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Abstract

Machine learning techniques for decoding

and utilizing high throughput RNA

sequencing data

Minsu Kim

Interdisciplinary Program in Bioinformatics

College of Natural Sciences

Seoul National University

In eukaryotic cells, there are several post-transcriptional modification steps such

as RNA editing and alternative splicing, until mRNA molecules are fully ma-

tured and translated into proteins. Thus, the transcriptome is a complex mix-

ture of various intermediates that are processed in multiple steps. This complex

regulatory structure makes it difficult to fully understand the landscape of tran-

scriptome. My doctoral study consists of three studies that enable RNA-seq to

be decoded and utilized in terms of RNA editing, alternative splicing, and gene

expression.

RNA editing is a post-transcriptional RNA sequence modification performed

by two catalytic enzymes ADAR (A-to-I) and APOBEC (C-to-U). RNA editing

is considered an important regulatory system that controls a variety of cellular
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functions such as protein activation, alternative splicing, and miRNA target-

ing. Therefore, detecting RNA editing events in RNA-seq data is important for

understanding its biological functions. However, it is known that a significant

amount of false-positives occur when detecting RNA editing in RNA-seq. Since

it is not possible to experimentally validate all RNA editing residues extracted

from RNA-seq, a computational model is needed to filter potential false-positive

RNA editing calls. RDDpred, an RNA editing predictor based on machine learn-

ing techniques, was developed to filter out false-positive RNA editing calls in

RNA-seq. It uses prior knowledge bases to collect training instances directly

from the input data, and then trains the random forest (RF) predictors that

are specific to the input data. RDDpred was tested using two publicly available

datasets of RNA editing studies and has shown good performance.

Another complex problem in RNA-seq decoding is spliceomic intratumor

heterogeneity (ie, sITH). Intratumor heterogeneity (ITH) represents the diver-

sity of cell populations that make up the cancer tissue. Recent studies have

identified ITH at the transcriptome level and suggested that ITH at gene ex-

pression levels is useful for predicting prognosis. Measuring ITH levels at the

spliceome level is a natural extension. There is a serious technical challenge in

measuring sITH from bulk tumor RNA-seq, such as complex splicing patterns,

widespread intron retentions, and short sequencing read lengths. SpliceHetero,

an information-theoretic method for measuring the sITH of a tumor, was de-

veloped to address the aforementioned technical problems. SpliceHetero was

extensively tested in experiments using synthetic data, xenograft tumor data

and TCGA pan-cancer data and measured sITH successfully. Also, sITH was

shown to be closely related to cancer progression and clonal heterogeneity, along

with clinically significant features such as cancer stage, survival outcome, and

PAM50 subtype.
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The last research topic is to develop a machine learning algorithm that de-

fines patient subspaces specific to particular cancer phenotypes based on gene

expression data. Since RNA-seq data is high-dimensional data composed of

20,000 or more genes in general, it is not easy to apply a machine learning

algorithm. A network that collects information of experimentally verified inter-

action of proteins is called a Protein Interaction Network (PIN). Tumor2Vec

defines the patient subspace by defining the subnetwork communities that in-

teract with each other by applying the Graph Embedding technique to PIN.

Tumor2Vec proposed a clinical model by defining a subspace for patients with

different lymph node metastases in early oral cancer and found biologically

significant features in the PIN subnetwork unit in the process.

Keywords: RNA-seq, RNA editing, Alternative splicing, Gene expression, Ma-

chine learning, Information theory, Graph embedding, Dimension reduction,

Autoencoder

Student Number: 2013-23006
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Chapter 1

Introduction

In eukaryotic cells, there are several post-transcriptional modification steps,

such as alternative polyadenylation, RNA editing, and alternative splicing be-

fore mRNA molecules are fully matured and translated into proteins (Figure

1.1) (Xiang et al., 2018). Thus, the transcriptome is a complex mixture con-

taining various transcriptomic variations that are regulated by different mod-

ification systems. This complex regulatory structure makes it difficult to fully

understand the landscape of transcriptome.

High throughput RNA sequencing (RNA-seq) is a technology that provides

a comprehensive profile of the whole transcriptome by reading vast amounts of

RNA fragments (Figure 1.2) (Haas and Zody, 2010). Thus, RNA-seq has been

used to elucidate associations between biological phenotypes and transcriptomic

variations such as gene expression, RNA editing, and alternative splicing. Each

of the three transcriptomic variations has been actively studied and found to

be associated with a variety of biological phenotypes.
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Figure 1.1: A description of the post-transcriptional modification process in

eukaryotes (Xiang et al., 2018).

1.1 Biological background

RNA editing

RNA editing is a post-transcriptional RNA sequence modification performed by

two catalytic enzymes ADAR (A-to-I) and APOBEC (C-to-U). RNA editing is

considered an important regulatory system for controlling various cell functions

such as protein activity, alternative splicing, and miRNA targeting (Figure 1.3)

(Licht and Jantsch, 2016). There are also several studies showing the direct rela-

tionship between RNA editing and biological phenotypes. The study by Galeano

et al. suggested that specific RNA editing patterns in glioblastomas by ADAR2

enzymes are crucial for the pathogenesis and that ADAR-class enzymes can be

considered as tumor suppressors (Galeano et al., 2013). It is also known that

APOBEC3G, a type of APOBEC-class enzyme, causes HIV-1 retroviral inac-

tivation by deamination (Chiu et al., 2010). Therefore, detecting RNA editing
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Figure 1.2: A description of RNA-seq data (Haas and Zody, 2010).

events in RNA-seq data is important for understanding the association between

RNA editing patterns and biological phenotypes.

Alternative splicing

Alternative splicing is another important post-transcriptional modification that

greatly increases the diversity of proteins that can be expressed from a limited

number of genes (Liu et al., 2017). The aggregate of cell splicing information

is often referred to as spliceome. The term spliceome was coined around 2000

to describe the set of all possible alternatively spliced mRNA and proteins in

an organism and all the species depending on the context. Recent studies have

3



Figure 1.3: A schematic of the intracellular regulatory system governed by RNA

editing (Licht and Jantsch, 2016).

suggested associations between cancer phenotypes and spliceomic variations,

which can be caused by splice site mutations and malfunctioning splicing factors

(Figure 1.4) (Climente-González et al., 2017). RNA-seq is the most effective

tool for quantifying spliceome due to its comprehensive profiling capabilities.

Many recent spliceome studies have used RNA-seq to understand the biological

implications of alternative splicing (Sebestyén et al., 2016; Tsai et al., 2015).

Gene expression

RNA-seq is also a powerful tool that provides gene expression profiles of cells.

It uses random primer technology to provide a de novo capture of transcripts

without relying on pre-designed probes, which is not possible with microarrays.

Because of its high throughput capacity and high resolution, many studies have

explored the relationship between biological phenotypes and gene expression

patterns using RNA-seq (Figure 1.2) (Haas and Zody, 2010).
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Figure 1.4: A schematic of the intracellular regulatory system governed by RNA

editing (Licht and Jantsch, 2016).

1.2 Challenges in decoding and utilizing RNA-seq data

There are challenges in decoding and utilizing RNA-seq data in each of the

three transcriptomic domains (ie, gene expression, RNA editing, and alternative

splicing). The challenges in each of the transcriptomic domains are summarized

as follows.

5



1.2.1 false-positives in RNA editing calls

It is known that a significant amount of false-positives occurs when detecting

RNA editing in RNA-seq. In 2012, Nature Biotechnology published an interview

with eight prominent RNA editing researchers in an article called “The difficult

calls in RNA editing” (Bass et al., 2012). All eight researchers have pointed out

that false-positives are one of the biggest challenges in detecting RNA editing

using RNA-seq. They also mentioned that one of the major causes of false-

positives is mis-mapping during RNA-seq alignment.

An in silico experiment, part of a preliminary study discussed in Chapter

2, also suggested that mis-mapping poses a significant risk of false-positives

(Figure 2.2). Since it is not possible to experimentally validate all RNA editing

residues extracted from RNA-seq, a computational model is needed to filter

potential false-positive RNA editing calls.

1.2.2 Absence of a model for measuring spliceomic intratumor

heterogeneity considering complex cancer spliceome

Intratumor heterogeneity (ITH) represents the diversity of cell populations that

make up cancer tissue (Boland and Goel, 2005). This is the result of a subclone

diversification process during cancer progression, which is considered a form of

Darwinian evolutionary process (Nowell, 1976). The level of ITH reflects the

genetic diversity of bulk tumors, which generally have a negative correlation

with prognosis. An explanation for this trend is that the genetic diversity pro-

vided by ITH can be an accelerator of somatic cell evolution that helps cancer

cells acquire a malignant phenotype (Marusyk and Polyak, 2010; Greaves and

Maley, 2012; Sun and Yu, 2015; McGranahan and Swanton, 2017).

In a recent study by Morris et al. (Morris et al., 2016), ITH of each cancer

sample was first calculated using genomic features such as copy number varia-
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Domain Variation Method

Genomic CNVs, Somatic mutations Mathematical modeling

Methylomic Methylation Mathematical modeling

Transcriptomic Expressional difference Information theory

Spliceomic Alternative splicing None

Table 1.1: Description of each approach using various molecular domains.

tion (CNV) and somatic mutation. Then, the relationship between ITH of each

cancer sample and various clinical characteristics was tested. They concluded

that the level of ITH in each cancer sample was significantly associated with

the molecular, pathologic, and clinical characteristics including prognosis.

