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Abstract

For the functional study of a gene, amplification or knock-out of a gene in the

animal model is frequently performed. Experiments of this type are effective in

associating a gene to a phenotype. To investigate further, measuring multi-omics

data is a common practice. Analyzing such multi-omics data would explain how

the gene of interest affects other genes, including regulatory mechanisms such

as transcription factors, miRNA and epigenetic changes. However, analyzing

multi-omics data is challenging since the integrated analysis of multi-omics data

requires analyzing complex associations among genetic and epigenetic entities.

To handle such a complex relationship, networks are the most effective tools.

Thus, in my doctoral study, I developed network-based informatics techniques

for associating key genes and phenotypes by analyzing multi-omics data.

In my first study, I investigated the genetic phenomenon caused by the

knock-out gene EWS. MicroRNA data and mRNA expression data from the

spinal cord of wildtype and EWS knock-out mice were analyzed and integrated.

I used a negative-correlation network of miRNAs and target genes, and protein-

protein interaction (PPI) network to investigate functional changes of DEGs.

From the network analysis, I identified significantly down-regulated Gnai1 in

the cholinergic synapse pathway. Gnai1 was suppressed by mmu-miR-381 and

mmu-miR-181a/b/c, and inhibited by Rgs1 and Rgs19 in the spinal cord of

EWS KO mice. In addition, the expression levels of Gnb1, Gnb2, and Gnb4,

that are forming a G-protein complex with Gnai1 gene, were reduced.

In my second study, I investigated the effect of mutations in seven DNA

methylation modifier genes on gene expression profiles on the genome scale in
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cancer. Pan-cancer data were collected from TCGA, and 3865 samples hav-

ing both transcriptome and methylome data were analyzed. In each carcinoma,

samples were divided into two sample groups, one with mutations and the other

without mutations in the seven DNA methylation modifier genes. First, genome-

wide promoter methylation landscapes were significantly different between the

two groups and differentially methylated regions (DMR) were identified. To

investigate how DMRs affected genome-wide gene expression profiles, I first se-

lected differentially expressed genes (DEG) between the two groups of samples.

Then, DEGs were mapped to PPI and clusters of DEGs were computed to se-

lect gene sets in terms of biological functions. To associate DEG and DMR, I

selected two cancers, AML and COAD, since the two cancers were most dif-

ferent in terms of mutation profiles of seven methylation modifier genes and

methylation landscapes. Up-regulation of genes with hypomethylated promoter

regions in AML and down-regulated genes with hypermethylated promoter re-

gions in COAD was selected by graph-based sub-network clustering methods.

To rule out expression changes of genes by a transcription factor (TF), I used

the Transfac database to scan TF binding sites in the promoter regions, which

compiled a list of TFs. If a TF that could bind to the promoter region of a gene

that was expressed significantly different between the two sample groups, the

gene was removed for further consideration to rule out the effect of TF. As a re-

sult, 42 up-regulated DEGs with hypomethylated promoter DMR in AML and

61 down-regulated DEGs with hypermethylated promoter DMR were identified.

Many of these genes are known to be associated with either AML or COAD in

the literature.

In the third study, I developed a computerized or in silico experimental

system that can quickly test the relevance of a KO gene to disease using omics

data. MicroRNA, PPI and TF network information were deployed for the in

ii



silico testing. To transform a hypothesis to be tested into a target gene set, a

literature-based search engine was used and the analysis results were evaluated

by calculating the entropy of the number of target genes connected through the

networks induced by the condition-specific gene expression levels. The in silico

system was tested using E2f1 knock-out data. 11 out of 14 E2f1-related diseases

showed to be highly associated with E2f1 while diseases that were not known

to be related E2f1 failed in the in silico testing.

Although networks are effective tools for modeling complex interactions

among biological entities, use of biological networks for analyzing multi-omics

data is not straightforward. My doctoral study was to combine networks of

PPI, miRNA, TF networks, and DNA methylation information to perform the

integrated analysis of multi-omics data for mining new biological knowledge.

In silico experiment tools using the integrated networks were developed for

scientists to perform follow-up experiments.

Keywords: multi-omics data, network analysis, integration analysis, PPI net-

work, miRNA network, TF network, methylation network

Student Number: 2011-30926

iii



Contents

Abstract i

Chapter 1 Introduction 1

1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 My approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Using miRNA network and PPI network for integrated

analysis of miRNA and mRNA data. . . . . . . . . . . . . 4

1.2.2 Using DNA methylation network and gene expression cor-

relation network clustering for integrated analysis of methy-

lation and gene expression data. . . . . . . . . . . . . . . 5

1.2.3 Hypothesis test of a key gene with diseases using PPI,

TF and miRNA networks. . . . . . . . . . . . . . . . . . . 6

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Integrated analysis of omics data using microRNA-

target mRNA network and PPI network reveals reg-

ulation of Gnai1 function in the spinal cord of Ews/Ewsr1

KO mice 9

2.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

iv



2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Step 1 - MicroRNA-target gene regulation network analysis 11

2.3.2 Step 2 - Pathway analysis of DEGs from MMIA analysis

and validation . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Step 3 - Protein-protein interaction network analysis . . . 15

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Analysis of multifunctional EWS by using the network-

based workflow . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 A potential interaction map of EWS, RGS, and G-protein

complex genes. . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 3 Impact of mutations in DNA methylation genes on

genome-wide methylation landscapes and downstream

gene activations in pan-cancer 28

3.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 TCGA data of DNA methylome and transcriptome . . . . . . . . 30

3.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Part 1 - Impact of mutations in DNA methylation modi-

fiers on genome-wide methylation landscape . . . . . . . . 31

3.3.2 Part 2 - Impact of mutations in DNA methylation modi-

fiers on genome-wide gene expression landscape . . . . . . 33

3.3.3 Part 3 - Integrated analysis of DMR and DEG . . . . . . 34

3.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Part 1 - Statistic analysis of mutation effect of seven DNA

methylation modifier genes . . . . . . . . . . . . . . . . . 36

v



3.4.2 Part2 - Genome-wide association analysis of mutation ef-

fect of seven DNA methylation modifier genes . . . . . . . 41

3.4.3 Part 3 - DMR-DEGs in-depth analysis . . . . . . . . . . . 43

3.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 4 In silico experiment system for testing hypothesis

on gene functions using three condition-specific bi-

ological networks 53

4.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Step 1 - Select target genes from hypothesis . . . . . . . . 56

4.3.2 Step 2 - Condition-specific TF, miRNA and PPI network

generation by the DEG set . . . . . . . . . . . . . . . . . 58

4.3.3 Step 3 - Performing in silico experiment . . . . . . . . . . 59

4.3.4 Step 4 - Evaluation of the user hypothesis . . . . . . . . . 60

4.3.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.6 Explanation of the experiment result page . . . . . . . . . 61

4.4 Results & discussion . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Test results of E2f1 and the hypothesis . . . . . . . . . . . 62

4.4.2 Test results of E2f1 and 62 diseases in the MalaCards as

a hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.3 Test results of Lrrk2 and 23 diseases in the MalaCards as

a hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.4 Test results of Dicer1 and 32 diseases in the MalaCards

as a hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 5 Conclusion 69

vi



Bibliography 71

초록 89

Acknowledgements 92

vii



List of Figures

Figure 1.1 Complex mechanism of central dogma from DNA to pro-

tein expression. . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2.1 Illustration of the workflow. . . . . . . . . . . . . . . . . 12

Figure 2.2 Network of microRNAs and mRNAs. . . . . . . . . . . . 18

Figure 2.3 Venn diagram generated by ClueGO. . . . . . . . . . . . 20

Figure 2.4 Verification of altered Gnai1 expression in Ews/Ewsr1

WT and KO mice. . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.5 PPI network of Gnai1 from the STRING DB. . . . . . . 23

Figure 2.6 G-proteins and RGS (regulator of G-protein) expression

level and log2 fold change value in Ews/Ewsr1 wild type

and knock-out. . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.7 Roles of G proteins and its regulatory mechanisms by

miRNAs in the spinal cord of Ews/Ewsr1 KO mouse. . . 26

Figure 3.1 Workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.2 The number of samples that each of the seven DNA

methylation modifier genes is mutated. . . . . . . . . . . 37

Figure 3.3 Genome-wide landscape of promoter methylation. . . . . 40

viii



Figure 3.4 Graph-based clustering results. . . . . . . . . . . . . . . 42

Figure 3.5 Selected sub-network clusters in LAML and COAD. . . . 44

Figure 4.1 The workflow of my method. . . . . . . . . . . . . . . . . 57

Figure 4.2 Network results of E2f1 and hypotheses. . . . . . . . . . 63

Figure 4.3 Network entropy of E2f1 related diseases. . . . . . . . . 65

Figure 4.4 Network results of Lrrk2 and Dicer1. . . . . . . . . . . . 68

ix



List of Tables

Table 1.1 Difference of omics data . . . . . . . . . . . . . . . . . . . 3

Table 2.1 Top 20 interacted genes with Gnai1 from the STRING DB. 24

Table 3.1 Number of samples per 12 major cancer type in TCGA. . 31

Table 3.2 Summary of the mutation status of seven DNA methyla-

tion modifier genes in each cancer . . . . . . . . . . . . . . 38

Table 3.3 List of 42 DMR-DEGs in LAML and 61 DMR-DEGs in

COAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 3.4 Enriched GO terms of 42 DMR-DEGs in LAML. . . . . . 47

Table 3.5 Enriched GO terms of 61 DMR-DEGs in COAD. . . . . . 50

Table 4.1 A summary of in silico experiments with 14 diseases known

to be relevant to E2f1 in MalaCards. . . . . . . . . . . . . 66

x



Chapter 1

Introduction

mRNA is transcribed from DNA and protein is translated from mRNA. Pro-

tein performs various biological functions, often leading to the phenotype of

an organism. Mutations of DNA can result in the modification of protein and,

in turn, a new phenotype such as disease. Due to the advances in instrument

technologies, phenotypes have been investigated using transcriptome data by

RNA sequencing. Mechanisms of producing or transcribing mature mRNA are

complicated. Transcription is the first step of DNA based gene expression. First,

transcription factors (TFs) bind to the promoter region of DNA and stabilize

the binding of RNA polymerase to DNA. RNA polymerase bound to DNA pro-

duces mRNA. mRNA serves as a template for the protein’s synthesis through

translation. Some small RNAs, e.g. miRNA, bind to mRNA and interfere with

protein translation to regulate gene expression. The complex flow of such ge-

netic information is called central dogma (Crick, 1970) as shown in Figure 1.1.

Now sequencing technologies can be used to produce various omics data in

addition to transcriptome data, and these various omics data are called multi-
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Figure 1.1 Complex mechanism of central dogma from DNA to protein expres-

sion. Central dogma consists of mRNA transcription from DNA and protein

translations from mRNA, but the process has complex control mechanisms.

DNA CpG site methylation and histone modification of the DNA promoter re-

gion regulate TF binding, and miRNAs have RNA interference that binds to

and degrades mRNA. Expressed proteins interact with each other to perform

their functions.

omics data. Analyzing multi-omics data can help characterize the regulatory

relationship among multi-omics data and to explain phenotypes through the

integrated data analysis.

1.1 Challenges

Analyzing multi-omics data is challenging due to complex interactions among

various biological elements. In addition, different omics data are often in a
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Table 1.1 Difference of omics data.

Data type Identity Number of variable

mRNA Gene symbol About 20,000

miRNA miRNA symbol About 2,000

methylation CpG site ID number 28.3 million (450,000)

different format, so processing and interpreting omics data is not trivial. In the

case of mRNA data, RNA-seq data processed and the quantities are measured in

RPKM (Reads Per Kilobase Million), FPKM (Fragments Per Kilobase Million)

or TPM (Transcripts Per Kilobase Million) (Mortazavi et al., 2008; Wagner

et al., 2012). Since miRNA has short in sequence length, the data measurement

method is different. In the case of methylation data, the value corresponding to

the presence or absence of methylation on CpG site is measured and expressed

as a ratio. The methylation value is measured only for some representative

sites, not all sites. Thus, processing multi-omics data for the next step of the

integrated analysis is complicated.

Integrating omics data requires handling large multi-dimensional feature

space. There are more than 20,000 genes for mRNA and about 2,000 miRNAs.

For methylation data, the whole number of CpG sites is 28.3 million (Babenko

et al., 2017) (Table 1.1). On the other hand, there is a relatively small num-

ber of samples. Thus, analyzing multi-omics data is a high-dimensional, low

sample problem, which is an unresolved machine learning problem. Since DNA

methylation is usually measured from a bulk of cells, rather than a single cell.

Thus, there is not a readily available computational method for the analysis of

multi-omics data.
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1.2 My approaches

In order to address the problem of combining multi-omics data, the core of my

approach is to use biological networks.

