u, p1p2 · · · ps) = 1 and let v be an

arbitrary integer. Then there is an integer n with 0 ≤ n < (s + 2)2s−1 such

that (un+ v, p1p2 · · · ps) = 1.

Proof. See [20, Lemma 3].

Though Lemma 3.2.1 gives, in general, a nice upper bound of the longi-

tude of arithmetic progression satisfying the assumption, there is a shaper

bound in some restricted situation.

Lemma 3.2.2. Under the same notations given in Lemma 3.2.1, if s < p1,

then there is an integer n with 0 ≤ n ≤ s such that (un+ v, p1p2 · · · ps) = 1.

Proof. Trivial.

Lemma 3.2.3. Let p ≥ 5 be a prime and let d be a positive integer with

(d, p) = 1. Let L = 〈a, b, c〉 be a p-stable Z-lattice that is anisotropic over Zp.
Then there is an integer g such that

16
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(i) 0 < g < p2;

(ii) dg + a+ b9 〈a, b〉 over Zp;

(iii) dg + a+ b+ c −→ 〈a, b, c〉 over Zp;

(iv) max {ordp(dg + a+ b), ordp(dg + a+ b+ c)} ≤ 1.

Proof. Since L is p-stable and is anisotropic over Zp by assumption, we have

〈a, b, c〉 ' 〈1,−∆p〉 ⊥ 〈pεp〉 over Zp,

for some εp ∈ Z×p . First, we assume that p divides c. Since 〈a, b〉 ' 〈1,−∆p〉,
it does not represent γ ∈ Zp satisfying ordpγ ≡ 1 (mod 2). Since p ≥ 5, there

exists a positive integer g1 with g1 < p2 such that

dg1 + a+ b ≡ 3c (mod p2).

Then one may easily check that g1 satisfies all conditions given above. Now,

assume that p divides ab. Without loss of generality, we may assume that p

divides b. Since p ≥ 5, there exists an integer a′ with (p, a′) = 1 such that aa′

is not a square modulo p and a′ 6≡ −c (mod p). We take a positive integer g2
with g2 < p such that dg2 + a + b ≡ a′ (mod p). One may easily show that

g2 satisfies all conditions given above, which completes the proof.

Let T be the set of odd primes p such that the diagonal ternary quadratic

form 〈a, b, c〉 is anisotropic over Zp. Since such primes are only finitely many,

we let

T = {p : p ≥ 3, 〈a, b, c〉 is anisotropic over Zp}
= {p1 < p2 < · · · < pt}.

Let

T ′ = T − {3} = {q1 < q2 < · · · < qt′}.

Note that t′ = t if 3 6∈ T , and t′ = t− 1 otherwise.

Lemma 3.2.4. Under the assumptions given above, we have t′ ≤ 17.

17
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Proof. Note that 〈a, b, c〉 represents every integer of the form 24n+ a+ b+ c

over Z3. Let g be a positive integer satisfying Lemma 3.2.3 in the case when

p = q1 and d = 24.

By Lemma 3.2.1, there is an integer h with 0 ≤ h < (t′ + 1)2t
′−2 such

that (24q21h + 24g + a + b + c, q2 · · · qt′) = 1. If we let k = q21h + g, then one

may easily show that

24k + a+ b9 〈a, b〉 (3.2.1)

and

24k + a+ b+ c −→ gen(〈a, b, c〉).

Since ∆(a, b, c) is regular, there is a vector (x, y, z) ∈ Z3 with xyz ≡ 1 (mod 2)

such that ax2 + by2 + cz2 = 24k+ a+ b+ c. From Equation (3.2.1), we have

z2 ≥ 9. So a+ b+ 9c ≤ 24k + a+ b+ c and we have c ≤ 3k. Now

q1q2 · · · qt′ ≤ abc ≤ c3 ≤ (3k)3 ≤ (3q21(t′ + 1)2t
′−2)3.

Assume to the contrary that t′ ≥ 18. Then one may easily show that

r8r9 · · · rt′+1 > (3(t′ + 1)2t
′−2)3.

Since qi ≥ ri+1 for any i, we have

(q1 · · · q6)q7q8 · · · qt′ > q61 · r8r9 · · · rt′+1 > (3q21(t′ + 1)2t
′−2)3,

which is a contradiction. Therefore we have t′ ≤ 17. This completes the

proof.

If we are able to use Lemma 3.2.2 instead of Lemma 3.2.1, then we may

have more effective upper bound of t′ than the previous lemma.

Lemma 3.2.5. Under the same notations given above, if 0 < t′ − j < qj+1

for some j such that 1 ≤ j ≤ t′ − 1, then we have

q1q2 · · · qt′ < a(3q21q2 · · · qj(t′ − j + 1))2 ≤ (3q21q2 · · · qj(t′ − j + 1))3.

Proof. Note that 〈a, b, c〉 represents every integer of the form 24n+ a+ b+ c

over Z3. Let g be a positive integer satisfying Lemma 3.2.3 in the case when

18



CHAPTER 3. REGULAR TERNARY TRIANGULAR FORMS

p = q1 and d = 24. Let

gj =


g if j = 1,

g + ε1q
2
1 if j = 2,

g + ε1q
2
1 + ε2q

2
1q2 + · · ·+ εj−1q

2
1q2q3 · · · qj−1 if j ≥ 3,

where for each i, εi is suitably chosen in {0, 1} so that

24gj + a+ b+ c 6≡ 0 (mod q2 · · · qj)

for any j ≥ 2. Note that g1 = g < q21 and gj < q21q2 · · · qj for any j ≥ 2. Since

0 < t′ − j < qj+1 by assumption, we apply Lemma 3.2.2 with odd primes

qj+1 < qj+2 < · · · < qt′ , u = 24q21q2 · · · qj and v = 24gj + a+ b+ c so that we

may conclude that there is an integer s with 0 ≤ s ≤ t′ − j such that

(24q21q2 · · · qjs+ 24gj + a+ b+ c, qj+1qj+2 · · · qt′) = 1.

Therefore, by a similar reasoning to Lemma 3.2.4, we have c ≤ 3q21q2 · · · qj(t′−
j + 1). The lemma follows directly from this.

Lemma 3.2.6. Under the assumptions given above, we have t ≤ 10.

Proof. By Lemma 3.2.4, we may assume that t′ ≤ 17. First, assume that

q1 ≥ 13. Since t′ − 1 < 17 ≤ q2, we may apply Lemma 3.2.5 so that

q1q2 · · · qt′ < (3q21t
′)3.

From this, one may easily show that t′ ≤ 8.

Now, assume that q1 = 11. Since t′ − 2 < 17 ≤ q3, we may apply Lemma

3.2.5 so that we may conclude that

q1q2 · · · qt′ <
(
3q21q2(t

′ − 1)
)3
.

Suppose that t′ ≥ 11. Since r8 = 23, r9 = 29, r10 = 31, . . . , one may directly

show that

11 · r8r9 · · · rt′+3 >
(
3 · 112 · (t′ − 1)

)3
.
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Since qi ≥ ri+3 for any i, we have

q1q2 · · · qt′ > 11q32r8r9 · · · rt′+3 >
(
3 · 112 · q2 · (t′ − 1)

)3
,

which is a contradiction. Therefore we have t′ ≤ 10. Now, since t′ − 1 <

13 ≤ q2, we deduce, similarly to the above, that

q1q2 · · · qt′ < (3q21t
′)3,

and thus t′ ≤ 7.

Assume that q1 = 7. Since t′ − 3 < 17 ≤ q4 in this case, one may deduce

that

q1q2 · · · qt′ <
(
3q21q2q3(t

′ − 2)
)3
,

and thus we have t′ ≤ 12. Now, since t′ − 2 < 13 ≤ q3, we may have

q1q2 · · · qt′ <
(
3q21q2(t

′ − 1)
)3
,

and hence t′ ≤ 9. Since t′ − 1 < 11 ≤ q2,

q1q2 · · · qt′ <
(
3q21t

′)3 .
Therefore, we have t′ ≤ 7.

Finally, assume that q1 = 5. Since t′ − 4 < 17 ≤ q5, we have

q1q2 · · · qt′ <
(
3q21q2q3q4(t

′ − 3)
)3

and thus t′ ≤ 14.

Now, since t′ − 3 < 13 ≤ q4, we have

q1q2 · · · qt′ <
(
3q21q2q3(t

′ − 2)
)3

and t′ ≤ 12.

Then, since t′ − 2 < 11 ≤ q3, we have

q1q2 · · · qt′ <
(
3q21q2(t

′ − 1)
)3
, and finally we have t′ ≤ 9.

The lemma follows directly from this.

Recall that we are assuming that ∆(a, b, c) is stable. Hence for any odd
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prime p,

〈1,−1〉 −→ 〈a, b, c〉 over Zp or 〈a, b, c〉 ' 〈1,−∆p〉 ⊥ 〈pεp〉 over Zp,

for some εp ∈ Z×p . In the former case, every element in Zp is represented by

〈a, b, c〉 over Zp. In the latter case,

{γ ∈ Zp : γ 9 〈a, b, c〉 over Zp}

=
{
p2w−1δp : w ∈ N, δp ∈ Z×p , δpεp 6∈

(
Z×p
)2}

.

Recall that rj is the j-th odd prime. Let u be a positive integer not divisible

by rj and let v be an integer. Let ηrj ∈ {1,∆rj}. For a positive integer i, we

define

Ψu,v(i, j; ηrj)

=
∣∣{un+ v : 1 ≤ n ≤ i, un+ v 9 〈1,−∆rj〉 ⊥ 〈ηrj · rj〉 over Zrj

}∣∣ .
We also define

Ψu,v(i, j) = max{Ψu,v(i, j; 1),Ψu,v(i, j; ∆rj)}.

Let i = be−1be−2 . . . b0(rj) be the base-rj representation of i, that is,

i = be−1r
e−1
j + be−2r

e−2
j + · · ·+ b0

with 0 ≤ bν < rj for ν = 1, 2, . . . , e− 1 and be−1 > 0. We define

εi,j(k) =

{
0 if i ≡ 0 (mod r2k−1j ),

1 if i 6≡ 0 (mod r2k−1j ).
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We also define

ψi,j(k) =


min

(
b2k−1 + εi,j(k),

rj−1
2

)
if k <

[
e+1
2

]
,

min
(
b2δ−1 + εi,j(δ),

rj+1

2

)
if e = 2δ and k = δ,

1 if e = 2δ − 1 and k = δ.

Lemma 3.2.7. Under the notations and assumptions given above, we have

Ψu,v(i, j) ≤
δ∑

k=1

rj − 1

2

[
i

r2kj

]
+ ψi,j(k).

Proof. Since both cases can be done in a similar manner, we only provide the

proof of the case when e = 2δ for some positive integer δ. Without loss of

generality, we may assume that u = 1. We have to show that the number of

integers of the form r2k−1j ηrj (r2k−1j η′rj) in the set {1+v, 2+v, . . . , i+v} is less

than or equal to the right hand side, where ηrj (η′rj) is a square (nonsquare,

respectively) in Z×rj .
For any integer k such that 1 ≤ k ≤ δ, let

i = r2k−1j (rjαk + b2k−1) + βk, (0 ≤ βk ≤ r2k−1j − 1).

Let r2k−1j (x + 1) be the smallest integer greater than v that is divisible by

r2k−1j . Then any integer in the set {r2k−1j (x + s) : 1 ≤ s ≤ rjαk + b2k−1}
is less than or equal to i + v. Note that there is at most one more integer

other than these integers that is divisible by r2k−1j , and that is less than or

equal to i + v. Note that such an integer exists only when εi,j(k) 6= 0 (or

βk 6= 0). Furthermore, if such an integer exists, then it must be r2k−1j (x +

rjαk + b2k−1 + 1). Note that there are exactly
rj−1
2

quadratic residues and
rj−1
2

quadratic non-residues in the consecutive rj integers. Therefore there

are exactly
rj−1
2
αk quadratic residues and

rj−1
2
αk quadratic non-residues in

{r2k−1j (x+ s) : 1 ≤ s ≤ rjαk}.

Note that αk =
[

i
r2kj

]
for any 1 ≤ k ≤ δ. The remaining multiples of r2k−1j
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are contained in

{r2k−1j (x+rjαk+1), r2k−1j (x+rjαk+2), . . . , r2k−1j (x+rjαk+b2k−1 + εi,j(k))}.

Among them, there are at most ψi,j(k) quadratic residues, and at most ψi,j(k)

quadratic non-residues. Note that there is at most one multiple of r2δ+1
j in

{1 + v, 2 + v, . . . , i+ v} which is, if exists, contained in the set

{r2δ−1j (x+ 1), r2δ−1j (x+ 2), . . . , r2δ−1j (x+ b2δ−1 + εi,j(δ))}.

Note that there are at most ψi,j(δ) quadratic residues or a multiple of rj,

and at most ψi,j(δ) quadratic non-residues or a multiple of rj in the set

{x+ 1, x+ 2, . . . , x+ b2δ−1 + εi,j(δ)}. The lemma follows from this.

For the sake of brevity, we let

aij =
δ∑

k=1

rj − 1

2

[
i

r2kj

]
+ ψi,j(k)

for positive integers i and j.

Remark 3.2.8. One may easily show that aij ≤
⌈
i

rj

⌉
for any positive inte-

gers i and j, where d·e is the ceiling function. It is a little bit complicate to

compute an upper bound of Ψu,v(i, j) by using Lemma 3.2.7. Instead of that,

one may easily show that

Ψu,v(i, j) ≤
rj + 1

2

⌈
i

rj2

⌉
.