ITH can be deduced using molecular profiles of various domains such as

genome, epigenome and transcriptome domain. Approaches using each domain

have been used to assess the level of ITH in cancer tissues and to identify molec-

ular features associated with tumor evolution (Table 1.1). For example, two ITH

studies using genomic variation have revealed somatic mutations that are closely

related to tumor evolution in various types of cancer (Carter et al., 2012; Roth

et al., 2014). Methylomic and transcriptomic (gene expression) methods for

measuring ITH in bulk tumors have been developed and identified important

molecular features (Mazor et al., 2016; Park et al., 2016).

The presence of intercellular spliceomic differences has been suggested by

studies published over the past decade (Rajan et al., 2009; Wan and Larson,

2018). A recent single-cell study showed that there is a clear difference in the

use of isoforms in bone marrow-derived dendritic cells (Shalek et al., 2013).

The clinical effect of spliceomic ITH (ie, sITH) has not been thoroughly studied

because there is no available sITH model.
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There are serious technical challenges in measuring sITH from bulk tumor

RNA-seq. A recent study has reported the widespread intron retention of cancer

cells (Dvinge and Bradley, 2015), suggesting that the isoform of cancer cells is

very complex and not yet characterized. This means that a significant amount of

unexpected splice junctions can be found in the cancer sample (Eswaran et al.,

2013). To handle these unexpected splice junctions, a transcriptome assembly

is required to account for previously unknown isoforms. However, prevalent

splice-site mutations (Jayasinghe et al., 2018) and short sequence reads in RNA-

seq make it difficult to perform transcriptome assembly. Therefore, a model is

needed to avoid this difficulty and to measure sITH in bulk tumor.

1.2.3 Lack of biological interpretation of dimension reduction

techniques using gene expression

Transcriptome analysis using RNA-seq is considered to be one of the most effec-

tive tools for revealing the underlying biological mechanisms of various cancer

phenotypes (Kumari et al., 2017; Lin et al., 2018; Jardim-Perassi et al., 2019).

RNA-seq produces a comprehensive expression level of each gene, including

more than 20,000, in the case of the human genome. The high resolution of

RNA-seq is both an advantage and a cause of trouble at the same time. This

problem is also known as high dimension low sample size data problem (McGet-

tigan, 2013; Shen et al., 2016).

There are several machine learning based solutions that address dimensional

reduction problems such as Principal Component Analysis (PCA) (Minka, 2001),

Latent Dirichlet Allocation (LDA) (Hoffman et al., 2010), Nonnegative Matrix

Factorization (NMF) (Cichocki and Phan, 2009), Isomap (Tenenbaum et al.,

2000), Locally Linear Embedding (Roweis and Saul, 2000), Multi Dimensional

Scaling (MDS) (Kruskal, 1964), Spectral Embedding (Ng et al., 2002), and

8



t-Stochastic Neighbor Embedding (t-SNE) (Maaten and Hinton, 2008).

Since the existing dimension reduction techniques are unsupervised, the re-

sulting embedding does not reflect the differences between sample labels. Given

that the vast majority of cases using RNA-seq are looking for transcriptomic

differences between samples with different conditions, these unsupervised ap-

proaches do not meet those needs. Also, since the resulting embedding generated

by these approaches is generally not provided with a biological interpretation,

users must re-process the results in their own way. In this process, the same

result is often interpreted differently. Therefore, a supervised learning model is

needed that can directly derive the biological interpretation from the resulting

embedding.

1.3 Machine learning techniques to solve difficulties

in using RNA-seq

• RDDpred, a condition-specific machine learning model for filtering false-

positive RNA editing calls in RNA-seq data, was developed to filter out

false-positive RNA editing calls in RNA-seq. It uses prior knowledge bases

to collect training examples directly from the input data, eliminating the

need for expensive experimental verification.

• SpliceHetero, an information-theoretic approach for measuring spliceomic

intratumor heterogeneity from bulk tumor RNA-seq data, was developed

to solve technical problems caused by complex cancer spliceome. It uses

a local analysis approach to avoid transcriptome assemblies that are not

easily achievable in cancer spliceome.

• Tumor2Vec, a supervised learning algorithm for extracting subnetwork

representations of cancer RNA-seq data using protein interaction net-
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works, was developed. It uses the graph embedding technique applied

to the PIN to determine the globally well-tuned local subnetwork com-

munity. Each community is then considered a feature representation of

the input data. It uses machine learning techniques to reduce the dimen-

sionality of RNA-seq data while providing interpretable subnetwork level

features.

1.4 Outline of thesis

My doctoral study consists of three studies that enable RNA-seq to be decoded

and utilized in terms of RNA editing, alternative splicing, and gene expression.

Chapters 2, 3, and 4 introduce independent studies on how to deal with the

difficulties of using RNA-seq in each of the three transcriptomic domains.

Chapter 2 describes RDDpred, a condition-specific machine learning model

for filtering false-positive RNA editing calls in RNA-seq data, which aims at

filtering false-positive RNA editing calls in RNA-seq. Chapter 3 discusses Splice-

Hetero, an information-theoretic approach for measuring spliceomic intratumor

heterogeneity from bulk tumor RNA-seq, which aims to develop a sITH model

that takes into account the technical challenges of complex cancer spliceome.

Chapter 4 discusses Tumor2Vec, a supervised learning algorithm for extracting

subnetwork representations of cancer RNA-seq data using protein interaction

networks, which aims to reduce the dimension of RNA-seq data while providing

interpretable subnetwork level features.

Chapter 5 summarizes the results of previous studies and the expected re-

sults of ongoing studies. This paper is concluded by the bibliography of the

references and appendices.
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Chapter 2

RDDpred: A condition specific
machine learning model for
filtering false-positive RNA
editing calls in RNA-seq data

2.1 Related works

There are three types of methods for dealing with false-positives in RNA editing

calls. 1) Prior knowledge-based filtering, 2) Mapping error prone site estimation,

and 3) Machine learning based predictor.

• Prior knowledge-based filtering is the most stringent of all. It collects all

potential genomic loci that can cause mis-mapping and excludes all RNA

editing residues found nearby (Li et al., 2009; Mo et al., 2014).

• Mapping error prone site estimation is a proactive approach that pre-

locates genomic loci that are prone to mapping errors and excludes RNA

editing residues from the loci (Peng et al., 2012). To find such loci, they

11



first synthesize RNA-seq, in which mismatches are intentionally inserted.

The generated RNA-seq is mapped to the genome sequence to be evalu-

ated. As a result, mismatches found in areas other than those that were

intended at the time of data generation are classified as sites that are

prone to mapping errors (Figure 2.1).

• Machine learning-based predictor is a method of using machine learning

algorithms to learn the difference between true and false-positive examples

and then to determine candidate residues based on the learned model

(St Laurent et al., 2013; Zhang and Xiao, 2015).

2.2 Motivation

Compared to the other two approaches, prior knowledge based filtering is rela-

tively näıve and has suspicious performance (Li et al., 2009; Mo et al., 2014).

Mapping error prone site estimation has shown better performance (Peng et al.,

2012), but it is impossible to simulate all possible conditions. Therefore, it lacks

generality. The machine learning-based predictor approach does not suffer from

this problem because it can generate generic predictors from training examples

(St Laurent et al., 2013; Zhang and Xiao, 2015). Also, according to a study

by St. Laurent et al., the predictive accuracy of the machine learning model is

quite high (87%) (St Laurent et al., 2013).

One problem with using machine learning approaches in RNA editing calls

is that current approaches require experimentally proven RNA editing sites to

generate models. Proactively verifying as many sites as necessary for a machine

learning model is costly and is not possible if there are not enough samples.

Therefore, a machine learning method is required to obtain training examples

directly from input data without experimental verification.

12



Figure 2.1: A flowchart for the mapping error prone site estimation process

(Peng et al., 2012). Mapping error prone sites (MES) are calculated as follows:

1) RNA-seq data with intentionally inserted mismatches are synthesized. 2) The

synthesized RNA-seq is mapped to the genome sequence. 3) After SNV call, mis-

matches found in unintended areas are classified as MES sites.

2.3 A preliminary study

The human genome has lots of loci with mis-mapping risks such as inherent du-

plicates and repeats, splice sites, and individual polymorphisms. And the short

sequence read length of RNA-seq makes all of this worse (Degner et al., 2009;

Heap et al., 2010; Engström et al., 2013). A preliminary study was conducted

to evaluate the impact of mis-mapping on false-positive RNA editing calls. The

test process is as follows (Figure 2.2).

1. Ten RNA-seq data were synthesized, each with 10 million paired-end reads

(100bp x 2). Where random single nucleotide variations (SNVs) were in-

serted with a 1% probability for each read. The inserted 1% SNVs rep-

resent individual genetic differences, such as individual SNPs, somatic

mutations, and RNA editing.

2. RNA-STAR (Dobin et al., 2013), a state-of-the-art alignment tool in terms

of base accuracy (Engström et al., 2013), was used to align the RNA-seq

data with the human genome (hg19 build).
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Figure 2.2: A schematic of the preliminary test process.