In my doctoral thesis, three studies were conducted using an approach to

integrate and analyze multi-omics data.

• A study using miRNA network and protein-protein interaction (PPI) net-

work for integrated analysis of miRNA and mRNA data

• A study of cancer data through correlation clustering of DNA methylation

network and gene expression correlation network

• Development of hypothesis verification system using miRNA network, PPI

network and TF network

1.2.1 Using miRNA network and PPI network for integrated

analysis of miRNA and mRNA data.

MicroRNAs consisting of about 22 nucleotide sequences were known to bind

to mRNA and regulate gene expression. Due to the discovery of the regulatory

mechanisms of miRNAs that are non-coding genes, the paradigm shifted from

functional studies of protein-coding genes to novel gene regulation studies, and

the importance of regulation by non-coding gene had increased.

It is not easy to analyze integrated miRNA and mRNA data to discover

mRNA regulation by miRNA. The relationship between over 2,000 miRNAs

and about 20,000 genes has over 40 million feature spaces, and analyzing all

the relationships is a very difficult problem. A miRNA-mRNA network based

on the complementary sequence was used a way to reduce the feature space

in order to solve the challengeable problem in my doctoral study. In addition,
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domain knowledge about the negative correlation between miRNA and mRNA

because of cleavage of double-stranded mRNAs bonded with miRNAs into two

pieces was used to my doctoral thesis analysis. Furthermore, for the functional

study of a set of genes affected by a specific gene, I studied the function of the

gene by examining other gene set affected through the PPI network.

In my doctoral study, the integrated miRNA and mRNA data in EWS

knockout mouse were analyzed by this method using the miRNA-mRNA net-

work and PPI network. Through the analysis, some miRNAs and Gnai1 and

neighbor genes that affect the phenotype were identified and validated with

qRT-PCR.

1.2.2 Using DNA methylation network and gene expression

correlation network clustering for integrated analysis of

methylation and gene expression data.

The regulation of gene expression by epigenetics such as DNA methylation is

a new field of genetic regulation. Studying the effects on cancer expression by

DNA methylation is a very important issue to be able to create a new treatment

method for cancer patients by recognizing the new effects that have not been

understood in the past. However, studies on the effects of methylation are still in

its infancy, and research is still lacking. Analyzing the impact between 28 million

CpG sites and 20,000 gene expression is a near-impossible problem. Especially

when comparing hundreds of samples, analysis becomes more difficult. The

Cancer Genome Atlas (TCGA) (Tomczak et al., 2015) provides 450,000 CpG

sites, but it is still a large number and it is difficult to solve because it has a high

dimensional feature space and it is combined with 20,000 genes and compared

with more than 100 samples.

This difficult problem can also be solved by using a sub-network clustering
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method and domain knowledge to reduce the feature space. Among clusters of

highly correlated networks, genes were identified by comparing gene expression

levels in clusters and identifying genes with a negative correlation with methy-

lation expression. In addition, using the TF network, genes associated with TF

expression can be traced to remove genes with positive correlation, and finally,

genes that are affected by methylation can be identified.

I used the above method to analyze the effects of seven methylated genes

on 12 cancer types of TCGA data and analyzed a total of 3865 samples.

Through analysis, 42 hypo-methylated promoter differentially methylated re-

gions (DMRs) up-regulated differentially expressed genes (DEGs) in Acute

Myeloid Leukemia patients and 61 hyper-methylated DMR down-regulated

DEGs in Colon Adenocarcinoma patients were identified by methylation re-

gardless of the expression of TF. And I had confirmed that several genes have

been previously reported in other experimental papers.

1.2.3 Hypothesis test of a key gene with diseases using PPI,

TF and miRNA networks.

Analysis of phenotypes about mutation effects and diseases of specific genes

is a very necessary study to set the direction of biology research. Although it

is necessary to confirm the various effects possible through experimentation,

methods based on biological experiments are inefficient in terms of time and

money, and there is no computer-based test method yet. Therefore, it was nec-

essary to develop new computational experimental tools to analyze the impact

of genes on the disease.

To investigate the effects of hypotheses and diseases, it was necessary to

convert to a gene set that is highly related to disease or hypothesis by linking

to the literature-based searching engine. I had constructed a database of various
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networks, such as public miRNA and PPI networks those are made by recent

research and the TF network generated through Pearson’s correlation. And then

all the networks between the key gene and the target genes by converting the

hypothesis were extracted. The final test result network selected the relevant

networks considering the gene expression level and calculated the entropy of

the resulting network.

The developed computable experimental analysis tools were verified using

E2f1 data and related disease names to confirm a high association with related

diseases by entropy value.

1.3 Outline of the thesis

My doctoral research consists of three studies that combine various network

information and existing domain knowledge in data integration analysis to ef-

ficiently analyze difficult problems caused by mutual omics data integration.

Chapters 2, 3, and 4 introduce the difficult challengeable problem of integrat-

ing different types of omics data, using a variety of networks to find out how

each key gene has an effect on phenotype, disease, and cancer. Each of the

studies uses network information and existing domain knowledge to solve the

problems.

Chapter 2 explains the effect of genes on phenotype using the miRNA net-

work, PPI network information, and miRNA-mRNA negative correlation do-

main knowledge.

Chapter 3 presents a study of the effects of methylated genes on cancer. I

use a sub-network clustering method to select a highly correlated sub-network

and select genes that affect cancer by 7 methylation genes, taking into account

the gene expression level and the amount of methylation expression and TF

7



gene expression level.

Chapter 4 describes the effects of genes on diseases by using miRNA, TF,

and PPI network information to find related networks. Sub-networks are se-

lected using gene expression information, and calculated the entropy value of

the network to identify the impact.

Chapter 5 summarizes the studies. The bibliography of the cited references

is at the end of this paper.
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Chapter 2

Integrated analysis of omics data
using microRNA-target mRNA
network and PPI network reveals
regulation of Gnai1 function in
the spinal cord of Ews/Ewsr1 KO
mice

2.1 Related works

Ewing sarcoma is the second most common bone and soft tissue tumor that pre-

dominantly afflicts children and adolescents (Meltzer, 2007; Barker et al., 2005;

Miser et al., 2004). Understanding the biological mechanisms underlying this

tumor is critical to the identification of new cancer therapy targets. The Ewing

sarcoma gene (EWS)/EWS RNA-Binding Protein 1 (EWSR1), a transcrip-

tion factor, encodes an RNA binding protein whose specific functional targets

are still largely unknown (Bertolotti et al., 1999). In previous studies, fusion

genes such as EWS-FLI-1, EWSR1-WT1, EWSR1-KLF17, EWSR1-ATF1, and
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EWSR1-CREB3L1, are known to be produced by rearrangement of the EWSR1

gene with different gene fusion partners and these fusion genes have functions

related to a variety of soft tissue tumors (May et al., 1993; Fisher, 2014; Huang

et al., 2015; Rossi et al., 2007; Lau et al., 2013). To characterize the functions of

EWS, I used RNA-seq gene expression data and miRNA expression data mea-

sured by using the spinal cord samples of Ews/Ewsr1 knock-out (KO) mouse

and wild type.

2.2 Motivation

Multi-function genes interact with a number of coding and non-coding genes

and perform a variety of functions depending on cell conditions and tissue types.

Multi-function gene EWSR1 is known to regulate Drosha and microRNAs that

inhibits RNA splicing (Kim et al., 2014; Chansky et al., 2001). However, it is

still unknown which genes are regulated by and which biological functions are

related to EWSR1. To characterize the functions of EWSR1, I used a well-known

DEG set analysis. I performed functional analysis of top 200 up-regulated DEGs

and top 200 down-regulated DEGs (2% of the whole genes) using gene ontology

(GO) and KEGG pathway. From the GO analysis, I found 322 genes of 400 top

DEGs were involved in 44 GO terms in the GOTERM BP FAT category which

is the summarized version of Biological Processes in the Gene Ontology. Top

three GO terms with the largest number of genes were ion transport, immune

response, and homeostatic process. It is not clear how these three biological

processes are related to EWS. In addition, I tried molecular function GO terms,

which did not produce coherent biological functions related to EWS. From the

KEGG pathway result, 93 of 400 genes hit 140 pathways. Only two pathways

had more than 10 genes: metabolic pathway and cell adhesion molecules. Most
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of the pathways were not significant. Overall, GO and KEGG pathway analysis

using DEGs did not produce meaningful clues on the role of EWS.

For the analysis of miRNA expression data, it is not clear how to perform

an integrated analysis of gene expression data and miRNA expression data.

In addition, a multifunction gene can play roles at various levels such as tran-

scription, gene regulation, translation and protein activity level. To address this

computational challenge, I developed a novel computational framework for the

characterization of EWS multifunctional gene using gene expression data and

miRNA expression data measured under a knockout condition of the multi-

functional gene. The framework utilized microRNA-target gene network and

PPI network and incorporates the two networks in a workflow. The workflow

of the framework can be viewed as an effort to model the role of EWS at vari-

ous levels, DEG analysis at the transcription level, the microRNA-target gene

network analysis at the gene regulation level, and PPI network analysis at the

translation and protein activity level.

2.3 Methods

I developed a three-step pipeline for the integrated analysis of omics data us-

ing the mRNA-microRNA network and protein-protein interaction network. I

describe the workflow and computational methods used in each step in this sec-

tion. The Figure 2.1 illustrates the workflow of the proposed omics data analysis

pipeline. In the “Results” section, I discuss output from each step in detail.

2.3.1 Step 1 - MicroRNA-target gene regulation network anal-

ysis

To investigate the roles of EWS, I analyzed the translational regulatory net-

work. The microRNA-target gene integrated network analysis was performed
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Figure 2.1 Illustration of the workflow. TF gene has multiple functions

to regulate transcription. Generated mRNAs are regulated by microRNA and

translated proteins have functions with interacted proteins and molecules. RNA

sequencing data and microRNA (miRNA) microarray data are generated from

spinal cord extraction in Ews/Ewsr1 knockout and wild type mice. SAM (Sig-

nificance Analysis of Microarrays) is used for the selection of significantly ex-

pressed miRNA from miRNA microarrays. TargetScan and miRDB were used

to predict the target genes of miRNAs. From RNA sequencing data, gene ex-

pression values are mapped to the reference genome data using Tophat. Then

negative correlated DEGs are selected. Significantly expressed microRNA target

genes have many interacting proteins. Specific target gene interactional neigh-

bor proteins are searched in the STRING DB. PPI network analyzed with gene

expression value. Analysis results of miRNA-mRNA network and PPI network

are integrated by analyzing correlation in expression levels. Regulated genes

further are analyzed and visualized with DAVID, KEGG, and Cytoscape.

12



following the strategy in MMIA (Nam et al., 2009).

• Input: gene expression data, miRNA expression data

• Output: differentially expressed miRNAs and their target genes

1.1. Selection significantly expressed microRNAs

I selected significantly up- or down-regulated microRNAs in the Ews/Ewsr1 KO

condition compared to the wild type condition. To select significantly differen-

tially expressed miRNAs from microarray data, I used the SAM tool package

(Tusher et al., 2001). (More information in the detailed method section.)

1.2. Prediction of microRNAs target genes

After selecting significantly expressed microRNAs, I predicted regulatory target

genes of the selected differentially expressed microRNA by TargetScan (Lewis

et al., 2005) and miRDB (Wang and El Naqa, 2007; Wang, 2008).

1.3. Reselection target genes by correlation

I further investigated miRNA and gene target relationship by measuring neg-

ative correlation in expression levels between miRNAs and genes targeted by

miRNAs since up-regulated microRNA inhibits translation of mRNA.

2.3.2 Step 2 - Pathway analysis of DEGs from MMIA analysis

and validation

• Input: DEGs selected in Step 1

• Output: important pathways related to EWS and key genes in the path-

ways
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2.1. DEG analysis

DEGs analysis of NGS RNA-seq was performed in the following steps. First,

adaptor sequences of reads in raw data were trimmed. The Ensembl mouse

reference genome sequence was downloaded for mapping short reads. Bowtie

(Langmead et al., 2009) was used to build an index of the reference genome se-

quence for alignment. Trimmed reads were then mapped to the reference genome

sequence using Tophat2 (Kim et al., 2013). Finally, Cufflinks was used to cal-

culate gene expression levels. I compared gene expression values and selected

DEGs by using Cuffdiff in the Cufflinks package (Trapnell et al., 2010).

2.2. Integrated analysis of miRNA and mRNA expression data

15 differentially expressed miRNAs were found to target 4342 genes based on

TargetScan and miRDB. To further screen target genes, I integrated miRNAs

target information and mRNA-seq based gene expression levels. The negative

correlation analysis reduced the number of targets to 1338 genes. The negative

correlation analysis is based on the techniques in (Xin et al., 2008; Marbach

et al., 2012). The rationale for the negative correlation analysis is that if a

miRNA targets a gene the expression levels of the miRNA and the gene should

have negative correlation due to the regulatory effect of miRNA on the target

gene. These DEGs were then analyzed by GSEA (Gene Set Enrichment Analy-

sis) using DAVID (The Database for Annotation, Visualization and Integrated

Discovery) (Dennis et al., 2003).