Recall that T is the set of all odd primes at which 〈a, b, c〉 is anisotropic,

and |T | = t ≤ 10 by Lemma 3.2.6.

Lemma 3.2.9. Let i be a positive integer. For any integer s > t, we define

bij(s) = max

(
aij,

⌈
i

rs

⌉)
for j = 1, 2, . . . , s− 1. Then we have

|{1 ≤ n ≤ i : 8n+a+b+c
2−→ 〈a, b, c〉}| ≥ i−bi,1(s)−bi,2(s)−· · ·−bi,s−1(s).
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Proof. Let s be any integer greater than t and let J = {j ∈ N : rj ∈ T}. We

also let J1 = {j ∈ J : j ≤ s−1}, J2 = J−J1, and J3 = {1, 2, . . . , s−1}−J1.

Note that |J2| ≤ |J3| and for any j ∈ J3,
⌈
i

rs

⌉
≤ bij(s) by assumption. From

Remark 3.2.8, for any j ∈ J2, we have aij ≤
⌈
i

rj

⌉
≤
⌈
i

rs

⌉
. Thus we have

∑
j∈J

ai,j =
∑
j1∈J1

ai,j1 +
∑
j2∈J2

ai,j2 ≤
∑
j1∈J1

ai,j1 + |J2| ·
⌈
i

rs

⌉
≤
∑
j1∈J1

bi,j1(s) +
∑
j3∈J3

bi,j3(s) ≤
s−1∑
j=1

bi,j(s).

Since ∆(a, b, c) is stable regular, we have

|{1 ≤ n ≤ i : 8n+ a+ b+ c
2−→ 〈a, b, c〉}|

= |{1 ≤ n ≤ i : 8n+ a+ b+ c −→ gen(〈a, b, c〉)}|

≥ i−
∑
j∈J

ai,j ≥ i−
s−1∑
j=1

bi,j(s).

This completes the proof.

Remark 3.2.10. In the remaining of this section, we need the exact values

of aij’s for some integers i and j. We provide some of these values in Table

3.1 below.

Lemma 3.2.11. Under the assumptions given above, we have t ≤ 7.

Proof. By Lemma 3.2.9 with i = 25 and s = 11, one may easily show that

8n1 + a + b + c
2−→ 〈a, b, c〉 for some 1 ≤ n1 ≤ 25. From our assumption of

a ≤ b ≤ c, we have 9a + b + c ≤ 8n1 + a + b + c, and thus we have a ≤ 25.

To prove the lemma, we will use Lemma 3.2.5 repeatedly.

First, assume that q1 ≥ 7. Since t′ − 1 < 11 ≤ q2, we may apply Lemma

3.2.5 so that

q1q2 · · · qt′ < 25
(
3q21t

′)2 .
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Table 3.1: Some values of aij

i j 1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1

4 2 1 1 1 1 1 1 1 1 1 1

5 2 1 1 1 1 1 1 1 1 1 1

6 2 2 1 1 1 1 1 1 1 1 1

7 2 2 1 1 1 1 1 1 1 1 1

9 2 2 2 1 1 1 1 1 1 1 1

19 4 3 3 2 2 2 1 1 1 1 1

20 4 3 3 2 2 2 2 1 1 1 1

25 4 3 4 3 2 2 2 2 1 1 1

26 4 4 4 3 2 2 2 2 1 1 1

29 6 4 4 3 3 2 2 2 1 1 1

32 6 5 4 3 3 2 2 2 2 2 1

35 6 5 4 4 3 3 2 2 2 2 1

41 7 5 4 4 4 3 3 2 2 2 2

47 8 5 4 5 4 3 3 3 2 2 2

49 8 5 4 5 4 3 3 3 2 2 2

83 13 9 7 6 7 5 5 4 3 3 3

314 41 29 22 16 13 11 10 12 11 11 9

This is possible only when t′ ≤ 6. Now, assume that q1 = 5. Since t′ − 2 <

11 ≤ q3, one may deduce that

q1q2 · · · qt′ < 25
(
3q21q2(t

′ − 1)
)2

25



CHAPTER 3. REGULAR TERNARY TRIANGULAR FORMS

and thus t′ ≤ 7. Finally, since t′ − 1 < 7 ≤ q2, we have

q1q2 · · · qt′ < 25(3q21t
′)2

and thus t′ ≤ 6. This completes the proof.

Lemma 3.2.12. For any stable regular ternary triangular form ∆(a, b, c)

with 0 < a ≤ b ≤ c, we have a = 1 or 2.

Proof. For any positive integer n, we define sn = 8n+ a+ b+ c. Since

{sn : sn < 25a+ b+ c, sn
2−→ 〈a, b, c〉}

⊂ {9a+ b+ c, a+ 9b+ c, a+ b+ 9c, 9a+ 9b+ c, 9a+ b+ 9c, a+ 9b+ 9c},

we have

|{1 ≤ n ≤ 3a− 1 : sn
2−→ 〈a, b, c〉}| ≤ 6.

On the other hand, by Lemma 3.2.9 with i = 32 and s = 8, one may check

that

|{1 ≤ n ≤ 32 : sn
2−→ 〈a, b, c〉}| ≥ 7.

By comparing these two inequalities, we have a ≤ 10.

Now, we will show that if 3 ≤ a ≤ 10, then c is bounded. For each

positive odd integer k, we let

Uk(a, b, c) =

{
1 ≤ n <

k2 − 1

8
a : sn

2−→ 〈a, b, c〉
}
,

Vk(a, b, c) =

{
1 ≤ n <

k2 − 1

8
a : sn − c

2−→ 〈a, b〉
}
,

and we also let uk = |Uk| and vk = |Vk|. Note that Vk does not depend

on c. For each integer a with 3 ≤ a ≤ 10, we will choose an integer k

suitably so that vk < uk. Note that if this inequality holds, then a+ b+ 9c ≤
8(k

2−1
8
a− 1) + a+ b+ c and therefore, we have

c ≤ k2 − 1

8
a− 1.
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In fact, we choose

(a, k) = (10, 5), (9, 5), (8, 7), (7, 7), (6, 7), (5, 9), (4, 13) and (3, 29).

Now, by using Lemma 3.2.9 with i =
k2 − 1

8
a− 1 and s = 8, one may easily

compute the lower bound of uk:

(a, k) (10,5) (9,5) (8,7) (7,7) (6,7) (5,9) (4,13) (3,29)

uk ≥ 5 ≥ 5 ≥ 15 ≥ 11 ≥ 8 ≥ 17 ≥ 31 ≥ 164

To compute an upper bound of vk, note that

Vk = {α2a+ β2b : a+ b < α2a+ β2b < k2a+ b, αβ ≡ 1 (mod 2)}.

Hence one may easily show that

v5 ≤ 3, v7 ≤ 7, v9 ≤ 14, v13 ≤ 30 and v29 ≤ 161.

By comparing the lower bound for uk and the upper bound for vk, we have

an upper bound of c for each a = 3, 4, · · · , 10, as follows:

a 10 9 8 7 6 5 4 3

c ≤ 29 ≤ 26 ≤ 47 ≤ 41 ≤ 35 ≤ 49 ≤ 83 ≤ 314

Now, by using MAPLE program, one may check that there is no stable

regular ternary triangular form ∆(a, b, c) for 3 ≤ a ≤ 10. Therefore, we have

a ≤ 2.

Lemma 3.2.13. Under the assumptions given above, we have t ≤ 5.

Proof. By the proof of Lemma 3.2.11, we have t′ ≤ 6. First, assume that

a = 2. By Lemma 3.2.9 with i = 29 and s = 8, one may easily show, by

using Table 1, that

|{1 ≤ n ≤ 29 : sn
2−→ 〈2, b, c〉}| ≥ 5.
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On the other hand,

|{1 ≤ n ≤ 29 : 8n+ 2 + b+ c = 2α2 + b+ c for some odd integer α}|

= |{α ≥ 3 : 2α2 + b+ c ≤ 8 · 29 + 2 + b+ c, α ≡ 1 (mod 2)}| = 4.

Thus we have 2 + 9b+ c ≤ 8 · 29 + 2 + b+ c and b ≤ 29. Let g be a positive

integer satisfying Lemma 3.2.3 in the case when p = q1 and d = 24. Note

that

24q21n+ 24g + 2 + b+ c −→ 〈2, b, c〉 over Z3

for any integer n. For any positive integer r, define

h(r) = 24q21(r − 1) + 24g + 2 + b+ c.

Clearly h(r) is represented by 〈2, b, c〉 over Zq for any q ∈ {2, 3, q1}. Note

that

t′ − 1 ≤ 5, b7,2(6) = 2 and b7,j(6) = 1 for any j ≥ 3,

where bij(s) is an integer defined in Lemma 3.2.9. From this, similarly with

the proof of Lemma 3.2.9, one may easily show that there exists a positive

integer r with 1 ≤ r ≤ 7 such that h(r) is represented by 〈2, b, c〉 over Zqi for

any i = 2, 3, . . . , t′. Therefore, we have

h(r) = 24q21(r − 1) + 24g + 2 + b+ c −→ gen(〈2, b, c〉).

Furthermore, since ∆(2, b, c) is regular, we have

h(r) = 24q21(r − 1) + 24g + 2 + b+ c
2−→ 〈2, b, c〉.

From our choices of g and r, we have h(r)−c9 〈2, b〉. Thus, 2+b+9c ≤ h(r),

which implies that c ≤ 21q21. Therefore we have

q1q2 · · · qt′ ≤ abc ≤ 58c ≤ 1218q21.

This implies that t′ ≤ 4.

Now, assume that a = 1. By Lemma 3.2.9 with i = 35 and s = 8, one
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may easily show that

|{1 ≤ n ≤ 35 : sn
2−→ 〈1, b, c〉}| ≥ 8.

On the other hand,

|{1 ≤ n ≤ 35 : 8n+ 1 + b+ c = α2 + b+ c for some odd integer α}|

= |{α ≥ 3 : α2 + b+ c ≤ 8 · 35 + 1 + b+ c, α ≡ 1 (mod 2)}| = 7.

Thus we have 1 + 9b+ c ≤ 8 · 35 + 1 + b+ c and b ≤ 35. Similarly to the case

when a = 2, one may deduce that c ≤ 21q21. Therefore, we have

q1q2 · · · qt′ ≤ abc ≤ 35c ≤ 735q21,

which implies that t′ ≤ 4. This completes the proof.

Lemma 3.2.14. For any stable regular ternary triangular form ∆(a, b, c)

with 0 < a ≤ b ≤ c, we have a+ b ≤ 21.

Proof. Note that a = 1 or 2 by Lemma 3.2.12. First, assume that a = 2. By

Lemma 3.2.9 with i = 19 and s = 6, one may easily show that

|{1 ≤ n ≤ 19 : 8n+ 2 + b+ c
2−→ 〈2, b, c〉}| ≥ 5.

On the other hand,

|{1 ≤ n ≤ 19 : 8n+ 2 + b+ c = 2α2 + b+ c for some odd integer α}|

= |{α ≥ 3 : 2α2 + b+ c ≤ 8 · 19 + 2 + b+ c, α ≡ 1 (mod 2)}| = 3.

Thus we have 2 + 9b+ c ≤ 8 · 19 + 2 + b+ c, and b ≤ 19. Now, assume that

a = 1. By Lemma 3.2.9 with i = 20 and s = 6, one may check that

|{1 ≤ n ≤ 20 : 8n+ 1 + b+ c
2−→ 〈1, b, c〉}| ≥ 6.
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On the other hand,

|{1 ≤ n ≤ 20 : 8n+ 1 + b+ c = α2 + b+ c for some odd integer α}|

= |{α ≥ 3 : α2 + b+ c ≤ 8 · 20 + 1 + b+ c, α ≡ 1 (mod 2)}| = 5.

Thus we have 1 + 9b+ c ≤ 8 · 20 + 1 + b+ c, and b ≤ 20.

Now, we are ready to classify all stable regular ternary triangular forms.

The following lemma which is a direct consequence of Lemma 2.2.1(iii) is

very useful to prove the regularity.

Lemma 3.2.15. Let m be a positive integer congruent to 4 modulo 8. Then

r(1,1)(m, 〈1, 3〉) =
2

3
r(m, 〈1, 3〉).

Theorem 3.2.16. There are exactly 17 stable regular ternary triangular

forms.

∆1 = ∆(1, 1, 1), ∆2 = ∆(1, 1, 2), ∆3 = ∆(1, 1, 3), ∆4 = ∆(1, 1, 4),

∆5 = ∆(1, 2, 2), ∆6 = ∆(1, 1, 5), ∆7 = ∆(1, 1, 6), ∆8 = ∆(1, 2, 3),

∆9 = ∆(1, 2, 4), ∆10 = ∆(1, 2, 5), ∆11 = ∆(1, 1, 12), ∆12 = ∆(1, 3, 4),

∆13 = ∆(2, 2, 3), ∆14 = ∆(1, 2, 10), ∆15 = ∆(1, 1, 21), ∆16 = ∆(1, 4, 6),

∆17 = ∆(1, 3, 10).

Proof. By Lemmas 3.2.12, 3.2.13 and 3.2.14, we have

t ≤ 5, 1 ≤ a ≤ 2, and a+ b ≤ 21.

First, we want to find an upper bound for c for each possible pair (a, b).

Since all the other cases can be done in a similar manner, we only consider

3 representative cases here.