Mapped Reads Mapped Residues Raw SNVs false-positives Standard Caller Failed

ITER 1 9,734,787 80,552,288 8,872,433 8,358,426 350,694

ITER 2 9,735,558 80,558,479 8,878,304 8,365,007 350,670

ITER 3 9,733,473 80,568,898 8,880,681 8,366,553 350,136

ITER 4 9,733,159 80,570,416 8,879,502 8,365,311 350,442

ITER 5 9,733,939 80,545,810 8,853,408 8,339,822 350,332

ITER 6 9,733,507 80,542,007 8,838,870 8,326,074 350,917

ITER 7 9,734,222 80,555,307 8,859,741 8,346,628 350,390

ITER 8 9,735,046 80,562,701 8,874,369 8,361,655 350,807

ITER 9 9,733,971 80,555,609 8,852,720 8,339,866 350,059

ITER 10 9,734,717 80,542,143 8,863,065 8,350,655 350,809

AVG 9,734,238 80,555,366 8,865,309 8,352,000 350,526

Table 2.1: A table for preliminary test results.

3. Standard SNV callers such as samtools (Li, 2011) and GATK (McKenna

et al., 2010) have been applied to filter out false-positives in the results.

Table 2.1 summarizes the preliminary test results. On average, 10 million

reads result in 8.35 million false-positive residues. Of these, 350,000 residues

(4.20%) could not be filtered by overlapping two standard SNV callers (ie,

samtools and GATK). The result suggests that when producing 10 million RNA-

seq reads to detect RNA editing, there is a risk of 350,000 false-positives on

average, which are difficult to filter with standard SNV callers.
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2.4 Methods

RDDpred uses prior knowledge bases to extract positive and negative training

examples from input data. The whole process is as follows (Figure 2.3).

Input preparation

The RNA-seq data must be properly aligned and converted to BAM file format

for input to RDDpred. After receiving the RNA-seq data, RDDpred processes

each data using the built-in standard SNV caller samtools-bcftools (Li, 2011).

SNVs detected by the standard SNV caller samtools-bcftools are considered

candidates for RNA editing.

Preparation of positive training examples

There are two well-organized RNA editing databases called DARNED (Kiran

and Baranov, 2010) and RADAR (Ramaswami and Li, 2013). RDDpred queries

each RNA editing candidate for each database and considers the residues con-

tained in the database as positive examples.

Preparation of negative training examples

As mentioned, mis-mapping is a major cause of false-positives in RNA editing

calls (Bass et al., 2012). Therefore, RDDpred prepares negative training exam-

ples using the mapping error prone site estimation method (Figure 2.1) (Peng

et al., 2012).

Input feature description

RDDpred constructs a random forest model using 15 features that reflect the

local read alignment pattern. The local read alignment pattern is the local state
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of the alignment near the SNV. There are at least six categories of attributes

calculated from local read alignment patterns such as Read Depth, Allele Segre-

gation, Mapping Quality, Read Position, Base Quality, and Read Strand. The

samtools-bcftools pipeline provides 15 statistics in six categories (Table 2.2).

Each of the 15 features in the six categories has the following meanings.

• The Read Depth category contains the ReadDepth attribute, which indi-

cates the number of RNA-seq reads that cover each SNV residue.

• The Allele Segregation category contains four attributes, including VAF,

SGB, FQ, and CallQual, and is calculated based on the allele ratio of each

SNV.

• The Mapping Quality category includes four attributes, PV3, MQB, MQ0F,

and MQ, which are calculated based on the quality of the mappings gen-

erated by the aligner and generally indicate whether the reads are multi-

mapped.

• The Read Position category contains three attributes, including VDB,

RPB, and PV4, which indicate how the relative position of the SNV is

biased for each RNA-seq read. When overly biased, it usually indicates a

mis-mapping.

• The Base Quality category includes two attributes, PV2 and BQB, which

indicate whether the low-quality base is highly biased for each SNV, where

the base quality is evaluated by the sequencing machine.

• The Read Strand category contains the PV1 attribute, which indicates

how biased the strand of the read with the SNV is.
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Category Name Description

Read Depth ReadDepth Read depth

Allele Segregation VAF Variant read ratio

Allele Segregation SGB Segregation based metric

Allele Segregation FQ Phred probability of all samples being the same

Allele Segregation CallQual Variant/reference QUALity

Mapping Quality PV3 Mapping quality bias

Mapping Quality MQB Mann-Whitney U test of Mapping Quality Bias

Mapping Quality MQ0F Fraction of MQ0 reads

Mapping Quality MQ Root-mean-square mapping quality of covering reads

Read Position VDB
Variant Distance Bias for filtering splice-site artefacts in

RNA-seq data

Read Position RPB Mann-Whitney U test of Read Position Bias

Read Position PV4 Tail distance bias

Base Quality PV2 Base quality bias

Base Quality BQB Mann-Whitney U test of Base Quality Bias

Read Strand PV1 Read strand bias

Table 2.2: A table for the 15 input variables used in the Random Forest model.
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Figure 2.3: A flowchart of total workflow for RDDpred.

2.5 Results

2.5.1 Design of experiments for evaluation

RDDpred was evaluated using the results of two previous studies conducted by

Bahn et al. and Peng et al., respectively (Peng et al., 2012; Bahn et al., 2012).

Both studies computationally predicted RNA editing sites and validated them

with Sanger-seq. The details of the two studies are as follows.
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• In the study by Bahn et al. (SRA accession: SRP009659), they collected

samples of human glioblastoma astrocytoma and generated 115,132,348

RNA-seq reads. After processing the reads, they predicted 4,141 RNA

editing residues as true editing, of which 47 residues were tested with

Sanger-seq. They found that 19 residues (40.43%) were false-positives.

• In the study by Peng et al. (SRA accession: SRP007605), they collected

samples of human lymphoblastoid and generated 583,640,030 RNA-seq

reads. After processing the reads, they predicted 22,688 RNA editing

residues as true editing, of which 123 residues were tested with Sanger-seq.

They found that 29 residues (23.58%) were false-positives.

2.5.2 Evaluation using data from Bahn et al.

RDDpred detected 6,856,440 RNA-DNA differences (RDD) as a result of pri-

mary detection in the 115,132,348 RNA-seq reads produced by Bahn et al. Here,

RDD means SNV not found in matched DNA-seq but found only in RNA-

seq. RDDpred filtered 6,750,876 residues (98.46%) and predicted the remaining

105,564 residues as true editing.

Overall, the RDDpred results included 3,947 (95.32%) of the 4,141 residues

reported by Bahn et al. In the residues tested with Sanger-seq, the result con-

tained 18 of the 47 residues (38.30%), of which 3 were false-positives (16.67%)

(Table 2.3).

2.5.3 Evaluation using data from Peng et al.

RDDpred detected 58,666,976 RNA-DNA differences (RDD) as a result of pri-

mary detection in the 583,640,030 RNA-seq reads produced by Bahn et al. Here,

RDD means SNV not found in matched DNA-seq but found only in RNA-
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Bahn et al. RDDpred Accept RDDpred Reject Sum

True Positive 15 13 28

false-positive 3 16 19

Sum 18 29 47

Table 2.3: A table for evaluation results using data of Bahn et al.

Peng et al. RDDpred Accept RDDpred Reject Sum

True Positive 73 21 94

false-positive 7 22 29

Sum 80 43 123

Table 2.4: A table for evaluation results using data of Peng et al.

seq. RDDpred filtered 6,750,876 residues (94.76%) and predicted the remaining

3,076,908 residues as true editing.

Overall, the RDDpred results included 20,504 (90.37%) of the 22,688 residues

reported by Peng et al. In the residues tested with Sanger-seq, the result con-

tained 80 of the 123 residues (65.04%), of which 7 were false-positives (8.75%)

(Table 2.4).

2.6 Discussion

Evaluation using the results of previous two studies

Overall, the RDDpred results included most of the residues reported in the

two studies (Bahn: 95.32%, Peng: 90.37%). This means that RDDpred has

successfully reproduced their results. Also, RDDpred results in residues tested

with Sanger-seq contained significantly fewer false-positives compared to the

residues reported in each study (Bahn: 40.43% ⇒ 16.67%, Peng: 23.58% ⇒
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8.75%). This means that RDDpred has more robust performance than previous

approaches. Note that in both comparisons, the residues tested with Sanger-seq

were excluded from the training phase of RDDpred for a fair comparison.

Evaluation of feature importance

The 15 input features were evaluated for their ability to distinguish false-

positive RNA editing calls. They were evaluated by calculating the information

gain using WEKA (Hall et al., 2009). Table 2.5 summarizes the evaluation re-

sults. The top five features are contained in two categories, Allele Segregation,

and Base Quality. Allele Segregation represents the number of reads that sup-

port SNV, and Base Quality represents the quality of sequencing generated by

the sequencing machine (Li, 2011). It means that the most important features

distinguishing true and false-positive RNA editing are the SNV allele ratio and

the base quality evaluated by a sequencing machine.

Software specification

RDDpred was developed as a software package with WEKA, a data mining

package, to train a prediction model (Hall et al., 2009). The Random Forest

algorithm was chosen because it showed a good performance in the study by St.

Laurent et al. (St Laurent et al., 2013). RDDpred was tested in a Linux envi-

ronment with Python (2.7.3), Samtools-Bcftools (1.2.1), and WEKA (3.6.12).

