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Abstract

Informatics techniques to navigate

transcriptome space with biological networks

from gene to pathway to phenotypes

Ji Hwan Moon

Interdisciplinary Program in Bioinformatics

College of Natural Sciences

Seoul National University

Transcriptome data, genome-wide measurement of transcripts, has been

used to increase our understandings of biological processes at transcription

level significantly. Analysis of transcriptome data involves a series of steps from

identification of differentially expressed genes (DEGs) to pathway enrichment

analysis to association with phenotypes. There exist several hurdles at each

step that need to be addressed with state of the art bioinformatics techniques.

For example, the complex nature of living organisms can be represented as a

network where the nodes are the interacting entities such as genes or pathways

and the edges are the interactions between the nodes. Network analysis is cru-

cial in that it can reveal the hidden associations between transcriptome data

and phenotypes. In addition, network propagation has emerged as a technique
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to measure the influential power of nodes in a network. Network propagation

has demonstrated its utility on biological context by many studies and has been

contributing to invaluable discoveries in biological and medical science fields. In

my doctoral study, I explored and analyzed trasncriptome at various levels using

machine learning, network information and network propagation techniques.

My thesis consists of three studies. The first study was to develop an ac-

curate and stable method for determining differentially expressed genes using

machine learning techniques. The second study was to develop a novel method

to investigate interactions among biological pathways using explicit gene ex-

pression information from RNA-seq. The last study was to perform analysis of

xenotransplant transcriptome data using various methods including the network

propagation technique.

In the first study, MLDEG, a machine learning approach to identify DEGs

using network property and network propagation, was developed. Currently

available DEG detection methods have widely been used and contributed to

new biological discoveries. Most of the methods use their own models to de-

fine DEGs. However, because the traits of transcriptome data vary significantly

depending on the experimental designs and sequencing technologies, a single

model can hardly fit all transcriptome data of different traits. In addition, set-

ting cutoff values of p-values and fold change is arbitrary. Thus, the results

yielded by the methods are often inconsistent and heterogeneous. MLDEG ad-

dresses these issues by building a model that uses network information and net-

work propagation results as features. The goal of MLDEG is to train a model by

using network-based features extracted from more likely true and false DEGs

and use the model to classify DEGs from the genes that cannot be clearly de-

fined as DEGs by existing methods. Tested on 10 high-throughput RNA-seq

data, MLDEG showed better performances than the competing methods.
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In the second study, I developed a Pathway INTeraction network construc-

tion method (PINTnet) that can construct a condition-specific pathway interac-

tion network by computing shortest paths on protein-protein interaction (PPI)

networks. Because pathways usually function in a coordinated and cooperative

fashion, understanding interactions, or crosstalks, between pathways becomes

as important as identifying perturbed single pathway. However, existing meth-

ods do not take into account the topological features, treating the pathways just

as a set of genes. To solve the problem, PINTnet computes shortest paths on

PPI networks mapped to each pair of pathways and creates subnetworks using

the shortest paths. It then measures the activation status of pathway interaction

using the product of closeness centrality and explicit gene expression quantity.

The performance of PINTnet was evaluated using three high-throughput RNA-

seq data and successfully reproduced the findings in the original papers of the

data.

In the last study, I participated in a xenotransplantation study to elucidate

the cause of chronic phase islet graft loss. Clinical islet transplantation is one

of the promising options for type 1 diabetes but long-term outcome of graft

function is not yet satisfactory. To reveal the mechanism of the graft loss in

chronic phase, I carried out pathway interaction network analysis using PINT-

net on a time-series porcine islet-transplanted rhesus monkey RNA-seq data

and identified the activation of T cell receptor signaling pathway. The analy-

sis results were supported by the biopsy result of liver sample that CD3+ T

cell heavily infiltrated the porcine islet. Additionally, I carried out gene prior-

itization using network propagation to verify five graft loss-relevant scenarios.

The result suggested that T cell-mediated long-term graft loss was the most

probable scenario.

In summary, my doctoral study used network information, network property,
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and network propagation to identify DEGs and predict pathway interactions.

In addition, I participated in a xenotransplantation research and carried out

pathway interaction network analysis and network propagation to reveal the

possible cause of chronic phase islet graft loss. Utilizing network information

and network propagation was very effective to discover the relationships among

biological entities and analyze the complex phenotypes.

Keywords: protein-protein interaction, shortest path, network propagation,

differentially expressed gene, xenotransplantation, chronic phase islet graft loss

Student Number: 2012-30906
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Chapter 1

Introduction

Transcriptome refers to the complete set of transcripts and their quantity in

a cell for a specific condition. Transcriptome analyses are essential in biolog-

ical researches because the cellular states can be identified by such analyses

(Mortazavi et al., 2008). There are two major technologies measuring tran-

scriptome: microarray and sequencing. Due to the greater information content

and the lower cost, the sequencing technology is more preferred than microar-

rays. The transcriptome data have been widely used to reveal the biological

mechanisms underlying many phenotypes or diseases. To analyze transcriptome

data of more than 20,000 genes, various computational techniques have been

developed and used. Differential expression analysis and gene set enrichment

analysis are the most widely used analysis methods. Although these methods

are successfully used to discover insights on new biological knowledge, they do

not consider complex interactions among genes. Networks are most natural and

effective tools to represent and model interactions among genes. Indeed, there

exist multiple types of biological networks and the networks share common fea-
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tures; a network is a set of interactions or relations between different entities.

The entities can be any of biological elements and the interactions can represent

either positive relation or negative relation according to the types of biological

elements. The interactions are determined by biological experiments or inferred

by computational methods, and stored in various resources such as STRING

database (Szklarczyk et al., 2016), a repository of protein-protein interactions

of different species, or KEGG (Kyoto Encyclopedia of Genes and Genomes)

(Kanehisa and Goto, 2000). The resources are very useful and have been used

in studying biological mechanisms.

In this thesis, I investigated three research problems ranging from gene-

level analysis to pathway-level analysis using network information and network

propagation. The first problem is to determine differentially expressed gene

(DEG) more accurately using biological networks. The second problem is to

infer condition-specific pathway interaction network from transcriptome data.

The last problem is about the study to infer the cause of graft loss in xeno-

transplantation.

1.1 Background

In my doctoral study, I used two computational techniques, networks and ma-

chine learning. Thus, in this section, I explain technical background on the two

techniques.

1.1.1 An introduction to network theory and its application to

the fields of biology

A network is a set of nodes and edges. It can be denoted as G = (V,E) where V

is a set of nodes and E is a set of edges where each edge is a pair of nodes in V . It

is called a directed network if there is a direction in each edge that comes inside
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Figure 1.1: An example of an undirected network

or outside of nodes. In a directed network, an edge is an ordered pair (vi, vj) that

has a direction from vi to vj where i and j are the indices of the nodes smaller

than or the same as the total number of the nodes in V . In an undirected net-

work, an edge is just a set of any two nodes {vi, vj} in V . For example, as shown

in Figure 1.1 a), there is an undirected network where V = {1, 2, 3, 4, 5, 6, 7} and

E = {{1, 2}, {1, 3}, {1, 4}, {1, 6}, {2, 3}, {2, 4}, {3, 4}, {3, 6}, {3, 7}, {4, 5}, {4, 7}

, {5, 7}, {6, 7}}. An adjacency matrix is a square matrix used to represent a

network. The elements indicate if any pair of nodes in a network are connected.

The equation below shows an adjacency matrix of an undirected and unweighted

network.

Ai,j =


1 if {vi, vj} ∈ E

0 if {vi, vj} /∈ E

(1.1)

Figure 1.1 b) shows the adjacency matrix of a network in Figure 1.1 a). In

addition, it is called a weighted graph if each edge has a weight. The degree of

a node is the number of edges incident on the node. It is denoted as deg(vi) and,

for example, the degree of node 1 in the network in Figure 1.1 a) is deg(1) = 4.

There exist different types of biological networks where biological entities
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Figure 1.2: An example of biological network

are the nodes and their interactions are represented as edges. For example,

transcriptional regulatory networks represent genetic regulatory relationships

in cells. The nodes are transcription factors (TFs) and genes and the edges

are between TFs and the target genes. Metabolic networks reflect a set of bio-

chemical reactions. The nodes are metabolites and the edges are biochemical

reactions between the metabolites. Once constructed, the biological networks

are analyzed using various computational methods.

The simplest approach might be to search the direct neighbor genes of the

genes related to a certain disease (Oti et al., 2006). However, there will be

false positive results when irrelevant genes are directly connected to the disease

genes or relevant genes have no direct interaction with the disease genes. One

of the alternative approaches is to use distance-based methods (Franke et al.,
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2006). The distances are measured using shortest path computation. Network

propagation is a path-based method that can consider all paths simultaneously

and rank the genes. It becomes popular in gene prioritization and prediction

(Cowen et al., 2017).

1.1.2 An introduction to machine learning

Machine Learning is a field of artificial intelligence for developing algorithms and

techniques to enable computers to learn (Simeone et al., 2018). Machine learn-

ing processes are similar to data mining and predictive modeling. It searches

patterns in data and update its actions according to the patterns. There are

two major categories of machine learning. One is supervised learning and the

other is unsupervised learning. Supervised learning requires a guideline about

inputs and desirable outputs (Kotsiantis et al., 2007). When the training is

complete, the trained model is used on new data. Classification is one of the

examples of supervised learning. Classification of real data is very difficult be-

cause, in many cases, it is in a gray zone that it is hard to decide which class

the data belong to. There are several studies using classification in the fields of

biology. For example, there is a study to classify samples using gene expression

as features (Wu, 2005). Another example is to classify original breast cancer

tissue in a patient-derived tumor xenograft model (Wang et al., 2018). Un-

supervised learning infers patterns from data without any information about

desirable outputs (Sathya and Abraham, 2013). It uses iterative approach to

discover the underlying structure of the data. Clustering is one of the examples

of unsupervised learning. In this thesis, classification is used in an ensemble

machine learning method that integrates the advantages of existing methods

and classifies DEGs using transcriptome data.
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1.2 Three problems in my doctoral study

1.2.1 Problem 1: DEG detection

DEGs are the genes of which the expression changes or differences are observ-

able between two experimental conditions. The identification of DEGs is very

important in transcriptome analysis because it can lead to a new discovery as-

sociated with the conditions. There exist multiple methods to detect DEGs.

The DEG detection tools have been widely used to analyze transcriptome data

and to characterize biological mechanisms underlying phenotypes, e.g., human

diseases. Although the simplest way to identify DEGs is to calculate the fold

change of expression of each gene, it is not welcomed because the results can

be biased by the huge fold changes obtained by the comparison of small expres-

sion values or can be different depending on the threshold. Instead, statistical

model is adopted for more robust DEG identification. The common assumption

of the statistical models is that gene expression is sampled from a statistical

distribution. Null hypothesis is that two sets of gene expression are sampled

from the same distribution and alternative hypothesis is that two sets of gene

expression are sampled from two different distribution. Differential expression

is more likely when the two distributions less overlap. The overlap is determined

by means and standard deviations of two distributions. Each DEG detection

method uses its own model to define DEGs. For example, EBSeq estimates the

posterior likelihoods of differential and equal expression by the aid of empir-

ical Bayesian methods, assuming negative binomial distribution (Leng et al.,

2013). edgeR determines differential expression using empirical Bayes estima-

tion and exact test based on a negative binomial model and the Trimmed Mean

of M values (TMM) normalization procedure is carried out to account for the

different sequencing depths (Robinson et al., 2010). DESeq2 uses a negative
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Figure 1.3: The concept of statistical model in DEG detection

binomial model similar to edgeR. When estimating dispersion, it models the

observed relationship between the mean and variance and data-driven param-

eter is estimated (Love et al., 2014). Limma is based on linear modeling. It is

recommended to use TMM normalization of the edgeR package (Ritchie et al.,

2015).

Challenge: robust detection of DEGs There are some limitations of the

existing methods using statistical models. The existing methods usually a single

model to assume the distribution that the data follow. However, the traits of

transcriptome data are different regarding various factors such as experimental

conditions and technology used to measure the gene expression level. A single

model cannot fit all the traits. As a result, the differential expression results by

the methods are heterogeneous as shown in Figure 1.4. It is required to
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Figure 1.4: The heterogeneous results of four different DEG detection

methods on TCGA breast cancer data

1.2.2 Problem 2: Pathway interaction analysis

A biological pathway is a set of interactions that sequentially occur in a cell.

It leads to a certain cellular product or change. There are many biological

pathways but they are originally in one big network. It is dissected into bio-

logical pathways by researchers. Perturbation of pathways directly affects the
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cellular state. It usually originates in disease conditions so the identification

of perturbed pathways is very important in revealing dysregulated biological

mechanisms (Ramanan et al., 2012). Gen Set Enrichment Analysis (GSEA)

(Subramanian et al., 2005) is one of the examples of perturbed pathway identi-

fication method. It tests the significance of the ratio of DEGs in each pathways

to determine perturbed pathways. However, GSEA and methods similar to

GSEA have a limitation that the methods merely consider pathways a set of

genes. Thus, the network information is neglected. Meanwhile, there are some

methods utilizing network information for the task such as signaling impact

analysis (SPIA) (Tarca et al., 2009). The methods are based on the concept

that if the same number of genes are differentially expressed both in pathway A

and pathway B, then the pathway that the DEGs are in a relation of interactions

is biologically more meaningful.

Challenge: pathway interaction analysis Pathways usually function co-

operatively. Identification of the interacting perturbed pathways is as important

as that of perturbed individual pathways. There are several approaches to find

the interactions of perturbed pathways. Most of the approaches are based on

the shared components of pathways. For example, the simplest one is to con-

sider the shared components such as genes or proteins between pathways. It

assumes that shared genes may mediate interactions and predicts such inter-

actions by testing the significance of the overlapping genes between pathways

using hypergeometric test such as Fisher’s exact test (Francesconi et al., 2008).