(i) (a, b) = (2, 2). Let E1 = {4 ·3, 4 ·7, 4 ·11, 4 ·19, 4 ·23, 4 ·31}. Suppose

that c ≥ 16. For any e1 ∈ E1, e1 is not represented by 〈2, 2〉. Furthermore,

since e1 + c < 4 + 9c by assumption, e1 + c
29 〈2, 2, c〉. Since ∆(2, 2, c) is

stable regular, there is an odd prime divisor p of e1 + c such that 〈2, 2, c〉 is
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anisotropic over Zp. Therefore, p divides c and also divides e1. Furthermore,

since |E1| = 6, there are at least six such odd primes. This is a contradiction

to the fact that t ≤ 5. Thus, we have c ≤ 15 if (a, b) = (2, 2).

(ii) (a, b) = (2, 3). Let E2 = {69, 117, 141, 213, 285, 333}. Suppose that

c ≥ 42. Since we are assuming that ∆(2, 3, c) is 3-stable, c is not divisible by

3. Any element of E2 is of the from 8n+2+3 for some positive integer n, and

the elements of E2 share no odd prime divisors other than 3. Let e2 ∈ E2.

From the assumption that c ≥ 42, one may easily check that e2+c
29 〈2, 3, c〉.

Since ∆(2, 3, c) is stable regular, there is an odd prime p dividing e2 + c and

〈2, 3, c〉 is anisotropic over Zp. Hence p is greater than 3 and divides e2. Thus

there are at least six such odd primes. This is a contradiction, and we have

c ≤ 41.

(iii) (a, b) = (2, 6). Since ∆(2, 6, c) is 3-stable, c is not a multiple of 3.

Note that 48 + c = 8 · 5 + 2 + 6 + c
29 〈2, 6, c〉. Thus there is an odd prime

p > 3 dividing 48 + c and 〈2, 6, c〉 is anisotropic over Zp. Therefore, 48 is

divisible by p, which is a contradiction. Therefore, the pair (a, b) = (2, 6) is

impossible.

All the other cases can be done in a similar manner to one of the above

three cases, and one may obtain an upper bound for c in each case. After

that, with the help of MAPLE program, one may show that there are 17

candidates of stable regular ternary triangular forms given above.

For each i = 1, 2, · · · , 17, we write ∆i = ∆(ai, bi, ci) and Li = 〈ai, bi, ci〉.
For any i ∈ U = {1, 2, 4, 5, 6, 8, 9}, it is well known that ∆i is universal (see

[13, p.23]). Hence we may assume that i 6∈ U . Let ni be any positive integer

such that

ñi := 8ni + ai + bi + ci −→ gen(Li).

Note that Li has class number 1 for any 1 ≤ i ≤ 17 and thus ñi −→ Li.

For i ∈ {11, 13, 14, 15, 16}, one may easily check that

R(ñi, Li) = R(1,1,1)(ñi, Li),

that is, if aix
2 + biy

2 + ciz
2 = ñi, then xyz ≡ 1 (mod 2). Assume that

i ∈ {7, 10}. Since the class number of Li is 1 and it primitively represents

ñi over Z2, there is a vector (x, y, z) ∈ R(ñi, Li) with (x, y, z, 2) = 1. One
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may easily check that (x, y, z, 2) = 1 implies xyz ≡ 1 (mod 2) in this case. If

i = 12, then one may easily show that

r(ñi, Li) = r(0,0,0)(ñi, Li) + r(0,0,1)(ñi, Li) + r(1,1,1)(ñi, Li).

Similarly to the previous case, the existence of a vector (x, y, z) ∈ R(ñi, Li)

with (x, y, z, 2) = 1 implies that

r(0,0,1)(ñi, Li) + r(1,1,1)(ñi, Li) > 0.

By Lemma 3.2.15,

r(1,1,1)(8ni + 8, x2 + 3y2 + 4z2) =
∑
z:odd

r(1,1)(8ni + 8− 4z2, x2 + 3y2)

=
∑
z:odd

2

3
r(8ni + 8− 4z2, x2 + 3y2)

=
2

3
r(0,0,1)(ñi, Li) +

2

3
r(1,1,1)(ñi, Li).

Therefore we have r(1,1,1)(ñi, x
2 +3y2 +4z2) = 2r(0,0,1)(ñi, x

2 +3y2 +4z2) > 0.

If i = 3, then one may easily check that

r(ñi, Li) = 2r(1,0,0)(ñi, Li) + r(1,1,1)(ñi, Li).

By Lemma 2.2.1(iii), we have

r(1,1,1)(8ni + 5, x2 + y2 + 3z2) =
∑
x:odd

r(1,1)(8ni + 5− x2, y2 + 3z2)

=
∑
x:odd

2r(0,0)(8ni + 5− x2, y2 + 3z2)

= 2r(1,0,0)(8ni + 5, x2 + y2 + 3z2).

Thus we have r(1,1,1)(ñi, x
2 + y2 + 3z2) = 1

2
r(ñi, x

2 + y2 + 3z2) > 0. Finally,

assume that i = 17. Note that if x2+3y2+10z2 = 8n+14, then x ≡ y (mod 2)
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and z ≡ 1 (mod 2). By Lemma 3.2.15 again, we have

r(1,1,1)(8ni + 14, x2 + 3y2 + 10z2) =
∑
z∈Z

r(1,1)(8ni + 14− 10z2, x2 + 3y2)

=
∑
z∈Z

2

3
r(8ni + 14− 10z2, x2 + 3y2)

=
2

3
r(8ni + 14, x2 + 3y2 + 10z2).

This completes the proof.

3.3 Classifications of regular ternary triangu-

lar forms

In this section, we prove that there are exactly 49 regular ternary triangular

forms. Let ∆(a′, b′, c′) be a regular ternary triangular form and let ∆(a, b, c)

be the stable regular ternary triangular form obtained from it by taking λ-

transformations, if necessary, repeatedly. Here, we are not assuming that

a ≤ b ≤ c. It might happen that there is an odd prime l dividing a′b′c′

such that (abc, l) = 1. We call such a prime l a missing prime. Note that

λp ◦ λq = λq ◦ λp for any odd primes p and q. Thus if l is a missing prime,

then one of the followings holds:

(i) ∆(a, l2b, l2c) is regular.

(ii) ∆(a, b, l2c) is regular and

(
−ab
l

)
= −1.

Lemma 3.3.1. There is no missing prime l greater than 7.

Proof. Let l be a missing prime. Then there is a stable regular ternary

triangular form ∆(a, b, c) such that (abc, l) = 1, and (i) or (ii) given above

holds.

Assume that the case (i) holds, that is, ∆(a, l2b, l2c) is regular. We let

sn = 8n+ a+ l2b+ l2c for n = 1, 2, 3, · · · .
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First, we prove that l ≤ 131. Assume to the contrary that l ≥ 137. One may

easily check that if

α2a+ β2l2b+ γ2l2c ≤ 8l + a+ l2b+ l2c

with odd integers α, β and γ, then β2 = γ2 = 1. Thus we have

∣∣∣{1 ≤ n ≤ l : sn
2−→ 〈a, l2b, l2c〉

}∣∣∣ ≤ [√2l

a
+

1

4
− 1

2

]
≤

[√
2l +

1

4

]
.

On the other hand, by Theorem 3.2.16, the set of odd primes at which 〈a, b, c〉
is anisotropic is

∅, {3}, {5}, {7}, {3, 5} or {3, 7}.

From Remark 3.2.8, we have

|{1 ≤ n ≤ l : sn 9 〈a, l2b, l2c〉 over Zp}| ≤



2

⌈
l

9

⌉
if p = 3,

3

⌈
l

25

⌉
if p = 5,

4

⌈
l

49

⌉
if p = 7,

l + 1

2
if p = l.

From the assumption that l ≥ 137, we have
3

25
l + 3 ≥ 4

49
l + 4. Since

l −
(

2

9
l + 2 +

3

25
l + 3 +

l + 1

2

)
=

71

450
l − 11

2
,

we must have∣∣∣{1 ≤ n ≤ l : sn
2−→ 〈a, l2b, l2c〉

}∣∣∣ ≥ ⌈ 71

450
l − 11

2

⌉
.
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However, one may directly show that if l ≥ 137, then

⌈
71

450
l − 11

2

⌉
>[√

2l + 1
4

]
. This is a contradiction and hence we have l ≤ 131. Now, by

a direct calculation with the help of MAPLE, one may check that for any

prime 11 ≤ q ≤ 131 and any stable regular ternary triangular form ∆(a, b, c),

all of the triangular forms ∆(a, q2b, q2c) are not regular.

Now, assume that ∆(a, b, l2c) (a ≤ b) is regular with

(
−ab
l

)
= −1. By

Theorem 3.2.16, (a, b) is one of the following pairs:

(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (1, 5), (1, 6), (2, 3), (2, 4),

(1, 10), (2, 5), (1, 12), (3, 4), (2, 10), (1, 21), (4, 6), (3, 10).

First, suppose that l ≥ 29. Since all the other cases can be done in a similar

manner, we only consider the cases when (a, b) = (1, 1) or (1, 5). Assume

that (a, b) = (1, 1). Since

418 + l2c = 8 · 52 + 1 + 1 + l2c −→ gen(〈1, 1, l2c〉),

and ∆(a, b, l2c) is regular, there is a vector (x, y, z) ∈ z3 with xyz ≡ 1 (mod 2)

such that x2 + y2 + l2cz2 = 418 + l2c. From the assumption that l ≥ 29,

we have z2 = 1. This is a contradiction, for 418 is not a sum of two integer

squares. Next, assume that (a, b) = (1, 5). Note that

110 + l2c = 8 · 13 + 1 + 5 + l2c −→ gen(〈1, 5, l2c〉).

Since we are assuming that ∆(1, 5, l2c) is regular, there is a vector (x1, y1, z1) ∈
Z3 with x1y1z1 ≡ 1 (mod 2) such that x21 + 5y21 + l2cz21 = 110 + l2c. Since

l ≥ 29, we have z21 = 1. This is a contradiction, for 110 is not represented by

〈1, 5〉. Therefore, we have l ≤ 23. Now, by a direct calculation with the help

of MAPLE, one may check that for any prime 11 ≤ l ≤ 23 and any stable

regular ternary triangular form ∆(a, b, c), all of the forms ∆(a, b, l2c) are not

regular. This completes the proof.

Remark 3.3.2. From Theorem 3.2.16 and Lemma 3.3.1, one may easily de-

duce that any prime divisor of the discriminant of a regular ternary triangu-
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lar form is less than or equal to 7.

Let ∆(a′, b′, c′) be a regular ternary triangular form. Then there are

nonnegative integers e3, e5 and e7 such that

λe33 (λe55 (λe77 (∆(a′, b′, c′)))) = ∆(a, b, c),

is stable regular. Hence, to find all regular ternary triangular forms, it suffices

to find all regular ternary triangular forms in the inverse image of the λp-

transformation of each regular triangular form for each p ∈ {3, 5, 7}. Note

that any triangular form in the inverse image λ−1p (∆(a, prb, psc)), for abc 6≡
0 (mod p) and 0 ≤ r ≤ s, is given in Table 3.2.

Table 3.2: Inverse image of λp-transformations

Cases Triangular forms in λ−1p (∆(a, prb, psc))

r = s = 0
∆(p2a, b, c),∆(a, p2b, c),∆(a, b, p2c),

∆(p2a, p2b, c),∆(p2a, b, p2c),∆(a, p2b, p2c)

r = 0, s = 1 ∆(pa, pb, c),∆(a, p2b, p3c),∆(p2a, b, p3c),∆(a, b, p3c)

r = 0, s ≥ 2 ∆(a, p2b, ps+2c),∆(p2a, b, ps+2c),∆(a, b, ps+2c)

r = s = 1 ∆(pa, b, p2c),∆(pa, p2b, c),∆(pa, b, c),∆(a, p3b, p3c)

r = 1, s ≥ 2 ∆(pa, b, ps+1c),∆(a, p3b, ps+2c)

r ≥ 2 ∆(a, pr+2b, ps+2)

First, we find all regular triangular forms in the inverse images of stable

regular ternary triangular forms via λp-transformation for each p ∈ {3, 5, 7},
and then we repeat this process again until any inverse image does not contain

a regular triangular form. As a sample, ternary triangular forms lying over

∆(1, 1, 1) are given in Figure 3.1. In that figure, if the triangular form is not

regular, then the smallest positive integer which is represented locally, but

not globally by the triangular form is given in parentheses.

Finally, one may have a list of 49 candidates for the regular ternary

triangular forms including 17 stable regular forms, which is given in Table

3.4. The regularities of 32 forms except 17 stable regular forms will be proved
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∆(1, 1, 81)(19)
∆(1, 9, 81)(19)

∆(1, 1, 9)

∆(1, 81, 81)(19)

∆(1, 9, 9)
∆(1, 1, 25)(5)
∆(1, 25, 25)(5)

∆(1, 1, 49)(8)
∆(1, 49, 49)(8)

∆(1, 1, 1)

λ3 λ3

λ3
λ3 λ5 λ7

Figure 3.1: Triangular forms lying over ∆(1, 1, 1) via λ-transformations

here. Before doing that, we need some lemmas.

Let p be an odd prime and let k be a positive integer relatively prime to

p. Assume that p is represented by the binary quadratic form x2 + ky2. In

1928, B. W. Jones proved in his unpublished thesis that if the Diophantine

equation x2 + ky2 = N(N > 0) has an integral solution, then it also has

an integral solution x, y with (x, y, p) = 1. The following lemma follows

immediately from this.

Lemma 3.3.3. Let N be a positive integer. If x2 + 2y2 = N for some

(x, y) ∈ Z2, then there is a vector (x̃, ỹ) ∈ Z2 such that

x̃ 6≡ ỹ (mod 3), x̃ ≡ x (mod 4), ỹ ≡ y (mod 2) and x̃2 + 2ỹ2 = N.