2.3. Pathway analysis

To characterize functions of selected target DEGs by negative correlation in the

spinal cord of Ews/Ewsr1 KO mice, I performed biological pathway analysis us-
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ing the KEGG Mapper (Kanehisa and Goto, 2000). KEGG Mapper highlighted

DEGs with colors: up-regulated DEGs as red, down-regulated DEGs as blue,

and other DEGs as light green. In addition, I performed additional pathway

interpretation based on gene ontology by using ClueGO (Bindea et al., 2009),

a Cytoscape (Shannon et al., 2003) plug-in, that analyzes biological pathway

interpretation with KEGG ontology (2014 version) to integrate GO terms and

KEGG/BioCarta pathways to generate a functionally organized GO/pathway

term network.

2.4. Verification of Gnai1 expression by Quantitative real-time PCR

(qRT-PCR)

To verify whether the expression of target genes is correlated with the analysis,

I performed qRT-PCR using RNA isolated from the spinal cords of Ews/Ewsr1

WT and KO mice.

2.3.3 Step 3 - Protein-protein interaction network analysis

After selecting the key gene in Step 2, I investigated the biological functions of

the genes by extending gene sets with neighboring genes of the key gene.

• Input: Key genes identified in Step 2

• Output: G protein complex genes and regulators

After selecting the key gene in Step 2, I investigated the biological functions

of the genes by extending gene sets with neighboring genes of the key gene.

3.1. Selection significantly expressed gene

From gene set analysis (GSA) and pathway analysis (see the detailed methods

section), I selected specific genes.
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3.2. Search for proteins that interact with the selected gene

PPI network analysis of genes neighboring the key gene was performed by using

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) (Snel

et al., 2000), the most widely used database of known and predicted protein

interactions.

3.3. Analysis of biological functions

Relationship between the key gene and neighbor genes was investigated by per-

forming the literature search. When I considered the relationship among genes,

I also considered the regulatory roles of genes, i.e., activators or repressors, if

applicable. For the regulatory relationship, I considered gene expression change

information.

2.4 Results

2.4.1 Analysis of multifunctional EWS by using the network-

based workflow

In this section, I present the result from each computational step of the workflow

and discuss biological meanings if possible.

Part 1 - Translational regulatory network analysis: MicroRNA-mRNA

network

Selection of differentially expressed miRNAs I selected 18 significantly

expressed miRNAs from the total 1193 mouse miRNAs by SAM tool. 15 miR-

NAs expression levels were significantly up-regulated, and 3 miRNAs were

down-regulated in the Ews/Ewsr1 KO mice against WT mice. In the order
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of the significance score by SAM, 15 up-regulated miRNAs are mmu-miR-

127, mmu-miR-410, mmu-miR-433, mmu-miR-138, mmu-miR-181c, mmu-miR-

382, mmu-miR-19b, mmu-miR-381, mmu-miR-666-3p, mmu-miR-376a, mmu-

miR-873, mmu-miR-181a, mmu-miR-383, mmu-miR-181b, and mmu-miR-99b.

Down-regulated 3 miRNAs were mmu-miR-1224, mmu-miR-9-3p, and mmu-

miR-26a in the order of the significance score by SAM. Analysis of potential

biological functions of these miRNAs was performed by using genes targeted

by the miRNAs (see the DEG analysis from RNA-seq data result section).

Prediction of target mRNA regulated by selected miRNA To perform

the integrated analysis of miRNA and their target genes, I need to predict the

targets of miRNAs. Predicted target genes of miRNAs were collected by using

TargetScan and miRDB. 5,779 and 5,448 genes were predicted by TargetScan

and miRDB, respectively. 1,927 genes were targeted by multiple miRNAs in

the prediction result of TargetScan, and 2,371 genes were multiply targeted

according to miRDB. After discarding repeatedly predicted genes, a total of

4,342 genes were predicted as targets of 15 differentially expressed miRNAs.

Only 36 percent (1,587 genes) of predicted target genes were predicted by both

TargetScan and miRDB. In other words, the genes targeted by each miRNAs of

prediction results by TargetScan and miRDB do not agree much. 4,342 target

genes predicted by both TargetScan and miRDB were further analyzed by per-

forming a negative correlation analysis to sort out potentially true miRNA-gene

relationships (see the next section).

Negative correlation analysis of DEGs with DE microRNA Predicted

target genes were further screened by considering negative correlations in ex-

pression levels between miRNA and each of its target genes. The rationale for
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Figure 2.2 Network of microRNAs and mRNAs. Up-regulated miRNAs

(Red nodes) are selected by SAM. Target genes (mRNAs, blue nodes) of selected

miRNAs are predicted by TargetScan (left) and miRDB (right). Down-regulated

genes targeted by up-regulated miRNA are selected from each predicted results.

miRNA-mRNA interaction network is drawn by Cytoscape. Color intensity de-

notes the level of gene expression.

the negative correlation analysis is that miRNA degrades its target genes, thus

a higher expression level of miRNA should result in a lower expression level

of its target. I applied the same technique used in (Lewis et al., 2005; Wang

and El Naqa, 2007). Negatively correlated miRNA-mRNA interaction network

of miRNAs and their target DEGs were visualized by using Cytoscape (Fig-

ure 2.2). In Figure 2.2, significantly up-regulated 15 miRNAs are in red color,

and negative correlated target DEGs are in blue color. Color intensity denoted

the level of gene expression. As a result of the correlation analysis, 4,342 genes

were reduced to 860 genes. Among the 860 DEGs, 339 target genes were tar-

geted by multiple miRNAs.
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Part 2 - Pathway analysis of DEGs from MMIA analysis and valida-

tion

KEGG pathway analysis of DEGs gene set targeted by miRNA I

mapped the 860 negatively correlated DEGs to the KEGG pathway using the

KEGG Mapper. 201 pathways were hit by the negatively correlated DEGs.

I selected 13 pathways with eight or more gene hits. Metabolic pathways, cal-

cium signaling pathway, PI3K-Akt signaling pathway, axon guidance, pathways

in cancer, MAPK signaling pathway, tight junction, dilated cardiomyopathy,

circadian entrainment, proteoglycans in cancer, regulation of actin cytoskele-

ton, cholinergic synapse and focal adhesion pathways were selected. Analysis

of KEGG pathways of DEGs was highlighted in colors chosen by KEGG Map-

per. Blue color genes were down-regulated genes, and red color genes were

up-regulated genes in the pathways of Ews/Ewsr1 KO mice. Color intensity

denoted the level of gene expression.

Gene ontology based network analysis Networks of negatively correlated

target DEGs in terms of KEGG ontology were generated using ClueGO (Fig-

ure 2.3). “Cholinergic synapse pathway” term was highly clustered by down-

regulated DEGs belonging pathways. ECM-receptor interaction pathway, focal

adhesion pathway, tight junction pathway, and actin cytoskeleton regulation

pathway were mostly correlated with selected down-regulated DEGs. Gnai1,

which is most significantly down-regulated in the cholinergic synapse pathway,

was selected for further investigation. More discussion on the biological func-

tions of these pathways is presented in the Conclusion section.

qRT-PCR of Gnai1 qRT-PCR was performed to confirm the difference of

Gnai1 expression in the spinal cords of Ews/Ewsr1 WT and KO mice. Average
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Figure 2.3 Venn diagram generated by ClueGO. ClueGO analyzes KEGG

ontology of selected down-regulated genes which are targeted by up-regulated

miRNA. Cholinergic synapse pathway is showed highly clustered by down-

regulated gene pathways.
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Figure 2.4 Verification of altered Gnai1 expression in Ews/Ewsr1 WT

and KO mice. The gene expression level of Gnai1 was significantly lower in

the spinal cords of Ews/Ewsr1 KO mice (n=6) compared to EWS WT mice

(n=6). The bar graph represents the average ± standard error mean (SEM).

**, Significantly different at p<0.01 by T-test.

gene expression levels of Gnai1 in Ews/Ewsr1 KO mice were significantly lower

than those in Ews/Ewsr1 WT mice. This data validated that Gnai1 expression

level was down-regulated in Ews/Ewsr1 KO mice (Figure 2.4).

Part 3 - Protein-protein interactions network analysis

I selected Gnai1 that is down-regulated in cholinergic synapse pathways and

actin cytoskeleton regulation pathway. To investigate the effect of down-regulation

21



of Gnai1, I used the STRING protein-protein interaction network DB. In the

PPI network, genes neighboring Gnai1 were further investigated for their bi-

ological functions. Looking at gene expression values, I was able to confirm

the relationship between G-protein genes and RGS genes. Genes neighboring

Gnai1 were selected by using STRING (Figure 2.5). Top 20 interacted genes are

shown in Table 2.4.1. Gnai1 and G-protein related genes, such as Gnb1, Gnb2,

and Gnb4, had down-regulated gene expression level (Figure 2.6). In contrast,

Rgs1 and Rgs19, Regulator of G-protein signaling genes, were up-regulated and

inhibited with Gnai1 (Figure 2.6).

2.5 Discussion

2.5.1 A potential interaction map of EWS, RGS, and G-protein

complex genes.

A growing body of evidence shows multifunctional roles of the EWS/EWSR1

fusion oncoproteins (May et al., 1993; Huang et al., 2015; Rossi et al., 2007; Lau

et al., 2013). However, the role of wild-type (WT) EWS/EWSR1 is not fully

understood yet. EWS/EWSR1 deficiency contributes to the failure of precursor

B lymphocyte development and leads to the premature cellular senescence in

mouse embryonic fibroblasts (MEFs) (Li et al., 2007; Cho et al., 2011). It seems

likely that the WT EWS/EWSR1 protein exhibits many different cellular func-

tions in a cell-type specific manner. In the spinal cord of Ews/Ewsr1 KO mice,

microRNAs, such as mmu-miR-381 and mmu-miR-181a/b/c were up-regulated.

These microRNAs suppressed the expression of Gnai1 (Gi Protein Alpha sub-

unit). Concurrently, RGS (Regulator of G-protein Signaling) genes, Rgs1 and

Rgs19, were up-regulated, which repressed Gnai1 activity. In addition, G Pro-

tein Beta subunit genes, Gnb1, Gnb2, and Gnb4 were down-regulated. Thus in

22



Figure 2.5 PPI network of Gnai1 from the STRING DB. The Gnai1

protein binds with neighbor protein Gnb1, Gnb2, Gnb3 and Gnb4 that are in

G-protein family. Rgs1, Rgs10, Rgs14 and Rgs19 proteins inhibit the activity

of Gnai1 protein.
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Table 2.1 Top 20 interacted genes with Gnai1 from the STRING DB.

These genes are sorted by prediction score. 13 genes are related to inhibition

with Gnai1.

Gene Symbol Prediction Score Inhibition

Gnb1 0.994 Yes

Gnb4 0.98 Yes

Gnb2 0.98 Yes

Rgs19 0.979 Yes Yes

Gnb3 0.978 Yes

Rgs1 0.976 Yes Yes

Plcb1 0.974 Yes

Adcy4 0.973 Yes Yes

Adcy9 0.973 Yes Yes

Rgs14 0.972 Yes Yes

Plcb4 0.97 Yes

Adcy1 0.97 Yes Yes

Plcb3 0.97 Yes

Adcy8 0.969 Yes Yes

Adcy2 0.969 Yes Yes

Rgs10 0.969 Yes Yes

Adcy6 0.967 Yes Yes

Adcy7 0.967 Yes Yes

Adcy5 0.966 Yes Yes

Adcy3 0.966 Yes Yes
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Figure 2.6 G-proteins and RGS (regulator of G-protein) expression

level and log2 fold change value in Ews/Ewsr1 wild type and knock-

out.
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Figure 2.7 Roles of G proteins and its regulatory mechanisms by miR-

NAs in the spinal cord of Ews/Ewsr1 KO mouse. The direction of the

arrow means with a change of gene expression level in Ews/Ewsr1 KO mice.

Upper arrows are up-regulated gene expression level, and bottom arrows are

the opposite.

the Ews/Ewsr1 KO condition, G protein complex was not formed (Figure 2.7).

Since Gnai1 was down-regulated, it is proposed that Gnai1 may be unable

to inhibit downstream adenylate cyclase genes, such as Adcy9 and Adcy4, in

cholinergic synapse pathway. Adenylate cyclase catalyzes the conversion of ATP

to cAMP, and the cAMP regulates cAMPproteins, transcription factors, and

cAMP-dependent kinases. Adenylate cyclase is an enzyme with key regulatory

roles, and Adenylate cyclase regulator Gnai1 has important roles in the cholin-

ergic synapse.