Another approach is to estimate interactions using protein-protein interaction

(PPI) information. This approach assumes that any two interacting pathways

may have more edges connected in PPI than expected. Due to the insufficient

information provided by the overlapping genes, the identification of pathway

9



interaction may result in false positive. In fact, there is a study that the effect

of overlapping genes between pathways causes false positive results in pathway

analysis (Donato et al., 2013). Therefore, it is required to consider not only the

overlapping genes but also the interacting genes.

1.2.3 Problem 3: Analysis of transcriptome from pig-to-nonhuman

primate islet xenotransplantation

Islet replacement can be a preferable option for long-term diabetic patients re-

ceiving insulin therapy. However, it is limited by the number of islet donors.

Due to the organ shortage, islet xenotransplantation becomes a promising treat-

ment option for the patients who suffer from type 1 diabetes. Among other

species, pigs are suited to the purpose the best for the following reasons. First

of all, pig insulin is very similar to that of human. Second of all, pig islets are

not easily damaged by recurrent type 1 diabetes autoimmunity. Thirdly, amy-

loid is not accumulated by pig islets. Lastly, pigs can be genetically modified

(Marigliano et al., 2011). In fact, specific pathogen-free transgenic miniature

pigs are bred in Biomedical Center for Animal Resource Development at Seoul

National University and used as islet donors for xenotransplantation researches.

The experimental results of islets outperformed that of whole organ and it shows

the availability of islets. In addition, hyperacute rejection rate is very low and

short-term results of islet function after transplantation are improved. A recent

study showed immunosuppression was effective for preserving islet mass and

controlling diabetes in pig-to-nonhuman primate models and normoglycemia

was maintained over six months in four out of five monkeys (Shin et al., 2015).

However, long-term results are not satisfactory and the cause of long-term graft

loss is not yet discovered.
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Challenge: early detection of long-term graft loss and determination

of the cause Once transplanted, the function of graft is monitored using

peripheral blood. The Enzyme-Linked ImmunoSpot (ELISpot) assay to mea-

sure the frequency of cytokine secretion and intravenous glucose tolerance test

(IVGTT) to estimate insulin sensitivity are the examples. However, the symp-

toms detected by such methods are merely signs that are observable after the

onset of rejection. Gene-level or pathway-level early detection is not possible

through such methods. Moreover, it is difficult to determine what has driven the

rejection. There are several hypotheses on how long-term graft loss is driven.

The hypotheses include ER stress (Fonseca et al., 2011), lipotoxicity (Lee et al.,

2007), islet exhaustion (Kim and Yoon, 2011), long-term graft rejection and tox-

icity of immunosuppressant (Barlow et al., 2013). Each hypothesis holds its own

key genes evaluated by related studies (Chen et al., 2013). It is important to

measure the global effect of the genes and associate the effect with transcrip-

tome data or phenotypes for determining the cause of rejection.

1.3 My network-based approaches to three research

problems

In the previous sections, gene-level and pathway-level analysis methods and

their limitations are introduced. My doctoral study includes network-based ap-

proaches to address the challenges. Additionally, it includes a real-world study

that my methods were used. The details are as follows.

1. MLDEG: A machine learning approach to identify differentially

expressed genes using network property and network propaga-

tion: Most of the existing differential analysis methods use their own

model. However, a single model cannot fit all traits of different data so
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the results on the same data are heterogeneous. MLDEG integrates the

existing methods and builds a model using network-based feature to solve

the problem and suggest a credible set of DEGs.

2. PINTnet: Construction of condition-specific pathway interac-

tion network by computing shortest paths on weighted PPI:

A biological pathway is a set of genes and their interactions. To iden-

tify the interactions between pathways, it is not enough to consider only

overlapping genes of pathways. PINTnet considers neighboring genes of

overlapping genes and computes shortest paths from one pathway to the

other pathway on a weighted PPI subnetwork for every pair of pathways.

Then it calculates activation score of the pathway interaction using gene

expression data. The activated interactions are used as edges to construct

a condition-specific pathway interaction network.

3. Bioinformatics analyses with peripheral blood RNA-sequencing

unveiled the cause of the graft loss after pig-to-nonhuman pri-

mate islet xenotransplantation model: Pathway interaction analysis

introduces an approach that can find the factors affecting long-term graft

rejection in early stage. In addition, network propagation shows a possibil-

ity to investigate the system-wise landscape of whole genes in association

with long-term graft loss-related genes.

1.4 Outline of thesis

Chapters 2, 3 and 4 introduce independent studies related to differential expres-

sion analysis, pathway interaction network construction and xenotransplanta-

tion, respectively, from gene-level study to pathway-level study. Each of the

studies uses network information and network-based algorithms to solve the
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problems. In Chapter 2, a machine learning approach identifying DEGs using

network information and network propagation is described. It aims to train a

model using network-based features extracted from more likely true DEGs and

classify the genes that cannot be clearly defined by DEGs by the existing meth-

ods. Chapter 3 describes PINTnet, a method to construct a condition-specific

pathway interaction network by computing shortest paths on a weighted PPI

network. Chapter 4 presents a xenotransplantation study to elucidate the cause

of long-term graft loss. Chapter 5 summarizes the studies. The bibliography of

the cited references is at the end of the thesis.
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Chapter 2

A machine learning approach to
identify differentially expressed
genes using network property and
network propagation

A pivotal step in transcriptomic analysis is to identify genes of which expres-

sion changes are significant and associated with the phenotypes or experimental

conditions. Thus, a number of tools have been developed for identifying differ-

entially expressed genes (DEGs) in transcriptome data. These tools have been

used extensively for numerous research projects, contributing to discoveries of

new biological mechanisms. However, no single statistical or machine learning

model for DEG detection can perform consistently well for datasets of differ-

ent traits and the performances of the existing DEG methods vary a lot for

datasets measured under different conditions. In addition, setting a cutoff value

for the significance of differential expressions is one of the confounding factors

to determine DEGs.
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I address these problems by developing a machine learning method. My

method first prepares training data by compiling DEG predictions by existing

methods and builds a machine learning model using network features to model

gene-gene interactions and features for the influence of a gene on other genes

by network propagation techniques. Then, DEG candidates, the genes that

are predicted with weak evidences by the existing tools, are classified by the

machine learning model. Tested on 10 RNA-seq datasets, my method showed

an excellent performance; my method won the first place in detecting ground

truth (GT) genes in eight datasets and could find almost all GT genes in six

datasets. On the other hand, the performances of the compared methods varied

significantly for the 10 datasets. By design, my method can accommodate any

new DEG method to improve the performance. The source code of my method

is available at https://github.com/jihmoon/MLDEG.

2.1 Background of differential expression analysis meth-

ods

It is one of the pivotal steps in transcriptomic analysis to identify genes of

which expression changes are significant and associated with the phenotypes or

experimental conditions. Most of the existing methods are based on the compar-

isons of gene expression levels among multiple conditions. The gene expression

comparisons range from a simple implementation of comparing logarithmic fold

change to statistical hypothesis testing. However, input to the statistical test-

ing varies a lot depending on many factors such as the experimental conditions,

short read mapping tools used, and data normalization methods. Because of

these confounding factors, the selection of a proper DEG detection method is

not straightforward.
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In many cases, biologically significant phenomena are the results of cooper-

ation and interaction of multiple genes (Wang et al., 2008). While the effects

of individual genes may be small and even ignorable, considering the genes in

pathways or the network can explain complex phenotypes or diseases. Thus,

there have been a lot of studies to reveal the regulatory relations among genes

for decades. For example, STRING is a protein-protein interaction database

storing over nine million relations among genes at protein level from more than

2,000 organisms (Szklarczyk et al., 2016). Kyoto Encyclopedia of Genes and

Genomes (KEGG) contains a collection of manually drawn pathways (Kanehisa

and Goto, 2000). There are evidences that utilizing the network information will

result in more interpretable sets of statistically significant genes. For example,

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005), Parametric

Analysis of Gene Set Enrichment (PAGE) (Kim and Volsky, 2005) and Gener-

ally Applicable Gene-set/Pathway Analysis (GAGE) (Luo et al., 2009) utilized

network and pathway information and achieved good performance in detect-

ing phenotypically related gene sets. Tarca et al. 2008 and Nam et al. 2014

directly incorporated network structure and take into account the subnetwork

of DEGs to search pathways relevant to the phenotypes but these methods are

not designed to search for DEGs.

There exist only a few methods that utilize network information to iden-

tify DEGs. pathDESeq (Dona et al., 2017) is an example of such methods. It

searches for DEGs using a three-state Markov Random Field model that pro-

motes genes within the same pathway to have the same differential expression

status. Network propagation is one of the effective ways to consider and am-

plify the relationship among genes (Cowen et al., 2017). It is based on diffusion

process of influence through a network and can measure the global similarity

of nodes. It assumes that genes associated with the same phenotypes tend to
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interact. Thus a network propagation analysis produces a list of genes that

are influenced by their direct neighbors. It is widely used in gene prioritiza-

tion, drug-target association and even DEG detection. Signed-NP (Zhang et al.,

2012) is one of the examples to utilize the network propagation technology to

detect and classify DEGs and copy number variations (CNVs).

2.1.1 Motivation

There are several issues with the current DEG selection methods. First, traits

of the transcriptome data vary a lot depending on the experimental designs

and the technologies used to measure transcriptome data. Thus, a single model

cannot fit all transcriptome datasets of different traits. Additionally, setting

cutoff values of p-value or fold change is a common practice to determine DEGs.

However, setting a cutoff value for DEGs is arbitrary. Depending on the cutoff

values, the selection of DEGs varies significantly. Moreover, it is possible that

the expression changes are small but statistically significant. In addition, a

high fold change, in some cases, may be the result of comparison between lowly

expressed genes. Lastly,most of existing DEG detection methods do not consider

interaction among genes. As a result, the performances of a method could be

inconsistent for different datasets. More seriously, DEG selections by different

methods differ widely for the same dataset as shown in Results and Discussion

(Section 2.3.3). This is the main motivation for developing my machine learning

method.

2.1.2 My machine learning approach

In this paper, I propose a machine learning-based DEG detection method,

MLDEG, to address the issues of data trait variance, arbitrary cutoff setting

and lack of gene interaction information use. The main idea is as follows. The
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existing DEG methods are shown to be useful. Thus, my method utilizes, com-

bines and refines the results of the existing methods using a machine learning

approach. To train my model, I need positive and negative data. Setting a strin-

gent cutoff for each method, I can easily get more likely true DEGs, especially

when multiple DEG tools agree which genes are DEGs. Thus, I can obtain the

positive data, i.e, true DEGs. The negative data can also be obtained by aggre-

gating DEG predictions by the existing methods. More specifically, MLDEG

combines and sorts DEG predictions by the existing methods, and then the

genes with lower rankings are those that a majority or all of the DEG tools pre-

dicted as non-DEGs. The remaining genes that are not included in the training

data are in the gray area. After training MLDEG with the positive and negative

data, the goal is to classify which of the remaining genes in the gray area are

DEGs. This way, I do not have to worry about setting an appropriate cutoff

value for DEGs. To consider gene interaction information, MLDEG maps genes

to a protein-protein interaction (PPI) network, calculates the network proper-

ties of each gene and carries out network propagation to measure the influence

of each gene on the network. In short, my method selects the most probable

DEGs, extracts features regarding gene interaction and influence among genes

and then a machine learning model is built to classify genes in the gray area.

The overview of my method is shown in Figure 2.1.

2.2 Methods

In this section, I explain how to obtain the training data, how to extract features

for DEG prediction and how to train MLDEG.
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Figure 2.1: The overview of MLDEG

2.2.1 Training and Test Data

The first step of my method is to prepare training data. In order to do so,

my method uses four different DEG methods to generate candidate DEGs.

The methods used are EBSeq, DESeq2, edgeR, and limma. After executing the

methods on input gene expression profiles, the results are combined and genes

are sorted in the order of significance of the gene expression changes. P-values

of the methods for each gene are combined and converted to a single score using

Fisher’s method (Fisher, 1932). The equation is as follows:

Pi = −2
4∑

j=1

ln pij (2.1)

where i indicates a gene and j indicates each DEG tool. Pi is used as the

criterion of significance. In addition, the average of the log of fold change values
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is used to measure the level of expression change.

FCi =

∑4
j=1 fcij

4
(2.2)

In equation (2.2), i indicates a gene, j indicates each DEG tool, and fcij

indicates the log2 of the expression fold change of gene i calculated by DEG tool

j. It is obvious that a higher Pi and also a higher FCi increase the probability

that a gene is indeed differentially expressed. Therefore, by applying strict cutoff

values to Pi and FCi, my method selects positive data for training data. My

method sorts the genes based on the combined p-value Pi in descending order

and the genes of which the combined p-value is higher than the cutoff are

considered as candidates of positive data. Among the candidate genes, the genes

satisfying the fold change cutoff are finally selected as positive data. Genes with

the low combined p-value are selected as negative data. The number of genes

in the negative data is the same as the number of genes in the positive data, so

that the learning can be done with a balanced data. Genes that are identified

as DEGs by at least one DEG tool are considered candidate DEGs, or genes in

the gray area. My method uses these candidate DEGs as test data.

2.2.2 Features

The features used in my method are three types. The first type is features that

are related to gene expression. The expression feature consists of the average

fold change FCi and a combined p-value Pi where i indicates a gene as de-

scribed in the previous section. The second type is network property features.