We also need the following lemma which appeared in the middle of the

proof of [25, Theorem 3.1].

Lemma 3.3.4. Let S ∈ M3(Z) be a positive-definite symmetric matrix and

let T ∈M3(Q) such that tTST = S. Let (u, v, w) ∈ Z3 and defineunvn
wn

 = T n

uv
w

 , n = 1, 2, 3, · · · .
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Assume that

(i) T has an infinite order.

(ii) (un, vn, wn) ∈ Z3 for any n.

Then (u, v, w) ∈ ker (T − det(T )I) and dimRker ((T − det(T )I)) = 1.

In the following 5 consecutive propositions, we prove the regularities of

5 candidates, all of whose corresponding quadratic forms are not regular(see

[19]).

Proposition 3.3.5. The ternary triangular form ∆(1, 4, 9) is regular.

Proof. Let L = 〈1, 4, 9〉 be a ternary quadratic form and let ` = 8n + 14

be an integer such that ` −→ gen(L). One may easily check that R(`, L) =

R(1,1,1)(`, L). Thus it suffices to show that ` −→ L. Since

gen(L) = {L,K = 〈1, 1, 36〉} ,

we may assume that ` −→ K.

First, assume that ` ≡ 0, 1 (mod 3). Since ` −→ K, there is a vector

(x, y, z) ∈ Z3 such that x2 + y2 + 36z2 = `. We have x ≡ 0 (mod 3) or

y ≡ 0 (mod 3) and thus ` −→ 〈1, 9, 36〉 −→ L.

Now, assume that ` ≡ 2 (mod 3). We assert that there is a vector

(x1, y1, z1) ∈ R(`,K) such that x1 6≡ ±y1 (mod 9) or z1 6≡ 0 (mod 3). Assume

to the contrary that there is no such vector. Then, we may assume that there

is a vector (u, v, w) ∈ R(`,K) such that u ≡ v (mod 9) and w ≡ 0 (mod 3).

Let

T =
1

9

 3 6 36

6 3 −36

−1 1 −3

 .

Note that

MK =

1 0 0

0 1 0

0 0 36

 and tTMKT = MK .
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If we let u1v1
w1

 = T

uv
w

 ,

then one may check that (u1, v1, w1) ∈ Z3 and thus (u1, v1, w1) ∈ R(`,K).

Thus u1 ≡ ±v1 (mod 9) and w1 ≡ 0 (mod 3) by assumption. Since

u1 − v1 =
−u+ v

3
+ 8w ≡ 0 (mod 3),

we have u1 ≡ v1 (mod 9). From this, one may easily check that T satisfies all

conditions given in Lemma 3.3.4 with S = MK , and thus we have (u, v, w) ∈
ker(T − I). Since ker(T − I) = 〈(1, 1, 0)〉, we have (u, v, w) = k(1, 1, 0)

for some integer k and u2 + v2 + 36w2 = 2k2. This is a contradiction to

the fact that ` ≡ 6 (mod 8), and we may conclude that there is a vector

(x2, y2, z2) ∈ R(`,K) such that

x2 6≡ ±y2 (mod 9) or z2 6≡ 0 (mod 3).

By changing signs of x2, y2, z2 and by interchanging the role of x2 and y2, if

necessary, we may assume that there is a vector (x3, y3, z3) ∈ R(`,K) such

that 2x3 + y3 + 12z3 ≡ 0 (mod 9). If we let

(x4, y4, z4) =

(
x3 + 2y3 − 12z3

3
,
x3 − y3 − 3z3

3
,
2x3 + y3 + 12z3

9

)
,

then one may easily show that (x4, y4, z4) ∈ R (`, L). This completes the

proof.

Proposition 3.3.6. The ternary triangular form ∆(1, 3, 27) is regular.

Proof. Let L = 〈1, 3, 27〉 be a ternary quadratic form and let ` = 8n+ 31 be

an integer such that ` −→ gen(L). Note that

gen(L) =

{
L,K = 〈3〉 ⊥

(
4 1

1 7

)}
.

By [25, Theorem 2.3] one may show that any integer congruent to 7 modulo 8
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that is represented by K is also represented by L. Therefore, ` is represented

by L. Note that if x2 + 3y2 + 27z2 = `, then

(x2, 3y2, 27z2) ≡ (1, 3, 3), (0, 4, 3), (4, 0, 3), (0, 3, 4) or (4, 3, 0) (mod 8).

Therefore, if there is a vector (x, y, z) ∈ R(`, L) with x ≡ y (mod 2), then

we are done by Lemma 3.2.15. Thus we may assume that for any (x, y, z) ∈
R(`, L),

y ≡ 1 (mod 2), x ≡ z ≡ 0 (mod 2) and x 6≡ z (mod 4).

Suppose that xy 6≡ 0 (mod 3) for any (x, y, z) ∈ R (`, L). Let (u, v, w) ∈
R (`, L) with u ≡ v (mod 3). For a rational isometry

T =
1

12

−3 18 −27

6 0 −18

1 2 9

 ,

of ML, we apply Lemma 3.3.4. Then we have (u, v, w) ∈ ker(T + I). Since

ker(T + I) = 〈(2,−1, 0)〉, we have (u, v, w) = k(2,−1, 0) for some integer k.

One may easily check that |k| > 1 and (k, 6) = 1. Hence there is a prime

q ≥ 5 such that k = qs and s ∈ Z. Then

` = u2 + 3v2 + 27w2 = 7q2s2. (3.3.1)

On the other hand,

r(1,1,1) (`, L) =
2

3
r
(
`, (y − 2x)2 + 3y2 + 27z2

)
=

2

3
r

(
`, 〈27〉 ⊥

(
4 2

2 4

))
.
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If we let M1 = 〈27〉 ⊥
(

4 2

2 4

)
, then

gen(M1) =

M1,M2 =

7 1 1

1 7 1

1 1 7

 ,M3 = 〈3〉 ⊥
(

4 2

2 28

) ,

spn(M1) = {M1,M2}.

Note that 7 −→ M2. By [4, Proposition 1], we have 7q2 −→ M1 and thus

` = 7q2s2 −→M1. Thus r(1,1,1)(`, L) > 0 and we are done with this case.

Now, suppose that there is a vector (x1, y1, z1) ∈ R (`, L) such that x1y1 ≡
0 (mod 3). We define

(x2, y2, z2) =


(
x1 + 9z1

2
, y1,
−x1 + 3z1

6

)
if x1 ≡ 0 (mod 3),(

x1 + 9z1
2

,
−x1 + 3z1

2
,
y1
3

)
otherwise.

Then, one may easily check that (x2, y2, z2) ∈ R(1,1,1) (`, L).

Proposition 3.3.7. The ternary triangular form ∆(1, 6, 27) is regular.

Proof. Let L = 〈1, 6, 27〉 be a ternary quadratic form and let ` = 8n+ 34 be

an integer such that ` −→ gen(L). Note that

gen(L) =

{
L,K = 〈6〉 ⊥

(
4 1

1 7

)}
.

Since λ2(L) ' 〈3〉 ⊥
(

2 1

1 14

)
' λ2(K), we have

r(`, L) = r

(
`

2
, 〈3〉 ⊥

(
2 1

1 14

))
= r(`,M)

and thus ` −→ L. If (x, y, z) ∈ R (`, L), then

(x2, 6y2, 27z2) ≡ (0, 6, 4), (4, 6, 0) or (1, 6, 3) (mod 8).
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Thus we may assume that for any (x, y, z) ∈ R (`, L),

y ≡ 1 (mod 2), x ≡ z ≡ 0 (mod 2), and x 6≡ z (mod 4).

First, suppose that there is a vector (x1, y1, z1) ∈ R(`, L) with x1 ≡
0 (mod 3). If we let

(x2, y2, z2) =

(
x1 + 9z1

2
, y1,
−x1 + 3z1

6

)
,

then one may easily check that (x2, y2, z2) ∈ R(1,1,1)(`, L). Hence we may

further assume that for any (x, y, z) ∈ R(`, L), x 6≡ 0 (mod 3).

Now, suppose that there is a vector (x3, y3, z3) ∈ R(`, L) with y3 ≡
0 (mod 3). Let y3 = 3y′3. Then we have x23 + 27(2y′23 + z23) = `. Since

y′3 ≡ 1 (mod 2), we have 2y′23 + z23 6= 0. By Lemma 3.3.3, there is a vector

(x4, y4, z4) ∈ Z3 with y4 6≡ z4 (mod 3) such that x24 + 27(2y24 + z24) = `. Thus

(x4, 3y4, z4) ∈ R(`, L) such that y4 6≡ 0 (mod 3) or z4 6≡ 0 (mod 3). By chang-

ing signs of x4, y4, z4, if necessary, we may assume that x4 ≡ y4 + z4 (mod 3).

If we let

(x5, y5, z5) =

(
x4 + 12y4 + 3z4

2
,
−3y4 + 6z4

3
,
−3x4 + 12y4 + 3z4

18

)
,

then one may easily check that (x5, y5, z5) ∈ R(1,1,1)(`, L). Therefore, we

further assume that for any (x, y, z) ∈ R(`, L), xy 6≡ 0 (mod 3).

Suppose that there is a vector (x6, y6, z6) ∈ R(`, L) such that y6 6≡
±4x6 (mod 9) or z6 6≡ 0 (mod 3). Then one may check that by chang-

ing signs of x6, y6, z6, if necessary, we may assume that

x6 + y6 − 3z6 ≡ 0 (mod 9) or x6 − 4y6 − 3z6 ≡ 0 (mod 9).

If x6 + y6 − 3z6 ≡ 0 (mod 9), then we define

(x7, y7, z7) =

(
x6 + 9z6

2
,
−x6 − y6 + 3z6

3
,
−x6 + 8y6 + 3z6

18

)
.
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If x6 − 4y6 − 3z6 ≡ 0 (mod 9), then we define

(x7, y7, z7) =

(
x6 + 4y6 + 3z6

2
,
−x6 + y6 + 3z6

3
,
x6 − 4y6 + 15z6

18

)
.

Then one may easily check that (x7, y7, z7) ∈ R(1,1,1)(`, L) in each case. Now,

we further assume that for any (x, y, z) ∈ R(`, L),

y ≡ ±4x (mod 9) and z ≡ 0 (mod 3). (3.3.2)

Suppose that there is a vector (x8, y8, z8) ∈ R(`, L) such that z8 6≡
0 (mod 9). By changing signs of y8 and z8, if necessary, we may assume

that y8 ≡ 4x8 (mod 9) and
x8 − y8

3
+ z8 6≡ ±4x8 (mod 9). If we let

(x9, y9, z9) =

(
2y8 + 3z8,

x8 − y8 + 3z8
3

,
−x8 − 2y8 + 6z8

9

)
,

then (x9, y9, z9) ∈ R(`, L) and y9 6≡ ±4x9 (mod 9). This contradicts to our

assumption (3.3.2). Therefore, we further assume that for any (x, y, z) ∈
R(`, L),

y ≡ ±4x (mod 9) and z ≡ 0 (mod 9).

Take a vector (u, v, w) ∈ R(`, L) with u ≡ v (mod 3) so that u+ 2v + 6w ≡
0 (mod 9). If we let

T =
1

9

0 18 −27

3 −3 −9

1 2 6

 ,

then one may easily check that

ML =

1 0 0

0 6 0

0 0 27

 and tTMLT = ML.

43



CHAPTER 3. REGULAR TERNARY TRIANGULAR FORMS

If we let u1v1
w1

 = T

uv
w

 ,

then clearly, (u1, v1, w1) ∈ Z3, and thus (u1, v1, w1) ∈ R(`, L). Note that

u1− v1 ≡ 0 (mod 3). From this, one may show that T satisfies all conditions

given in Lemma 3.3.4 with S = ML, and thus we have (u, v, w) ∈ ker(T + I).

Since ker(T + I) = 〈(2,−1, 0)〉, we have (u, v, w) = k(2,−1, 0) for some

integer k with |k| > 1 and (k, 6) = 1. Thus there is a prime divisor q ≥ 5 of

k. Now ` = 10q2s2 for some odd integer s. Note that

r(1,1,1)(`, L) = 2r
(
`, (z − 4x)2 + 6y2 + 27z2

)
= 2r

(
`, 〈6〉 ⊥

(
16 4

4 28

))
.

Let M1 = 〈6〉 ⊥
(

16 4

4 28

)
. Then

gen(M1) = spn(M1) = {M1,M2 = 〈4, 6, 108〉} .

Note that 10 −→M2. By [4, Proposition 1], we have r(10q2s2,M1) > 0, and

this completes the proof.

Proposition 3.3.8. The ternary triangular form ∆(1, 9, 18) is regular.

Proof. Let L = 〈1, 9, 18〉 be a ternary quadratic form and let ` = 8n+ 28 be

an integer such that ` −→ gen(L). Note that

gen(L) =

L,K =

 4 1 −1

1 7 2

−1 2 7

 .

Since λ2(L) ' 〈9〉 ⊥
(

2 1

1 5

)
' λ2(K), we have ` −→ L. Let (x, y, z) ∈

R(`, L). We may assume that x ≡ y ≡ z ≡ 0 (mod 2). Then x 6≡ y (mod 4).

First, assume that x 6≡ 0 (mod 3) and y2 + 2z2 > 0. Then by Lemma

3.3.3, there is a vector (y1, z1) ∈ Z2 with y1 6≡ z1 (mod 3), y1 ≡ y (mod 4)
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and z1 ≡ z (mod 2) such that y21 + 2z21 = y2 + 2z2. So x2 + 9y21 + 18z21 = `.