RDDpred can get input from any type of alignment method that provides BAM

format output. However, RNA-STAR is recommended for high overall accuracy

and high performance (Engström et al., 2013; Dobin et al., 2013). RDDpred is

available free of charge at http://biohealth.snu.ac.kr/software/RDDpred/.

Also, to provide information about actual execution time and memory usage,

RDDpred tested with the data of Peng et al. (Peng et al., 2012). RDDpred took

21



Category Name Bahn et al. Peng et al. Avg. Rank

Allele Segregation FQ 0.6124 0.3319 2

Base Quality PV2 0.4746 0.4611 3

Allele Segregation VAF 0.5526 0.3268 3.5

Allele Segregation CallQual 0.5737 0.1958 4

Base Quality BQB 0.425 0.3428 4

Read Depth ReadDepth 0.4943 0.2515 4.5

Read Position PV4 0.234 0.1615 7.5

Read Position RPB 0.2545 0.0712 8.5

Read Position VDB 0.0988 0.073 9.5

Mapping Quality MQ0F 0 0.0785 11

Allele Segregation SGB 0.0932 0.0368 11.5

Read Strand PV1 0.1584 0.0216 11.5

Mapping Quality MQ 0 0.0591 12.5

Mapping Quality MQB 0.0401 0.0367 12.5

Mapping Quality PV3 0 0.0137 14.5

Table 2.5: A table for input feature evaluation results.
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18.33 hours to process 583,640,030 of 101,787,059,720 bases, which is a level that

does not hinder the general bioinformatics study. The machine specifications

specified in the experiment are as follows.

• Linux version: Linux version 2.6.32-358.el6.x86 64, CentOS release 6.4

• Memory usage: 20GB in maximum

• CPU usage: 20 cores (Intel(R) Xeon(R) CPU E5645 @ 2.40GHz)

2.7 Conclusion

There are limitations to existing methods such as non-machine learning meth-

ods lacking generality and machine learning methods requiring extensive proac-

tive experimental validation. RDDpred is a machine learning technique that

overcomes these limitations. It uses prior knowledge bases to extract training

samples directly from the input data and then generates machine learning pre-

dictors specific to the input conditions. This condition-specific nature makes

the model generally have good performance. RDDpred was tested using the re-

sults of two previous studies and showed good results by significantly reducing

the false-positive rate while reproducing most of the residues reported in both

studies.
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Chapter 3

SpliceHetero: An
information-theoretic approach for
measuring spliceomic intratumor
heterogeneity from bulk tumor
RNA-seq data

3.1 Related works

ITH can be deduced using molecular profiles of various domains such as genome,

epigenome and transcriptome domain. Approaches using each domain have been

used to assess the level of ITH in cancer tissues and to identify molecular

features associated with tumor evolution (Table 1.1). For example, two ITH

studies using genomic variation have revealed somatic mutations that are closely

related to tumor evolution in various types of cancer (Carter et al., 2012; Roth

et al., 2014). Methylomic and transcriptomic (gene expression) methods for

measuring ITH in bulk tumors have been developed and identified important

molecular features (Park et al., 2016; Mazor et al., 2016).
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Genome-level ITH has been extensively studied using bulk tumor sequenc-

ing data. ABSOLUTE (Carter et al., 2012) is a genomic ITH model that uses

somatic cell mutations and CNV profiles of bulk tumors to infer ITH. ABSO-

LUTE estimated the optimal values of cancer purity and ploidy using a linear

programming technique and then estimated the subclonal genome fraction (ie,

ITH). A slightly different approach was used in PyClone (Roth et al., 2014).

PyClone used the Bayesian model to define the generative relationship between

the number of subclones and the observed genomic variation and then used the

Bayesian clustering algorithm to select the optimal number of subclones that

best fit the observed data.

Recently, an ITH model using a methylation profile was developed. Methyla-

tion does not alter the DNA sequence but is linked to genomic DNA. Thus, the

DNA methylation pattern has similar characteristics to the genomic variants.

For example, both consider both alleles of each locus corresponding to each

pair of homologous chromosomes. When bisulfite-seq is used, the methylated

base detection process is similar to somatic mutation. Thus, the methylomic

ITH (or mITH) model proposed by Mazor et al. used a mathematical modeling

approach similar to the genomic profile based model (Mazor et al., 2016)

A transcriptome-level ITH model was recently developed (Park et al., 2016).

They used information theory to estimate ITH in bulk tumors. They proposed

an interesting idea to consider ITH as the difference in gene expression dis-

tribution between normal tissue and bulk tumors. They first used a curated

database of molecular pathways, such as the KEGG database (Kanehisa et al.,

2016), to construct a template network and construct a probability distribu-

tion for each pathway. The divergence between normal tissue and bulk tumor

samples is then calculated by the average Jensen-Shannon Divergence (JSD) of

each probability distribution for each pathway. This divergence was considered
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to be transcriptomic ITH (tITH) for each sample and was found to be related

to clonal evolution and prognostic features.

The presence of intercellular spliceomic differences has been suggested by

studies published over the past decade (Rajan et al., 2009; Wan and Larson,

2018). A recent single-cell study showed that there is a clear difference in the

use of isoforms in bone marrow-derived dendritic cells (Shalek et al., 2013).

The clinical effect of spliceomic ITH (ie, sITH) has not been thoroughly studied

because there is no available sITH model.

3.2 Motivation

Bulk tumor RNA sequencing

In this study, ITH was measured using bulk tumor RNA-seq data. bulk tu-

mor RNA-seq is a technique that combines bulk sampling with short-read se-

quencing. A possible alternative for each part is single-cell analysis and single-

molecule real-time sequencing (SMRT-seq).

Single-cell analysis has been improved in terms of stability and efficiency

and has been used in many biological studies. This technique is very useful

for studying ITH because it provides a molecular profile of each cell composed

of bulk tumors (Patel et al., 2014). However, due to patient-to-patient het-

erogeneity, the reproducible cancer model requires extensive study of a large

group of patients. Thus, a single-cell approach is not feasible in this case. An-

other technology, SMRT-seq, is attracting much attention because of its long

read length and lack of bias due to cDNA amplification. However, sequencing

errors in SMRT-seq are still a problem and production costs are still very high.

Currently, major cancer consortia such as TCGA produce only bulk tumor

RNA-seq data. It is therefore difficult to obtain data with adequate clinical

26



information using the SMRT-seq platform or single-cell platform. Thus, this

study focused primarily on bulk tumor RNA-seq.

Difficulty in measuring spliceomic ITH

Since Park et al. (Park et al., 2016) proposed a good model for ITH at the RNA

level, spliceomic ITH (ie, sITH) is naturally defined by extending their method.

However, there are serious technical difficulties in extending their method to

sITH. First, tITH model by Park et al. (Park et al., 2016) requires a template

network to create a probability distribution that can not be used in this case.

Also, a recent study has reported the widespread intron retention of cancer cells

(Dvinge and Bradley, 2015), suggesting that the isoform of cancer cells is very

complex and not yet characterized. This problem is more difficult to solve due

to the short length of the RNA-seq read.

If you can assemble full-length transcripts from RNA-seq reads, measur-

ing spliceomic ITH will be much easier, even with cancer cells with complex

isoform patterns. However, due to the limited length of the RNA-seq read (<

200-bp), it is very difficult to assemble the entire transcript where all possible

combinations of splicing loci should be considered. To solve this problem, an

empirical method was used to directly combine two distant positions without

searching for all possibilities. This method combines two loci likely to result

from the same transcript using known gene annotation information (Trapnell

et al., 2010). However, extensive splice site mutations in cancer cells produce

many noncanonical splice sites that can not be joined because their gene anno-

tation is unknown (Jayasinghe et al., 2018). This noncanonical site, which can

not be assigned directly to a specific transcript, can increase the complexity of

transcriptome assembly and the possibility of assembly errors.

Therefore, there is a need to develop a new method for solving the above
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problems. The following sections describe the definition (method) and perfor-

mance (results) of our method.

Local analysis approach

As discussed in the previous section, transcript assembly in cancer is very diffi-

cult due to complex splicing patterns, noncanonical splice sites, and short-length

sequence reads. Therefore, a local analysis approach was devised to avoid tran-

scriptome assembly. In this scheme, all RNA-seq reads that support the splicing

event are locally separated and grouped, with each group corresponding to each

intron region (Figure 3.1). Spliced aligners such as RNA-STAR (Dobin et al.,

2013) align RNA reads with reference genome sequences and output mapped

positions on chromosomes.

Because RNA-seq is derived from mature mRNA transcripts, the spliced

region remains a gap in the resulting alignment. The aligner collects the spliced

gaps and organizes them into splice sites (ie, the ends of the intron). As a result,

the aligner lists the position of each splice site on the chromosome observed in a

given RNA-seq and the number of supporting reads. The list of splice junctions

extracted from the RNA-seq of each bulk tumor is the input data to construct

our model (Figure 3.1).

A local unit is then defined, called an intronic splicing unit (or splicing

unit), which is a collection of splicing events for each intron (Figure 3.1). In

this scheme, splice junctions sharing a common splice site are grouped into a

single unit. As in Figure 3.1, if three splice junctions are sharing a common

splice site upstream and three alternate sites downstream, a splicing unit S

consisting of A, B, and C can be defined. Where the input variable is defined

by the junction count of A, B and C (ie, CNTS=(5, 3, 2), Equation 3.1). The

probability distribution of S can be obtained by dividing the sum of the total
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observations (ie, PS=(0.5, 0.3, 0.2) (Equation 3.1).