The network property features deal with the degree of each gene and Pearson’s

correlation coefficient (PCC) of each edge between the genes on a network. The

last type is network propagation feature which is the probability calculated

by network propagation algorithm. Network property and network propagation

play a pivotal role in my method. I expect that the features would reflect the
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Figure 2.2: Differential expression feature extraction process

aspect that genes work in a cooperative and coordinated fashion by interact-

ing each other. The features are shown in Table 2.1 and the overview of the

feature extraction process is depicted in Figure 2.2 and Figure 2.3 for differen-

tial expression feature and network property and network propagation feature,

respectively.

Table 2.1: List of Features

Feature Name Feature Type

Average of log 2 fold change Differential Expression

Combined p-value Differential Expression

Condition-specific degree Network Property

Ratio of condition-specific degree Network Property

Mean of correlation coefficients Network Property

Standard deviation of correlation coefficients Network Property

Mean of correlation p-values Network Property

Standard deviation of correlation p-values Network Property

Probability by network propagation Network Propagation
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Figure 2.3: Network property and network propagation feature extrac-

tion process

2.2.3 Network Property

Genes are mapped to a PPI network downloaded from STRING database so

that network property features can be calculated. Once the genes are mapped

to a PPI network, my method calculates PCC of gene expression referring to

A, the adjacency matrix of the PPI network. Then the PPI network is pruned

by the criteria of PCC of 0.7 and a correlation p-value of 0.05. Any edge that

has PCC less than 0.7 or p-value bigger than 0.05 is pruned and a condition-

specific PPI network is constructed. “Condition-specific degree” and “Ratio of

condition-specific degree” are the features coming from the condition-specific

PPI network. For example, a gene has five direct neighbor genes so the degree of

the gene is five. However, only two of the five edges have PCC larger than and p-

value less than cutoff values so the other three edges are pruned. Then I can say

the condition-specific degree of the gene is two. Dividing the condition-specific

degree by the original degree of the gene, I can also say the ratio of condition-

specific degree is 0.4. Basically, my method calculates PCC on the edges but

the features are assigned to genes. If a gene belongs to multiple edges, then the
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gene participates in the correlation calculation the number of the edges the gene

belongs to and the gene has as many PCCs as the number of the edges. “Mean of

correlation coefficients”, “Standard deviation of correlation coefficients”, “Mean

of correlation p-values” and “Standard deviation of correlation p-values” are the

features taking the issue into account and projecting the edge-level values to

the node-level values. “Mean of correlation coefficients” is the average of PCC

of edges that the gene belongs to. Likewise, “Standard deviation of correlation

coefficients” is the standard deviation of PCC of edges that the gene belongs

to. “Mean of correlation p-values” is the average of p-values for correlation of

edges that the gene belongs to. Similarly, “Standard deviation of correlation

p-values” is the standard deviation of p-values for correlation of edges that the

gene belongs to.

2.2.4 Network Propagation

In addition to the network properties explained in the previous section, I need

to measure how the genes with high influential possibility actually interact with

and influence on other genes on a network. Considering direct neighbors, cen-

trality calculation or shortest path computation can be used to achieve the goal

but the time complexities of these schemes are dramatically increased depend-

ing on the size of network and the risk of false positives and false negatives is

also high. To overcome these problems and quantify the association among the

genes by measuring the global similarity of gene expression changes, network

propagation is carried out and the results are used as network propagation fea-

ture. By doing so, MLDEG ranks the genes according to the influencing power.

The first step of network propagation is initialization. I take the idea of Signed-

NP and apply it to initialize the nodes in the PPI network. To carry out network

propagation, the nodes and the edges must be initialized. To begin with, my
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method creates a class vector V = {v1, v2, . . . , vN} where vk ∈ {−1, 1}, k is the

index of the samples and N is the total number of the samples. Either 1 or −1 is

assigned to vk if sample k is a treated sample or a control sample. Then, Pear-

son’s correlation between the expression level of a gene and V is calculated to

initialize the node. At this time, the absolute values of the coefficients are used.

For the edge initialization, the PCC results calculated in the network property

feature step are used. My method constructs a weighted PPI network W using

the PCC results. Likewise, the weights of W are absolute values. When the

initialization is finished, the network propagation is carried out. I used random

walk with restart algorithm for network propagation. The equation is shown

below:

pt+1 = (1− r)W′pt + rp0 (2.3)

where W′ is column-normalized matrix of W, t is a time step, p0 is the vector

of initialized nodes, pt is the vector at the current time step t, pt+1 is the vector

at the next time step, and r is the restart rate. I use 0.7 for r and the algorithm

stops the iteration when the L1 norm difference between pt and pt+1 is smaller

than 10−6. When the network propagation is finished, p is assigned to genes as

network propagation feature.

2.2.5 Machine Learning Algorithm

With the gene expression and network features, my method trains a model with

the training data using WEKA (Witten et al., 2016). Specifically, logistic re-

gression is used as a machine learning algorithm. The trained model is validated

by 10-fold cross-validation. After training, my model, MLDEG, classifies which

genes in the gray area are DEGs. The identified DEGs are then sorted by the

prediction confidence in descending order.
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Table 2.2: Datasets used for evaluation

Name Title Accession Number

Dataset1 Acetylation-regulated interaction between

p53 and SET reveals a widespread regulatory

mode

GSE83635

Dataset2 Human Parvovirus Infection of Human Air-

way Epithelia Induces Pyroptotic Cell Death

by Inhibiting Apoptosis

GSE102392

Dataset3 Alopecia areata is driven by cytotoxic T lym-

phocytes and is reversed by JAK inhibition

GSE45657

Dataset4 Macrophage Transcriptional Profile Identifies

Lipid Catabolic Pathways That Can Be Ther-

apeutically Targeted after Spinal Cord Injury

GSE84737

Dataset5 In Utero Caffeine Exposure Induces Trans-

generational Effects on the Adult Heart

GSE79013

Dataset6 PI3K orchestration of the in vivo persistence

of chimeric antigen receptor-modified T cells

GSE93386

Dataset7 Mutual epithelium-macrophage dependency

in liver carcinogenesis mediated by ST18

GSE72403

Dataset8 Transcription factor Foxo1 is essential for IL-

9 induction in T helper cells

GSE100634

Dataset9 Amino Acid Transporter Slc38a5 Controls

Glucagon Receptor Inhibition-Induced Pan-

creatic α Cell Hyperplasia

GSE89636

Dataset10 Amino Acid Transporter Slc38a5 Controls

Glucagon Receptor Inhibition-Induced Pan-

creatic α Cell Hyperplasia

GSE90116
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Figure 2.4: Comparison of the results of MLDEG with or without net-

work information

2.3 Results and Discussion

I evaluated the performance of my method using 10 high-throughput RNA-seq

datasets downloaded from GEO. The information of the datasets is shown in

Table 2.2.

2.3.1 Experimental Data Description

I used the 10 datasets to evaluate the performance of my method in com-

parison with existing methods. The original papers of the datasets have their

own phenotype-relevant gene sets verified by differential expression analyses.

I considered the gene sets ground truth (GT) genes and evaluated how well

my method could rescue the genes. Then, I compared the performance of my

method to the selected four DEG tools.

The first dataset is from a study to identify the genes regulated by p53-SET
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interplay (Wang et al., 2016a). p53 C-terminal domain (CTD) acetylation is

one of the early examples of non-histone protein acetylation and what it exactly

does is undiscovered. The authors used a proteomic screen to reveal that the

oncoprotein SET inhibited the transcriptional activity of p53 in unstressed cells

but p53 was activated without the interaction with SET and tumor regression

was observed in mouse xenograft models. They carried out RNA-seq analysis

and reported 24 genes that were regulated by p53-SET interplay. Among the 24

genes, only 20 genes were mapped to PPI network. Thus, for this data set, the

performance evaluation criterion was how many of the 20 genes were determined

as DEGs.

The second dataset is generated by a study about human bocavirus 1

(HBoV1) infection (Deng et al., 2017). It is a human parvovirus and a cause of

acute respiratory tract infections in children. The authors showed that antiapop-

totic proteins suppressing apoptosis and promoting pyroptosis were activated

during HBoV1 infection using various methods including RNA-seq analysis.

They presented 47 genes relevant apoptosis regulation during HBoV1 infection.

39 genes out of 47 genes were mapped to PPI network so 39 genes were used

as the GT genes for the performance evaluation.

Alopecia areata (AA) is a autoimmune disease causing hair loss. It is medi-

ated by T cells surrounding the hair follicle bulb. Dataset3 is from a study of

AA (Xing et al., 2014). The authors have previously identified a cytotoxic sub-

set of CD8+NKG2D+ T cells in human AA hair follicles and the importance of

two NKG2D ligands in pathogenesis. They used the C3H/HeJ mouse model to

determine the contribution of CD8+NKG2D+ T cells to AA pathogenesis. Gene

expression of flow sorted CD8+NKG2D+ T cells isolated from C3H/HeJ mice

with alopecia were compared to that of CD8+NKG2D- T cells from the same

mice and 55 DEGs were identified including several NK-specific transcripts. I
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set the 55 genes as GT genes and used the genes to evaluate my method.

It is well known that infiltrating macrophages are related to many patho-

logical processes after spinal cord injury (SCI). However, the mechanisms how

the macrophages function in accordance with the post injury are barely under-

stood. To reveal the mechanisms, Zhu et al. 2017 obtained mRNAs that are

directly related to macrophages from the injured spinal cord and sequenced us-

ing RNA-seq technology to characterize the gene expression profile and I used

this data as dataset4. The data consists of three days post-injury and seven

days post-injury. They reported lipid catabolism as the main biological pro-

cess and canonical nuclear receptor pathway as their potential mediator. They

also showed the relation between a lipoprotein, CD36, and recovery. In their

study, seven days post-injury data best described the macrophages with lipid

catabolism. The authors reported top DEGs pertaining to lipid metabolism or

immune response. I used the 54 reported genes as GT genes.

Dataset5 is from a study showing the effects of caffeine to fetuses (Fang

et al., 2016). The authors exposed pregnant mice to caffeine at two embryonic

stages and carried out analyses including cardiac gene expression assessment

and RNA sequencing. They revealed that the timing of exposure was relevant

to the long-term effects on cardiac function and morphology in that while adult

mice exposed to caffeine from E6.5-9.5 showed abnormal cardiac function or

morphology, adult mice exposed to caffeine from E10.5-13.5 were normal. They

also reported 116 DEGs and showed that many cardiovascular disease pathways

were significantly enriched. Among 116 genes, 92 genes were mapped to PPI

network so I used 92 genes as ground truths.

The therapeutic effectiveness of chimeric antigen receptor (CAR)-modified

T cells pertains to in vivo persistence but the reason of such persistence is not

well known. Zheng et al., 2018 used an acute myeloid leukemia (AML) model
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to show the linkage between CAR expression and T cell differentiation. They

found that the differentiation of CAR-T cells was modulated when treated with

a PI3K inhibitor. RNA-seq analysis that the authors carried out revealed that

PI3K/AKT pathway and glycolysis pathway as well as 30 genes belonging to the

pathways were activated in CD33 CAR-T cells. I used their data as dataset6.

Among 30 genes, 29 genes remained after gene ID conversion and the genes

were used as GT genes for the performance evaluation.

Dataset7 is from a study pertaining to ST18. ST18 is considered either

tumor suppressor or oncogene in different human cancers. The exact role of

ST18 is not yet fully discovered. Ravà et al. 2017 tried to unravel that the

role of ST18 in tumor progression and maintenance using a mouse model with

liver cancer. They demonstrated RNA-seq analysis of ST18-depleted tumors

and control and confirmed inflammation-related genes such as NF-kB family,

inflammatory cytokines and chemokines were down-regulated in ST18-depleted

tumors. The genes control the recruitment and activation of myeloid cells to

the tumor sites. The result suggests that ST18 is the upstream regulator of

the expression of genes related to inflammatory response guided by NF-kB. 11

genes related to the NF-kB pathway were reported and I used the genes as GT

genes.

Dataset8 is from a study to show which transcription factor is crucial for

interleukin 9 (IL-9) induction in IL-9-producing helper T (Th9) cells and Th17

cells (Malik et al., 2017). IL-9 is closely related to allergic inflammation, autoim-

munity, immunity to extracellular pathogens and anti-tumor immune responses

so unraveling the IL-9 induction mechanisms is very important in understanding

IL-9-mediated allergic inflammation and cancer immunotherapy. The authors

analyzed the gene expression profile of Th9 cells and compared to that of Th0

cells by RNA-seq and identified forkhead family transcription factor Foxo1 was
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highly ranked putative transcription factor as well as Th9-associated cytokines

and Th9-associated transcription factors. From the results of further analyses,

they confirmed that Foxo1 plays an important role for IL-9 induction in Th9

cells.

Dataset9 and Dataset10 are from the same study showing the role of sodium-

coupled neutral amino acid transporter Slc38a5 in regulating pancreatic α cell

mass in mice (Kim et al., 2017). Glucagon is important in maintaining blood

glucose level. If glucagon signaling is interrupted by any factors such as genetic

disruption, the amount of secreted glucagon is increased compared to normal

state. This phenomenon is related to α cell mass increment. To elucidate what

promotes α cell hyperplasia, the authors carried out RNA-seq analyses on pan-

creatic islets from glucagon receptor (GCGR)-blocking antibody-treated mice

or GCGR knockout mice. From the results, they confirmed that Slc38a5 was

highly expressed and its deficiency with GPCR inhibition or knockout showed

reduced α cell mass. They reported 120 and 72 genes for GPCR inhibition study

and GPCR knockout study, respectively, and I used the genes as GT genes for

the performance evaluation.

2.3.2 Performance of Network Information Features

I evaluated how much my method was improved when the network information

was used. To do so, I trained models for each datasets with network-based

features and without network-based features and compared the results. The

comparison result is shown in Figure 2.4.