My study presents for the first time that Ews/Ewsr1 deficiency modulates

microRNA processing in the spinal cord. Notably, increased levels of mmu-miR-

381 and mmu-miR-181a/b/c were directly associated with the down-regulation

of the G protein complex in the spinal cord of Ews/Ewsr1 KO mice. We have

previously shown that Ews/Ewsr1 deficiency leads to abnormal microRNA pro-
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cessing and skin development via Drosha-dependent pathway (Kim et al., 2014).

Furthermore, we found that Ews/Ewsr1 deficiency reduces the expression of

Uvrag (UV radiation resistance associated) gene at the post-transcription level

via mmu-miR-125a and mmu-miR-351 (Kim et al., 2015). Interestingly, the

reduction of Uvrag by mmu-miR-125a and mmu-miR-351 impaired autophagy

function in Ewsr1 KO MEFs and KO mice. Considering that G protein-coupled

signaling transduction pathway is very complex, the Gnai1-dependent cellular

function and mechanism in vitro and in vivo models of EWSR1 deficiency re-

main to be determined in future studies.
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Chapter 3

Impact of mutations in DNA
methylation genes on
genome-wide methylation
landscapes and downstream gene
activations in pan-cancer

3.1 Related works

DNA mutation is one of the major causes of many diseases, thus understanding

the impact of mutations in genes is an important research problem. For exam-

ple, mutations in oncogenes and tumor suppressor genes have been extensively

studied over the years (Wee et al., 2019; Kim and Kim, 2018; Bailey et al.,

2018). Some class of genes, e.g., epigenetic genes, have roles in regulating gene

expression, rather than being directly related to certain phenotypes. Epigenetic

genes can be divided into functional groups: epigenetic modulators, modifiers,

and mediators (Feinberg et al., 2016). Epigenetic mediators have corresponded

to the tumor progenitor genes, epigenetic modifiers of the mediators are fre-
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quently mutated in cancer, and epigenetic modulators upstream of the modi-

fiers are related to changes in the cellular environment. An epigenetic modifier

gene that modifies DNA methylation status or chromatin structure is studied

for interpretation of cancer. Among the epigenetic modifiers, DNA methyla-

tion regulatory genes, DNMT1, DNMT3A, MBD1, MBD4, TET1, TET2, and

TET3, are known to be involved in cancer (Yan et al., 2011; Couronné et al.,

2012; Grossmann et al., 2013; Abdel-Wahab et al., 2009; Langemeijer et al.,

2009; Network et al., 2012; Imielinski et al., 2012; Stephens et al., 2012; Neu-

mann et al., 2013; Delhommeau et al., 2009; Scourzic et al., 2015; Krauthammer

et al., 2012). DNMT3A mutation was found at a high rate of 22.1 percent of

LAML patients (Ley et al., 2010) and in at least one of DNA methylation mod-

ifiers, a mutation was found in about 13 percent (1,474/11,315) of 33 TCGA

projects.

In general, mutations on a gene can affect the function of a gene, even loss

or gain of a function. Many DNA methylation modification genes are enzymes.

Thus, mutations on the epigenetic modifiers could affect the activity of epige-

netic modifiers, which would result in the difference in genome-wide methylation

profiles and in turn, activation of downstream genes. However, there is no sys-

tematic study of this important topic. In this paper, I investigated the effect of

mutations on DNA methylation modification genes such as DNMT1, DNMT3A,

MBD1, MBD4, TET1, TET2, and TET3 through a pan-cancer analysis. First,

I investigated the effect of mutations in DNA methylation modification genes

on genome-wide methylation profiles in 12 major cancer types in TCGA.

As a result, I found that genome-wide methylation landscapes were sig-

nificantly different between two sample groups with mutations and without

mutations in the DNA methylation modifier genes. Second, I investigated the

effect of DNA methylations in the promoter regions on downstream genes in 12
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cancer types. To investigate the effect of mutations on gene expression further,

I chose an up-regulated gene cluster where DEGs were mostly hypomethylated

promoter regions in Acute Myeloid Leukemia and another down-regulated gene

cluster where DEGs had mostly hypermethylated promoter regions in Colon

adenocarcinoma.

3.2 TCGA data of DNA methylome and transcrip-

tome

To perform pan-cancer data analysis, I downloaded data for 12 major can-

cer types from TCGA: Acute Myeloid Leukemia (LAML), Bladder Urothelial

Carcinoma (BLCA), Breast invasive carcinoma (BRCA), Colon adenocarci-

noma (COAD), Glioblastoma multiforme (GBM), Head and Neck squamous

cell carcinoma (HNSC), Kidney renal clear cell carcinoma (KIRC), Lung ade-

nocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Ovarian serous

cystadenocarcinoma (OV), Rectum adenocarcinoma (READ) and Uterine Cor-

pus Endometrial Carcinoma (UCEC). A total of 3,864 samples that had both

methylome and transcriptome data were collected. Among 3864 samples, 598

samples had at least one mutation in seven DNA methylation modifier genes,

thus samples were divided into two groups, one with mutations in DNA methy-

lation modifiers (598 samples) and the other group without mutations (3,266

samples), excluding TCGA-OV that had only 9 samples. Thus, I analyzed 11

cancer types. (Table 3.1)

3.3 Workflow

The analysis of the mutation data of seven DNA methylation modifiers on the

pan-cancer scale was performed in three phases and the analysis workflow is
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Table 3.1 Number of samples per 12 major cancer type in TCGA.

Each value represents the number of samples that have both methylome and

transcriptome data and the number of samples that have mutations in seven

DNA methylation modifier genes.

Cancer type Total samples Mutated samples

TCGA-BRCA 784 61

TCGA-HNSC 521 60

TCGA-LUAD 455 80

TCGA-BLCA 408 98

TCGA-LUSC 369 73

TCGA-KIRC 319 21

TCGA-COAD 279 94

TCGA-UCEC 173 59

TCGA-LAML 170 33

TCGA-READ 93 12

TCGA-GBM 64 6

TCGA-OV 9 1

Sum 3864 598

shown in a schematic diagram (Figure 3.1).

3.3.1 Part 1 - Impact of mutations in DNA methylation modi-

fiers on genome-wide methylation landscape

First, I investigated the effect of mutations in DNA methylation modifiers on

genome-wide methylation profiles.
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Figure 3.1 Workflow. See the workflow section for more details.
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1.1. Statistics on mutations in seven DNA methylation modifiers

Before investigating the genome-wide effects of seven DNA methylation modi-

fiers, I analyzed the samples statistically. Mutation frequencies in DNA methy-

lation modifiers were collected for each cancer.

1.2. Genome-wide methylation landscapes

To investigate the genome-wide effects of seven DNA methylation modifiers, I

analyzed the difference in DNA methylation profiles in pan-cancer. To compare

the difference in methylation of samples that were divided into DNA methy-

lation modifiers mutation, mutated and non-mutated samples (3,266 vs. 598

samples) in terms of log ratios (See Methods section for the detail).

1.3. Statistics of the number of DMRs between two groups

To evaluate whether these differences are significant or not, I analyzed them

statistically. I compared the number of DMRs in samples with mutations in

the DNA methylation modifier with the number of DMRs in randomly selected

samples. The analysis of DMR counts was performed with randomly sampled

the same size as the number of mutation samples and repeated 10,000 times to

calculate the p-value.

3.3.2 Part 2 - Impact of mutations in DNA methylation modi-

fiers on genome-wide gene expression landscape

Since DNA methylation can have a significant effect on gene expression profiles,

I compared gene expression profiles between the mutated and the non-mutated

samples. In this part, I only compared gene expression profiles between two

groups, without attempting to investigate the effect of DNA methylation on
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gene expression, which was reported in Part 3.

2.1. Statistics on gene expression profiles

DEG counts were collected from randomly chosen same size samples, repeating

10,000 times to calculate p-values.

2.2. Clustering analysis of transcriptome

To investigate the biological functions of DEGs, I divided DEGs into smaller

gene sets based on network-based gene clustering analysis and then performed

GO term enrichment test on each set of DEGs to compare the difference in func-

tions of genes between the mutated and non-mutated groups. Before performing

sub-network clustering, correlation values between genes were calculated. Pear-

son’s correlation value was calculated for transcriptome data, and PPI score

from STRING (Szklarczyk et al., 2016) database was multiplied by the weight.

Using the log2 fold change value obtained from the DEG analysis, I removed

genes that had opposite interaction or the small change amount. Thus, I selected

a set of genes with over 0.15 of the absolute value of log2 fold change of gene

expression and over 0.5 positive correlated genes network. I performed graph-

based sub-network clustering using iCluster (see Methods section) with a fold

change of gene expression using pre-processed gene-gene interaction score. To

select meaningful clusters after clustering, I performed one sample t-test with

gene expression levels and Fisher’s exact test using the GO term enrichment

test. Clusters with p-value under 10−9 were selected.

3.3.3 Part 3 - Integrated analysis of DMR and DEG

Now, I tried to associate DEGs and DMRs between the two groups as below.
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3.1. Integration of gene expression and methylation expression

To investigate the effect of DMRs on DEGs, I focused on methylation difference

in the promoter regions. First, I selected gene clusters with significantly enriched

DEGs and DMRs using a Fisher’s exact test for each of gene clusters. Then, gene

sets were selected by considering the negative correlation between promoter

methylation and the corresponding gene expression.

3.2. Transcription factor binding site search with Transfac

In addition to the negative correlation between promoter methylation and the

corresponding gene expression, I considered expression levels of TFs that could

bind to the promoter regions. Thus, I searched for all TF binding sequences in

the DEG promoter region using Transfac (Matys et al., 2003).

3.3. Comparison without TF effect

The expression level of the TFs that had binding sites in the promoter regions

was considered to remove cases where gene expression difference could result

from TF expression difference. For example, if TF binding to the promoter of up-

regulated DEG is not up-regulated, the up-regulated DEG can be determined

by the effect of DMR regardless of the effect of TF. Thus, both up-regulated

DEG with up-regulated TF and down-regulated DEG with down-regulated TF

were removed.
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3.4 Results and Discussions

3.4.1 Part 1 - Statistic analysis of mutation effect of seven DNA

methylation modifier genes

To analyze the effects of seven DNA methylation modifier genes, I collected

3,865 TCGA methylome and transcriptome data. First, the number of muta-

tion samples in DNA methylation modifier genes was found to be between 7%

and 34% of the total sample for 12 major cancer types (Table 3.2). Excluding

OV cancer that had only nine samples, 11 cancer types were analyzed.

The seven DNA methylation modifier genes that I studied were DNMT1, DNMT3A,

MBD1, MBD4, TET1, TET2, and TET3. DNMT1 and DNMT3A function as

DNA methyl-transfer and TET1, TET2, and TET3 have demethylation func-

tions. Mutation statistics of the seven modifiers are summarized in Figure 3.2.

Cancer types of BLCA, BRCA, COAD, LUAD, and LUSC were predominantly

mutated in the TET genes that have de-methylation functions. In the case of

LAML, DNMT3A mutation samples were high, while remaining GBM, HNSC,

and KIRC, the ratio was similar. In the case of GBM, KIRC, and READ, the

total mutation rate was less than 13%, and the number of mutations for each

gene was 5 or less (Table 3.2).

Effect of mutations in seven DNA methylation modifier genes on

genome-wide methylation landscapes

I compared genome-wide methylation landscapes between the mutated and the

non-mutated groups. Since the comparison of genome-wide methylation land-

scapes between the two groups was difficult to interpret, I compared promoter

regions instead.

Among the annotated 450,000 CpG sites, I selected the 140,040 sites as
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Figure 3.2 The number of samples that each of the seven DNA methy-

lation modifier genes is mutated. DNMT3A mutation is dominant in

LAML samples. In COAD, mutations in TET1, TET2, and TET3 are dom-

inant.
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Table 3.2 Summary of the mutation status of seven DNA methylation

modifier genes in each cancer. Each value represents the number of samples

that have both methylome and transcriptome data, the number of samples

that have mutations in seven DNA methylation modifier genes, the number

of samples that don’t have mutations, ratio of the mutation samples per non-

mutation samples, the number of DMRs and the number of DEGs that were

selected by 0.05 false discovery rate.