Pk(i) =
CNTk(i)

Nk∑
j=1

CNTk(j)

(3.1)

Where CNTk(i) represents the number of RNA-seq reads that support i-th

alternative splice site in k-th splicing unit. Pk(i) is the fraction of RNA-seq

reads that support the i-th splice site of the k-th splicing unit. Nk is the total

number of alternative sites in k-th splicing unit.

3.3 A preliminary study

An experiment was conducted to test the effectiveness of the local analysis

approach. The key question is whether the ITH measured locally (ie, intron-level

ITH) is capable of reproducing ITH at the whole-transcript level. The TP53

gene was chosen because of its well-known implications for cancer progression

and its well-characterized isoform structure. TP53 has 15 isoforms and 12 exons

(O’Leary et al., 2015), which are complex enough to be used in experiments.

1,000 RNA-seq samples containing various combinations of 15 isoforms were

randomly generated. The RNA-seq simulation was performed using the well-

known NGS-seq generator WgSim (CMD: wgsim -e0 -r0 -R0 -X0 -S0 -A1 -d

500 -s 50) (MIT, 2011). The ITH of each sample was measured by the Shannon

entropy of the isoform usage profile, as in the study by Graf et al. (Graf and

Zavodszky, 2017). Where the value represents the uncertainty or heterogeneity

at the spliceome level (Equation 3.2).

ITHtranscript = −
N∑

i=1

P (i)logP (i) (3.2)
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Figure 3.1: An illustration for intronic junction unit. An intronic splicing unit

is defined as a set of splicing events that share a common splicing site (ie, donor

or receiver) in the intronic domain. Each intronic splicing unit consists of an

isoform usage distribution of each sample in each locus. Here, the splice-site usage

distribution is calculated by the number of RNA-seq reads that support each

alternative splice-site (shown in red, purple, and green in the figure).
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Where P represents the TP53 isoform usage profile for each sample and N is

the total number of isoforms. Therefore, P (i) represents the ratio of isoform use

of i-th isoform of TP53 . The ITHtranscript represents the whole-transcript level

ITH determined by the predefined isoform usage profile, randomly assigned

to each sample. On the other hand, the local level ITH was measured using a

local splice-site usage distribution (Equation 3.1) extracted from 1,000 RNA-seq

samples. ITHintron represents the locally measured ITH defined as Equation

3.3.

ITHintron = − 1

L

L∑

k=1

Nk∑

i=1

Pk(i)logPk(i) (3.3)

Where Pk represents the isoform usage profile of the k-th splicing unit of TP53

gene and Nk is the number of isoforms in k-th splicing unit. Therefore, Pk(i)

represents the ratio of isoform usage of the i-th isoform in the k-th splicing unit.

Finally, L is the number of local splicing units in the TP53 gene. The locally

estimated ITH was shown to successfully reproduce the whole transcript level

ITH (Pearson r = 0.66, p = 1.63e-121) (Figure 3.2).

3.4 Methods

Normal tissues are also known to have heterogeneity in the use of isoforms

between cells (Shalek et al., 2013). To address this, the spliceomic ITH (ie, sITH)

was defined as the distance from the normal tissue sample to the bulk tumor

sample. By doing so, the model is expected to eliminate the innate heterogeneity

that exists in normal tissues, leaving only the perturbations that occur during

cancer progression.

The Jensen-Shannon Divergence (JSD) was chosen to measure the distance

between two data points. JSD is defined by averaging bidirectional Kullback-
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Figure 3.2: A scatter plot showing the correlation between the whole-transcript

level ITH and the locally estimated ITH in the TP53 gene. The X-axis represents

the whole-transcript level ITH (ie, ITHtranscript) and the Y-axis represents the

locally estimated ITH by averaging locally measured ITH (ie, ITHintron). Each

value is calculated from 1,000 simulated RNA-seq data.

Leibler Divergences (KLDs) from the introduced intermediate data points (Equa-

tion 3.4) (Lin, 1991; Joyce, 2011). Then JSD gets the symmetric property and

the metric value is limited from 0 to 1 (if you are using a base 2 log). JSD

has been used in bioinformatics studies for its symmetric property (Capra and

Singh, 2007; Azad and Li, 2012). We have defined input variables represent-

ing the distribution of isoform usage for each sample of each locus as a JSD

computable form (Equation 3.1).

JSD can be calculated for each intronic region (Equation 3.4). Because each

input variable is intended to reflect the use of the splice site at each intronic

region, the JSD between the two samples indicates how much the two samples

differ in their use of the splice site in that intronic region. This distance is scaled
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from 0 to 1. Where 0 means that the splice site usage pattern is the same and 1

is completely different. After calculating the JSD for each splicing unit, a single

ITH indicator representing the entire spliceome is calculated by averaging the

JSD of all units (Equation 3.7). The detailed calculation procedure of sITH is

as follows.

JSD(Pk, Qk) =
1

2
(KLD(Pk||Mk) +KLD(Qk||Mk)) (3.4)

KLD(Pk||Mk) = −
Nk∑

i=1

Pk(i)log
Pk(i)

Mk(i)
(3.5)

Mk(i) =
1

2
(Pk(i) +Qk(i)) (3.6)

JSD(Pk, Qk) represents the Jensen-Shannon divergence between the two distri-

butions Pk and Qk. Where Pk and Qk denote the splice-site usage distribution

of the k-th splicing unit in samples P and Q, respectively. Note that Pk and

Qk are defined in Equation 3.1. Mk represents the intermediate distribution

introduced between two distributions Pk and Qk designed to calculate bidi-

rectional Kullback-Leibler divergence (Equation 3.6). KLD(Pk‖Mk) represents

the Kullback-Leibler divergence of the distribution Pk from Mk. Two samples

can have different sets of splice sites. In that case, the pseudo-count is added

to the splice site, which is not found in one sample, where the pseudo-count

is calculated to be 1/100 of the total number of reads in the corresponding

splicing unit.

sITH(P,Q) =
1

L

L∑

k=1

JSD(Pk, Qk) (3.7)

sITH(P,Q) represents the increased sITH of a sample P from the origin sample

Q to be compared. In the actual case, the target sample P corresponds to a

bulk tumor sample, and the origin sample Q corresponds to a normal sample. In
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Figure 3.3: An illustration of how cancer progression affects splice-site usage

distribution and spliceomic ITH. Clonal heterogeneity increases as a result of

cancer progression, which changes the distribution of splice site use in bulk tumors.

The sITH is also designed to increase accordingly.

this case, sITH(P,Q) may be called sITH of sample P for convenience (Figure

3.3). L represents the total number of splicing units (usually 20∼30 thousands

units found in human cancer tissue). Here, the two samples to be compared

are pre-processed using the pseudo counting described above to have the same

number of splicing units for compatibility. Therefore, the i-th splicing unit of

samples P and Q represents the same intronic region.

The next section is a series of experiments to test whether sITH can function

as an ITH indicator and whether it is related to pathological, prognostic, and

molecular characteristics.
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3.5 Results & Discussion

Three experiments were performed to evaluate the proposed method using 1)

synthetic data, 2) xenograft tumor data, and 3) TCGA pan-cancer data.

3.5.1 Synthetic data

The first experiment was performed using synthetic data mixed with normal

breast tissue data with single breast cancer data. The purpose of this experiment

was to test how the sITH of the mixed sample changes as the mixing ratio

increases. The preparation method of the mixture is as follows.

112 Normal breast tissue RNA-seq data were collected from TCGA-BRCA

(Network et al., 2012). Then 39 single-cell breast cancer data were collected

from a study (SRA accession: SRP159204) (Zhu et al., 2018), where the 39 cells

were derived from different clones of a single breast tumor. Each RNA-seq data

was processed to obtain the splicing junctions, and the samples were combined

in various combinations. Our goal at this stage was to specify a predefined level

of ITH in each of the synthetic mixture samples. Initially, normal tissue data

were randomly selected from the pool of 112 normal tissues. Then, a certain

number of single-cell data were randomly selected, ranging from 1 ∼ 39. The

number of selected single-cells represents the ITH level of the mixture. Selected

single-cells were mixed into normal tissue at a rate of 1% per cell. For example,

if you set the predefined ITH level to 10, the 10 selected single-cell data will be

blended into normal tissue data at a 1% rate (10% total) for each cell. Here,

the mixing is performed by a weighted sum of the splicing junction counts for

each data (Equation 3.8).