MLDEG showed better performance when using the network information as

features. To be more specific, I looked into the training results of the models with

network-based features. As shown in Table 2.5, it was observed that the weights

of network-based features were tend to be higher than the weights of the other
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Table 2.3: Training results of the datasets

The numbers in the parentheses are the number of correctly classified genes.

Name # of positive data # of negative data Accuracy

Dataset1 182 (181) 182 (182) 99.7253%

Dataset2 173 (171) 173 (171) 98.8439%

Dataset3 549 (549) 549 (549) 100%

Dataset4 792 (788) 792 (791) 99.6843%

Dataset5 47 (47) 47 (46) 98.9362%

Dataset6 38 (35) 38 (37) 94.7368%

Dataset7 746 (745) 746 (745) 99.866%

Dataset8 4683 (4682) 4215 (4215) 99.9888%

Dataset9 17 (17) 17 (17) 100%

Dataset10 51 (50) 51 (51) 99.0196%
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Table 2.4: Evaluation results

The best results of each dataset are highlighted in boldface. The numbers in the

parentheses are the rankings of the methods.

Name # of GT genes MLDEG EBSeq edgeR DESeq2 limma

Dataset1 20 20 (1) 6 (4) 16 (3) 5 (5) 20 (1)

Dataset2 39 25 (1) 8 (4) 17 (2) 6 (5) 16 (3)

Dataset3 55 54 (2) 27 (4) 55 (1) 53 (3) 10 (5)

Dataset4 54 51 (1) 29 (5) 48 (3) 34 (4) 51 (1)

Dataset5 92 42 (2) 21 (4) 76 (1) 30 (3) 0 (5)

Dataset6 29 6 (1) 3 (3) 5 (2) 1 (4) 0 (5)

Dataset7 11 10 (1) 10 (1) 10 (1) 10 (1) 2 (5)

Dataset8 29 28 (1) 28 (1) 28 (1) 28 (1) 28 (1)

Dataset9 120 77 (1) 9 (5) 77 (1) 11 (4) 35 (3)

Dataset10 72 70 (1) 38 (3) 69 (2) 32 (4) 2 (5)
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Figure 2.5: Performance comparison results
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features. From the results, I concluded that considering network information

was beneficial and useful in rescuing gray genes. Interestingly, MLDEG with

network-based features and MLDEG without network-based features showed

the same performance for dataset3, dataset7 and dataset8. Thus, I investigated

the results of the three datasets and discovered that 50 out of 55 GT genes, nine

out of 11 GT genes and 28 out of 29 GT genes were included in the positive

data of dataset3, dataset7 and dataset8, respectively, so the potential of network

information was not clearly observed.

Table 2.5: Odds ratio of features

The odds ratios that are bigger than 1.00E+05 are highlighted in boldface.

Network-based features show higher odds ratios than differential expression fea-

tures.

Name log2FC CombP Degree DegreeR meanCC stdCC meanP stdP NP

Dataset1 8.98E+21 1.30E+00 1.79E+00 Infinity 1.88E+205 2.37E+301 0 0 Infinity

Dataset2 2.62E+01 1.17E+00 8.80E-01 3.29E+179 0 1.72E+64 0 0 Infinity

Dataset3 8.66E-01 2.35E+00 1.00E+00 8.70E-03 4.36E-01 1.50E+03 8.90E-03 8.90E-03 0

Dataset4 1.90E-03 4.54E+00 1.26E+00 1.29E+270 0 3.43E+75 3.85E+06 3.85E+06 0

Dataset5 7.06E-02 2.29E+00 1.01E+00 0 2.18E-02 4.00E-04 2.88E-02 2.88E-02 0

Dataset6 1.04E+06 2.23E+00 6.34E-01 1.08E+160 0 0 0 0 Infinity

Dataset7 9.45E+01 2.22E+00 9.04E-01 1.93E+17 0 0 0 0 Infinity

Dataset8 6.92E-01 2.55E+00 9.95E-01 7.62E+06 4.20E-03 9.79E+01 2.29E+00 2.29E+00 Infinity

Dataset9 3.40E-03 1.30E+00 8.62E-01 7.18E+01 9.46E+01 1.09E+09 7.70E+01 7.70E+01 Infinity

Dataset10 2.62E+00 9.92E-01 7.59E-01 4.31E+39 0 0 5.46E+00 5.46E+00 Infinity

2.3.3 Performance Evaluation and Discussion

I trained and built models using each dataset. The training results are shown in

Table 2.3. The numbers in the parentheses are the number of correctly classified

genes. As shown in the table, the accuracy of the models was at least 94%.

From the training results, I concluded that the models were credible. Thus, I

continued on to the next step to carry out the performance evaluation. The
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evaluation and comparison results are shown in Table 2.4 and Figure 2.5.

Performance of the tools can be ranked by counting how many ground truth

genes are detected by each of the DEG method. In terms of the rankings of the

methods, MLDEG showed the most stable results, achieving the first place for

eight datasets and the second place for two datasets. The average ranking of

my method was 1.2. However, the results of the compared DEG tools varied

depending on the datasets used. edgeR showed the second best performance.

It ranked first for five datasets but second for three datasets and third for two

datasets. The average ranking was 1.7. The average rankings of the rest of the

methods were 3.4 and the rankings ranged from one to five. Admittedly, there

were some datasets that all methods showed the same and best performance

on such as dataset7 and dataset8 but there was no propensity observed that

all of the methods worked well on some datasets and poorly on other datasets;

the datasets that the methods showed good performances were all different.

Meanwhile, my method outperformed the compared methods without showing

such a tendency.

Nextly, as shown in Table 2.4, my method could identify almost all GT genes

of six datasets: dataset1, dataset3, dataset4, dataset7, dataset8 and dataset10.

The best results of each dataset are highlighted in boldface. The numbers in

the parentheses are the rankings of the methods. In addition, my method won

the first place in identifying GT genes of most datasets except dataset3 and

dataset5; my method was next to the best for these two datasets. Meanwhile,

my method showed poor performance on dataset6. However, the other four tools

also showed poor performances on the same dataset. Thus, I took a careful look

in the training data and the test data of dataset6. There were only one GT gene

and six GT genes in the training data and the test data, respectively. One of

the goals of my method is to classify the genes that are hard to be determined
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whether the genes are DEGs or not. This is the baseline of the setting concept

of the test data. I tried to include such genes in the test data based on the

criterion that test data are the genes that are called as DEGs by at least one

DEG tool. Following this criterion, my method cannot detect GT genes if the

genes are not included in the test data. This aspect is directly connected to

the potential weak point of my method. My method uses differential expression

features derived by the DEG tools used to calculate fold changes and p-values

of gene expression. Thus, the results of my method tend to be dependent on

the results of the DEG tools. I leave this for my future work to improve my

method to calculate differential expression features by itself.

I expected that the number of GT genes included in the training data was

much more than the number of GT genes included in the test data. Interestingly,

when I examined the data, it showed a tendency that GT genes were included

more in the test data. For example, there were seven GT genes and 18 GT

genes in the training data and test data of dataset2, respectively. There were

13 GT genes and 70 GT genes in the training data and test data of dataset9,

respectively. It is encouraging because, together with the evaluation results, it

becomes an important evidence that my method has the power to classify gray

genes and the information contained in the network-based features shows the

fact that genes work in coordinated and cooperative fashion and affect each

other so considering the network information is an important task in detecting

DEGs.

2.4 Conclusion

I introduce MLDEG, a machine learning-based differentially expressed gene

detection method using network-based features. Due to the plethora of DEG
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detection tools, users experience difficulty of choosing appropriate DEG tools.

Also, they often face the problems that the results of multiple DEG tools are

different so are confused which results they must trust. Moreover, setting the

cutoff values of fold change and p-value is also one of the issues in using DEG

tools. Usually, conventional cutoff values such as 0.5 of log 2 fold change and

0.05 of p-value are used but sometimes the number of DEGs are too huge to

analyze or too small and even zero. MLDEG solved these problems as follows.

1. It captures top differentially expressed genes by integrating the results of

multiple DEG tools and defines the genes as positive data.

2. It calculates network properties of the genes and carries out network prop-

agation to measure the influence power of the genes on a network.

3. Using the integrated results in the first step and the network-based infor-

mation in the second step as features, it trains a model and classifies the

genes that are hard to be determined as DEGs.

Using 10 high-throughput RNA-seq datasets downloaded from GEO, I eval-

uated the performance of my method and compared to other DEG tools. I

set GT genes by searching the original papers of the datasets and evaluated

how many GT genes MLDEG could detect. My method won the first place

in detecting DEGs of eight datasets and could find almost all GT genes of

six datasets. From these results, I concluded that my method is powerful in

identifying DEGs with robustness and competitiveness. Because of the design

principle, my method can accommodate any new DEG methods naturally. I be-

lieve that biologists can use my tool without worrying about how to calibrate

DEG detection methods.
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Chapter 3

Construction of condition-specific
pathway interaction network by
computing shortest paths on
weighted PPI

Identifying perturbed pathways in a given condition is crucial in understanding

biological phenomena. In addition to identifying perturbed pathways individu-

ally, pathway analysis should consider interactions among pathways. Currently

available pathway interaction prediction methods are based on the existence

of overlapping genes between pathways, protein-protein interaction (PPI) or

functional similarities. However, these approaches just consider the pathways

as a set of genes, thus they do not take account of topological features. In addi-

tion, most of the existing approaches do not handle the explicit gene expression

quantity information that is routinely measured by RNA-sequencing.

To overcome these technical issues, I developed a new pathway interaction

network construction method using PPI, closeness centrality and shortest paths.
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I tested my approach on three different high-throughput RNA-seq data sets:

pregnant mice data to reveal the role of serotonin on beta cell mass, bone-

metastatic breast cancer data and autoimmune thyroiditis data to study the

role of IFN-α. My approach successfully identified the pathways reported in the

original papers. For the pathways that are not directly mentioned in the original

papers, I was able to find evidences of pathway interactions by the literature

search. My method outperformed two existing approaches, overlapping gene-

based approach (OGB) and protein-protein interaction-based approach (PB),

in experiments with the three data sets. My results show that PINTnet suc-

cessfully identified condition-specific perturbed pathways and the interactions

between the pathways. I believe that my method will be very useful in char-

acterizing biological mechanisms at the pathway level. PINTnet is available at

http://biohealth.snu.ac.kr/software/PINTnet/.

3.1 Background of pathway interaction network con-

struction

3.1.1 The importance of finding perturbed interaction between

pathways

Identifying perturbed pathways in a given condition is crucial in understanding

biological phenomena. Over-representation analysis (ORA) (Rivals et al., 2007),

gene set enrichment analysis (GSEA) (Subramanian et al., 2005; Medina et al.,

2009; Nam et al., 2010), signaling pathway impact analysis (SPIA) (Tarca et al.,

2009) and EnrichNet (Glaab et al., 2012) are widely used approaches to iden-

tify such pathways. These approaches detect activated pathways and rank the

pathways in terms of their own activation scores or statistical tests. However,

pathways usually function in a coordinated and cooperative fashion (Ashwell
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et al., 1996; Jamieson and Yamamoto, 2000; Itasaki and Hoppler, 2010). Thus

understanding interactions or crosstalk between pathways becomes as impor-

tant as identifying perturbed single pathway.

3.1.2 Challenges in pathway interaction network construction

The currently available methods are based mainly on testing differential gene

expression. None of these methods use the explicit quantity of gene expression.

Therefore, the methods are not able to identify the subtle but important changes

in gene expression. Moreover, many of the methods do not take into account

the topological features, treating the pathways just as a set of genes. Recently,

a path-based approach was studied (Tegge et al., 2016) but it does not use

transcriptome data to predict condition-specific interactions, limiting itself to

finding merely static interactions between pathways.

Here, I propose a new pathway interaction network construction method

(PINTnet). The summary of my method are:

1. The interactions between pathways are represented by the subnetworks

that are constructed considering two topological features: closeness cen-

trality and shortest path.

2. Shortest paths on the subnetworks are computed based on an assump-

tion that pathway interactions occur by a series of spontaneous reactions

among genes belonging to the pathways.

3. The explicit quantity of gene expression is used to measure the activation

status of pathway interactions.

4. The flow of the changes in expression is weighted. Higher weight is given

to any edge between genes when the edge connects differentially expressed

genes (DEGs).
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3.2 Methods

In this section, I describe the process of how PINTnet measures the activation

status of the interactions and constructs the pathway interaction network in-

cluding the preprocess steps in detail. The overview of the method is depicted

in Figure 3.1.

Gene 
expression 

dataset

Shorted path-weaved 
subnetwork (SSN) 

for each pair of pathways

• Pruning non-direct
neighbors of
overlapping genes

• Closeness centrality
calculation

• Finding shortest paths
for every pair of genes

STEP 1. Edge Definition

STEP 2. Activation score calculation

Pathway interaction 
network

Pathway A Pathway B

• Activation score of
SSN using expression
values & centrality

• Activation score
conversion

• Finding pathway pairs
with activation score
above threshold

Interaction 
databases

Figure 3.1: Overview of my method

3.2.1 Preparation of PPI and pathway information

I collected protein-protein interaction data from STRING (ver.9.1) (Frances-

chini et al., 2013) and pathway data from KEGG (Release 73.1) (Kanehisa and

Goto, 2000). To integrate these two independent information, I selected the

genes in both datasets and edges in the pathways are augmented by bringing

in edges in STRING. There are several main categories of pathways in KEGG.

These are metabolism, genetic information processing, environmental informa-

tion processing, cellular processes, organismal systems and human diseases. I

excluded pathways in metabolism category because the metabolic pathways fo-

cus on the metabolic products of cells and are not well represented in PPI (Hsu
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et al., 2008).