Cancer

type

Total

samples

Mutated

samples

Non-mutated

samples

Mutation

sample ratio

Number

of DMRs

Number

of DEGs

BRCA 784 61 723 8% 12,040 80

HNSC 521 60 461 12% 10,454 102

LUAD 455 80 375 18% 12,899 379

BLCA 408 98 310 24% 9,016 437

LUSC 369 73 296 20% 27,145 451

KIRC 319 21 298 7% 16,664 148

COAD 279 94 185 34% 43,982 904

UCEC 173 59 114 34% 54,956 2,079

LAML 170 33 137 19% 28,215 438

READ 93 12 81 13% 49,091 217

GBM 64 6 58 9% 79,204 173

promoters when the sites are annotated as TSS200 or TS1500; TSS200 is the

region that covers zero to 200 bases upstream of the transcription start site

(TSS) and TSS1500 covers 200 to 1500 bases upstream of the TSS. For each

of 11 cancer types, methylation differences in 140,040 promoter regions of CpG

sites were examined separately. I compared mutated and non-mutated samples

of seven DNA methylation modifier genes, and the methylation values for each

CpG site were expressed as log ratio values by comparing mean values. For
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the selected CpG sites, the average of DNA methylation of the mutation ver-

sus non-mutation samples was calculated as the log ratio and a heatmap was

drawn by selecting 29,879 CpG sites with the log ratio value bigger than 1 or

smaller than -1. In the heat map results, COAD showed the largest number of

hypermethylation promoter regions, and LAML showed the lowest number of

hypermethylation promoter regions. GBM showed the highest number of hy-

pomethylation regions (Figure 3.3). The heatmap results showed that there was

a change in methylation due to the mutation of seven DNA methylation mod-

ifier genes, and detailed analysis was conducted to investigate the CpG site of

promoter region with methylation changes in 11 cancer types.

DMR analysis to investigate the mutation effects of seven DNA

methylation modifiers.

Mutated samples of seven DNA methylation genes were compared with non-

mutated samples using bumperhunter of the minfi package for DMR analysis.

The significance of the number of DMRs potentially caused by the mutation of

seven DNA methylation modifiers was compared with the number of DMRs in

random samples. Random sampling DMR analysis was performed by repeatedly

choosing samples of the same size for 10,000 times. P-value of the mutant sample

was calculated from the distribution of DEG and DMR values obtained from

10,000 repeated tests. In the result of DMR test, 8 cancer types of 11, as BRCA,

HNSC, LUAD, BLCA, LUSC, COAD, UCEC and LAML, showed significantly

low p-value (Supplementary Figure). The other cancer type KIRC, READ, and

GBM were not significant due to having few mutation samples (See Figure 3.2).

Overall, it seemed that mutations of seven DNA methylation genes affected

genome-wide promoter methylation differences.
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Figure 3.3 Genome-wide landscape of promoter methylation. Hyper-

methylated regions are colored in red and hypomethylated regions are colored

in blue. The heatmap in the upper panel suggests that COAD shows a dis-

tinct sign of promoter hypermethylation while LAML shows no such tendency.

The heatmap in the lower panel shows the methylation status in the order of

chromosome and it is also observed that the promoters are hypermethylated in

COAD and there is no strong methylation signal in LAML.
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3.4.2 Part2 - Genome-wide association analysis of mutation ef-

fect of seven DNA methylation modifier genes

Sub-network clustering result in pan-cancer scale

I performed graph-based clustering of DEGs. First, I used the network topology

of the STRING database and chose edges between two genes only when expres-

sion values of the two genes were highly correlated. Edges were weighted by the

STRING database confidence scores. After that, the clustering was performed,

and the clusters were filtered using the t-test.

The selected clusters were visualized using Cytoscape (Shannon et al., 2003)

(Figure 3.4). Up-regulated DEG is displayed in a gradual red color and down-

regulated DEG is displayed in a gradual blue color by the fold change value

of gene expressions. Promoter DMR information was integrated into the DEG

clusters and the case of DMR in the promoter of the up- and down-regulated

DEG was marked in the cluster. DEGs with methylated promoter regions were

colored in pink for hypermethylation and sky blue for hypomethylation.

Cluster selection for in-depth analysis

I performed Fisher’s exact test with the number of DMR-DEGs (differentially

expressed gene with differentially methylated promoter region) in each cluster

to select statistically significant clusters. In the case of LAML, a cluster was

selected in which mutated samples of DNMT3A were abundant and DEGs were

up-regulated. In COAD cancer clusters, TET1/2/3 genes were mutated with

promoter hypermethylated, so I selected a cluster that contained the largest

number of down-regulated DEGs. For the functional analysis of DEGs in the

clusters, I selected one cluster of up-regulated DEGs in LAML and another

cluster of down-regulated DEGs in COAD (Figure 3.5).
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Figure 3.4 Graph-based clustering results. Up-regulated DEGs are colored

in red and down-regulated DEGs are colored in blue. The red circles indicate

the selected clusters in LAML and COAD.

TF selection related to DMR-DEGs

Among the genes in the clusters of COAD and LAML, I selected DEGs that

the expression changes were not associated with TFs. To investigate TF-DNA-

methylation interaction, I searched for all TF binding sites in the promoter

regions using the Transfac (Matys et al., 2003) database. In COAD, there were

184 DMR-DEGs and I detected 381 TFs. In LAML, 86 DMR-DEGs were se-

lected, and 254 TFs were detected by Transfac using a promoter sequence of

DEGs.
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3.4.3 Part 3 - DMR-DEGs in-depth analysis

Selection of cancers for in-depth analysis.

For the in-depth analysis to investigate the effect of mutations in DNA methyla-

tion modifiers, I first selected cancers based on the mutation profiles Figure 3.2.

In COAD, the number of the samples of which the demethylation-related genes,

TET1, TET2, and TET3, were mutated was bigger than that of the samples

with mutations in the methylation-related genes. On the contrary, in LAML,

mutations in the methylation-related genes, e.g., DNMT3A, were dominant. I

also looked genome-wide promoter methylation landscape to see relations be-

tween the mutations in the methylation-related genes and the methylation sta-

tus of the promoters of the genes. As shown in Figure 3.3, I was able to observe

that there was a distinct signature of promoter hypermethylation in COAD

(Figure 3.5). On the contrary, in LAML, the promoters were hypomethylated

rather than hypermethylated. GBM also showed the promoter hypomethyla-

tion but the number of samples with mutations was too small to analyze the

effect of mutations (Figure 3.2). Thus, I selected COAD and LAML for further

analyses.

Selection of DMR-DEG possibly without TF-mediated regulation.

Before associating DMR-DEG, I excluded the DMR-DEGs that the expression

changes were possibly affected by TFs. Among selected TFs that had binding

sites in the promoter regions (see cluster selection in PART 2), if expression

levels of TFs were different significantly between the mutated and non-mutated

sample groups, TF expression difference could affect expression levels of down-

stream genes, thus I remove genes whose promoter regions had binding sites

of such TFs. I set 0.2 and -0.2 as cutoff values for log2 fold change to deter-
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Figure 3.5 Selected sub-network clusters in LAML and COAD. Up-

regulated genes were colored in red and down-regulated genes were colored in

blue color according to the expression fold change level. The borders of the

genes are colored in pink or sky blue when the promoters of the genes are

either hypermethylated or hypomethylated, respectively.
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mine if a gene or a TF is up-regulated or down-regulated. When a gene is

up-regulated and a TF targeting the gene is up-regulated, the DEG was re-

moved. Likewise, when a gene is down-regulated and a TF targeting the gene is

also down-regulated, the DEG was removed. Finally, 42 DMR-DEGs in LAML

and 61 DMR-DEGs in COAD were selected and studied for functional effects

(Table 3.3).

Table 3.3 List of 42 DMR-DEGs in LAML and 61 DMR-DEGs in

COAD.

Selected cluster DMR-DEGs

The cluster of LAML

CD226, CACNA2D1, GP9, CD28, GATA5, GATA1,

KIF5A, RNF182, ZNF563, NID2, TUBB1, FGF2,

CR2, MINPP1, CD40LG, PF4V1, EPHA3, MBOAT2,

TRIM58, ADAMTS19, PKLR, C7, NLGN1, CLCN4, IL7,

COL1A2, COL1A1, SLC35D3, NCS1, SMARCA1, PRICKLE2,

GFI1B, ATP13A4, NEO1, SLIT3, SLC44A2, FBN3,

FBN1, MOV10L1, ST6GALNAC1, CILP, PDK3

The cluster of COAD

IMMP2L, UPRT, ZXDA, PRPF3, SMAP1, LBR,

SAMD13, ZNF572, DNAJC15, MTMR6, MAPRE1, IFT52,

CHM, POT1, TMLHE, ZNF449, ZKSCAN1, TTC14,

ZNF775, NIT2, CDKN1B, ENAH, CHD6, LANCL2,

GCC1, CEACAM6, HECA, MOGAT3, ZC3H8, ANKRD26,

DNAJC5, DNMT3B, RPS7, SCML2, TP53RK, PABPC1L,

AKAP8L, ARF5, REPS2, NDUFA4, ZNF800, CXADR,

STAU2, PIPOX, EIF2AK1, ZNRF2, PHF20L1, ZMAT1,

ELF1, CDK18, LPIN3, RCBTB1, MLLT3, HNF1A,

USP11, PXMP4, ARL11, NCK2, RPL31, ATP6V1C1, ESD
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42 up-regulated DEGs related to hypo-DMR in LAML

42 up-regulated DEGs with hypomethylated promoters were selected in LAML.

To investigate the biological function of these genes, I searched the litera-

ture to find the relevance of these genes to LAML. For 42 DEGs in LAML,

I searched with the terms ”methylation” or ”AML”. CD226, CACNA2D1,

GATA1, EPHA3, IL7, GFI1B and SLIT3 genes are related to a disorder of

methylation in Acute myeloid leukemia. CD226 (Cluster of Differentiation 226,

DNAM-1 (DNAX Accessory Molecule-1)) is a 65 kDa glycoprotein expressed

on the surface of natural killer cells, platelets, monocytes and a subset of T

cells. TIGIT binding with CD226 has up-regulated on CD8(+) T cells in LAML

(Sanchez-Correa et al., 2012). CACNA2D1 (Voltage-dependent calcium channel

subunit alpha-2/delta-1) encodes a member of the alpha-2/delta subunit fam-

ily, a protein in the voltage-dependent calcium channel complex. CACNA2D1

has DMR in oxytocin signaling pathway in LAML (Gao et al., 2018). GATA1

(GATA-binding factor 1) regulates the expression of an ensemble of genes that

mediate the development of red blood cells and platelets. Its critical roles in

red blood cell formation include promoting the maturation of precursor cells.

GATA-1 binds to the PU.1 gene and inhibits expression in LAML (Burda et al.,

2016). EPHA3 (ephrin type-A receptor 3) has been implicated in mediating de-

velopmental events, particularly in the nervous system. Receptors in the EPH

subfamily typically have a single kinase domain and an extracellular region

containing a Cys-rich domain and 2 fibronectin type III repeats. EphA3 was

methylated in leukemia patients (Rush et al., 2004). IL7 (Interleukin 7) stimu-

lates proliferation of all cells in the lymphoid lineage (B cells, T cells, and NK

cells). IL-7 has abnormal methylation in peripheral blood of LAML patients (Li

et al., 2019). GFI1B (Growth factor independent 1b, Zinc finger protein Gfi-
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1b) are highly expressed in LAML (Vassen et al., 2009). SLIT3 (Slit homolog 3

protein) is a ligand-receptor SLIT-ROBO family. Low expression of SLIT and

high expression of ROBO1 and ROBO2 suggests their participation in LAML

pathogenesis (Go los et al., 2019).

FGF2, SLC44A2, and PDK3 genes are related to LAML. FGF2 (basic fi-

broblast growth factor) is present in basement membranes and in the suben-

dothelial extracellular matrix of blood vessels. FGF2 promotes resistance to

FLT3 inhibitors in acute myeloid leukemia (Traer et al., 2016). SLC44A2 (Choline

transporter-like protein 2) is located in a pathway controlling DNA damage

and repair and affects the survival in LAML (Bruedigam et al., 2014). PDK3

(Pyruvate dehydrogenase lipoamide kinase isozyme 3) inhibits pyruvate dehy-

drogenase activity by phosphorylation of the E1 subunit PDHA1 and thereby

regulates glucose metabolism and aerobic respiration. The overexpression of

PDK3 conferred poor prognosis in LAML (Cui et al., 2018a).

In GO-term enrichment test with ”Molecular Function” category, the 42

genes in LAML were found to be related with ”platelet-derived growth factor

binding”, ”integrin binding”, ”protease binding”, ”RNA polymerase II tran-

scription factor binding”, ”voltage-gated calcium channel activity” and ”cy-

tokine activity” (Table 3.4).

Table 3.4 Enriched GO terms of 42 DMR-DEGs in LAML.