MIX(i, j) = NT (j) ∗ (1− i/100) +
i∑

l=1

(SC(l, j)/100) (3.8)
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Where i represents the assigned ITH level and j represents the j-th junction of

the mixture sample. MIX(i, j) represents the count of the j-th junction of the

resulted mixture sample with i ITH level. NT (j) represents the count of j-th

junction in the selected normal tissue sample. SC(l, j) represents the number

of j-th junction in the l-th selected single-cell cancer sample. Each of the 39

ITH levels was repeated 10 times with random sampling to avoid sampling

bias. For example, for ITH level 20, a normal tissue data and 20 single-cell data

are randomly selected 10 times each. Thus, a total of 390 mixture samples were

synthesized (10 iterations per 39 ITH levels). In conclusion, samples mixed with

more single-cells are expected to have a larger ITH by design.

sITH is measured from the origin sample to the target sample distance. In

this case, each mixture sample was a target sample, and the normal sample

corresponding to each mixture sample was the origin sample. Therefore, the

sITH of each mixture shows increased heterogeneity by mixing single-cells. The

resulting plot is depicted in Figure 3.4, showing a strong association between

the number of mixed single-cells and sITHs (Spearman: r=0.95, p=4.38e-198).

3.5.2 Xenograft tumor data

The main limitation of the previous synthetic data experiment is the lack of an

appropriate evolutionary model in the mixture generation. A xenograft tumor

data (SRA accession: SRP050242) was used to experiment with conditions that

reflect the actual clonal evolution (Chen et al., 2015). The xenograft mouse

model used in the experiments originally originated from the human breast

cancer cell line (MCF10A).

Cell lines were treated with HRAS transduction before transplantation

to enhance malignancy. After the single-cell origin derived from MCF10A-

HRAS was transplanted into immunocompromised mice, the xenograft tissues
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Figure 3.4: A Boxplot to show the association between the number of synthesized

single-cells and the sITH of synthesized data. The X-axis represents the number

of mixed single-cells (1∼39). The Y-axis represents the sITH of the sample mixed

with the number of single-cells specified on the X-axis.

were cultured until the tumor had completely progressed and metastasized.

DNA and RNA samples were collected at various points during the process.

Thus, the trends in ITH values measured by two different data types (genome

and spliceome) can be compared as the tumor grows. A total of 10 samples

were collected while culturing xenograft tissue. They collected two samples for

metastatic tissue and one sample for each of the eight time-points. For each

sample, sITH was calculated from the normal breast tissue samples provided

by TCGA-BRCA (Network et al., 2012). Ten randomly selected samples are

assigned to each xenograft sample to avoid sampling bias. The sITH of each

xenograft sample is then iteratively calculated for each of the 10 normal sam-

ples.

The goal at this stage was to test how the sITH of a tumor changes as cancer

progresses and the clonal substructure expands. Initially, it was tested how sITH

changes over time. As shown in Figure 3.5-(a), sITH has a positive correlation
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Figure 3.5: Two boxplots of how the xenograft time-point and estimated sub-

clone numbers are associated with sITH. a) The X-axis represents when each

xenograft tumor sample was collected. The Y-axis represents the sITH for each

sample (including repeated measurements for 10 normal tissues randomly selected

for each tumor sample). b) Same as a) except that the X-axis represents the num-

ber of subclones estimated by PyClone.

with the time point (Spearman: r=0.88, p=1.39e-33), which means that sITH

increases as the cancer progresses. Next, it was tested how sITH changes as the

number of subclones increases. The study by Chen et al. (Chen et al., 2015) used

PyClone to give the estimated number of subclones in each sample, and these

values were compared to sITH. As shown in Figure 3.5-(b), sITH is strongly

correlated with the number of subclones (Spearman: r=0.86, p=6.09e-30), which

means that sITH increases as the clonal substructure expands.

3.5.3 TCGA pan-cancer data

There are more problems to consider in clinical cases. For example, unlike

xenograft samples that share a common ancestral cell, samples from actual

cancer patients originated from diverse populations. This heterogeneity between

patients due to various genetic backgrounds can be a confounding factor that
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might mask the actual ITH. It is also unclear whether the tissue of origin could

affect the outcome because only breast cancer tissues were tested in previous

experiments. Thus, a comprehensive pan-cancer level experiment was needed to

test whether sITH could overcome potential problems and demonstrate clinical

significance.

For this purpose, the TCGA pan-cancer dataset was used (Weinstein et al.,

2013). The TCGA pan-cancer dataset is a cancer cohort collective that includes

28 cohorts and 9,274 bulk tumor RNA-seq samples (Table 3.1). Corresponding

normal tissues are needed to calculate the sITH of bulk tumors, 8 of the 28

groups are excluded because there is no normal tissue. This means that 984

samples were excluded. Overall there are 8,290 available primary tumor samples

of 20 types of cancer (Table 3.1). The sITH of each bulk tumor was calculated

by processing 8,290 RNA-seq data before experimenting. The sITH of bulk

tumor samples in each cohort is calculated using the corresponding normal

tissue samples. For example, the TCGA breast cancer cohort (BRCA) has 1,093

primary bulk tumor RNA-seq samples and 112 normal tissue RNA-seq samples.

In this case, the sITH of each bulk tumor sample was calculated by averaging

the calculated sITHs for each of the 112 normal tissue samples.

The measured sITH values of each bulk tumor sample were compared with

clinical features such as genomic ITH (gITH), cancer stage, survival outcome

and PAM50 subtype. The following sections describe the comparison procedure

and the results.

Comparison with gITH

The gITH used in the experiment is the result of ABSOLUTE (Carter et al.,

2012). A study by TCGA provides gITH values for pan-cancer dataset (Wein-

stein et al., 2013). Of the 8,290 samples with sITH values, 7,594 samples had

39



DISEASE NT PT sITH gITH STAGE SURVIVAL PAM50

BRCA 112 1,093 1,086 1,013 995 322 480

KIPAN 129 889 889 659 632 287 0

GBMLGG 5 669 669 644 0 275 0

STES 46 599 599 558 522 232 0

HNSC 44 520 520 485 422 238 0

LUAD 59 515 515 489 487 210 0

LUSC 51 501 501 465 464 245 0

THCA 59 501 501 446 444 97 0

PRAD 52 497 497 469 0 87 0

BLCA 19 408 408 398 396 211 0

COADREAD 51 379 379 351 338 109 0

LIHC 50 371 371 354 333 155 0

CESC 3 304 304 291 0 99 0

SARC 2 259 259 242 0 125 0

PCPG 3 179 179 160 0 31 0

PAAD 4 178 178 158 156 91 0

UCEC 24 176 176 170 0 45 0

THYM 2 120 120 103 0 36 0

SKCM 1 103 103 103 99 29 0

CHOL 9 36 36 36 36 19 0

OV 0 303 0 0 0 0 0

LAML 0 173 0 0 0 0 0

TGCT 0 150 0 0 0 0 0

MESO 0 87 0 0 0 0 0

UVM 0 80 0 0 0 0 0

ACC 0 79 0 0 0 0 0

UCS 0 57 0 0 0 0 0

DLBC 0 48 0 0 0 0 0

SUM 725(20) 9,274(28) 8,290(20) 7,594(20) 5,324(13) 2,943(20) 480(1)

Table 3.1: A table for input feature evaluation results.
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matched gITH values, and the remaining 696 samples were not provided with

gITH values and were excluded from the comparison (Table 3.1).

The Spearman correlation test showed a strong correlation between sITH

and gITH (r=0.24, p=6.92e-100). To summarize the vast quantities of results,

a percentile boxplot was prepared (Figure 3.6). Where each box contains 10%

of the sample in ascending order of gITH. For example, the first box in Figure

3.6 contains samples with gITH rank between 0 and 10%, and the second box

contains 10% to 20% samples. The binned representation of Figure 3.6 is used

only for visualization, and the actual correlation test is performed by directly

comparing the sITH and gITH values of each sample.

gITH is the current golden standard for ITH levels in bulk tumors. Thus, it

was used as a reference standard for sITH in all of the following comparisons

Figure 3.6: A boxplot representing the relationship between gITH and sITH.

The X-axis consists of 10 bins that evenly divide the entire sample. Each bin

corresponds to a 10 percent scale percentile, ordered by the gITH value of each

sample. The result indicates a significant correlation between gITH and sITH.
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Comparison with cancer stage

The cancer stage is a well-known indicator of cancer progression, which is deter-

mined based on pathological observations of cancer tissues such as size, location,

the extent of invasion, and extent of spread. The level of ITH is generally related

to the progression of cancer.

Of the 7,594 samples containing both sITH and gITH, 5,324 samples also

have cancer stage information (Table 3.1). Figure 3.7 summarizes the correlation

between sITH, gITH and cancer stage in each sample. Both ITHs showed a

significant correlation with cancer stage, but sITH showed better association

(gITH: r=0.11, p=8.11e-17, sITH: r=0.24, p=2.43e-68). The result means that

the samples with higher cancer stages have a larger sITH value.

Association with survival outcome

Overall survival represents the survival time after treatment, which is the sur-

gical resection of the tumor in this context. The level of ITH in the tumor is

associated with the degree of malignancy of cancer, which in turn affects the

mortality rate of cancer patients (Morris et al., 2016). Therefore, the relation-

ship between sITH, gITH and the survival outcome of each sample was tested.

The Cox proportional hazards (Coxph) model was prepared to test 7,594

samples with both sITH and gITH (table 3.1). The Cox regression model is

designed to quantify the effect of sITH and gITH on overall survival, where

the magnitude of the association is expressed as a p-value. The ”CoxPHFit-

ter” function used in the experiment is included in the Python library lifelines

(0.21.0). The results of the analysis are summarized in Table 3.2.The results

show that sITH is significantly associated with overall survival (HR=1.85e+23,

p =1.04e-64). It is better than gITH (HR=3.8, p=1.95e-28).