3.2.2 Defining edges in the pathway network

Defining edges between two pathways is the key issue in constructing a pathway

interaction network. Below are the steps for defining edges.

Step 1: Subnetwork construction on each pathway pair

I constructed a subnetwork for every possible pair of pathways. To do so, I used

two criteria for the pathways to be paired: whether the two pathways have at

least one overlapping gene and whether the two pathways have at least one

gene connected to the overlapping genes via PPI. I defined every pair of two

pathways as a possible pair only when the two pathways satisfied the both

criteria. Then, for every possible pair, a subnetwork was constructed using PPI

involving the two pathways.

Step 2: Closeness centrality calculation

For each subnetwork generated above, I calculated closeness centrality of all the

genes within. The centrality was to evaluate the degree of a node to be central

in a given network, by taking a reciprocal of an average shortest path length

to all the nodes within a network from the source. The shorter the average

shortest path length of a node, the closer to 1 the closeness centrality of the

corresponding node is, otherwise, closer to zero. In this way, genes reflect the

topological importance of themselves concerning all possible neighbor nodes

within a given subnetwork.
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Step 3: Shortest path computation

After calculating the closeness centrality, I pruned the genes that are not direct

neighbors to overlapping genes in subnetworks. Then, I computed the short-

est paths. Given two pathways A and B, let the genes in A as Agenes =

{a1, a2, . . . , am} and the genes in B as Bgenes = {b1, b2, . . . , bn} where m is

the number of genes in A and n is the number of genes in B. The shortest paths

were computed for every pair of genes ai and bj where 1 ≤ i ≤ m, 1 ≤ j ≤ n

and both ai and bj are the direct neighbor genes to the overlapping genes. The

shortest paths must pass through any overlapping gene of the two pathways.

Step 4: Constructing shortest path-weaved subnetwork

Finally, I weaved the shortest paths and constructed shortest path-weaved sub-

networks (SSN). I conjectured that the pathway interaction occurs by the rapid

and spontaneous flow of biological signal or interaction through topologically

important genes. This concept is realized in my method by computing shortest

path in the weighted subnetworks in terms of closeness centrality. The SSN

thus is the network that connects the topologically important genes using the

shortest paths. The overview of these steps is depicted in Figure 3.2.

Measuring activation status of pathway interaction

Measuring the activation status of biological systems or networks is technically

difficult. For example, I may want to compute the average expression level of

all genes in a network as the activation status of the network. However, this

computation completely ignores topological features. A recent work (?) demon-

strated that the identification and measurement of subsystems by using both

PPI and pathway information were effective in prognosis of breast cancer sur-
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Figure 3.2: Constructing a shortest path-weaved subnetwork

g indicates genes. ci indicates the closeness centrality of a gene of subnetwork

i. Overlapping genes are colored in blue, the direct neighbors of the overlapping

genes belonging to pathway A are colored in green and the direct neighbor genes

belonging to pathway B are colored in orange. The others are colored in gray.

a) A subnetwork of pathway A and pathway B

b) Closeness centrality is calculated for every gene in the subnetwork. The node

size represents the closeness centrality of the node.

c) The genes that are not direct neighbors to overlapping genes are pruned.

d) Shortest paths are computed.

e) The shortest paths are weaved to construct a shortest path-weaved subnetwork
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vival by defining activation status of network edges. I incorporated the approach

to calculate the activation status of interaction between pathways. To measure

the activation status of each SSN, PINTnet firstly calculates a co-expression

score (CES) of each edge of the SSN using the following equations:

CESkl =
1

2
ek,l ( ck(vl1)x(vl1) + ck(vl2)x(vl2) ) (3.1)

ek,l =
ck(vl1)x(vl1) + ck(vl2)x(vl2)

x(vl1) + x(vl2)
(3.2)

where k is the index of SSN constructed from each pathway pair, l is the index

of an edge, vl1 and vl2 are two genes connected by the edge l, ck(v) is the

closeness centrality of a gene v in SSNk and x (v) is the expression level of a

gene v. ek,l is the condition-specific edge centrality of edge l in SSNk. After

measuring the co-expression score for every edge in SSNk, PINTnet takes the

average of the summation of the scores as the activation score (AS) and that

is:

ASSSNk
=

∑N
l=1CESkl

N
(3.3)

where N is the total number of edges in SSNk and l is the index of an edge.

PINTnet then calculates the ratio of ASSSNk
for the case and the control data

so it can reflect the activity of the pathway interaction in a comparative manner

between case and control.

Computing DEGs is a simple but effective approach for detecting perturbed

pathways and even signaling impacts in the pathways in a given condition.

However, DEGs are widely interspersed and are not connected in the networks

or pathways. To utilize DEG information, I applied the ratio of DEGs that are

connected by edges as a weight. A higher interaction score is assigned for more

DEG connections. In this step, PINTnet simply calculates the fold change of

expression level of each gene to define DEGs and the default threshold is log2 0.5
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as used in other studies that used RNA-seq data (Marioni et al., 2008; Rapaport

et al., 2013; Sheikh et al., 2015). The equation is as follows:

ISk =
AScase

SSNk

ASctrl
SSNk

· U + 1

D + 1
(3.4)

where k is the index of SSN , ISk is the interaction score of SSNk, AS
case
SSNk

is the activation score of SSNk of the case data, ASctrl
SSNk

is the activation

score of SSNk of the control data, U is the number of connected up-regulated

DEGs of the case data compared to the control data and D is the number

of connected down-regulated DEGs of the case data compared to the control

data. When PINTnet calculates the fold change, the cutoff value of 1.0 for the

expression level is used to prevent noise such as extremely high fold change due

to the comparison between small numbers. The cutoff value was set based on

other studies (Brooks et al., 2011; Shin et al., 2014). In addition, genes that are

overlapped among multiple pathways can cause false positives. A study reported

this issue and proposed an approach of ruling out the overlapping genes when

determining perturbed pathways (Donato et al., 2013). I tried to attenuate the

effect of those genes by dividing the expression level by the number of pathways

that the genes belong to, so that it could be naturally considered in calculating

the ratio of connected DEGs.

Pathway interaction network construction

After measuring the activation status of all pairs of pathways and obtaining

the interaction score, PINTnet converts the interaction score using the sigmoid

function (Lever et al., 2016). It is to convert the scores to a value in the range

between 0 and 1, so a constant cutoff value can be applied uniformly to all SSNs

to construct the pathway interaction network using the only pairs satisfying

the cutoff. The input value of sigmoid function must be between -1 and 1 so
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PINTnet takes log of 2 of the interaction scores. The equation of the function

is as follows:

f(log2 ISk) =
1

1 + e− log2 ISk
(3.5)

After the interaction score is converted, a pathway interaction network is con-

structed with the edges between pathways when the interaction score of edges

satisfies the cutoff value. I empirically determined the cutoff value by testing

PINTnet on various data from other biological researches.

3.3 Results

To evaluate the performance of PINTnet, I used three different high-throughput

RNA-seq datasets in Gene Expression Omnibus (GEO). Cytoscape was used to

visualize the networks (Shannon et al., 2003). The test datasets are summarized

in Table 3.1. For the evaluation, I investigated the evidences for every edge that

connected the pathways reported in the original papers through the literature

search and established the evaluation criteria for the performance of PINTnet

and two existing pathway interaction network construction methods, overlap-

ping gene-based approach (OGB) and PPI-based approach (PB), were used for

the performance comparison. The details of the approaches are described in

Performance comparison to other methods section.

3.3.1 Data description

Dataset1 is the data that measured the gene expression levels of pregnant mice

to reveal how serotonin regulates pancreatic beta cell mass during pregnancy

(Kim et al., 2010). The authors compared the global gene expression patterns in

islets from nonpregnant and pregnant female mice by the high-throughput se-

quencing to identify the genes potentially involved in regulating maternal beta
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Table 3.1: The description of three datasets

Name Title Accession No.

Dataset1 Serotonin regulates pancreatic beta cell mass

during pregnancy

GSE21860

Dataset2 ABL kinases promote breast cancer osteolytic

metastasis

GSE69125

Dataset3 IFN-α mediates the development of autoimmu-

nity

GSE25115

cell mass. They stated that Tph1 and Tph2 were the genes most markedly

induced during pregnancy. These two genes encode two isoforms of tryptophan

hydroxylase, the rate-limiting enzyme in the synthesis of serotonin, 5-HT. The

authors also reported that beta cells share a common gene expression program

and the ability to synthesize, store and secrete serotonin with serotonergic neu-

rons.

Dataset2 is the data generated by a study investigating how ABL kinases

promote breast cancer osteolytic metastasis (Wang et al., 2016b). Bone is one

of the primary sites where breast cancer metastasizes and 70% of deaths of

breast cancer is caused by bone metastases. The authors evaluated the result

of single- or double-knockdown of ABL1 and ABL2 in breast cancer cells using

RNA-seq analysis to reveal the signaling pathways required for ABL kinases-

dependent bone metastasis. They carried out GSEA to identify which pathways

were affected by ABL kinases in metastatic breast cancer cells. They reported

that Jak-STAT signaling pathway, Hippo signaling pathway, cytokine-cytokine

interaction and bone metastasis were enriched in the control group compared

to ABL1/ABL2 knockdown group.
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Dataset3 is from a study that used thyroiditis as a model to reveal how

IFN-α plays a pivotal role in auto immunity (Akeno et al., 2011). The authors

generated transgenic mice overexpressing IFN-alpha in the thyroid and per-

formed RNA-seq analysis. The transgenic mice showed upregulation of path-

ways such as antigen presentation pathway, interferon signaling, complement

system, apoptosis, pattern recognition receptors and RAR activation.

3.3.2 Evaluation criteria

Dataset1

It is well known that nutrient requirements by the fetus incur change in the ma-

ternal metabolism during pregnancy. Nutrient flow to the fetus is maintained by

increasing insulin resistance. The resistance may cause maternal hyperglycemia

but the glucose level is maintained by the expansion of beta cells driven by pro-

lactin and placental lactogen (Assche et al., 1978; Parsons et al., 1992; Huang

et al., 2009). Failures in this response raises the risk of being diagnosed with ges-

tational diabetes mellitus (Rieck and Kaestner, 2010). Serotonin is a regulator of

insulin secretion and co-localized with insulin in granules of pancreatic β-cells.

A lack of serotonin in β-cells can lead to reduced insulin secretion (Paulmann

et al., 2009). Also, it is known that prolactin has direct effects on increasing

insulin secretion (Nielsen, 1982; Sorenson et al., 1987; Bole-Feysot et al., 1998)

and is closely related to diabetes (Bernard et al., 2015).

Dataset2

Ras signaling pathway is the pathway which ABL1 and ABL2 belong to and it

is known that Ras signaling pathway activation is implicated in breast cancer

invasion and growth (Karnoub and Weinberg, 2008). Thus the downstream of
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Ras signaling is considered to be a potential target against osteolytic breast

cancer metastasis (Bosma et al., 2014). MAPK signaling pathway is known to

be implicated in cancer-induced bone pain (Sukhtankar et al., 2011). In addi-

tion, it is known that p38 MAPK is important in maturation and synthesis

of osteoclasts (Matsumoto et al., 2000; Zwerina et al., 2006). Wnt signaling

pathway is one of the pathways dysregulated in human breast cancer and it

was reported that the activity of Wnt signaling in breast cancer is significantly

higher than that in bulk cancer cells (Jang et al., 2015). Upregulation of Wnt

signaling pathway has been reported to lead to increased metastasis includ-

ing bone metastasis from breast cancer (Chen et al., 2011; Dey et al., 2013).

TGF-β signaling pathway was reported to be important for the development of

osteolytic bone metastases by numerous studies (Buijs et al., 2012). Proteogly-

cans participate in the control of bone tumor development and bone metastases

dissemination (Velasco et al., 2010). A high sensitivity to PI3K-Akt signaling

pathway characterizes triple-negative breast cancer metastasis to bone (Guise,

2013). Hippo signaling pathway deregulation in breast cancer bone metastasis

has been suggested that YAP and TAZ activity was increased in metastatic

breast cancer (Cordenonsi et al., 2011). In addition to the individual functions

of the pathways, interactions between the pathways are reported by various

studies (Deel et al., 2015; Pan, 2010; Aksamitiene et al., 2012; Guardavaccaro

and Clevers, 2012; Vadlakonda et al., 2014; Guo and Wang, 2009; Rawlings

et al., 2004; Pataki et al., 2015; Iozzo and Sanderson, 2011).

Dataset3

It is known that Toll-like receptor signaling pathway plays an important role

in autoimmunity including thyroid autoimmunity (Toubi and Shoenfeld, 2004;

Kawashima et al., 2011). Also, antigen presentation, complement system, apop-
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tosis and pattern recognition receptors are known to involve in thyroid au-

toimmunity (Feldmann et al., 1992; Potlukova and Limanova, 2006; Wang and

Baker Jr, 2007; Merrill and Mu, 2015).

3.3.3 Performance comparison to other methods

To compare the performance of PINTnet to other approaches, I implemented

the overlapping gene-based approach (OGB) and the PPI-based approach (PB)

and ran three methods including mine on the three test datasets in the previous

sections.

Overlapping gene-based approach

This method is a two-step approach. In the first step, the activation status of

each pathway was calculated using Fisher’s exact test with a contingency table

dealing with two parameters: one is whether a gene is a DEG or not and the

other is whether a gene belongs to the pathway or not. Then, in the second

step, the significance of edges among pathways was evaluated using Fisher’s

exact test. The significance of pathways and the edges among the pathways

were determined at a p-value of 0.05 or less. The significant edges were used to

construct a pathway network.