GO term ID Term description P-value Z-score

GO:0048407 platelet-derived growth factor binding 0.00028 -2.6767

GO:0005178 integrin binding 0.001042 -1.44853

GO:0002020 protease binding 0.001991 -1.69845

GO:0001085 RNA polymerase II transcription factor binding 0.002137 -1.13219

GO:0005245 voltage-gated calcium channel activity 0.002885 -1.8684

GO:0005125 cytokine activity 0.004276 -1.21879
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61 down-regulated DEGs related to hyper-DMR in COAD

61 down-regulated DEGs with hypermethylated promoters were selected in

COAD. To investigate the biological function of these genes, I searched the

literature to find the relevance of these genes to COAD. For 61 DEGs selected

in the cluster of COAD, I searched the literature with the terms ”methylation”

or ”Colon adenocarcinoma”. CDKN1B, DNMT3B, and RPS7 genes are re-

lated to a disorder of methylation in Colon Adenocarcinoma. CDKN1B (Cyclin-

dependent kinase inhibitor 1B, p27) is considered a tumor suppressor because of

its function as a regulator of the cell cycle. In cancers, it is often inactivated via

impaired synthesis, accelerated degradation, or mislocalization. Downregulation

of CDKN1B is caused by increased ubiquitin-mediated proteasomal degrada-

tion in colorectal cancer(Ogino et al., 2007). DNMT3B (DNA (cytosine-5-)-

methyltransferase 3 beta) encodes a DNA methyltransferase which is thought

to function in de novo methylation, rather than maintenance methylation. The

protein localizes primarily to the nucleus and its expression is developmentally

regulated. DNMT3B expression contributes to CpG island methylator pheno-

type in colorectal cancer (Nosho et al., 2009). RPS7 (40S ribosomal protein S7)

is a component of the 40S subunit. In eukaryotes, ribosomes, the organelles that

catalyze protein synthesis, consist of a small 40S subunit and a large 60S sub-

unit. Aberrant promoter hypermethylation of RPS7 inhibits colorectal cancer

growth (Zhang et al., 2016).

UPRT, MAPRE1, NIT2, CEACAM, and NDUFA4 genes are related with

COAD. UPRT (Uracil Phosphoribosyltransferase Homolog) modulate the sensi-

tivity of the human colon cancer cells (Koyama et al., 2000). MAPRE1 (Microtubule-

associated protein RP/EB family member 1) is often mutated in familial and

sporadic forms of colorectal cancer (Ladd et al., 2012). NIT2 (Nitrilase Family
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Member 2) has an omega-amidase activity to remove potentially toxic interme-

diates by converting alpha-ketoglutaramate and alpha-ketosuccinamate to bio-

logically useful alpha-ketoglutarate and oxaloacetate. Downregulation of NIT2

inhibits colon cancer cell proliferation and induces cell cycle arrest (Zheng et al.,

2015). CEACAM6 (Carcinoembryonic antigen-related cell adhesion molecule 6)

is a member of the carcinoembryonic antigen (CEA) gene family. Expression of

CEACAM6 in colorectal cancer is an independent prognostic factor that can

subdivide patients into low-risk and high-risk groups (Jantscheff et al., 2003).

NDUFA4 (mitochondrial complex associated) codes for a subunit of Complex I

of the respiratory chain, which transfers electrons from NADH to ubiquinone.

Up-regulated NDUFA4 facilitate the tumorigenesis of colorectal cancer (Cui

et al., 2018b).

In GO-term enrichment test with ”Molecular Function” category, the 61

genes in COAD were found to be related with ”ubiquitin-protein transferase in-

hibitor activity”, ”RNA polymerase II intronic transcription regulatory region

sequence-specific DNA binding”, ”hydrogen-exporting ATPase activity, phos-

phorylative mechanism”, ”chromo shadow domain binding”, ”G-rich strand

telomeric DNA binding”, ”intronic transcription regulatory region sequence-

specific DNA binding” and ”C2H2 zinc finger domain binding” (table 3.5).

3.5 Methods

DEG analysis

A Bioconductor (version 3.8) EBSeq package (Leng et al., 2013) was used for

the DEG analysis of RNA data. For each cancer type, I divided the samples

into two groups into mutated versus non-mutated samples and performed DEG

analysis. Number of DEGs was counted with a false discovery rate (FDR) less
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Table 3.5 Enriched GO terms of 61 DMR-DEGs in COAD.

GO term ID Term description P-value Z-score

GO:0055105 ubiquitin-protein transferase inhibitor activity 0.021159 -3.31913

GO:0001162
RNA polymerase II intronic transcription

regulatory region sequence-specific DNA binding
0.021159 -3.28735

GO:0008553
hydrogen-exporting ATPase activity,

phosphorylative mechanism
0.030091 -3.26128

GO:0070087 chromo shadow domain binding 0.021159 -3.00936

GO:0098505 G-rich strand telomeric DNA binding 0.033051 -2.87252

GO:0001161
intronic transcription regulatory region

sequence-specific DNA binding
0.027123 -2.78111

GO:0070742 C2H2 zinc finger domain binding 0.038944 -2.77426

than 0.05. Fold change values of gene expression level were used in the following

clustering analysis.

DMR analysis

For the methylation data analysis, the DMR was analyzed with an FDR of 0.05

using ”bumperhunter” in the minfi package (Aryee et al., 2014) of Bioconductor

(version 3.8). For each cancer type, I divided the samples into two groups into

mutated versus non-mutated samples as same as DEG analysis. The DMRs

found were annotated using ”matchgene” to select the genes with DMR in the

promoter.

Random sample test

Random sampling was performed to compare the seven DNA methylation mod-

ifier mutation samples of each cancer types. Random samples were selected with

the same size as the seven DNA methylation modifiers mutation samples, and
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DEG and DMR analysis were performed 10,000 times using the selected and

remaining samples.

The log ratio of average methylation levels in promoter regions

To compare the methylation levels of each promoter region between the samples

of which the seven DNA methylation modifier genes were mutated and the other

samples, I calculated the average of methylation levels of each promoter region

for the samples with mutation and the other samples, respectively. After that,

the log ratio of the averaged methylation levels was calculated and the equation

is shown below:

LRij = log2
Avg mutij + pseudo

Avg nonij + pseudo

where j indicates each probe, i is the index of cancer, Avg mutij is the average

of the methylation levels of probe j for the samples with mutation in cancer i,

Avg nonij is the average of the methylation levels of probe j for the samples

without mutation in cancer i and LRij is the log ratio of two average values

of probe j in cancer i. Pseudo is the value of 0.001 I added to the averages to

avoid the error caused by dividing by zero.

Gene expression correlation analysis

For transcriptome data, correlation values between genes were calculated using

Pearson’s correlation of ”pearsonr” of scipy (Blanco-Silva, 2013) for each cancer

type. The final correlation value between the final genes was calculated using

the weight value of the PPI score of the STRING database. These correlation

values are used in the following clustering analysis.
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Graph-based clustering

I used the ”igraph” package (Csardi et al., 2006) of R to detect the multilevel

community and perform sub-network clustering. For the graph-based clustering,

I used the fold change value of the gene and correlation values between genes.

Before clustering, I discard genes with fold change less than 0.2 and edge of

correlation with less than 0.5. After clustering, I perform the GO enrichment

test and one-sample t-test for each cluster.

Network visualization with Cytoscape

Visualization of the sub-network cluster is shown using Cytoscape (version

3.7.1).

Promoter binding TF search by Transfac

To search all TFs to bind the promoter sequence of DEG, I used Transfac.
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Chapter 4

In silico experiment system for
testing hypothesis on gene
functions using three
condition-specific biological
networks

4.1 Related works

Important regulators such as TF genes have system-wide effects on many genes,

often resulting in significant changes in phenotypes (Latchman, 1997). To un-

derstand the role of TF, it is a common practice to use model organisms, e.g., a

mouse with the TF knocked out. Subsequently, sequencing technologies are used

to measure changes in gene expression levels at the whole cell level. A common

practice for the analysis of transcriptome data is to perform the DEG analysis

to measure the system-wide effects of a TF. However, the DEG analysis has

several limitations. First, there are too many DEGs, up to several thousand,

depending on the criteria for beings DEGs. More importantly, the DEGs anal-
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ysis do not explain how a TF affects DEGs since connections from the TF to

DEGs are unknown. In addition, users do not have any control on the DEG

analysis process except changing the cut-off values, even when the user has a

good hypothesis on which biological mechanisms or pathways are likely to be

affected by knocking out the TF.

Recently, there have been significant advances in bioinformatics technolo-

gies. Among them, a number of biological networks have been constructed using

experimental data and/or computational methods. Thus, it is possible to use

networks to investigate the system-wide effects of a TF by following edges of

networks from the TF to all other genes. In addition, literature mining tech-

nologies have been advanced significantly and they were used in the recent

research projects (Hur et al., 2016; Lee et al., 2016a; Oh et al., 2017). These

literature mining technologies are now powerful enough to identify the relation-

ship between the specific hypothesis of the user, e.g., disease names or certain

biological pathways, and genes that are reported to be relevant to the hypoth-

esis in the literature. By leveraging these recent advances, I developed a novel

information system that can be used to perform in silico experiments for testing

on functions of a TF.

4.2 Methods

An in silico experiment is performed as follows. Given a user-provided tran-

scriptome and miRNA data from a knockout mouse experiment, the user can

specify his/her hypothesis in English. The current system may not handle free-

style sentences, thus a set of nouns are to be specified as input. Then, the

hypothesis is translated to a set of genes using my literature knowledge min-

ing system, BEST (Lee et al., 2016b). I call these genes target genes. Then,
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connections from the knockout gene to the target genes are constructed and

evaluated by condition-specific networks that are instantiated by gene expres-

sion data. Three condition-specific networks are TF, miRNA and PPI networks.

The connectivity between the regulator gene such as the knocked out TF and

the target genes are determined by computing shortest paths. Intuitively, more

target genes are reachable from the TF, an in silico experiment accepts or sup-

ports the user hypothesis while fewer connections would reject the hypothesis.

Of course, my literature based experiment is not meant to use to determine the

function of a TF since biological experiments should be performed to confirm

the functions. However, my system allows the user to exploit his/her expert

knowledge to explore potential functions of a TF, which, I expect, will reduce

the burden of scientists significantly so that much smaller number of in vivo or

in vitro experiments can confirm the function of a TF.

User input

• Transcriptome (mRNA expression) data

• microRNA expression data

• Regulator gene name (ex. knockout gene name)

• Hypothesis (ex. disease, pathway or gene) specified by a set of nouns

(My tool supports raw data of microarray, pre-processed data of microarray

and pre-processed data of RNA-seq. I do not support raw data of RNA-seq.)

Output result

• DEG analysis result

• Candidate target genes related to regulator gene and hypothesis
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• The network of regulator gene and target gene within TF, microRNA and

PPI network

• Statistical and informational test results

4.3 Workflow

The workflow of my system is shown in Figure 4.1. Each step and the workflow

is explained in detail in this section. To help understand readers the workflow,

I will define genes in three categories. A regulator gene is a TF gene that is

knocked out in the biological experiment. The Mediator or network genes are

genes in the condition-specific TF network, miRNA network, and PPI network.

Target genes are genes that are relevant to the hypothesis or pathway that the

user specified. These genes are called as targets since my in silico experiment is

to test how well a regulator gene is connected to the target genes via network

genes.

4.3.1 Step 1 - Select target genes from hypothesis

1.1. DEG analysis of miRNA and mRNA.

The input mRNA and miRNA expression data are analyzed using limma (Ritchie

et al., 2015) for microarray and DEseq2 (Love et al., 2014) for RNA-sequencing

data. DEGs are selected based on the log2 fold change value and the p-value

are calculated for the expression level of each gene.

1.2. Search target genes related to the hypothesis from the literature.

The user needs to provide, as input, the regulator gene name and the hypothesis

that is specified in English. The validity of an input gene name can be checked

by clicking the check button on the web page. Instead of specifying a hypothesis,
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Figure 4.1 The workflow of my method. The schematic diagram of the

workflow.
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the user can select a KEGG (Kanehisa and Goto, 2000) pathway from the list

of KEGG pathways that are provided on the web page. With a user-specified

hypothesis, the BEST system converts the hypothesis to a set of genes. When

the user selects a pathway name, genes in the pathway is selected as candidate

target genes by searching the KEGG pathway database.

1.3. Select top DEGs as target genes.

Using the DEG analysis (Step 1-1) results, top 10 target DEGs in terms of gene

expression level changes are selected from the candidate target genes determined

by BEST tool or KEGG pathway DB (Step 1-2) with a p-value. The top 10

target DEGs consist of 5 up-regulated DEGs and 5 down-regulated DEGs.

4.3.2 Step 2 - Condition-specific TF, miRNA and PPI network

generation by the DEG set

2.1. Extract all edges of selected 10 target DEGs in the three network

DB.

Template TF network, miRNA network, and PPI network are instantiated by

the gene expression information from the microarray or RNA-seq experiments.

However, these networks are too big to be displayed on a web page. Thus, genes

that are directly or indirectly connected to the 10 target genes are chosen since

genes that do not have a connection to the target genes are not relevant. A

miRNA network database was obtained from TargetScan (Lewis et al., 2005),

and STRING (Franceschini et al., 2013) was used as a PPI network. A mouse

TF network database was created using NARROMI (Zhang et al., 2013).
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2.2. Select the edges of DEGs.