42



Figure 3.7: A boxplot showing the association of sITH, gITH and cancer stages

in each sample. a) The X-axis represents the cancer stage of each sample (1 to 4

stages). The y-axis represents the sITH value of each sample. b) Same as a), but in

this case, the Y-axis represents the gITH value of each sample. The results show

that both sITH and gITH have a significant correlation with the cancer stage, and

the significance is greater in sITH. The sITH and gITH values were standardized

by dividing the maximum value between samples so that the distribution of the

data is easily understood.

An additional analysis was prepared to help visual understanding. Initially,

7,594 samples were classified into six groups with different survival outcomes.

The first five groups were classified by the time of death. For example, the

first group contains samples that died in the first year after treatment, and the

second group contains samples that died in the second year. The sixth group

includes samples reported to be alive for more than 5 years, where the 5-year

threshold is based on criteria commonly used to determine cancer remission. As

a result, 2,943 samples were classified into six survival groups and the remainder

were excluded because they could not be classified into six groups because of

the short follow-up period (Table 3.1).
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coef exp(coef) se(coef) z p value lower 0.95 upper 0.95

sITH 53.57 1.85E+23 3.15 16.99 1.04E-64 47.39 59.76

gITH 1.34 3.80 0.12 11.06 1.95E-28 1.1 1.57

Table 3.2: A table for Cox proportional hazards analysis results.

Figure 3.8 summarizes the association between sITH, gITH and the sur-

vival group of each sample. Both gITH and sITH were significantly corre-

lated with survival groups, whereas sITH showed better association (gITH: r=-

0.20, p=1.75e-27, sITH: r=-0.27, p=6.44e-51). The result indicates that sample

groups having higher lethality have a tendency to have greater sITH. The sam-

ple information for each sample group is summarized in Table 3.1.

Association with PAM50 subtype

One of the most studied cancer types in terms of the molecular level is breast

cancer, and breast cancer has a well-known molecular subtyping system, PAM50

((Parker et al., 2009)). PAM50 classifies breast tumors into four types: Luminal

A, Luminal B, Her2-enriched, and Basal. The order here indicates the degree of

malignancy. The associations of sITH, gITH, and PAM50 subtypes were tested.

Of the 1,013 breast cancer samples available for both sITH and gITH, 480

samples have PAM50 subtype information. Both ITHs showed a significant cor-

relation with the PAM50 subtype (Figure 3.9), while sITH showed a better

correlation (gITH: r=0.36, p=2.91e-16, sITH: r=0.61 , p= 1.11e-48). The ex-

periment results indicate that groups of samples that are expected to be more

malignant by molecular subtypes tend to have a higher sITH.
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Figure 3.8: A boxplot indicating the association between sITH, gITH and the

survival outcome of each sample. a) The X-axis represents a sample population

that is classified into the overall survival results of each sample (1YDEAD ∼
5Y DEAD, and 5Y SURVIVAL). For example, the 1Y DEAD group represents

a sample that dies within one year of surgery. Similarly, 2Y DEAD corresponds

to samples that died within two years of treatment. The remaining groups are

defined accordingly. Finally, the 5Y SURVIVAL group represents the samples that

survived 5 years after surgery. The Y-axis represents the sITH value of each

sample. b) Same as a). However, this time, the Y-axis represents the gITH value of

each sample. Both sITH and gITH showed a significant correlation with survival,

but sITH showed a better correlation than gITH. The sITH and gITH values

were standardized by dividing the maximum value between samples so that the

distribution of the data was easily understood.
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Figure 3.9: A boxplot indicating the association between sITH, gITH and the

PAM50 subtype of each breast cancer sample. a) The X-axis represents the PAM50

subtype of each sample sorted by the known malignancy order of each subtype.

The Y-axis represents the sITH value of each sample. b) Same as a). However,

this time, the Y-axis represents the gITH value of each sample. Both sITH and

gITH showed a significant correlation with PAM50 subtype, but sITH showed a

better correlation than gITH. The sITH and gITH values were standardized by

dividing the maximum value between samples so that the distribution of the data

was easily understood.

3.6 Conclusion

Despite studies that show intercellular differences at the spliceome level(Shalek

et al., 2013; Wan and Larson, 2018), the clinical effect of sITH has not been

studied sufficiently because there is no sITH model. SpliceHetero is a sITH

model based on local analysis approach that avoids transcriptome assembly

which is not easy in cancer RNA-seq. The proposed model was extensively

tested for its performance using synthetic data, xenograft tumor data, and

TCGA pan-cancer data. As a result, sITH has shown a strong association with
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cancer progression and clonal heterogeneity as well as clinically relevant features

such as cancer progression, survival outcome, and PAM50 subtype. Also, the

distribution of sITH values within each sample group appears more strict than

gITH (Figure 3.7, Figure 3.8 and Figure 3.9). That means sITH is a more

consistent indicator than gITH.

The proposed model can help to develop diagnostic and prognostic tools

by providing a tool to understand the inherent heterogeneity of cancerous

spliceome. The whole process is implemented as a software package and is

available free at http://biohealth.snu.ac.kr/software/SpliceHetero. It was im-

plemented in Python 2.7 and tested on CentOS Linux release 7 and Ubuntu

16.04, and 18.04.
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Chapter 4

Tumor2Vec: A supervised learning
algorithm for extracting
subnetwork representations of
cancer RNA-seq data using
protein interaction networks

4.1 Related works

Precision cancer medicine is a new form of medical practice that provides opti-

mal treatment for each cancer patient by considering the genetic and molecular

background as well as clinical history and pathology (Figure 4.1). The basic

idea is that medical decisions for each patient can be made by considering the

treatment records of previous patients with similar molecular profiles. Thus,

one of the major challenges of precision cancer medicine is defining a patient

subspace, where the patient-patient distance is defined based on the molecular

profile.

RNA-seq is one of the most promising techniques for extracting whole-
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Figure 4.1: An illustration for describing precision cancer medicine.

transcriptome profiles of cancer patients. However, the high-dimensional nature

of RNA-seq data (more than 20,000 genes to consider) makes it difficult to define

the optimal feature representation that can characterize each patient (Figure

4.2) (McGettigan, 2013; Shen et al., 2016). Because the cost of producing RNA-

seq data is still significant, a solution is needed to reduce the dimensionality of

the data. There are two main approaches to dealing with this problem.

1. The unsupervised dimension reduction approach mathematically elim-

inates data redundancy and provides component values that represent

each reduced embedding dimension as feature values.

2. The network-based transcriptome analysis approach removes the redun-

dancy of data by grouping genes into subnetwork modules using pro-

tein interaction networks and then integrating biologically interdependent

genes into a single feature.

The unsupervised dimension reduction approach has been used to reduce
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Figure 4.2: An illustration for describing the high-dimensionality issue in RNA-

seq.

the data dimension of RNA-seq and has shown particularly good performance

when visualizing a collection of data (Treutlein et al., 2014; Wang and Gu,

2018). One limitation of this approach is that it does not provide a biological

interpretation of the results. Researchers have to make their own interpreta-

tions, and sometimes the same data can lead to different conclusions depending

on the interpreter. The network-based transcriptome analysis approach has the

advantage that it provides intuitively interpretable subnetwork level features.

Subnetworks defined by protein interaction networks have been associated

with various biological phenotypes using a systems biology approach. Most cur-

rent approaches, however, rely heavily on feature engineering, which requires

domain expertise and manual curation (Yu et al., 2013; Xiong et al., 2017; Fan

et al., 2018). Two approaches have recently been introduced to extract subnet-

work features associated with specific biological phenotypes in an automated

manner.

1. Yuan et al. (Yuan et al., 2017) introduced a greedy search algorithm
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to find subnetwork features in a protein interaction network (PIN). They

defined subnetwork features starting from one gene to finding locally max-

imized boundaries in terms of defined perturbation scores.

2. Lin et al. (Lin et al., 2017) used a neural network model to find network-

based feature representations. They used knowledge bases containing gene

regulation structures such as TF networks and PINs to build selectively

connected neural network architectures. The internal weights, which are

calculated as a result after training the neural network, are considered to

be network-level features.

4.2 Motivation

The approach of Yuan et al. (Yuan et al., 2017) considered each local subnet-

work as an independent variable in assessing the impact on the corresponding

biological phenotype and did not consider their interactions. Therefore, this ap-

proach has limitations in dealing with complex diseases such as cancer, because,

in cancer, two or more intracellular processes interact to produce a cancer phe-

notype (Prahallad and Bernards, 2016). The approach of Lin et al. (Lin et al.,

2017) is free from this problem because it considers interactions between local

subnetworks by using a fully connected neural network architecture. However,

despite its high performance, this model has the limitation that it is not easy

to interpret its data representation. Therefore, there is a need for a supervised

learning model that automatically extracts features of the subnetwork level with

biological interpretability.
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4.3 Methods

Extraction of local subnetworks

Tumor2Vec uses the graph embedding technique applied to the PIN to deter-

mine the globally well-tuned local subnetwork community. Each community is

then considered a feature representation of the input data. The process is as

follows.

• First, protein interaction information is extracted from a well-organized

PIN database STRING. (Szklarczyk et al., 2018). The PIN graph is then

constructed from that information.