By replacing x by −x, if necessary, we may assume x+ y1− z1 ≡ 0 (mod 3).

If we let

(x2, y2, z2) =

(
3x+ 9y1 + 18z1

6
,
−x+ 5y1 − 2z1

6
,
−x− y1 + 4z1

6

)
,

then one may easily check that (x2, y2, z2) ∈ R(1,1,1) (`, L).

Now, assume that x 6≡ 0 (mod 3) and y = z = 0. Note that

r(1,1,1) (`, L) = 2r
(
`, (v − 4u)2 + 9v2 + 18w2

)
= 2r

(
`

2
, 〈9〉 ⊥

(
5 2

2 8

))
.

If we let M1 = 〈9〉 ⊥
(

5 2

2 8

)
, then

gen(M1) = spn(M1) =

{
M1,M2 = 〈36〉 ⊥

(
2 1

1 5

)}
.

Then by [4, Proposition 1], 2p2 −→M1 for any prime p ≥ 5. Note that

`

2
= 2

(x
2

)2
,
(x

2
, 6
)

= 1 and
x

2
> 1.

So there is a prime divisor q of
x

2
with q ≥ 5. Thus we have r

(
`

2
,M1

)
> 0.

Finally, assume that x ≡ 0 (mod 3). If we let

(x3, y3, z3) =

(
3x+ 9y + 18z

6
,
−x− 3y + 6z

6
,
−x+ 3y

6

)
,

then one may easily check that (x3, y3, z3) ∈ R(1,1,1)(`, L).

Proposition 3.3.9. The ternary triangular form ∆(1, 1, 18) is regular.

Proof. Let L = 〈1, 1, 18〉 be a ternary quadratic form and let ` = 8n+ 20 be
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an integer such that ` −→ gen(L). Note that

gen(L) =

{
L,K = 〈2〉 ⊥

(
2 1

1 5

)}
.

Since λ2(L) ' 〈1, 1, 9〉 ' λ2(K), we have ` −→ L. Let (x, y, z) ∈ R(`, L).

First, assume that ` ≡ 0 (mod 3). Then x ≡ y ≡ 0 (mod 3) and thus

` ≡ 0 (mod 9). So (x
3

)2
+
(y

3

)2
+ 2z2 =

`

9
.

Note that
`

9
≥ 4 and

`

9
≡ 4 (mod 8). Since the triangular form ∆(1, 1, 2)

is universal, there is a vector (x1, y1, z1) ∈ R(1,1,1)

(
`

9
, 〈1, 1, 2〉

)
and thus

(3x1, 3y1, z1) ∈ R(1,1,1) (`, L).

Now, assume ` ≡ 1 (mod 3). Note that xy ≡ 0 (mod 3). Without loss of

generality, we may assume that y ≡ 0 (mod 3). Then

` = x2 + 9
(y

3

)2
+ 18z2.

Note that ` ≥ 28, ` ≡ 4 (mod 8). Since ∆(1, 9, 18) is regular by Propo-

sition 3.3.8, there is a vector (x2, y2, z2) ∈ R(1,1,1) (`, 〈1, 9, 18〉) and thus

(x2, 3y2, z2) ∈ R(1,1,1) (`, 〈1, 1, 18〉).
Finally, assume that ` ≡ 2 (mod 3). Since x2 +y2 +18z2 ≡ 4 (mod 8), we

may assume that x ≡ 0 (mod 4), y ≡ 2 (mod 4) and z ≡ 0 (mod 2). Since

xy 6≡ 0 (mod 3), we may further assume that x ≡ y (mod 3). If we let

(x3, y3, z3) =

(
x+ y

2
+ 3z,−x+ y

2
+ 3z,

−x+ y

6

)
,

then one may easily check that (x3, y3, z3) ∈ R(1,1,1) (`, L).

Theorem 3.3.10. There are exactly 49 regular ternary triangular forms,

which are listed in Table 4.

Proof. For 1 ≤ i ≤ 49, we write ∆i = ∆(ai, bi, ci). Let Li = 〈ai, bi, ci〉 be a

ternary quadratic form and let `i(n) = 8n + ai + bi + ci be any integer such
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Table 3.3: Regular ternary triangular forms

∆1 = ∆(1, 1, 1), ∆2 = ∆(1, 1, 2), ∆3 = ∆(1, 1, 3),

∆4 = ∆(1, 1, 4), ∆5 = ∆(1, 1, 5), ∆6 = ∆(1, 1, 6),

∆7 = ∆(1, 2, 2), ∆8 = ∆(1, 2, 3), ∆9 = ∆(1, 2, 4),

∆10 = ∆(1, 1, 9), ∆11 = ∆(1, 3, 3), ∆12 = ∆(1, 2, 5),

∆13 = ∆(1, 1, 12), ∆14 = ∆(1, 3, 4), ∆15 = ∆(2, 2, 3),

∆16 = ∆(1, 1, 18), ∆17 = ∆(1, 3, 6), ∆18 = ∆(2, 3, 3),

∆19 = ∆(1, 2, 10), ∆20 = ∆(1, 1, 21), ∆21 = ∆(1, 4, 6),

∆22 = ∆(1, 5, 5), ∆23 = ∆(1, 3, 9), ∆24 = ∆(1, 3, 10),

∆25 = ∆(1, 3, 12), ∆26 = ∆(1, 4, 9), ∆27 = ∆(1, 6, 6),

∆28 = ∆(3, 3, 4), ∆29 = ∆(1, 5, 10), ∆30 = ∆(1, 3, 18),

∆31 = ∆(1, 6, 9), ∆32 = ∆(2, 3, 9), ∆33 = ∆(3, 3, 7),

∆34 = ∆(2, 3, 12), ∆35 = ∆(1, 3, 27), ∆36 = ∆(1, 9, 9),

∆37 = ∆(1, 3, 30), ∆38 = ∆(2, 5, 10), ∆39 = ∆(1, 9, 12),

∆40 = ∆(2, 3, 18), ∆41 = ∆(1, 5, 25), ∆42 = ∆(3, 7, 7),

∆43 = ∆(2, 5, 15), ∆44 = ∆(1, 6, 27), ∆45 = ∆(1, 9, 18),

∆46 = ∆(1, 9, 21), ∆47 = ∆(1, 21, 21), ∆48 = ∆(5, 6, 15),

∆49 = ∆(3, 7, 63).

that `i(n) −→ gen(Li). In Theorem 3.2.16 and Propositions 3.3.5∼3.3.9, we

have already proved the regularity of each ∆i when

i ∈ {k : 1 ≤ k ≤ 9, 12 ≤ k ≤ 16, or k = 19, 20, 21, 24, 26, 35, 44, 45}.

Hence we may assume that i is not contained in the above set. Note that for

any integer i which is not contained in {16, 26, 35, 44, 45}, which we alreay

considered in Propositions 3.3.5∼3.3.9, the corresponding quadratic form Li
has class number 1 and thus `i(n) −→ Li. If i ∈ {10, 36, 39, 40, 41, 49}, then

one may easily show thatR(`i(n), Li) = R(1,1,1)(`i(n), Li). Hence `i(n)
2−→ Li

in this case.
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Now, we consider the case when i = 30. Note that if x2 + 3y2 + 18z2 =

8n+ 22, then we have z ≡ 1 (mod 2) and x ≡ y (mod 2). By Lemma 3.2.15,

we have

r(1,1,1)(8n+ 22, 〈1, 3, 18〉) =
∑
z∈Z

r(1,1)(8n+ 22− 18z2, 〈1, 3〉)

=
2

3
r(8n+ 22, 〈1, 3, 18〉).

Since the proof of the case when i = 48 is quite similar to this, we omit the

proof.

Assume that i = 31. Since the quadratic form 〈1, 6, 9〉 has class number

1 and it primitively represents 8n+ 16 over Z2, there is a vector

(x, y, z) ∈ R(8n+ 16, 〈1, 6, 9〉), (x, y, z, 2) = 1.

Since x2 + 6y2 + 9z2 ≡ 0 (mod 8), we have xyz ≡ 1 (mod 2).

For the remaining i, that is,

i ∈ {11, 17, 18, 22, 23, 25, 27, 28, 29, 32, 33, 34, 37, 38, 42, 43, 46, 47},

one may check that ∆(ai, bi, ci) can be obtained from a ternary triangular

form whose regularity is already proved by taking λp-transformations several

times for some p ∈ {3, 5, 7}. Furthermore, one may easily check that the

regularity is preserved during taking the λp-transformation. This completes

the proof.
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Chapter 4

The number of representations

of ternary triangular forms

4.1 The number of representations of ternary

triangular forms

Let a, b and c be positive integers such that (a, b, c) = 1. Throughout this

section, we assume, without loss of generality, that a is odd. We show that the

number t(n, 〈a, b, c〉) is equal to the number of representations of a subform

of the ternary diagonal quadratic form ax2 + by2 + cz2, if a + b + c is not

divisible by 8, or a difference of the numbers of representations of two ternary

quadratic forms otherwise.

Let f(x, y, z) = ax2 + by2 + cz2 be a ternary diagonal quadratic form.

Recall that

t(n, 〈a, b, c〉) = |{(x, y, z) ∈ Z3 : f(x, y, z) = 8n+a+b+c, xyz ≡ 1 (mod 2)}|.

Lemma 4.1.1. Assume that a+ b+ c is odd. For any positive integer n, we

have

t(n, 〈a, b, c〉) = r(8n+ a+ b+ c, f(x, x− 2y, x− 2z)).
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In particular, if a ≡ b ≡ c (mod 4), then we have

t(n, 〈a, b, c〉) = r(8n+ a+ b+ c, f(x, y, z)).

Proof. Let g(x, y, z) = f(x, x−2y, x−2z). Define a map φ : T (n, 〈a, b, c〉)→
R(n, g) by φ(x, y, z) = (x, x−y

2
, x−z

2
). Then one may easily show that it is a

bijective map.

Now, assume that a ≡ b ≡ c (mod 4). If ax2 + by2 + cz2 = 8n+ a+ b+ c

for some integers x, y and z, then one may easily show that x, y and z are all

odd. The lemma follows directly from this.

Lemma 4.1.2. Assume that S = a + b + c, both a and b are odd and c is

even. Then, for any positive integer n, we have

t(n, 〈a, b, c〉)

=


r(8n+ S, f(x, y, z)) if S ≡ 2 (mod 4) and c ≡ 4 (mod 8),

r(8n+ S, f(x, y, y − 2z)) if S ≡ 2 (mod 4) and c 6≡ 4 (mod 8),

2r(8n+ S, f(x, x− 4y, z)) if S ≡ 4 (mod 8) and c ≡ 2 (mod 4),

2r(8n+ S, f(x, x− 4y, x− 2z)) if S ≡ 4 (mod 8) and c ≡ 0 (mod 4),

and if S ≡ 0 (mod 8), then

t(n, 〈a, b, c〉) = r(8n+ S, f(x, x− 2y, x− 2z))− r
(

2n+
S

4
, f(x, y, z)

)
.

Proof. Since the proof is quite similar to each other, we only provide the proof

of the fourth case, that is, the case when S ≡ 4 (mod 8) and c ≡ 0 (mod 4).

Let g(x, y, z) = f(x, x− 4y, x− 2z). We define a map

ψ : {(x, y, z) ∈ R(1,1,1)(8n+ S, f), x ≡ y (mod 4)}

→ R(8n+ S, g) by ψ(x, y, z) =

(
x,
x− y

4
,
x− z

2

)
.

From the assumption, it is well defined. Conversely, assume that g(x, y, z) =
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8n+ S for some (x, y, z) ∈ Z3. Since

f(x, x− 4y, x− 2z) = ax2 + b(x− 4y)2 + c(x− 2z)2

≡ ax2 + bx2 + cx2 ≡ Sx2 ≡ S (mod 8)

and S ≡ 4 (mod 8), the integer x is odd. Therefore, the map (x, y, z) →
(x, x− 4y, x− 2z) is an inverse map of ψ. The lemma follows from this and

the fact that

t(n, 〈a, b, c〉) = 2
∣∣{(x, y, z) ∈ R(1,1,1)(8n+ S, f) : x ≡ y (mod 4)

}∣∣ .
This completes the proof.

4.2 Triangular forms and diagonal quadratic

forms

In this section, we generalize some conjectures given by Sun in [31] on the

relations between t(n, 〈a, b, c〉) and the numbers of representations of integers

by some ternary quadratic forms, and prove these generalized conjectures.

Lemma 4.2.1. Let a, b (a < b) be positive odd integers such that gcd(a, b) = 1

and a+ b ≡ 0 (mod 8). Then

r(1,1)(m, 〈a, b〉) = r(1,1)(4m, 〈a, b〉) (4.2.1)

for any integer m divisible by 8 if and only if (a, b) ∈ {(3, 5), (1, 7), (1, 15)}.

Proof. Assume that Equation (4.2.1) holds for any integer m divisible by 8.

Let a + b = 2uk for some integer u ≥ 3 and an odd integer k. Note that

1 ≤ a < 2u−1k.

First, we assume u ≥ 5. Since

a · 12 + (2uk − a) · 12 = 4 · 2u−2k and 2u−2k ≡ 0 (mod 8),

there exist odd integers x and y satisfying ax2 + (2uk− a)y2 = 2u−2k, which

is a contradiction.
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Next, assume that u = 4. Since

a · 72 + (16k − a) · 12 = 4(4k + 12a) and 4k + 12a ≡ 0 (mod 8),

there exist two odd integers x1, y1 such that ax21 + (16k − a)y21 = 4k + 12a.