Since I am interested in how the regulator gene affected the target genes, gene

expression levels should be different in the expression value in the control vs.

treated experiment. Thus, only edges incident to DEGs are selected and the

others are removed from the network.

4.3.3 Step 3 - Performing in silico experiment

3.1. Compute the shortest path between the regulator gene and tar-

get genes in the networks.

My system computes the shortest path in the networks between the user pro-

vided regulator gene and 10 target genes from the hypothesis that is being

tested.

3.2. Visualize networks in a graph.

The networks computed in the previous steps are visualized using Cytoscape

(Shannon et al., 2003). The regulator gene is located at the top position, and

the target genes are located at the bottom, and network genes are grouped into

TF, miRNA, and PPI networks. Edges in the networks show how each of the

genes is connected according to changes in expression level. The expression level

of each gene was visualized in color according to the amount of change. Up-

regulated genes are in red and down-regulated genes are in blue. In addition,

a coding gene is denoted by a circle and a non-coding gene is denoted by a

diamond shape. The blue colored edge represents the miRNA network, the

purple colored edge represents the PPI network, and the yellow colored edge

represents the TF network. Clicking a specific gene shows a list of connected

genes.
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4.3.4 Step 4 - Evaluation of the user hypothesis

4.1. A statistical evaluation by random permutation.

To evaluate network connections between the regulator gene and the target

genes, a statistical evaluation is performed. While edges incident to the regulator

gene and the target gene are fixed, random network networks are generated 1000

times to compute a p-value. The p-value is in how many times random networks

the target genes are connected from the regulator genes. The significance of p-

value means that the regulator gene has an effect on the target genes through

mediator DEGs.

4.2. An information theoretic evaluation by measuring entropy.

In the network results, if there is a high correlation between the regulator

gene and the target genes of hypothesis, there is a large number of mediator

genes linking the regulator and the target genes. In addition, if the regulator

gene relates to the given hypothesis, most of the target genes are connected

via three-level networks. To quantitatively measure this connectivity concept,

a normalized entropy of network connections is calculated by using degree in-

formation of target genes (Equation (4.1), (4.2), (4.3)).

P (tgi) =
degree(tgi) + β

10∑
j=1

(degree(tgj ) + β)

(4.1)

H(TG) = −
10∑
i=1

P (tgi) log2 P (tgi) (4.2)

EH = H(TG)/Hmax = H(TG)/log210 (4.3)

where:
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• degree(tgi) : degree of i-th target gene in the Target Gene Set TG =

{tg1 , tg2 , ..., tg10}

• beta : pseudo count (beta = 0.00001)

• Hmax : maximum entropy of generated network

4.3.5 Optimization

To make an in silico experiment performed online, I need to speed up some

computations, especially for statistical significance of connectivity between the

regulator gene and target genes from the user provided hypothesis.

To compute a p-value, a network with 18 million edges and 31,897 nodes

is randomly generated 1,000 times. This experiment takes too much time to

provide the service online, so instead of rebuilding the entire network, I create

a partial network where edges are generated randomly only for edges incident

to nodes in the path between the regulator gene and the target genes according

to the edge formation probability from the network density information. I also

pre-upload the entire network at the in silico network server.

4.3.6 Explanation of the experiment result page

In the in silico experiment result, the user can test the hypothesis visually on

the web page and a new in silico experiment can be retested again by simply

clicking the button. It also shows a target gene list associated with hypothesis

and the DEG analysis results of the mRNA and miRNA data and combines

the results to visualize the top ten target genes associated with the regulator

gene and hypothesis. In addition to the selected five up-regulated genes and the

five down-regulated genes, additional genes of interest can be added as target

genes. The network analysis results can be visualized as a graph. The networks
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can be zoomed in or out. Selecting a gene in the network shows only neighbors

in a highlighted fashion. Genes in the networks can be reconfigured to arbitrary

positions by clicking and dragging. Multiple genes can be selected for navigation

by dragging a rectangle. A summary of the network information is presented

along with p-value and entropy values.

4.4 Results & discussion

4.4.1 Test results of E2f1 and the hypothesis

I tested the in silico experiment system with a miRNA and mRNA dataset of

GSE33902 from Gene Expression Omnibus (GEO) at NCBI and obtained the

regulator gene name E2f1 and hypothesis keyword Lymphoma from the origi-

nal paper (Warg et al., 2012) that produced the data from an E2f1 knockout

mouse. A null hypothesis keyword for E2f1 data, Muscular Dystrophy was

selected in reference to the disease outcome of E2f1 in the MalaCards (Rappa-

port et al., 2016). Thus, the test was whether the hypothesis of Lymphoma is

accepted and the hypothesis of Muscular Dystrophy was rejected in the two

in silico experiments. The network results are shown in Figure 4.2. From the

in silico experiment of E2f1 and Lymphoma, I found 127 genes associated with

E2f1 and Lymphoma by BEST. Top five up-regulated genes, Cdkn1b, E2f2,

H2afx, Bbc3, and E2f1, and top five down-regulated genes, E2f3, Anxa5, Rbl2,

Casz1, and Ezh2, were used for network analysis. I found 55 DEGs connecting

selected top 10 target genes, 4 in the miRNA network, 9 in the TF network and

41 in the PPI network. The total number of edges was 201, and the entropy

value was 0.784. A higher entropy value means the well-connected network.

E2f1 has a high correlation with the immune disease at 0.784 entropy score.

Network connectivity maps by E2f1 and immune disease Lymphoma are shown
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Figure 4.2 Network results of E2f1 and hypotheses. (A) (Accept case)

Network result of “E2f1” (regulator gene) and “Lymphoma” (hypothesis). (B)

(Reject case) Network result of “E2f1” and “Muscular Dystrophy”.

in Figure 4.2 (A). For the Muscular Dystrophy hypothesis that is not related

to E2f1 in the MalaCards (Figure 4.2 (B)), I found eight genes associated with

E2f1 and Muscular Dystrophy. Among the eight genes, only E2f1 and Ppara

genes were DEGs. I found 17 intermediated DEGs, 2 in the miRNA network, 2

in the TF network and 13 in the PPI network. This network graph had only 34

edges and the entropy value was 0.0138. Thus, E2f1 and Muscular Dystrophy

did not seem to be related.

4.4.2 Test results of E2f1 and 62 diseases in the MalaCards as

a hypothesis

I performed in silico experiments with 62 hypotheses of different disease names,

selecting five diseases with a high MalaCards information score (MIFTS) in

each of 18 categories of the MalaCards and excluding duplicate diseases. In the

MalaCards DB, 14 diseases were related to E2f1 and the remaining 48 diseases

were unrelated. As a result of the experiment, among 14 diseases associated
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with E2f1, 10 diseases such as Hepatitis, Hepatocellular Carcinoma, Colorec-

tal Cancer, Lung Cancer, Retinoblastoma, Breast Cancer, Pancreatic Cancer,

Prostate Cancer, Renal Cell Carcinoma and Esophageal Cancer had entropy

values over 0.7 (Figure 4.3 (A)). For 14 diseases associated with E2f1, Table 4.1

summarizes entropy values for each experiment and reference to research pa-

pers that support the relevance of the disease to E2f1. 31 of 48 other diseases

were not found to be associated with E2f1 because there was no target gene

from the hypothesis or only a small number of genes are mapped to networks.

Among the 48 diseases not associated with E2f1, four diseases, such as Obesity,

Liver Disease, Ataxia-Telangiectasia, and Asthma, were accepted with an en-

tropy value of over 0.8 in the experimental results, which could be new findings

(Figure 4.3 (B)).

4.4.3 Test results of Lrrk2 and 23 diseases in the MalaCards as

a hypothesis

I conducted additional tests using Lrrk2 data (GSE52584) that were down-

loaded from GEO. Leucine-rich repeat kinase 2 (Lrrk2) is an enzyme encoded

by the PARK8 gene (Paisán-Ruız et al., 2004). I tested Lrrk2-related 23 diseases

from the MalaCards database as a hypothesis. Seven diseases had an entropy

value of 0.8 or more and 18 diseases had an entropy value of over 0.5, thus

accepted in the in silico experiments. (Figure 4.4 (A)).

4.4.4 Test results of Dicer1 and 32 diseases in the MalaCards

as a hypothesis

I conducted additional tests using Dicer1 data (GSE34910) that were down-

loaded from GEO. Dicer1 that is classified a Ribonuclease III, has a role of

processing microRNA. 32 diseases that are known to be related with Dicer1 in
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Figure 4.3 Network entropy of E2f1 related diseases. (A) Network entropy

results of 14 diseases associated with E2f1. 10 of 14 had entropy values over

0.7. A high entropy value means that the association is high. (B) 31 of 48 other

diseases were not found to be associated with E2f1 because there was no target

gene or only a small number of genes are mapped to networks. 62 diseases were

selected 5 diseases with a high MIFTS in each of 18 categories of MalaCards

and excluding duplicate diseases.
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Table 4.1 A summary of in silico experiments with 14 diseases known

to be relevant to E2f1 in MalaCards. Shown are entropy value in the

descending order and research papers that support the relevance of E2f1 to

the disease. 10 of 14 diseases had over 0.7 entropy values, thus accepted in the

experiments.

Disease name Entropy (0∼1) Reference

Hepatitis 0.8974 (Ghosh et al., 2016)

Hepatocellular Carcinoma 0.8628 (Ghosh et al., 2016)

Colorectal Cancer 0.8559 (Sulzyc-Bielicka et al., 2016)

Lung Cancer 0.8169 (Li et al., 2016)

Retinoblastoma 0.7921 (Pappas et al., 2017)

Breast Cancer 0.7676 (Cataldo et al., 2016)

Pancreatic Cancer 0.7671 (Chen et al., 2017)

Prostate Cancer 0.7371 (Liang et al., 2016)

Renal Cell Carcinoma 0.7369 (Gao et al., 2016)

Esophageal Cancer 0.7235 (Li et al., 2015)

Multiple Myeloma 0.5192 (Liu et al., 2013)

Myelodysplastic Syndrome 0.1358 (Saberwal et al., 2003)

Systemic Lupus Erythematosus 0.0177 (Aboelenein et al., 2013)

Insulin-Like Growth Factor I 0.0123 (Schayek et al., 2010)
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the MalaCards database were tested. Breast cancer had 0.9341 entropy value,

and 14 diseases including Blastoma, Lymphoma, and Ovarian cancer had an

entropy value of over 0.7 and 21 of 32 diseases had an entropy value of over 0.5,

thus accepted in the in silico experiments. (Figure 4.4 (B)).
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Figure 4.4 Network results of Lrrk2 and Dicer1. (A) Network entropy result of

23 diseases associated with Lrrk2. 7 of the 23 diseases had entropy values over

0.8 and 18 had over 0.5. (B) Network entropy result of 32 diseases associated

with Dicer1. 14 of the 32 diseases had entropy values over 0.7 and 21 had over

0.5, thus accepted in the in silico experiments.
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Chapter 5

Conclusion

The phenotype of an organism is manifested through the complex changes of

various substances that make up the organism. To understand these biological

phenomena, it is necessary to analyze various biological data in an integrated

manner. Integrating and analyzing multi-omics, which are various data of biol-

ogy, is a very difficult problem because it has a high dimensional large feature

space. To solve the difficulty of an integrated analysis of multi-omics, it is very

useful to use prior knowledge network information. This thesis presented three

studies using prior knowledge network information for integration analysis of

different omics data:

1. A study using miRNA networks and PPI networks for integrated analysis

of miRNA and mRNA data.

2. A study using methylation network and gene expression correlation net-

work clustering for integrated analysis of methylation and gene expression

data.
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3. A study on the development of hypothesis testing tools for key genes with

the disease using PPI, TF and miRNA networks.

In the first study, integrated analysis of omics data using microRNA-target

mRNA network and PPI network reveals regulation of Gnai1 function in the

spinal cord of Ews/Ewsr1KO mice, I analyzed miRNA and mRNA data of

EWS using miRNA network and PPI network. Both miRNA and mRNA data

was integrated with the miRNA network. I found regulated miRNAs by the

EWS gene and identified Gnai1 by miRNA network. I considered neighbor

protein of Gnai1 in PPI network, analyzed the correlation of gene expression

values. Gnai1 was suppressed by mmu-miR-381 and mmu-miR-181a/b/c and

inhibited by Rgs1 and Rgs19 in the spinal cord of EWS KO mice, also reduced

the expression levels of the expression of Gnb1, Gnb2, and Gnb4, which are

complex with Gnai1 gene. It shows that an integrated analysis of miRNA and

mRNA omics data are well analyzed in miRNA and PPI networks.