PPI-based approach

For PPI-based approach, I implemented the simple version of the approach

since no executable code is available. I implemented the approach based on the

hypothesis that the more interactions may guarantee the higher probability of

interaction. To do this, I calculated the empirical p-values for every possible

pair of pathways to find significantly interacting pathway pairs by shuffling

the original PPI network 1,000 times, counting the number of round when the
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number of shuffled PPI edges between pathways was bigger than or equal to

that of the original PPI edges and dividing the number by the number of round,

in this case, 1,000. Then I adjusted the p-values using Bonferroni correction and

took the edges with the p-value less than 0.05 as the significantly interacting

edges. Connecting the edges, I constructed a template network and calculated

active PPIs on the network using the datasets.

Running the approach on the test datasets, I observed that too many nodes

and edges were connected even though multiple testing correction was per-

formed using the Bonferroni correction. For example, there were 271 nodes

and 12,264 edges for dataset1. It seemed almost impossible to determine which

pathways and interactions between the pathways were important in the given

conditions. Thus I did not include this approach for the performance compari-

son.

Comparison results

I compared the performance of the approaches based on the biological evidences

found by the literature search and organized in Evaluation criteria section. The

following criteria were used for the quantitative measure of the performance.

The first criterion was the interactions between the pathways. I calculated the

percentage of the number of the evidence-supported edges between the evidence-

supported pathways against the total number of edges in the network. It was to

measure how successfully the approaches connected the correct edges supported

by evidence. The second criterion was the degree of pathways. I calculated the

ratio of the average degree of the evidence-supported pathways against that of

all pathways in the network. It was to measure how the approaches placed the

important pathways as hubs in the central position of the network. The last cri-

terion was to see how successfully the approaches rescued the correct pathways.
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I calculated the percentage that how many evidence-supported pathways were

rescued. I confirmed that PINTnet surpasses other methods from the results

described in the following paragraphs and the comparison results are shown in

Table 3.2 and Figure 3.3.

In the pathway interaction network constructed using my method on dataset1

with the cutoff value of 0.95, there were 60 pathways and 92 edges between

the pathways. The network is shown in Figure 3.4. Among the pathways,

serotonergic synapse (mmu04726), insulin secretion (mmu04911), insulin re-

sistance (mmu04931), prolactin signaling pathway (mmu04917), pancreatic se-

cretion (mmu04972) and three diabetic pathways (mmu04930, mmu04940 and

mmu04950) were included as nodes. In addition, it was observed that the edges

in the network connected insulin secretion and serotonergic synapse, insulin se-

cretion and pancreatic secretion, insulin secretion and prolactin signaling path-

way, insulin resistance and diabetes-related pathways, and prolactin signaling

pathway and diabetes-related pathways. The interactions between the pathways

suggest how biological response occur during pregnancy by the cooperative work

of relevant pathways. In addition, these interactions may give a point of view to

conceive how the interactions of pathways drive the expansion of beta cell mass.

The edges connected to diabetic pathways may imply the high chances of being

diagnosed with gestational diabetes mellitus due to insulin resistance. Mean-

while, OGB failed to detect insulin resistance and one of the diabetic pathways

even though there were 93 pathways and 109 edges. Also, there was only one

edge connecting two remaining diabetic pathways.

There were 66 pathways and 122 edges between the pathways in the pathway

interaction network constructed using my method on dataset2 with the cutoff

value of 0.99. The network is shown in Figure 3.5. I observed Jak-STAT signaling

pathway (hsa04630), Hippo signaling pathway (hsa04390), cytokine-cytokine re-

53



Table 3.2: Comparison results

(a) The number of edges between the pathways in the pathway interaction net-

work. The first column of each approach is the number of edges between the

evidence-supported pathways. The second column of each approach is the num-

ber of edges between all pathways in the network.

(b) The average degree of the pathways in the pathway interaction network. The

first column of each approach is the average degree of the evidence-supported

pathways. The second column of each approach is that of all pathways in the

network.

(c) The number of evidence-supported pathway found in the network. The first

column is the number of evidence-supported pathways that are found in the path-

way interaction network constructed using my method. The second column is the

number of evidence-supported pathways that are found in the pathway inter-

action network constructed using OGB. The third column is the number of all

evidence-supported pathways.

(a)

Data
PINTnet OGB

Evidence-supported All Evidence-supported All

Dataset1 9 92 1 109

Dataset2 15 122 2 268

Dataset3 1 149 1 291

(b)

Data
PINTnet OGB

Evidence-supported All Evidence-supported All

Dataset1 9.500 3.067 3.800 2.344

Dataset2 9.700 3.697 4.000 3.829

Dataset3 5.000 2.922 6.000 4.376

(c)

Data
Found

All
PINTnet OGB

Dataset1 8 6 8

Dataset2 10 9 10

Dataset3 6 4 6
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Figure 3.3: Comparison results

(a) is the percentage of the number of evidence-supported edges against the num-

ber of all edges in the pathway interaction network. PINTnet outperformed OGB

in identifying the edges connected by the evidence-supported pathways.

(b) is the ratio of the average degree of the evidence-supported pathways and

that of all pathways in the pathway interaction network. The evidence-supported

pathways had more edges when detected by PINTnet than detected by OGB.

(c) is the percentage of how many evidence-supported pathways are found in the

pathway interaction network.
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Figure 3.4: A pathway interaction network of pregnant mice

60 pathways are connected by 92 edges in this network. The pathways that

coincide with the result of the original paper are rescued. The pathways are

serotonergic synapse (mmu04726), insulin secretion (mmu04911), prolactin sig-

naling pathway (mmu04917), pancreatic secretion (mmu04972), insulin resis-

tance (mmu04931) and three diabetic pathways (mmu04930, mmu04940 and

mmu04950) and colored in red. The edges connecting these pathways are also

colored in red. The width of edges is set according to the activation score. The

higher the activation score, the thicker the edge.
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ceptor interaction (hsa04060) and osteoclast differentiation (hsa04380), which

were reported by the original paper, were included in the network. In addi-

tion to the pathways, I identified the pathways that I found the evidences of

functional importance in bone-metastatic breast cancer from the literatures

lying on the multiple paths from Ras signaling pathway (hsa04014) to osteo-

clast differentiation. The pathways were MAPK signaling pathway (hsa04010),

Wnt signaling pathway (hsa04310), Hippo signaling pathway, TGF-β signaling

pathway (hsa04350), PI3K-Akt signaling pathway (hsa04151) and proteogly-

cans in cancer (hsa05205). The result implies that the pathways implicated in

bone metastasis from breast cancer interact each other and the interactions

among the pathways along with the paths may give the insight of how bone

metastatic breast cancer is caused by pathways interaction. However, TGF-β

signaling pathways was not rescued by OGB and only two edges were detected:

MAPK signaling pathway and proteoglycans in cancer; Ras signaling pathway

and PI3K-Akt signaling pathway.

The pathway interaction network constructed using my method on dataset3

with the cutoff value 0f 0.99 included 102 pathways and 149 edges between

the pathways. The network is shown in Figure 3.6. The network successfully

included the pathways that mentioned to be upregulated in the original pa-

per except RAR activation because there is no proper match of the pathway

in KEGG. The pathways were Toll-like receptor signaling pathway (hsa04620),

autoimmune thyroid disease (hsa05320), complement and coagulation cascades

(hsa04610), antigen processing and presentation (hsa04612), apoptosis (hsa04210)

and RIG-I-like receptor signaling pathway (hsa04622). There was only one edge

between the pathways and Toll-like receptor signaling pathway and autoimmune

thyroid disease were connected by the edge. However, Toll-like receptor signal-

ing pathway is the pathway that IFN-α belongs to and autoimmune thyroid
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Figure 3.5: A pathway interaction network of bone metastasis from

breast cancer

66 pathways are connected by 122 edges in this network. The original paper

reported Jak-STAT signaling pathway (hsa04630), cytokine-cytokine receptor in-

teraction (hsa04060), Hippo signaling pathway (hsa04390) and bone metastasis

were upregulated in the control compared to ABL1/ABL2 knockdown mice. I

found multiple paths from Ras signaling pathway (hsa04014), ABL kinases be-

long to, to osteoclast differentiation (hsa04380) through MAPK signaling path-

way (hsa04010), Wnt signaling pathway (hsa04390), TGF-β signaling pathway

(hsa04350), PI3K-Akt signaling pathway (hsa04151), Hippo signaling pathway

(hsa04390) and proteoglycans in cancer (hsa05205). I found the evidences in lit-

erature that these pathways are related to bone metastasis from breast cancer.

These pathways and the edges between the pathways are colored in red and the

width of edges are set according to the activation score.
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disease is the overall context of the original paper. Moreover, the findings re-

ported in (Toubi and Shoenfeld, 2004; Kawashima et al., 2011) supported that

Toll-like receptor signaling pathway plays an important role in autoimmunity

as mentioned in Evaluation criteria section. On the contrary, OGB failed to

detect RIG-I-like receptor signaling pathway and complement and coagulation

cascades. In addition, there was only one edge between antigen processing and

presentation and autoimmune thyroid disease.

3.4 Discussion

Currently available approaches for constructing pathway network were designed

to handle microarray data so the approaches mostly rely on the statistical tests.

The approaches determine the significance of the interaction by the p-value

yielded by the tests or use the p-value itself to calculate the secondary score for

the determination. In addition, even though several approaches incorporated

PPI to infer the interactions between pathways, the approaches have a limi-

tation that PPI was treated merely as a set of individually represented genes

without considering any relation between the genes. To address these issues, I

applied the concept of closeness centrality and shortest paths to define the edges

in the pathway interaction network. I assumed that the interaction between

two pathways will occur when the biological signals rapidly flow through the

topologically important genes. Based on the assumption, I constructed short-

est path-weaved subnetworks to represent the edges and calculated interaction

score using explicit gene expression quantity on the subnetworks.

The scoring scheme of PINTnet is a ranking method. It constructs the

pathway interaction network using pairs of pathways of which the score is higher

than the cutoff value. The results on the test datasets suggest that PINTnet
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Figure 3.6: A pathway interaction network of IFN-α mediated autoim-

munity

102 pathways are connected by 149 edges in this network. The original paper

reported that Toll-like receptor signaling pathway (hsa04620), complement and

coagulation cascades (hsa04610), antigen processing and presentation (hsa04612),

RIG-I-like receptor signaling pathway (hsa04622) and apoptosis (hsa04210) were

upregulated and my method rescued the pathways including autoimmune thy-

roid disease (hsa05320). There is only one edge connecting these pathways and

the edge connects Toll-like receptor signaling pathway and autoimmune thyroid

disease.
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successfully reproduced the results of the original papers and, therefore, is useful

in analyzing the perturbed pathways and their interactions in a given condition.

Like existing methods, PINTnet is based on the identification of overlapping

genes between two pathways. I assumed that the overlapping genes function as

a bridge between two pathways. Based on the assumption, I considered the

situation that at least one overlapping gene exists as one of the rules to define

the edge in the pathway interaction network. This criterion, though reasonable

and popular, may be too stringent. For example, when two pathways are well

connected by direct edges in PPI but do not share any genes, it is not clear

whether the two pathways interact or not. Therefore, the pairs of truly interact-

ing pathways might be ruled out. I will further work on the matter to overcome

the limitation.

3.5 Conclusion

In this work, I developed a new pathway interaction network construction

method, PINTnet. Running PINTnet on the three datasets to test the per-

formance, I observed that it successfully rescued the findings reported in the

original papers. In the result of dataset1, PINTnet successfully detected the

pathways related to the changes occurring during pregnancy. Also I observed

that the pathways were connected by the edges supported by the literatures. For

dataset2, I also identified that the pathways related to bone-metastatic breast

cancer were rescued in the pathway interaction network and the edges between

the pathways implied the interactions participating in the induction of the phe-

notype. For dataset3, the pathways reported by the original paper were included

as nodes in the pathway interaction network and there was a connected edge

between Toll-like receptor signaling pathway and autoimmune thyroid disease.
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I expect PINTnet to be a useful tool for pathway interaction network analysis.

PINTnet is available at http://biohealth.snu.ac.kr/software/PINTnet/.
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Chapter 4

Bioinformatics analyses with
peripheral blood RNA-sequencing
unveiled the cause of the graft loss
after pig-to-nonhuman primate
islet xenotransplantation model

Clinical islet transplantation is a promising treatment option for intractable

type 1 diabetes. Although short term result of islet function after transplanta-

tion has been improved, outcome of long-term islet graft function is still un-

satisfactory. The causes of this islet graft loss in the chronic phase are obscure.

In pre-clinical islet xenotransplantation, since consistent long-term islet graft

survival had not been achieved yet, it was impossible to explore the mechanism

of chronic phase islet graft loss so far. However, recent consistent long-term

survivals of adult porcine islets ≥ 6 months in five independent diabetic nonhu-

man primates (NHPs) enabled me to investigate the cause of chronic phase islet

graft loss in xenotransplantation. I sought to analyze the gene expression profiles
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using peripheral blood RNA-sequencing to find out potential cause(s) chronic

graft failure. Bioinformatics analyses showed that highly relevant ‘immunologic’

pathways were activated in NHP experienced chronic phase graft failure before

the overt graft failure. Further connectivity analyses revealed that activation

of T-cell signaling pathways was the most prominent, suggesting T-cell medi-

ated graft rejection could be the cause of the chronic phase islet loss. Indeed,

the porcine islets heavily infiltrated with CD3+ T cells on biopsied liver sam-

ples confirmed the T cell mediated graft rejection. Furthermore, hypothesis test

with computational experiment reinforced my conclusion. Taken together, I sug-

gested that bioinformatics analyses with peripheral RNA sequencing unveiled

the cause of insidious chronic islet graft loss.