Thus, 4k+12a ≥ 16k and hence k ≤ a. Now, since a·12+(16k−a)·12 = 16k,

there are two positive odd integers x2, y2 with ax22 + (16k − a)y22 = 64k.

Since 16k − a > 8k by assumption, we have y22 = 1. Furthermore, since

ax22 = a + 48k ≤ 49a, (x2, a) = (3, 6k), (5, 2k) or (7, k). Since a is odd, we

have (a, b) = (1, 15) in this case.

Finally, we assume that u = 3. Since a · 12 + (8k− a) · 12 = 8k, there are

positive odd integers x3, y3 such that ax23 + (8k− a)y23 = 32k. Hence we have

y23 = 1 and ax23 = a+ 24k. (4.2.2)

Note that if x3 = 3, then (a, b) = (3, 5) and if x3 = 5, then (a, b) = (1, 7).

Assume that x3 ≥ 7, that is, 2a ≤ k. Since a · 32 + (8k − a) · 12 = 8k + 8a,

there are two odd integers x4, y4 such that ax24 + (8k − a)y24 = 32k + 32a.

If y24 ≥ 9, then a + 72k − 9a ≤ 32k + 32a, which is a contradiction to the

assumption that 2a ≤ k. Hence we have

y24 = 1 and ax24 = 33a+ 24k. (4.2.3)

Now, by Equations (4.2.2) and (4.2.3), we have x24 − x23 = 32. Therefore,

x23 = 49, x24 = 81, and k = 2a. which is a contradiction to the assumption

that k is odd.

To prove the converse, we define three maps

χ1 : R̃(1,1)(m, 3x
2 + 5y2)→ R̃(1,1)(4m, 3x

2 + 5y2)

by χ1(x, y) =

(
x− 5y

2
,
3x+ y

2

)
,

χ2 : R̃(1,1)(m,x
2 + 7y2)→ R̃(1,1)(4m,x

2 + 7y2)

by χ2(x, y) =

(
3x− 7y

2
,
x+ 3y

2

)
,
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and

χ3 : R̃(1,1)(m,x
2 + 15y2)→ R̃(1,1)(4m,x

2 + 15y2)

by χ3(x, y) =

(
x+ 15y

2
,
−x+ y

2

)
.

One may easily show that the above three maps are all bijective.

Theorem 4.2.2. Let a, b, c be positive integers such that (a, b, c) 6= (1, 1, 1)

and gcd(a, b, c) = 1. Assume that two of three fractions b
a
, c
b
, c
a

are contained

in
{

1, 5
3
, 7, 15

}
. Then, for any positive integer n, we have

2t(n, 〈a, b, c〉) = r(4(8n+ a+ b+ c), 〈a, b, c〉)− r(8n+ a+ b+ c, 〈a, b, c〉).

Proof. Note that all of a, b and c are odd. Furthermore, from the assumption,

one may easily show that

−a ≡ b ≡ c (mod 8), a ≡ −b ≡ c (mod 8) or a ≡ b ≡ −c (mod 8).

By switching the roles of a, b and c if necessary, we may assume a ≡ b ≡
−c (mod 8). Then we have(

a

(a, c)
,

c

(a, c)

)
,

(
b

(b, c)
,

c

(b, c)

)
∈ {(3, 5), (5, 3), (1, 7), (7, 1), (1, 15), (15, 1)}.

Let

f = f(x, y, z) = ax2 + by2 + cz2 and N = 8n+ a+ b+ c.

One may easily show that if f(x, y, z) = 4N , then

(
ax2, by2, cz2

)
≡

(0, 0, 4), (0, 4, 0), (a, 4, c), (4, 0, 0), (4, b, c),

or (4, 4, 4) (mod 8).

Let

A = {(x, y, z) ∈ R(4N, f) : y ≡ 2 (mod 4), xz ≡ 1 (mod 2)} ,
B = {(x, y, z) ∈ R(4N, f) : x ≡ 2 (mod 4), yz ≡ 1 (mod 2)} .
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Note that

r(4N, f)− r(N, f) = |A|+ |B|.

Thus it is sufficient to show t(N, 〈a, b, c〉) = |A| and t(N, 〈a, b, c〉) = |B|. To

show the first equality, we apply Lemma 4.2.1 to show that

r(1,1,1)(N, f) =
∑
y∈Z

r(1,1)(N − by2, ax2 + cz2) (4.2.4)

=
∑
y∈Z

r(1,1)(4(N − by2), ax2 + cz2) = |A|. (4.2.5)

The proof of t(N, 〈a, b, c〉) = |B| is quite similar to this. This completes the

proof.

Remark 4.2.3. All triples (a, b, c) satisfying the assumption of Theorem

4.2.2 are listed in Table 4.1 below. The triples marked with asterisks are

exactly those that are listed in Conjecture 6.1 of [31].

(1, 1, 7)∗, (1, 1, 15)∗, (3, 3, 5), (1, 7, 7)∗, (3, 5, 5), (1, 7, 15)∗, (1, 9, 15)∗

(1, 15, 15)∗, (3, 5, 21), (1, 7, 49), (1, 15, 25)∗, (3, 5, 35), (3, 5, 45)

(1, 7, 105), (3, 5, 75), (1, 15, 105), (3, 21, 35), (1, 15, 225), (9, 15, 25)

(5, 21, 35), (7, 15, 105)

Table 4.1:

Theorem 4.2.4. Let a, b be relatively prime positive odd integers such that

one of four fractions b
a
, a
b
, 3a
b
, b
3a

is contained in {5
3
, 7, 15}. Then, for any

positive integer n, we have

2t(n, 〈a, 3a, b〉) = 3r(8n+ 4a+ b, 〈a, 3a, b〉)− r(4(8n+ 4a+ b), 〈a, 3a, b〉).

Proof. Since all the other cases can be treated in a similar manner, we only

consider the case when b
3a

= 5
3
, that is, (a, 3a, b) = (1, 3, 5). One may easily

show that if x2 + 3y2 + 5z2 = 4(8n+ 9), then(
x2, 3y2, 5z2

)
≡ (0, 0, 4), (1, 3, 0), (4, 0, 0), (4, 3, 5), or (4, 4, 4) (mod 8).
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Let

f = f(x, y, z) = x2 + 3y2 + 5z2 and N = 8n+ 9.

From the above observation, we have

3r(N, f)− r(4N, f) = 3r(0,0,0)(4N, f)− r(4N, f)

= 2r(0,0,0)(4N, f)− r(1,1,0)(4N, f)− r(0,1,1)(4N, f).

Therefore, it suffices to show that

2r(1,1,1)(N, f) = 2r(0,0,0)(4N, f)− r(1,1,0)(4N, f)− r(0,1,1)(4N, f).

Since r(0,0,0)(4N, f) = r(N, f) and

r(N, f) = r(1,1,1)(N, f) + r(1,0,0)(N, f) + r(0,0,1)(N, f),

it is enough to show that

r(1,0,0)(N, f) =
1

2
r(1,1,0)(4N, f) and r(0,0,1)(N, f) =

1

2
r(0,1,1)(4N, f).

To prove the first assertion, we apply (i) of Lemma 2.2.1 to show that

r(1,0,0)(N, f) =
∑
z∈Z

r(1,0)(N − 5z2, x2 + 3y2)

=
1

2

∑
z∈Z

r(1,1)(4(N − 5z2), x2 + 3y2) =
1

2
r(1,1,0)(4N, f).

For the second assertion, we apply (iii) of Lemma 2.2.1 and Lemma 4.2.1 to
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show that

r(0,0,1)(N, f) =
∑
z∈Z

r(0,0)(N − 5z2, x2 + 3y2)

=
1

2

∑
z∈Z

r(1,1)(N − 5z2, x2 + 3y2)

=
1

2
r(1,1,1)(N, x

2 + 3y2 + 5z2)

=
1

2

∑
x∈Z

r(1,1)(N − x2, 3y2 + 5z2)

=
1

2

∑
x∈Z

r(1,1)(4(N − x2), 3y2 + 5z2)

=
1

2
r(0,1,1)(4N, f).

This completes the proof.

Remark 4.2.5. All triples (a, 3a, b) satisfying the assumption of the Theorem

4.2.4 are listed in Table 4.2 below. Those triples marked with asterisks are

exactly those that are listed in Conjecture 6.2 of [31].

(1, 3, 5)∗, (1, 3, 7)∗, (1, 3, 15)∗, (1, 3, 21)∗, (1, 5, 15)∗, (1, 3, 45)

(3, 5, 9)∗, (1, 7, 21)∗, (3, 5, 15)∗, (3, 7, 21)∗, (1, 15, 45), (5, 9, 15)

Table 4.2:

Theorem 4.2.6. Let (a, b, c) ∈ {(1, 2, 15), (1, 15, 18), (1, 15, 30)}. For any

positive even integer n, we have

2t(n, 〈a, b, c〉) = r(4(8n+a+b+c), 〈a, b, c〉)−r(8n+a+b+c, 〈a, b, c〉). (4.2.6)

Proof. First, assume that (a, b, c) = (1, 2, 15). Let

f = f(x, y, z) = x2 + 2y2 + 15z2 and N = 8n+ 18.

56



CHAPTER 4. TERNARY TRIANGULAR FORMS

One may easily show that if f(x, y, z) = 4N , then(
x2, 2y2, 15z2

)
≡ (0, 0, 0), (1, 0, 7), or (4, 0, 4) (mod 8).

Hence the right-hand side of Equation (4.2.6) is

r(4N, f)− r(N, f) = r(1,0,1)(4N, f).

Note that

r(1,1,1)(N, f) =
∑
y∈Z

r(1,1)((N − 2y2), x2 + 15z2)

=
∑
y∈Z

r(1,1)(4(N − 2y2), x2 + 15z2)

= r(1,1,1)(4N, x
2 + 8y2 + 15z2)

= |{(x, y, z) ∈ R(4N, f) : xz ≡ 1 (mod 2), y ≡ 2 (mod 4)}|

by Lemma 4.2.1. Since

|{(x, y, z) ∈ R(4N, f) : xz ≡ 1 (mod 2), y ≡ 0 (mod 4)}| = r(4N, 〈1, 32, 15〉),

it suffices to show that

r(1,1,1)(N, f) = r(4N, 〈1, 32, 15〉). (4.2.7)

It is well known that

gen(f1 = 4x2 + 4y2 + 8z2 + 2xy) = {f1, f2, f3},

where f2 = 4x2+6y2+6z2+4yz+2xz+2xy, f3 = 2x2+6y2+12z2+6yz+2xz,

and

gen(g1 = 4x2 + 8y2 + 18z2 + 8yz + 4xz) = {g1, g2 = 2x2 + 10y2 + 24z2}.

57



CHAPTER 4. TERNARY TRIANGULAR FORMS

Note that

r(1,1,1)(N, f) = r(N, x2 + 2(x− 2y)2 + 15(x− 2z)2) = r(N, g1).

On the other hand, the right-hand side of Equation (4.2.7) is

r (4N, x2 + 15y2 + 32z2) = r (4N, (3x+ y)2 + 15(x+ y)2 + 32z2)

= r (2N, 12x2 + 8y2 + 16z2 + 18xy)

= r (2N, 48x2 + 8y2 + 16z2 + 36xy) + r (2N, 12x2 + 32y2 + 16z2 + 36xy)

= 2r (N, f1) .

Therefore, it suffices to show that for any positive even integer n = 2m,

2r(16m+ 18, f1) = r(16m+ 18, g1). (4.2.8)

By the Minkowski-Siegel formula, we have

r(16m+ 18, f1) + 2r(16m+ 18, f2) + r(16m+ 18, f3)

= r(16m+ 18, g1) + r(16m+ 18, g2).

If f1(x, y, z) = 16m + 18, then one may easily check that x + 3y − 4z ≡
0 (mod 8), and if f2(x, y, z) = 16m + 18, then x − 6y + 2z ≡ 0 (mod 8). If

we define a map

φ1 : {(x, y, z) ∈ R(16m+ 18, f1) : x+ 3y − 4z ≡ 0 (mod 16)}

→ {(x, y, z) ∈ R(16m+ 18, f2) : x− 6y + 2z ≡ 0 (mod 16)}

by φ1(x, y, z) =

(
12x+ 4y + 16z

16
,
−11x− y + 12z

16
,
x− 13y − 4z

16

)
, then it

is bijective. Furthermore, the map

φ2 : {(x, y, z) ∈ R(16m+ 18, f1) : x+ 3y − 4z ≡ 8 (mod 16)}

→ {(x, y, z) ∈ R(16m+ 18, f2) : x− 6y + 2z ≡ 8 (mod 16)}
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defined by φ2(x, y, z) =

(
4x+ 12y − 16z

16
,
−13x+ y + 4z

16
,
−x− 11y − 12z

16

)
is also bijective. Therefore, we have

r(16m+ 18, f1) = r(16m+ 18, f2). (4.2.9)

Note that the above equation does not hold, in general, if n is odd. If we

define two maps

φ3 : R(16m+ 18, 〈8, 10, 24〉)→ R(16m+ 18, f1)

by φ3(x, y, z) = (y + 2z, y − 2z, x)

and

φ4 : R(16m+ 18, 〈2, 24, 40〉)→ R(16m+ 18, f3)

by φ4(x, y, z) = (x+ z, 2y + z,−2z),

then one may easily check that both of them are bijective. Hence we have

r(16m+ 18, g2) = r (16m+ 18, 〈8, 10, 24〉) + r (16m+ 18, 〈2, 24, 40〉)

= r(16m+ 18, f1) + r(16m+ 18, f3),

for any non negative integer m. Therefore, from the Minkowski-Siegel for-

mula given above, we have 2r(16m + 18, f2) = r(16m + 18, g1) for any non-

negative integer m. Equation (4.2.8) follows directly from this and Equation

(4.2.9).