In the second study, the impact of mutations in DNA methylation genes

on genome-wide methylation landscapes and down-stream gene activations in

pan-cancer, I examined the effect of 7 DNA methylation modifier genes us-

ing sub-network clustering method in pan-cancer scare. Pan-cancer data were

collected from TCGA, and 3865 samples with both transcriptome and methy-

lation data were analyzed. In each carcinoma, samples were divided and an-

alyzed for the presence of a mutation in 7 DNA methylation modifier genes.

Up-regulated genes with hypomethylated promoter regions in AML and down-

regulated genes with hypermethylated promoter regions in COAD were se-

lected by graph-based sub-network clustering methods. Through analysis, 42

hypomethylated promoter DMRs up-regulated DEGs in AML and 61 hyperme-

thylated DMR down-regulated DEGs in COAD was identified by methylation

regardless of the expression of TF and showed that some of the genes found
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were previously reported in other experimental papers. Research of methyla-

tion data and gene expression data analysis using network clustering showed

significant results of a gene set associated with DNA methylation genes.

In the last study, in silico experiment system for testing hypothesis on gene

functions using three condition-specific biological networks, I developed a com-

puterized experimental system that can quickly test the relevance of a key gene

to disease from biological data. MicroRNA, PPI and TF network information

were deployed for the in silico testing. To transform a user given gene or hypoth-

esis into a gene set, a literature-based search engine was used and the analysis

results were evaluated by calculating the entropy of the network combining the

condition-specific gene expression levels. The network results with high com-

plexity showed a high score of hypothesis verification. The constructed system

was validated using E2f1 knock-out data. Eleven out of 14 E2f1-related diseases

showed a high association and a low association for low-relational diseases. My

development tool demonstrated high-level of hypothesis verification through

simulation using miRNA, PPI, and TF networks. In conclusion, my doctoral

study challenged to solve the difficulties of the integrated omics data analy-

sis and successfully analyzed using the prior knowledge network. I contributed

to bioinformatics by providing successful analysis cases and analysis tools for

multi-omics integrated analysis using network-based analysis techniques. An

integrated analysis of network-based multi-omics is an attempt to gain an inte-

grated understanding of living things. A better understanding of living things

requires a higher level of analysis and challenges to more complex problems.
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Zlatko Trajanoski, and Jérôme Galon. Cluego: a cytoscape plug-in to deci-

pher functionally grouped gene ontology and pathway annotation networks.

Bioinformatics, 25(8):1091–1093, 2009.

Francisco J Blanco-Silva. Learning SciPy for Numerical and Scientific Com-

puting. Packt Publishing Ltd, 2013.

Claudia Bruedigam, Frederik O Bagger, Florian H Heidel, Catherine Paine

Kuhn, Solene Guignes, Axia Song, Rebecca Austin, Therese Vu, Erwin Lee,

Sarbjit Riyat, et al. Telomerase inhibition effectively targets mouse and hu-

man aml stem cells and delays relapse following chemotherapy. Cell Stem

Cell, 15(6):775–790, 2014.

Pavel Burda, Jarmila Vargova, Nikola Curik, Cyril Salek, Giorgio Lucio Pa-

padopoulos, John Strouboulis, and Tomas Stopka. Gata-1 inhibits pu. 1

gene via dna and histone h3k9 methylation of its distal enhancer in ery-

throleukemia. PloS one, 11(3):e0152234, 2016.

73



Alessandra Cataldo, Douglas G Cheung, Andrea Balsari, Elda Tagliabue, Vin-

cenzo Coppola, Marilena V Iorio, Dario Palmieri, and Carlo M Croce. mir-

302b enhances breast cancer cell sensitivity to cisplatin by regulating e2f1

and the cellular dna damage response. Oncotarget, 7(1):786, 2016.

Howard A Chansky, Ming Hu, Dennis D Hickstein, and Liu Yang. Oncogenic

tls/erg and ews/fli-1 fusion proteins inhibit rna splicing mediated by yb-1

protein. Cancer research, 61(9):3586–3590, 2001.

Shi Chen, Jia-Qiang Zhang, Jiang-Zhi Chen, Hui-Xing Chen, Fu-Nan Qiu, Mao-

Lin Yan, Yan-Ling Chen, Cheng-Hong Peng, Yi-Feng Tian, and Yao-Dong

Wang. The over expression of long non-coding rna anril promotes epithelial-

mesenchymal transition by activating the atm-e2f1 signaling pathway in pan-

creatic cancer: An in vivo and in vitro study. International Journal of Bio-

logical Macromolecules, 102:718–728, 2017.

Joonseok Cho, Hongmei Shen, Hui Yu, Hongjie Li, Tao Cheng, Sean Bong Lee,

and Byeong Chel Lee. Ewing sarcoma gene ews regulates hematopoietic stem

cell senescence. Blood, 117(4):1156–1166, 2011.
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factor independent 1b (gfi1b) and a new splice variant of gfi1b are highly

expressed in patients with acute and chronic leukemia. International journal

of hematology, 89(4):422–430, 2009.

Günter P Wagner, Koryu Kin, and Vincent J Lynch. Measurement of mrna

abundance using rna-seq data: Rpkm measure is inconsistent among samples.

Theory in biosciences, 131(4):281–285, 2012.

Xiaowei Wang. mirdb: a microrna target prediction and functional annotation

database with a wiki interface. Rna, 14(6):1012–1017, 2008.

Xiaowei Wang and Issam M El Naqa. Prediction of both conserved and non-

conserved microrna targets in animals. Bioinformatics, 24(3):325–332, 2007.

Laura A Warg, Judy L Oakes, Rachel Burton, Amanda J Neidermyer, Holly R

Rutledge, Steve Groshong, David A Schwartz, and Ivana V Yang. The role of

86



the e2f1 transcription factor in the innate immune response to systemic lps.

American Journal of Physiology-Lung Cellular and Molecular Physiology, 303

(5):L391–L400, 2012.

YongKiat Wee, Yining Liu, Salma Begum Bhyan, Jiachun Lu, and Min Zhao.

The pan-cancer analysis of gain-of-functional mutations to identify the com-

mon oncogenic signatures in multiple cancers. Gene, 697:57–66, 2019.

Fuxiao Xin, Meng Li, Curt Balch, Michael Thomson, Meiyun Fan, Yunlong

Liu, Scott M Hammond, Sun Kim, and Kenneth P Nephew. Computational

analysis of microrna profiles and their target genes suggests significant in-

volvement in breast cancer antiestrogen resistance. Bioinformatics, 25(4):

430–434, 2008.

Xiao-Jing Yan, Jie Xu, Zhao-Hui Gu, Chun-Ming Pan, Gang Lu, Yang Shen,

Jing-Yi Shi, Yong-Mei Zhu, Lin Tang, Xiao-Wei Zhang, et al. Exome se-

quencing identifies somatic mutations of dna methyltransferase gene dnmt3a

in acute monocytic leukemia. Nature genetics, 43(4):309, 2011.

Wen Zhang, Duo Tong, Fei Liu, Dawei Li, Jiajia Li, Xi Cheng, and Ziliang

Wang. Rps7 inhibits colorectal cancer growth via decreasing hif-1α-mediated

glycolysis. Oncotarget, 7(5):5800, 2016.

Xiujun Zhang, Keqin Liu, Zhi-Ping Liu, Béatrice Duval, Jean-Michel Richer,
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초록

특정 유전자의 특징을 알기 위해서 대상 유전자의 증폭 및 녹아웃 실험을 통해

표현형을 살펴보는 연구가 많이 수행되고 있다. 이러한 생물학 실험과 더불어 만

들어지는 다양한 오믹스 데이터를 통합 분석하여 표현형을 나타내는 것은 여러

가지 어려운 문제가 있다. 오믹스 데이터들은 다른 형식을 사용하기 때문에 통합

하는 것이 어려운 문제이며 오믹스 간의 복잡 관계를 고려해야 한다. 또한, 통합한

오믹스데이터는고차원의자료이기때문에분석과해석또한어렵다.성격이다른

데이터를 연계하고 분석에 쉬운 특징 공간으로 줄이는 문제를 해결하기 위해서 네

트워크정보를사용하는것은매우유용하다.본박사연구에서는네트워크정보를

사용한 다중 오믹스 데이터 통합 분석의 세 가지 연구를 수행하였고 다중 오믹스

통합 분석의 어려운 문제의 해결은 네트워크를 이용한 분석이 매우 유용함을 보

였다.

첫 번째 연구에서는, 녹아웃 유전자 EWS에 의해 발현되는 유전적 현상을 설

명하기 위하여 야생형 쥐와 EWS 녹아웃 쥐의 척수로부터 얻어진 miRNA 데이

터와 mRNA 데이터를 통합하여 분석하였다. miRNA에 의해 조절 받은 DEG의

기능적 변화를 조사하기 위해 miRNA와 표적 유전자 간의 음의 상관 네트워크와

단백질-단백질 (PPI) 네트워크를 사용했다. miRNA와 PPI 네트워크를 이용한 분

석을 통해, 콜린성 시냅스 경로에서 유의미하게 하향 조절된 Gnai1을 찾아냈다.

Gnai1의 발현량은 억제된 EWS에 의해 발현량이 증가한 mmu-miR-381 및 mmu-

miR-181a/b/c에 의해 발현이 억제되는 것을 miRNA 네트워크를 이용하여 찾아

확인하였다. 또한, 단백질 네트워크를 이용하여 발현량이 증가한 Rgs1 및 Rgs19

에 의해서 Gnai1이 억제되는 것을 보았으며, G 단백질 복합체를 이루는 이웃 단

백질 Gnb1, Gnb2 및 Gnb4의 발현 수준도 감소한 것을 함께 확인하여 유의미한

발견임을 보였다.
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두 번째 연구에서는, 전체 암 규모에서 DNA 메틸화에 필요한 7개의 유전자의

효과를 분석하고자 했다. TCGA의 12종의 암 데이터에서 유전자 발현 데이터와

메틸화 데이터를 갖는 3865개의 표본을 수집하여 분석하였다. 각 암종에서 해당

유전자의 돌연변이 유무로 표본을 나누고 서브 네트워크 클러스터링 방법을 이용

하여 생물학적 의미가 있는 유전자 그룹으로 나누어 메틸화 영향을 분석하여 의미

있는 유전자를 찾고자 했다. 분석으로 찾아낸 클러스터 중에서 급성골수성백혈

병 환자에서 하이포 메틸화된 프로모터를 가지는 유전자군과 대장암 환자에서 과

메틸화된 프로모터를 가지는 유전자군을 선택하여 심화 분석하였다. TF에 의한

영향과는 무관하고 메틸화에 의한 영향으로 발현량이 변화한 유전자를 선별하였

고, 급성골수성백혈병 환자의 42개의 유전자와 대장암 환자의 61개의 유전자를

유의미한 것으로 찾아내었다. 선별한 유전자 일부는 이전의 다른 실험 논문에서

보고된 것을 확인하여 유의미한 것을 검증하였다.

세 번째 연구에서는 생물학적 데이터를 통합 분석하여 질병에 대한 특정 유전

자의 관련성을 신속하게 확인할 수 있는 컴퓨터 실험 시스템을 개발했다. 이 분석

실험 도구는 miRNA, PPI 및 TF 3가지 네트워크 정보를 데이터베이스로 구축

하여 네트워크상에서 시뮬레이션 분석이 가능하도록 하였고, 주어진 유전자 또는

가설을 유전자 세트로 변환하기 위해 문헌 기반 검색 엔진을 이용하여 만들었다.

확인 분석된 네트워크 결과는 유전자 발현 수준을 고려하였고 네트워크의 정보 엔

트로피값을 계산하여 분석 결과를 평가하였다. 많은 네트워크 정보를 가진 결과는

가설 검증에서 높은 점수를 가지도록 하였다. 구축한 시스템은 E2f1 유전자의 데

이터와 Lrrk2, Dicer1 각각의 유전자 데이터를 사용하여 검증하였다. MalaCards

의 인간 질병 데이터베이스를 이용하여 E2f1 관련된 14개의 질병과 유전자의 연

관성을 검증하였고, 11개의 질병은 높은 연관성을 보였고, 그 외의 무관한 48개의

질병에 대해서는 낮은 연관성을 가지는 것을 보임으로써 검증하였다.

요약하자면, 필자의 박사 연구는 유전자와 표현형에 대한 연관성을 분석하기

위해다중오믹스데이터의통합하여분석하였고,통합분석의어려운문제를네트

워크정보를사용하여유의미한결과를보였다.다중오믹스데이터의성격에따라
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PPI, miRNA, TF 네트워크 및 DNA 메틸화 정보 네트워크를 결합하는 방법을

사용하였고 생물학적으로 유의미한 분석 결과를 보여 네트워크를 이용한 분석이

유용함을 보였다. 또한, 네트워크를 이용한 다중 오믹스 데이터 분석 실험 도구를

개발하여 생물정보학 연구에 기여 하고자 하였다.

주요어:멀티오믹스,네트워크분석,네트워크통합분석,단백질네트워크, miRNA
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