4.1 Background

Since Edmonton protocol was introduced in 2000 (Shapiro et al., 2000), human

pancreatic islet transplantation has become an established treatment option for

type 1 diabetic patients who frequently experience fatal hypoglycemic unaware-

ness. However, over half of the patients transplanted with human islet returned

to be insulin-dependent state within 5 years (Ryan et al., 2005; Barton et al.,

2012). The causes for this chronic islet graft loss are controversial. They en-

compass a higher rate of islet apoptosis due to ER stress (Fonseca et al., 2011;

Negi et al., 2012), hypoxia (Lau et al., 2009; Zheng et al., 2012) in end-portal

venules in the liver, and recurrent autoimmunity (Pugliese et al., 2011). In ad-

dition, there is evidences that metabolic deterioration due to lipid accumulated

around the islets (lipotoxicity) (Lee et al., 2007; Leitão et al., 2010) and toxic-

ity of immunosuppressive drugs (Barlow et al., 2013; Drachenberg et al., 1999)

can result in graft loss. Also, insufficient immune suppression could also be an
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important cause of chronic islet loss. However, none of the above can clearly

explain the exact causes of chronic islet graft loss. Recently, the researchers who

participated in a research with me reported consistent long-term pig islet graft

survivals ≥ 6 months in five independent monkeys. This unique opportunity al-

lows them to examine how the pig islets are lost in the chronic phase after islet

transplantation. Here, they selected two monkeys with same immunosuppres-

sive regimen to analyze the cause of chronic islet loss in xenotransplantation;

one (R051) had stable graft function for entire follow-up periods and the other

(R080) lost graft function around 160 days post transplantation (DPT)

4.2 Results

4.2.1 Peripheral blood RNA sequencing

R051 showed complete normal glycemia and glucose disposal capacity for en-

tire follow-up periods, whereas the other (R080) exhibited relatively early hy-

perglycemia around 160 days post transplantation (DPT), suggesting a graft

failure. Intra-venous glucose tolerance test (IVGTT) showed that the pig islet

graft loss in R080 was in progress between DPT120 and 180 (Figure 4.1 a)-d),

processed from published data (Shin et al., 2015)). Vital signs, routine labo-

ratory examinations including complete blood cell count (CBC), liver function

test (LFT), C-reactive protein (CRP), kidney function test (blood urine nitro-

gen/creatinine), electrolyte panel (sodium, potassium and chloride), lipase and

amylase showed no abnormal findings in both of the monkey (data not shown).

Also, peripheral blood lymphocyte subsets monitoring by flow cytometry, titer

of donor-specific antibody by enzyme-linked immunosorbent assay (ELISA),

peripheral blood cytokine level by cytometric bead assay (CBA) did not reveal

any noticeable changes (data not shown). Since recent report showed gene ex-
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pression perturbation in peripheral blood could reflect graft site event (Chen

et al., 2013; Dorr et al., 2015), RNA sequencing was performed with archives of

whole blood samples taken at four different time points from graft-losing R080

versus graft-stable R051 to explore the cause of chronic islet loss happened in

R080 (Figure 4.1 e)).

4.2.2 Graft loss period-related activated pathways (GLPAPs)

defined by TRAP (Time-series RNA-seq analysis pack-

age)

After confirming the validity of RNA-seq data, I used Time-series RNA-seq

Analysis Package (TRAP) (Jo et al., 2014) to determine which pathways play

roles in graft loss process. Because t2 and t3 represent the graft-maintaining

and the graft-losing period, respectively in R080, I focused on these time points

and selected pathways as follows: i) select up-regulated pathways with p-value

under 0.05 from the results yielded by TRAP comparing t3 and t2 in R080, ii)

select up-regulated pathways with p-value under 0.05 from the results yielded

by comparing R080 and R051 at t3 and then take the pathways belonging to the

intersection of those sets (Figure 4.2). As a result, I could obtain 59 pathways

among 287 pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa and Goto, 2000) Rhesus database and these pathways were dubbed

graft loss period-related activated pathways (GLPAPs) as can be seen in Table

4.1.
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Figure 4.1: Graft function, cell-mediated immune response monitoring

and experimental scheme

a) and b) indicate the glucose level of R051 and R080, respectively. R080 showed

gradual increase of blood glucose level around DPT 150.

c) and d) indicate the IVGTT results of R051 and R080, respectively. Between

DPT 120 and 180, R080 showed prominent glucose intolerance.

e) Sampling time points for RNA-sequencing. Whole blood archives were used for

RNA sequencing. (t1: before transplantation, t2: one month after transplantation,

t3: immediate after increase of blood glucose in R080 and corresponding time

point for R051, t4: after overt hyperglycemia in R080 and corresponding time

point for R051)
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Figure 4.2: Pathway filtering strategy

GLPAPs were selected by taking the intersection of two TRAP results. One was

to detect which pathways were activated at t3 compared to t2 in R080. The other

was to detect which pathways were activated in R080 compared to R051 at t3.

Table 4.1: Graft losing period-related activated pathways (GLPAPs)

59 out of 287 pathways in rhesus KEGG database were selected after applying of

TRAP algorithm.

Pathway Name Category

mcc04062 Chemokine signaling path-

way

Immune system

mcc04611 Platelet activation Immune system

mcc04620 Toll-like receptor signaling

pathway

Immune system

mcc04621 NOD-like receptor signal-

ing pathway

Immune system

mcc04623 Cytosolic DNA-sensing

pathway

Immune system

mcc04650 Natural killer cell mediated

cytotoxicity

Immune system

Continued on next page
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Table 4.1 – continued from previous page

Pathway Name Category

mcc04660 T cell receptor signaling

pathway

Immune system

mcc04662 B cell receptor signaling

pathway

Immune system

mcc04664 Fc epsilon RI signaling

pathway

Immune system

mcc04670 Leukocyte transendothelial

migration

Immune system

mcc04010 MAPK signaling pathway Signal transduction

mcc04012 ErbB signaling pathway Signal transduction

mcc04022 cGMP-PKG signaling

pathway

Signal transduction

mcc04064 NF-kappa B signaling

pathway

Signal transduction

mcc04068 FoxO signaling pathway Signal transduction

mcc04070 Phosphatidylinositol sig-

naling system

Signal transduction

mcc04152 AMPK signaling pathway Signal transduction

mcc04370 VEGF signaling pathway Signal transduction

mcc04630 Jak-STAT signaling path-

way

Signal transduction

mcc04668 TNF signaling pathway Signal transduction

mcc04910 Insulin signaling pathway Endocrine system

Continued on next page
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Table 4.1 – continued from previous page

Pathway Name Category

mcc04915 Estrogen signaling path-

way

Endocrine system

mcc04917 Prolactin signaling path-

way

Endocrine system

mcc04918 Thyroid hormone synthesis Endocrine system

mcc04919 Thyroid hormone signaling

pathway

Endocrine system

mcc04921 Oxytocin signaling path-

way

Endocrine system

mcc03013 RNA transport Translation

mcc04210 Apoptosis Cell growth and death

mcc05211 Renal cell carcinoma Cancer: Specific types

mcc05212 Pancreatic cancer Cancer: Specific types

mcc05213 Endometrial cancer Cancer: Specific types

mcc05214 Glioma Cancer: Specific types

mcc05215 Prostate cancer Cancer: Specific types

mcc05219 Bladder cancer Cancer: Specific types

mcc05220 Chronic myeloid leukemia Cancer: Specific types

mcc05221 Acute myeloid leukemia Cancer: Specific types

mcc05223 Non-small cell lung cancer Cancer: Specific types

mcc04141 Protein processing in endo-

plasmic reticulum

Folding, sorting and degradation

Continued on next page
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Table 4.1 – continued from previous page

Pathway Name Category

mcc04320 Dorso-ventral axis forma-

tion

Development

mcc04380 Osteoclast differentiation Development

mcc04540 Gap junction Cellular communication

mcc04810 Regulation of actin cy-

toskeleton

Cell motility

mcc04961 Endocrine and other

factor-regulated calcium

reabsorption

Excretory system

mcc04722 Neurotrophin signaling

pathway

Nervous system

mcc04725 Cholinergic synapse Nervous system

mcc04060 Cytokine-cytokine receptor

interaction

Signaling molecules and interaction

mcc05142 Chagas disease (American

trypanosomiasis)

Infectious diseases: Parasitic

mcc05143 African trypanosomiasis Infectious diseases: Parasitic

mcc05144 Malaria Infectious diseases: Parasitic

mcc04623 Hepatitis B Infectious diseases: Viral

mcc04650 Measles Infectious diseases: Viral

mcc04660 Influenza A Infectious diseases: Viral

mcc04662 HTLV-I infection Infectious diseases: Viral

mcc04664 Herpes simplex infection Infectious diseases: Viral

Continued on next page
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Table 4.1 – continued from previous page

Pathway Name Category

mcc04670 Epstein-Barr virus infec-

tion

Infectious diseases: Viral

mcc04970 Salivary secretion Digestive system

mcc05200 Pathways in cancer Cancers: Overview

mcc05203 Viral carcinogenesis Cancers: Overview

mcc05205 Proteoglycans in cancer Cancers: Overview

After obtaining 59 of GLPAPs, p-values for each ‘category’ of the path-

ways were calculated using Fisher’s exact test to determine how significantly

GLPAPs were enriched in each category. To calculate p-values, I constructed

a contingency table with two variables: GLPAP and category. Each cell of the

table was filled by the number of the pathways according to the standard if

the pathway belongs to the category or not and if the pathway is GLPAP or

not (Figure 4.3). The p-values for each category are shown in Table 4.2. The

most enriched category was found to be “immune system” despite any per-

turbation of immunological parameters in routine immune monitoring system

was not found. This finding strongly implies that immunological responses are

somehow activated and ongoing during t3 in R080 compared to t2 in R080 and

corresponding time points in R051.

4.2.3 Pathway interaction network analysis

Even though I found that the pathways categorized in immune system were en-

riched mostly after GLPAPs filtering, I was not able to specify single pathways,

which are potentially responsible for graft loss. Because biological pathways usu-

ally function in a cooperative manner by constituting a network, understanding
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Table 4.2: Significantly enriched categories of GLPAPs

Categories are listed in ascending order of p-values calculated by Fisher’s exact

test. Immune system category pathways were highly enriched.

Category P-value

Immune system 0.0001962

Cancers: Specific types 0.0003236

Infectious diseases: Viral 0.0003591

Signal transduction 0.0120207

Infectious diseases: Parasitic 0.1036661

Endocrine system 0.1076348

Development 0.1083940

Cell motility 0.2055749

Cancers: Overview 0.2132333

Digestive system 0.6910951

Nervous system 1.0000000

Cell growth and death 1.0000000

Cellular communication 1.0000000

Excretory system 1.0000000

Folding, sorting and degradation 1.0000000

Signaling molecules and interaction 1.0000000

Translation 1.0000000
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Figure 4.3: A contingency table with two variables to calculate p-values

of each category

To calculate GLPAP enrichment for each category of pathways, I built a contin-

gency table for each category according to the two variables. One is whether a

pathway is GLPAP or not and the other is whether a pathway belongs to the

concerned category.
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the network of pathways can provide the insight about which pathways are im-

portant in a given condition. Therefore, it would be desirable to analyze the

network of the pathways to find out the most interacting pathways to induce

graft loss among GLPAPs. To this end, I constructed a pathway interaction net-

work of GLPAPs using PINTnet (Moon et al., 2017). There were 52 pathways

out of 59 GLPAPs connected by 225 edges in the network (Figure 4.4). I calcu-

lated closeness centrality for every node and used degree information to analyze

which pathways played a central role in the network to induce the biological

response at t3 of R080. I focused only on the pathways belonging to immune

system because immune system was the most enriched category as mentioned

in the previous section. The pathways with the closeness centrality value and

degree higher than the average closeness centrality value and the average de-

gree of all the nodes in the network were considered meaningful. Among eight

pathways of immune system, three met the criteria and the pathways were T

cell receptor signaling pathway, B cell receptor signaling pathway, and Platelet

activation. The pathways are shown in Table 4.3. The results suggested that

T cell mediated immune rejection toward the pig islets was in progress at t3

of R080. Liver biopsy samples at DPT184 from R080 from the archives were

collected and graft histology was examined by immunohistochemistry. It was

found that insulin positive islet grafts were heavily infiltrated by mostly CD3+

T cells (Figure 4.5).

4.2.4 Hypothesis evaluation using network propagation

To reconfirm my findings, I sought to test each hypothesis which could explain

islet loss. Five hypotheses that are known to cause the chronic graft loss were

selected (Chen et al., 2013). Those are ER stress (Fonseca et al., 2011; Rick-

els et al., 2008; Potter et al., 2010; Westermark et al., 2008), islet exhaustion
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Figure 4.4: Pathway interaction network of GLPAPs

Blue dotted rectangle indicates T cell receptor signaling pathway (mcc04660), B

cell receptor signaling pathway (mcc04662), and Platelet activation (mcc04611).

The size of the nodes reflects the closeness centrality of each node. The network

was visualized by Cytoscape (Shannon et al., 2003)
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Table 4.3: The closeness centrality and the degree of GLPAPs in im-

mune system

The average closeness centrality and the average degree of all GLPAPs in the net-

work are 0.4669 and 8.65 respectively and the values were used as the cutoff values

to determine if a GLPAP is meaningful in the pathway interaction network. Only

T cell receptor signaling pathway, B cell receptor signaling pathway, and Platelet

activation satisfied the cutoff values. The pathways are highlighted by underline.

ID Name Closeness centrality Degree

mcc04660 T cell receptor signaling pathway 0.60000000 21

mcc04662 B cell receptor signaling pathway 0.59302326 20

mcc04611 Platelet activation 0.46788991 11

mcc04664 Fc epsilon RI signaling pathway 0.49514563 8

mcc04650
Natural killer cell mediated

cytotoxicity
0.45945946 7

mcc04062 Chemokine signaling pathway 0.43589744 7

mcc04670
Leukocyte transendothelial

migration
0.43220339 5

mcc04621 NOD-like receptor signaling pathway 0.33774834 1

77



Figure 4.5: Histology of islet xenografts

The islet graft was heavily infiltrated by several types of immune cells in R080.