For the other two cases, one may easily show Equation (4.2.6) by replacing

N, fi, gi and φi with the following data:

(1) (a, b, c) = (1, 15, 18). In this case, we let N = 8n+ 34 and

f1 = 4x2 + 4y2 + 72z2 + 2xy,

f2 = 4x2 + 16y2 + 22z2 + 14yz − 2xz + 4xy,

f3 = 6x2 + 16y2 + 16z2 − 8yz + 6xz + 6xy,
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and

g1 = 4x2 + 34y2 + 34z2 + 8yz + 4xz + 4xy, g2 = 10x2 + 18y2 + 24z2.

Define

φ1 : {(x, y, z) ∈ R(16m+ 34, f1) : 3x+ y + 4z ≡ 0 (mod 16)}

→ {(x, y, z) ∈ R(16m+ 34, f2) : 3x− y + 2z ≡ 0 (mod 16)}

by

φ1(x, y, z) =

(
x− 5y − 68z

16
,
−5x− 7y + 20z

16
,
−4x+ 4y − 16z

16

)
,

φ2 : {(x, y, z) ∈ R(16m+ 34, f1) : 3x+ y + 4z ≡ 8 (mod 16)}

→ {(x, y, z) ∈ R(16m+ 34, f2) : 3x− y + 2z ≡ 8 (mod 16)}

by

φ2(x, y, z) =

(
9x− 5y − 52z

16
,
3x+ 9y + 4z

16
,
4x− 4y + 16z

16

)
,

and

φ3 : R(16m+ 34, 10x2 + 24y2 + 72z2)

→ R(16m+ 34, f1) by φ3(x, y, z) = (x− 2y, x+ 2y, z),

φ4 : R(16m+ 34, 18x2 + 24y2 + 40z2)

→ R(16m+ 34, f3) by φ4(x, y, z) = (x+ 2y,−x+ z,−x− z).

(2) (a, b, c) = (1, 15, 30). In this case, we let N = 8n+ 46 and

f1 = 4x2 + 4y2 + 120z2 + 2xy,

f2 = 4x2 + 16y2 + 34z2 + 14yz − 2xz + 4xy,

f3 = 10x2 + 16y2 + 16z2 + 8yz + 10xz + 10xy,

and

g1 = 4x2 + 46y2 + 46z2 + 32yz + 4xz + 4xy, g2 = 6x2 + 30y2 + 40z2.
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Define

φ1 : {(x, y, z) ∈ R(16m+ 46, f1) : 3x− y − 4z ≡ 0 (mod 16)}

→ {(x, y, z) ∈ R(16m+ 46, f2) : 3x− y + 2z ≡ 8 (mod 16)}

by

φ1(x, y, z) =

(
7x− 13y − 4z

16
,
−3x+ y − 44z

16
,
−4x− 4y + 16z

16

)
,

φ2 : {(x, y, z) ∈ R(16m+ 46, f1) : 3x− y − 4z ≡ 8 (mod 16)}

→ {(x, y, z) ∈ R(16m+ 46, f2) : 3x− y + 2z ≡ 0 (mod 16)}

by

φ2(x, y, z) =

(
9x− 11y + 20z

16
,
3x+ 7y + 28z

16
,
−4x− 4y + 16z

16

)
,

and

φ3 : R(16m+ 46, 6x2 + 40y2 + 120z2)

→ R(16m+ 46, f1) by φ3(x, y, z) = (x+ 2y,−x+ 2y, z),

φ4 : R(16m+ 46, 24x2 + 30y2 + 40z2)

→ R(16m+ 46, f3) by φ4(x, y, z) = (−y − 2z, x+ y,−x+ y).

This completes the proof.

Theorem 4.2.7. For any positive integer n such that n 6≡ 1 (mod 3), we

have

2t(n, 〈1, 1, 27〉) = r(4(8n+ 29), x2 + y2 + 27z2)− r(8n+ 29, x2 + y2 + 27z2).

(4.2.10)

Proof. Let N = 8n+ 29 and

f = f(x, y, z) = x2 + y2 + 27z2,

g = g(x, y, z) = 8x2 + 20y2 + 29z2 + 4yz + 8xz + 8xy,

h = h(x, y, z) = 2x2 + 5y2 + 27z2 + 2xy.
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For any positive integer m 6≡ 1 (mod 3), we let

δm =

{
1 if m ≡ 0 (mod 3),

2 if m ≡ 2 (mod 3).

Note that

r(m, f) = δm |{(x, y, z) ∈ R(m, f) : x ≡ y (mod 3)}| . (4.2.11)

Since

r(4N, f) = δN · r(4N, x2 + (x− 3y)2 + 27z2) = δN · r(4N, h)

and

|{(x, y, z) ∈ R(4N, f) : y ≡ 0 (mod 2)}|

= δN · r(4N, x2 + 4(x− 3y)2 + 27z2) = δN · r(4N, 8x2 + 5y2 + 27z2 + 4xy)

= δN |{(x, y, z) ∈ R(4N, h) : x ≡ 0 (mod 2)}| ,

we have

| {(x, y, z) ∈ R(4N, f) : y is odd} | = δN | {(x, y, z) ∈ R(4N, h) : x is odd} |.
(4.2.12)

One may easily show that if (x, y, z) ∈ R(4N, f), then(
x2, y2, 27z2

)
≡ (0, 0, 4), (0, 1, 3), (0, 4, 0), (1, 0, 3), (4, 0, 0), (4, 4, 4) (mod 8).

From this and Equation (4.2.12), the right hand side of Equation (4.2.10)

becomes

R(4N, f)−R(N, f) = 2δN |{(x, y, z) ∈ R(4N, h) : x ≡ 1 (mod 2)}| .
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On the other hand, by Equation (4.2.11),

t(n, 〈1, 1, 27〉) = r(1,1,1)(N, f)

= δN

∣∣∣∣{(x, y, z) ∈ R(N, f) :
x ≡ y (mod 3),

x ≡ y ≡ z (mod 2)

}∣∣∣∣
= δN · r(N, x2 + (x− 6y)2 + 27(x− 2z)2) = δN · r(N, g).

Therefore, it is enough to show that

r(N, g) = |{(x, y, z) ∈ R(4N, h) : x ≡ 1 (mod 2)}| .

Now, we let

A = {(x, y, z) ∈ R(N, g) : x ≡ 0 (mod 2)} ,
B = {(x, y, z) ∈ R(4N, h) : x ≡ 1 (mod 2), x+ z ≡ 0 (mod 8)} .

Note that x+ z ≡ 8 (mod 16) if (x, y, z) ∈ B. Define a map φ : A→ B by

φ(x, y, z) = (x− 7z, −x− 4y + z, −x− z) .

Then, one may easily show that φ is a bijection. Since g(x + z, y,−z) =

g(x, y, z) and z0 is odd for any (x0, y0, z0) ∈ R(N, g), we have

|{(x, y, z) ∈ R(N, g) : x ≡ 0 (mod 2)}|

= |{(x, y, z) ∈ R(N, g) : x ≡ 1 (mod 2)}|

and thus

r(N, g) = 2 |{(x, y, z) ∈ R(N, g) : x ≡ 0 (mod 2)}| .

Now, we are ready to prove the assertion. Note that if (x, y, z) ∈ R(4N, h)
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and x ≡ 1 (mod 2), then z ≡ ±x (mod 8). Therefore, we have

|{(x, y, z) ∈ R(4N, h) : x ≡ 1 (mod 2)}|

= 2 |{(x, y, z) ∈ R(4N, h) : x ≡ 1 (mod 2), x+ z ≡ 0 (mod 8)}|

= 2|B| = 2|A| = r(N, g).

This completes the proof.

Since the ternary quadratic form x2 + y2 + 6z2 has class number 1, the

following Conjecture 6.7 in [31] follows directly from Theorem 3.2.16.

Theorem 4.2.8. For a positive integer n, the Diophantine equation

T(1,1,6)(x, y, z) :=
x(x+ 1)

2
+
y(y + 1)

2
+ 6

z(z + 1)

2
= n

has an integer solution if and only if n 6≡ 2 · 32r−1 − 1 (mod 32r) for any

positive integer r.
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In this chapter, we prove Conjecture 2.5 in [30]. To prove this, we need a

proposition which relates the representation numbers between two quater-

nary quadratic forms in the genus of 〈1, 2, 4, 17〉.

Proposition 5.0.1. For any positive integer n ≡ 3, 5 (mod 8), we have

r(n, x2 + 2y2 + 4z2 + 17w2) = r(n, 2x2 + 3y2 + 4z2 + 8w2 + 2xy+ 2yz+ 2yw).

Proof. Let

f = f(x, y, z, w) = x2 + 2y2 + 4z2 + 17w2,

g = g(x, y, z, w) = 2x2 + 3y2 + 4z2 + 8w2 + 2xy + 2yz + 2yw.

First, we consider the case when n is a positive integer congruent to 3 modulo

8. Note that if (x, y, z, w) ∈ R(n, f), then x 6≡ w (mod 2). Furthermore, one

may easily show that if (x, y, z, w) ∈ R(n, f) and x ≡ 1 (mod 2), then

2x+ 2y− 2z− 3w ≡ 0 (mod 4). Since f(−x, y, z, w) = f(x, y, z, w), the map

η1 : R(n, f)→ R(n, f) defined by

η1(x, y, z, w) = (−x, y, z, w),
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is a well-defined bijective map. Hence we have

|{(x, y, z, w) ∈ R(n, f) : x ≡ 1 (mod 2), 2x+ 2y − 2z − 3w ≡ 0 (mod 8)}|

=

∣∣∣∣{(x, y, z, w) ∈ R(n, f) :
x ≡ 1 (mod 2),

2x+ 2y − 2z − 3w ≡ 4 (mod 8)

}∣∣∣∣ ,
which implies that

|{(x, y, z, w) ∈ R(n, f) : x ≡ 1 (mod 2)}|

= 2

∣∣∣∣{(x, y, z, w) ∈ R(n, f) :
x ≡ 1 (mod 2),

2x+ 2y − 2z − 3w ≡ 0 (mod 8)

}∣∣∣∣ .
Note that if (x, y, z, w) ∈ R(n, f) and x ≡ 0 (mod 2), then x+6y−6z+6w ≡
0 (mod 4). Since f(x, y, z,−w) = f(x, y, z, w), the map η2 : R(n, f) →
R(n, f) defined by

η2(x, y, z, w) = (x, y, z,−w),

is a well-defined bijective map. Hence we have

|{(x, y, z, w) ∈ R(n, f) : x ≡ 0 (mod 2), x+ 6y − 6z + 6w ≡ 0 (mod 8)}|

=

∣∣∣∣{(x, y, z, w) ∈ R(n, f) :
x ≡ 0 (mod 2),

x+ 6y − 6z + 6w ≡ 4 (mod 8)

}∣∣∣∣ ,
which implies that

|{(x, y, z, w) ∈ R(n, f) : x ≡ 0 (mod 2)}|

= 2

∣∣∣∣{(x, y, z, w) ∈ R(n, f) :
x ≡ 0 (mod 2),

x+ 6y − 6z + 6w ≡ 0 (mod 8)

}∣∣∣∣ .
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Now, if we define

F1 =

{
(x, y, z, w) ∈ R(n, f) :

x ≡ 1 (mod 2),

2x+ 2y − 2z − 3w ≡ 0 (mod 8)

}
,

F2 =

{
(x, y, z, w) ∈ R(n, f) :

x ≡ 0 (mod 2),

x+ 6y − 6z + 6w ≡ 0 (mod 16)

}
,

F3 =

{
(x, y, z, w) ∈ R(n, f) :

x ≡ 0 (mod 2),

x+ 6y − 6z + 6w ≡ 8 (mod 16)

}
,

then we have

R(n, f) = 2(|F1|+ |F2|+ |F3|).

Now, we analyze the set R(n, g). First, we note that y ≡ 1 (mod 2) for any

(x, y, z, w) ∈ R(n, g). Since g(x + y,−y,−z,−w) = g(x, y, z, w), the map

η3 : R(n, g)→ R(n, g) defined by

η3(x, y, z, w) = (x+ y,−y,−z,−w)

is a well-defined bijective map. Therefore, we have

R(n, g) = 2 |{(x, y, z, w) ∈ R(n, g) : x ≡ 0 (mod 2)}| .

One may easily check that for (x, y, z, w) ∈ R(n, g), if x ≡ 0 (mod 2), then

x − z + w ≡ 0 (mod 4). Furthermore, if x − z + w ≡ 4 (mod 8), then

7x− 4y + 9z − w ≡ 0 (mod 8). Thus if we define

G1 = {(x, y, z, w) ∈ R(n, g) : x ≡ 0 (mod 2), x− z + w ≡ 0 (mod 8)} ,

G2 =

{
(x, y, z, w) ∈ R(n, g) :

x ≡ 0 (mod 2), x− z + w ≡ 4 (mod 8),

7x− 4y + 9z − w ≡ 8 (mod 16)

}
,

G3 =

{
(x, y, z, w) ∈ R(n, g) :

x ≡ 0 (mod 2), x− z + w ≡ 4 (mod 8),

7x− 4y + 9z − w ≡ 0 (mod 16)

}
,

then the set {(x, y, z, w) ∈ R(n, g) : x ≡ 0 (mod 2)} is a disjoint union of
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G1, G2 and G3. Hence we have

R(n, g) = 2(|G1|+ |G2|+ |G3|).

Now, for i = 1, 2, 3, we define maps φi : Gi → Fi by

φ1(x, y, z, w) =
1

8


4 8 −4 −12

−2 −8 −6 −10

−3 0 −5 5

−2 0 2 −2



x

y

z

w

 ,

φ2(x, y, z, w) =
1

16


2 24 −2 18

−10 −8 −6 22

−3 −4 −13 −11

−4 0 4 −4



x

y

z

w

 ,

φ3(x, y, z, w) =
1

16


6 −8 −6 −42

2 −8 14 2

7 12 9 −1

4 0 −4 4



x

y

z

w

 .

Then one can easily check that all of them are well-defined bijective maps.

Therefore, we have

R(n, f) = 2(|F1|+ |F2|+ |F3|) = 2(|G1|+ |G2|+ |G3|) = R(n, g).

Next, we consider the case when n is a positive integer congruent to 5

modulo 8. Note that if (x, y, z, w) ∈ R(n, f) and x ≡ 1 (mod 2), then

2x+ 2y− 2z + 5w ≡ 0 (mod 4). Since f(−x, y, z, w) = f(x, y, z, w), we have

|{(x, y, z, w) ∈ R(n, f) : x ≡ 1 (mod 2), 2x+ 2y − 2z + 5w ≡ 0 (mod 8)}|

=

∣∣∣∣{(x, y, z, w) ∈ R(n, f) :
x ≡ 1 (mod 2),

2x+ 2y − 2z + 5w ≡ 4 (mod 8)

}∣∣∣∣ ,
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which implies that

|{(x, y, z, w) ∈ R(n, f) : x ≡ 1 (mod 2)}|

= 2

∣∣∣∣{(x, y, z, w) ∈ R(n, f) :
x ≡ 1 (mod 2),

2x+ 2y − 2z + 5w ≡ 0 (mod 8)

}∣∣∣∣ .
For (x, y, z, w) ∈ R(n, f), if x ≡ 0 (mod 2), then we have w ≡ 1 (mod 2) and

x+ 6y − 6z + 6w ≡ 0 (mod 4). Since f(x, y, z,−w) = f(x, y, z, w),

|{(x, y, z, w) ∈ R(n, f) : x ≡ 0 (mod 2), x+ 6y − 6z + 6w ≡ 0 (mod 8)}|
= |{(x, y, z, w)∈R(n, f) : x ≡ 0 (mod 2), x+ 6y − 6z + 6w ≡ 4 (mod 8)}| ,

which implies that

|{(x, y, z, w) ∈ R(n, f) : x ≡ 0 (mod 2)}|

= 2

∣∣∣∣{(x, y, z, w) ∈ R(n, f) :
x ≡ 0 (mod 2),

x+ 6y − 6z + 6w ≡ 0 (mod 8)

}∣∣∣∣ .
Thus if we define

X1 =

{
(x, y, z, w) ∈ R(n, f) :

x ≡ 1 (mod 2),

2x+ 2y − 2z + 5w ≡ 0 (mod 8)

}
,

X2 =

{
(x, y, z, w) ∈ R(n, f) :

x ≡ 0 (mod 2),

x+ 6y − 6z + 6w ≡ 0 (mod 16)

}
,

X3 =

{
(x, y, z, w) ∈ R(n, f) :

x ≡ 0 (mod 2),

x+ 6y − 6z + 6w ≡ 8 (mod 16)

}
,

then we have

R(n, f) = 2(|X1|+ |X2|+ |X3|).

Now, we analyze the set R(n, g). One may check the followings;

(i) if (x, y, z, w) ∈ R(n, g) and x ≡ 0 (mod 2), then x + y + z − w ≡
0 (mod 4);

(ii) if (x, y, z, w) ∈ R(n, g) and x ≡ 1 (mod 2), then x−z+w ≡ 0 (mod 4).
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Since g(x+ y,−y,−z,−w) = g(x, y, z, w), we have

|{(x, y, z, w) ∈ R(n, g) : x ≡ 0 (mod 2), x+ y + z − w ≡ 0 (mod 8)}|
= |{(x, y, z, w) ∈ R(n, g) : x ≡ 1 (mod 2), x− z + w ≡ 0 (mod 8)}|

and

|{(x, y, z, w) ∈ R(n, g) : x ≡ 0 (mod 2), x+ y + z − w ≡ 4 (mod 8)}|
= |{(x, y, z, w) ∈ R(n, g) : x ≡ 1 (mod 2), x− z + w ≡ 4 (mod 8)}| .

Therefore, we have

R(n, g) =2 |{(x, y, z, w) ∈ R(n, g) : x ≡ 0 (mod 2)}|

=2

∣∣∣∣{(x, y, z, w) ∈ R(n, g) :
x ≡ 0 (mod 2),

x+ y + z − w ≡ 0 (mod 8)

}∣∣∣∣
+ 2

∣∣∣∣{(x, y, z, w) ∈ R(n, g) :
x ≡ 0 (mod 2),

x+ y + z − w ≡ 4 (mod 8)

}∣∣∣∣
=2

∣∣∣∣{(x, y, z, w) ∈ R(n, g) :
x ≡ 0 (mod 2),

x+ y + z − w ≡ 0 (mod 8)

}∣∣∣∣
+ 2

∣∣∣∣{(x, y, z, w) ∈ R(n, g) :
x ≡ 1 (mod 2),

x− z + w ≡ 4 (mod 8)

}∣∣∣∣ .
One may easily show that for (x, y, z, w) ∈ R(n, g), if x ≡ 1 (mod 2) and

x− z+w ≡ 4 (mod 8), then 7x−4y+ 9z−w ≡ 0 (mod 8). Thus if we define

Y1 = {(x, y, z, w) ∈ R(n, g) : x ≡ 0 (mod 2), x+ y + z − w ≡ 0 (mod 8)} ,

Y2 =

{
(x, y, z, w) ∈ R(n, g) :

x ≡ 1 (mod 2), x− z + w ≡ 4 (mod 8),

7x− 4y + 9z − w ≡ 8 (mod 16)

}
,

Y3 =

{
(x, y, z, w) ∈ R(n, g) :

x ≡ 1 (mod 2), x− z + w ≡ 4 (mod 8),

7x− 4y + 9z − w ≡ 0 (mod 16)

}
,

then we have

R(n, g) = 2(|Y1|+ |Y2|+ |Y3|).
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For i = 1, 2, 3, if we define maps ψi : Yi → Xi by

ψ1(x, y, z, w) =
1

8


4 −4 4 12

−2 6 6 10

−3 −3 5 −5

−2 −2 −2 2



x

y

z

w

 ,

ψ2(x, y, z, w) =
1

16


2 24 −2 18

−10 −8 −6 22

−3 −4 −13 −11

−4 0 4 −4



x

y

z

w

 ,

ψ3(x, y, z, w) =
1

16


6 −8 −6 −42

2 −8 14 2

7 12 9 −1

4 0 −4 4



x

y

z

w

 ,

then one may check that they are all bijective. Therefore, we have

R(n, f) = 2(|X1|+ |X2|+ |X3|) = 2(|Y1|+ |Y2|+ |Y3|) = R(n, g),

which completes the proof.

Theorem 5.0.2. For any positive integer n ≡ 0, 2 (mod 8), we have

t(n, 〈1, 2, 4, 17〉) = 4r(n+ 3, 〈1, 2, 4, 17〉).

Proof. Let

f = f(x, y, z, w) = x2 + 2y2 + 4z2 + 17w2,

g = g(x, y, z, w) = 2x2 + 3y2 + 4z2 + 8w2 + 2xy + 2yz + 2yw,

h1 = h1(x, y, z, w) = 2x2 + 4y2 + 4z2 + 6w2 + 2xw + 2yw + 4zw,

h2 = h2(x, y, z, w) = x2 + 2y2 + 2z2 + 9w2 + 2zw.
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First, note that

|{(x, y, z, w) ∈ R(2n+ 6, h1) : w ≡ 0 (mod 2)}|

= |{(x, y, z, w) ∈ Z4 : h1(x, y, z, 2w) = 2n+ 6}|

= |{(x, y, z, w) ∈ Z4 : 2 · h2(x+ w, z + w, y, w) = 2n+ 6}| = r(n+ 3, h2).

Note that for (x, y, z, w) ∈ R(2n + 6, h1), if w ≡ 1 (mod 2), then y ≡
0 (mod 2). Hence we have

|{(x, y, z, w) ∈ R(2n+ 6, h1) : x ≡ y ≡ 0 (mod 2), w ≡ 1 (mod 2)}|

= |{(x, y, z, w) ∈ Z4 : h1(2x, 2y, z, w) = 2n+ 6}|

= |{(x, y, z, w) ∈ Z4 : 2 · g(z, w, x, y) = 2n+ 6}| = r(n+ 3, g).

Finally, since h1(w − 2x, 2y, z, w) = 2 · g(z, w, x− w, y), we have,

|{(x, y, z, w) ∈ R(2n+ 6, h1) : x ≡ w ≡ 1 (mod 2), y ≡ 0 (mod 2)}|

= |{(x, y, z, w) ∈ Z4 : h1(w − 2x, 2y, z, w) = 2n+ 6}| = r(n+ 3, g).

Therefore, we have

r(2n+ 6, h1) = r(n+ 3, h2) + 2r(n+ 3, g), (5.0.1)

for any nonnegative even integer n.

By Proposition 5.0.1 and Equation (5.0.1), we have

2r(n+ 3, f) = r(2n+ 6, h1)− r(n+ 3, h2) for any n ≡ 0, 2 (mod 8). (5.0.2)

Now, note that if 8x2 + y2 + 2z2 + 9w2 − 4xw ≡ 0 (mod 4), then y ≡ z ≡
w (mod 2). Since h1(y, x, z,−w) = 4x2 +2y2 +4z2 +6w2−2xw−2yw−4zw,
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we have

|{(x, y, z, w) ∈ R(8n+ 24, f) : x ≡ w (mod 4)}|
= r(8n+ 24, (w − 4x)2 + 2y2 + 4z2 + 17w2)

= r(4n+ 12, 8x2 + y2 + 2z2 + 9w2 − 4xw)

= r(4n+ 12, 8x2 + (w − 2y)2 + 2(w − 2z)2 + 9w2 − 4xw)

= r(2n+ 6, 4x2 + 2y2 + 4z2 + 6w2 − 2xw − 2yw − 4zw)

= r(2n+ 6, h1).

Note that if x2 + 8y2 + 16z2 + 17w2 = 8n + 24, then x ≡ w ≡ 0 (mod 2).

Since 2 · h2(y, z, x,−w) = (w − 2x)2 + 2y2 + 4z2 + 17w2,

|{(x, y, z, w) ∈ Z4 : x2 + 8y2 + 16z2 + 17w2 = 8n+ 24}|
= |{(x, y, z, w) ∈ Z4 : 4x2 + 8y2 + 16z2 + 68w2 = 8n+ 24}|
= r(2n+ 6, x2 + 2y2 + 4z2 + 17w2)

= r(2n+ 6, (w − 2x)2 + 2y2 + 4z2 + 17w2)

= r(n+ 3, h2).

From these equalities and Equation (5.0.2), we have

2r(n+ 3, f) = |{(x, y, z, w) ∈ R(8n+ 24, f) : x ≡ w (mod 4)}| (5.0.3)

−
∣∣{(x, y, z, w) ∈ Z4 : x2 + 8y2 + 16z2 + 17w2 = 8n+ 24

}∣∣
for any n ≡ 0, 2 (mod 8). Note that if x2 + 2y2 + 4z2 + 17w2 = 8n+ 24, then

(x2, 2y2, 4z2, 17w2) ≡ (0, 0, 0, 0), (4, 0, 0, 4), (4, 0, 4, 0), (0, 0, 4, 4)

or (1, 2, 4, 1) (mod 8).
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From this and Equation (5.0.3), we may easily deduce that

1

2
t(n, 〈1, 2, 4, 17〉) =

∣∣∣∣{(x, y, z, w) ∈ R(8n+ 24, f) :
x ≡ w (mod 4),

y ≡ z ≡ 1 (mod 2)

}∣∣∣∣
= |{(x, y, z, w) ∈ R(8n+ 24, f) : x ≡ w (mod 4)}|

− |{(x, y, z, w) ∈ R(8n+ 24, f) : y ≡ z ≡ 0 (mod 2)}|

= |{(x, y, z, w) ∈ R(8n+ 24, f) : x ≡ w (mod 4)}|

− r(8n+ 24, x2 + 8y2 + 16z2 + 17w2)

=2r(n+ 3, f).

This completes the proof.
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국문초록

다항식 Tx 를
x(x+ 1)

2
라 정의하자. 자연수 a1, a2, . . . , ak 에 대해 a1Tx1 +

a2Tx2 + · · ·+ akTxk 형태의 다항식을 삼각형식이라 부른다.

이 논문에서는 삼변수 삼각형식과 사변수 삼각형식의 표현에 관한 다양한

성질에 관해 연구한다. 어떠한 삼각형식이 국소적으로 표현하는 모든 자연수

를 대역적으로 표현하는 경우 이를 정규 삼각형식이라 부른다. 이 논문에서는

정규 삼변수 삼각형식을 분류한다. 또한 삼변수 혹은 사변수 삼각형식에 관한

Sun의 다양한 추측들을 증명한다.

주요어휘: 삼변수 이차형식의 표현, 정규 형식, 삼각수, 왓슨 변환

학번: 2012-20244
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