Immune cells largely consisted of CD3+ T cells. Both CD4+ and CD8+ cells

infiltrated near the graft. CD68+ cell were also observed. Black arrow indicated

intra-graft infiltrating CD3+ T cell.

(Kim and Yoon, 2011), lipotoxicity (Lee et al., 2007; Brown and Goldstein,

1997, 1998; Kakuma et al., 2000), long-term graft rejection, and toxicity of

immunosuppressant (Barlow et al., 2013). To evaluate the five hypotheses, I

designed and performed a computational experiment. The rationale behind the

experiment is that if a hypothesis is the cause of the graft loss and the genes

related to the hypothesis are important, the global effects of the genes of the

hypothesis should be similar to the gene expression profile that I measured.

To measure the global effect of the genes, I used the state of the art network

propagation technique (Cowen et al., 2017). The evaluation process is as fol-

lows. I collected genes related to five hypotheses as seed genes by the literature

search and domain knowledge. Thus, each hypothesis was represented by a set

of genes. Next, I made a DEG profile by measuring the expression change of

each gene by calculating the log2 fold change between R080 and R051 at t3 and

ranking the genes. At that time, I removed the genes of which the expression
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value was smaller than 1 in either R080 or R051 to prevent extremely high or

low fold change yielded by the comparison between small numbers. Then I built

a protein-protein interaction (PPI) network and mapped the seed genes. The

number of nodes and edges in the network are 6,780 and 117,963 respectively.

The number of seed genes are ten, nine, eight, ten, and nine for ER stress,

islet exhaustion, lipotoxicity, long-term graft rejection, and toxicity of immuno-

suppressant, respectively. After that, I measured the global effect of the seed

genes using network propagation and ranked genes in the PPI network for each

hypothesis. Then, I calculated Pearson’s correlation between the ranking of the

DEG profile and the ranking by the network propagation for each hypothesis.

This was to test which of the five hypotheses represented by the seed genes pro-

duces gene expression profile similar to the DEG profile I measured. In other

words, I tried to see how much the participation of genes in the actual biolog-

ical process that drives the graft loss coincided with the perturbation in the

expression of genes in the given condition. I calculated the correlation coeffi-

cients based on the rankings of the network propagation results. Furthermore, I

performed random simulations for 1,000 times and calculated empirical p-values

to test the significance of the coefficient as shown in the equation below.

pi =
1

N

N∑
j=1


1 if cij > cRi

0 otherwise

(4.1)

i indicates each hypothesis and it ranges from 1 to 5. pi indicates the em-

pirical p-value of i-th hypothesis. N is the number of random simulation and

it is 1,000. j indicates the j-th random simulation. cij is the coefficient of j-th

random simulation of i-th hypothesis. cRi is the reference coefficient of i-th hy-

pothesis. The results are shown in Table 4.4 (a) and I was able to see that the

correlation coefficient of long-term graft rejection was the highest and most sig-
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nificant. In addition, I carried out the same process for top 100 genes of network

propagation results for each hypothesis. As shown in Table 4.4 (b), long-term

graft loss was the highest in terms of the coefficient. This result suggests and

supports that chronic graft loss reflected by the condition-specific changes in

gene expression of R080 was explained the best by long-term graft rejection.

4.3 Discussion

Human islet transplantation is currently the only treatment option which can

supplement islet mass for type 1 diabetes patient (McCall and Shapiro, 2012).

Although it is successful in short-term, it lacks long-term durability, resulting

in most patients transplanted with islets returning to insulin dependency. A

pig-to-NHP islet xenotransplantation study was performed to infer the cause of

long-term graft rejection. RNA-seq technology was used to quantify the amount

of transcript in the samples obtained from whole blood taken at various time

points after transplantation. Pathway analysis and pathway interaction network

analysis were carried out on the transcriptome data using TRAP and PINTnet,

respectively. By performing pathway analyses, 59 activated pathways were iden-

tified and they were annotated as graft loss period-related activated pathways

(GLPAPs). Furthermore, GLPAPs were categorized to retrieve meaningful in-

formation. Indeed, mostly enriched category was revealed as immune system.

This highly suggested that cause of graft loss in chronic phase in R080 is due to

insufficient immune suppression, i.e. immune-rejection. Subsequently, a path-

way interaction network was constructed using GLPAPs as nodes to reveal

which pathways played a central role in the given condition and it was found

that T cell receptor signaling pathway, B cell signaling pathway and Platelet

activation are the most interconnected pathways. This information suggested
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Table 4.4: Ranking comparison between network propagation results

and differential expression

(a) Pearson’s correlation coefficients of each hypothesis. IsletExh, LTGR, and

ToxImmDrug indicate islet exhaustion, long-term graft rejection, and toxicity of

immunosuppressant in this order. The coefficient of long-term graft rejection was

the highest.

(b) Correlation coefficients of ranking comparison for top 100 genes from the net-

work propagation results. Long-term graft rejection showed the highest coefficient.

(a)

Scenario Coefficient p-value Empirical p-value

ERstress 0.031115500 0.001246017 0.048

IsletExh 0.049513322 0.000048063 0.292

Lipotoxicity 0.051612597 0.000022611 0.251

LTGR 0.087461960 0.000000000 0.010

ToxImmDrug 0.050939480 0.000028885 0.275

(b)

Scenario Coefficient p-value

ERstress 0.235867693 0.018154182

IsletExh 0.154287565 0.125356981

Lipotoxicity 0.188772704 0.059979769

LTGR 0.556480178 0.000000001

ToxImmDrug 0.536431327 0.000000008
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that immune-suppression regimen in the maintenance period should be revised

and fortified to overcome the graft loss in chronic phase. These findings were

reinforced by hypothesis testing and confirmed by biopsy. However, there are

some limitations in the study. First, even though three pathways were suggested

to be involved in graft rejection in the chronic phase, direct evidences but T cell

infiltration were not found; there was no direct evidence of B cell-mediated or

platelet-mediated rejection. Second, because the pathway information for rhesus

monkey in KEGG was relatively insufficient, it was not possible to investigate

analyze the data in more specific manner. For example, CD40L signaling path-

way and IL-6 signaling pathway were not supported by KEGG so I was not able

to investigate how the pathways participated in graft rejection. Lastly, I was not

able to pinpoint single candidate molecule or a set of molecules responsible for

graft rejection because the analyses mainly focused on finding phenotypically

relevant pathways.
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Chapter 5

Conclusion

The interpretation of complex phenotypes requires the development of novel

methods. Because such phenotypes can be represented as networks and there are

evidences that networks can explain the complex phenotypes, the development

of network analysis is very crucial to reveal the secrets underlying biological

process. There are already many existing methods. Thus, making an effective

ensemble of those method is as important as the development of new methods.

This thesis presented three studies based on network analysis and ensemble of

different methods:

1. a machine learning-based approach for identifying DEGs using network

information and network propagation

2. a method to construct condition-specific pathway interaction network

computing shortest paths on a weighted PPI network

3. a network analysis on time-series xenotransplantation data to reveal the

cause of islet graft loss

83



In the first study, a machine learning-based approach for identifying DEGs

using network information and network propagation, MLDEG, is developed. It

defines true DEGs and false DEGs by integrating the results of four existing

methods and trains a model using network-based features extracted from the

DEGs. The goal of MLDEG is to identify DEGs that cannot clearly be detected

by the existing methods. Tested on 10 RNA-seq datasets, it was able to rescue

the DEGs mentioned to be ground truths in the original papers. Compared

to four existing methods, it outperformed the methods. In the second study, a

method to construct condition-specific pathway interaction network computing

shortest paths on a weighted PPI network, PINTnet, is developed. PINTnet

constructs a weighted PPI subnetwork for every pair of pathways by comput-

ing shortest paths and measures the activation of pathway interaction using the

subnetworks and gene expression data. It ranks the interactions by the activa-

tion scores and constructs a pathway interaction network with the interactions

that satisfy a cutoff. Three RNA-seq datasets were used to evaluate the per-

formance and the pathways and the interactions relevant to the phenotypes

were detected for each dataset. In the last study, pathway analyses including

pathway category enrichment and pathway interaction were carried out to find

the cause of islet graft loss in porcine islet-transplanted nonhuman primates.

The analysis results suggested the activation of T cell signaling pathway as a

probable cause and it was confirmed by liver biopsy result. In addition, network

propagation was carried out to verify that long-term graft rejection affected the

islet graft loss. In conclusion, I developed approaches to carry out transcriptome

data analysis from gene level to pathway level using network-based approaches

and a machine learning-based approach integrating existing methods. The ef-

fective ensemble of the approaches suggests the availability of network analysis

in interpreting complex phenotypes. Nevertheless, there are some limitations
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in network analysis. First, analysis results can be biased to the genes and in-

teractions that are heavily studied. Second, the effects of hub genes sometimes

are too strong to discover subtle but important changes in other genes. Lastly,

the analysis results can vary according to the source of network information.

Therefore, studying on more robust methods that can overcome the limitations

is my future goal.
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초록

전사 과정에서의 생물학적 프로세스에 대한 이해를 높이는 데 사용되는 전사체

데이터의 분석은 차별 발현 유전자를 찾아내는 것에서부터 표현형에 연관된 패스

웨이증폭분석까지의일련의단계를포함한다.각단계마다,넘어야할장애물들이

존재하며 이를 극복하기 위한 새로운 생물정보학 기술의 개발은 필수적이다. 예를

들어, 생명체의 복잡한 특성은 유전자 또는 패스웨이가 노드, 그 개체 사이의 상호

작용이 엣지인 네트워크로 나타낼 수 있다. 이 때, 네트워크 분석 기법은 전사체

데이터와 표현형 간의 숨겨진 연관성을 찾는 데 중요한 역할을 할 수 있다. 한 편,

네트워크전파는네트워크에서노드의영향력을측정하는기술로주목받고있으며

새로운 생물학적 발견에 기여하는 등, 생물학 및 의학 분야의 많은 연구에서 그 유

용성을 입증하였다. 본 논문에서는 이러한 기계 학습, 네트워크 정보 및 네트워크

전파를 이용한 전사체 데이터 분석에 관한 연구에 대해 다룬다.

첫 번째 연구에서는, 네트워크 정보와 네트워크 전파를 이용하여 차별 발현

유전자를 식별하는 기계 학습 접근법(MLDEG)에 관한 연구를 다룬다. 차별 발현

유전자 분석은 생물학 연구에서 새로운 생물학적 지식의 발견에 중요한 역할을

하고 있으나 이를 위한 기존의 분석 도구들이 도출하는 결과는 각기 다르다. 본

연구에서는 네트워크 정보 및 네트워크 전파 결과를 활용하는 모델을 구축하여

이러한 문제를 해결하였다. 본 연구의 목표는 차별 발현 유전자 및 비차별 발현

유전자로서 가장 가능성이 있는 유전자를 선정하여 네트워크 기반 특징을 추출하

고 이 특징을 바탕으로 모델을 학습하여 차별 발현 유전자를 분류하는 것이다. 열

개의 RNA-seq 데이터를 이용하여 검증한 결과, 기존의 분석 도구들보다 우수한

성능을 보임을 확인하였다.

두 번째 연구에서는 단백질 상호 작용 네트워크상의 최단 경로를 계산하여 특

정실험조건하에서패스웨이상호작용네트워크를구축할수있는패스웨이상호
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작용 네트워크 구축 방법(PINTnet)에 대한 내용을 다룬다. 기존의 방법들은 유전

자 사이의 관계를 고려하지 않고 패스웨이를 단순히 유전자의 집합으로만 다루는

문제를 가지고 있다. 본 연구에서는 유전자 사이의 관계를 고려하여 각 패스웨이

쌍에 매핑된 단백질 상호작용 네트워크에서 최단 경로를 계산하고, 이를 통해 만

들어진 서브네트워크에서 근접중심성과 유전자 발현량의 곱을 바탕으로 패스웨이

상호작용의활성화상태를측정함으로문제를해결하였다.세개의 RNA-seq데이

터를 이용하여 PINTnet의 성능을 평가한 결과, 각 데이터의 원 논문에서 주장한

결과를 성공적으로 재현함을 확인하였다.

마지막 연구는 만성 췌도 이식편 소실의 원인을 밝히기 위한 이종장기이식 데

이터 분석에 관한 내용을 다룬다. 만성 단계에서의 이식편 소실의 기작을 밝히기

위해, PINTnet을 사용하여 돼지 췌도가 이식된 원숭이의 RNA-seq 데이터를 분

석하였고 T 세포 수용체 신호 전달 패스웨이(T cell receptor signalling pathway)

가활성화되었음을확인하였다.해당원숭이의간샘플을생검하여 CD3+ T세포

가 이식된 췌도에 침투하였음을 확인함으로써 분석 결과가 실제 결과와 일치함을

확인하였다. 한편, 네트워크 전파를 이용하여 다섯 가지 거부 반응 시나리오를

검증하였고 T 세포로 인한 거부반응이 가장 가능성이 높음을 확인하였다.

결론적으로, 본 논문에서는 다양한 전사체 데이터 분석을 수행함에 있어서 네

트워크 정보, 네트워크 특성 및 네트워크 전파를 이용한 네트워크 분석 및 기계

학습 기법이 유용함을 보였다.

주요어: 단백질 상호작용, 최단거리, 네트워크 전파, 차별 발현 유전자, 이종장기

이식, 만성 이식편 소실

학번: 2012-30906
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