• The PIN graph is then processed by the graph embedding algorithm

DeepWalk (Figure 4.3) (Perozzi et al., 2014). Here, the graph embed-

ding algorithm is performed to find globally well-tuned local subnetwork

communities. Through graph embedding, each gene is transformed into

an embedding space where the intergenic distance represents the random

walk probability distribution of the original PIN graph (Perozzi et al.,

2014).

• K-means clustering is applied to all genes to find clusters, where the inter-

genic distance is measured using the coordinates in the embedding space.

Thus, the resulting clusters represent the local connection of the origi-

nal PIN graph (Perozzi et al., 2014). These clusters are considered local

subnetwork features (Figure 4.4).

Training of the kernel function

Recent supervised learning methods that rely on network-based features typi-

cally use explicit models (Conte et al., 2013) that learn functions that map input
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Figure 4.3: An illustration of the graph embedding process (Perozzi et al., 2014).

Figure 4.4: An illustration of the subnetwork clustering process.

variables to sample labels. For example, the approach of Lin et al. (Lin et al.,

2017) uses an explicit model in which a protein interaction network structure

is embedded within a neural network architecture. This approach is useful for

improving the performance of the backend prediction model, but it is limited

in that the resulting data representation does not provide a biological interpre-

tation. In this study, the implicit model (Conte et al., 2013) was used. In the

implicit model, the kernel function is trained to define the distance between
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samples, and the kernel’s objective function is specified so that the distance be-

tween samples can represent the label difference between samples. The training

process is as follows (Figure 4.5).

• First, input instances for training the kernel function are collected by a

pairwise sample comparison, and each pair of samples is considered an

instance.

• For each instance, distances are measured for each cluster. Since each

cluster is considered as a vector of the expression values of the included

genes, the distance means the distance between vectors.

• Sample label differences (ie, equality: 0 and other: 1) are assigned to each

sample pair, which is used as a target variable when training the kernel

function.

• The learning algorithm used in the kernel is a non-negative least squares

(NNLS) regression, which is implemented in the Python library scipy op-

timize nnls (Lawson and Hanson, 1995; Bro and De Jong, 1997). The

NNLS problem is to find a vector d (K) that minimizes the following ex-

pression (4.1) for given Z (N ×K) and x (N ×1). Here the d is the vector

of weights that corresponds to K clusters and Z is the inter-sample dis-

tances at each N instances K clusters and x represents the label difference

at each sample pair instances.

∥∥x− Zd2
∥∥ (4.1)

If dm is a m-th element of d and dm > 0, then dm, which is the weight of

the m-th cluster, represents the importance of that subnetwork commu-

nity. Where 0 means that the difference in gene expression in the cluster
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does not affect the label difference, and a larger value indicates greater

significance.

• After training the kernel, the distance between samples can be measured

as a weighted sum of the distance of each cluster of two samples.

Figure 4.5: An illustration showing the kernel function training process.

Construction of autoencoder for sample embedding calculation

Because the trained kernel functions provide only the distance between samples,

an additional step is needed to generate reduced embedding for each RNA-seq

sample. An autoencoder model was devised to calculate the sample embedding.

The process is as follows (Figure 4.6).

• First, the distance between all training samples is measured using the
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trained kernel. Each sample can then be defined as a vector of distances

for all other training samples.

• An autoencoder model (Bengio et al., 2009) is created that uses the vec-

tors of distances as input values and has the neural network architecture

specified by the user.

• After training the neural network, the embedding of each sample can

be calculated by taking the value of the bottleneck layer after forward

propagation.

• When data that has not yet been observed is input, the sample is first

measured for all training samples and the vector of distances is entered

into the autoencoder to generate the embedding.

Figure 4.6: An illustration showing the autoencoder training process process.
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4.4 Results & Discussion

4.4.1 Lymph node metastasis in early oral cancer

Tumor2Vec was tested in a cancer study to predict lymph node metastasis in

early oral cancer. The TCGA-HNSC dataset was used (Network et al., 2015).

The data configuration is as follows.

Materials

Of the 566 RNA-seq samples from TCGA-HNSC, only early oral carcinoma

samples with lymph node metastasis information were used. That is, tumor

samples classified as the oral tongue, alveolar ridge, hard plate, floor of mouth,

buccal mucosa, and oral cavity were used. The criterion for the early disease

is the pathological T stage within T1 ∼ T2. In conclusion, there are 60 early

oral cancer samples available for lymph node metastasis, 28 of which are pos-

itive for lymph node metastasis and 32 negatives. The PIN for subnetwork

extraction was extracted from the STRING protein-protein interaction (PPI)

network database (Szklarczyk et al., 2014). Interaction edges are filtered with

a combined score of 900 to eliminate low confidence interactions.

Results of analysis

The purpose of this analysis is to identify subnetwork level expression patterns

(ie, features) that affect lymph node metastasis in early oral cancer. The pro-

cessing of data is as follows.

• Gene expression profiles of 60 oral cancer samples generated by TCGA

were collected, which were measured by RSEM(Li and Dewey, 2011).

These cancer samples were normalized using 13 normal oral tissue samples

collected from TCGA. In this case, Z-normalization was used.
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• Since the available samples are relatively small, only 4,307 genes selected

as cancer hallmark gene set in MSigDB were used (Subramanian et al.,

2005). Of these, 865 genes are excluded because they are not PPI related

to other genes on the STRING PIN (based on edge score >900 cut). As

a result, 3,442 genes were used.

• The figure 4.7 is the result of using 91 clusters, and the optimal number

of clusters was determined within the range of 10 ∼ 200 by 5-fold cross-

validation.

• After the kernel was trained by this configuration, its weight indicates the

functional significance of each subnetwork and is displayed as a heatmap,

as shown in Figure 4.7-b. Then an autoencoder was created, in which

sample embeddings were calculated in two dimensions for visualization

and the results are shown in Figure 4.7-a.

• A simple classification model called Nearest Centroid classifier (Tibshirani

et al., 2002) was created to test how well the generated two-dimensional

sample embeddings distinguish sample labels. The results were 78.3% of

the training accuracy and 73.3% of the test accuracy.

Interpretation of subnetwork features

Feature importance of each cluster (ie, subnetwork feature) can be extracted

from the trained kernel. The clusters with the top three high scores are listed

in the table 4.1. The KEGG TOP3 column contains the geneset enrichment

results from Enrichr (Kuleshov et al., 2016), which lists the top three enrichment

score pathways. The genes in each cluster are closely linked according to the

STRING PPI (Figure 4.8, 4.9, 4.10). This indicates that graph embedding based
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Figure 4.7: Two plots for the results of early oral cancer analysis.

clustering captures the original PIN structure well.

Cluster 1: Subnetwork to regulate leukocyte cell adhesion

Cluster 1 contains genes associated with the tight junction, cell adhesion, and

leukocyte migration known to be closely associated with lymph node metastasis

in oral cancer (van den Brand et al., 2010; Kudo et al., 2004,?).

Figure 4.8: A plot showing the STRING PPI interaction between genes in Clus-

ter 1.
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Cluster Kernel Weight Size KEGG TOP3

1 0.233007846 16

Tight junction(10)

Cell adhesion molecules (CAMs) (9)

Leukocyte transendothelial migration(9)

2 0.185200417 5

Arginine and proline metabolism(3)

Glycine, serine and threonine metabolism(3)

Tight junction(2)

3 0.15502751 71

Th17 cell differentiation (18)

Inflammatory bowel disease (IBD) (16)

Cytokine-cytokine receptor interaction (46)

Table 4.1: A table of KEGG enrichment results for Top 3 important subnetwork

features.

Figure 4.9: A plot showing the STRING PPI interaction between genes in Clus-

ter 2.

4.5 Conclusion

Current dimensional reduction techniques have limitations in that they do not

provide a biological interpretation. Tumor2Vec is a machine learning model de-
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Figure 4.10: A plot showing the STRING PPI interaction between genes in

Cluster 3.

veloped to extract subnetwork features that best describe biological phenotype

while considering interactions among subnetworks in the training phase. It was

tested to identify subnetwork features associated with lymph node metastasis

with early oral cancer data. It was able to reproduce clinical knowledge and

identify potential subnetwork markers.
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Chapter 5

Conclusion

Due to the complex regulatory system, the transcriptome is essentially a mix-

ture containing various transcriptomic variations. This often makes it difficult

to see an overall picture of transcriptomic events that regulate biological pheno-

types. The goal of my doctoral study was to eliminate the barriers to decoding

and utilizing RNA-seq to uncover the landscape of key transcriptomic events.

Three key challenges have been addressed using machine learning techniques.

Each challenge is summarized as follows:

1. false-positives in RNA editing calls

2. Absence of a model for measuring spliceomic intratumor heterogeneity

considering complex cancer spliceome

3. Lack of biological interpretation of dimension reduction techniques using

gene expression

In the first study, RDDpred, a condition-specific machine learning model
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for filtering false-positive RNA editing calls in RNA-seq data, was developed.

There have been limitations to existing methods such as non-machine learning

methods lacking generality and machine learning methods requiring extensive

proactive experimental validation. RDDpred is a machine learning technique

that overcomes these limitations. It uses prior knowledge bases to extract train-

ing samples directly from the input data and then generates machine learning

predictors specific to the input conditions. RDDpred was tested using the re-

sults of two previous studies and showed good results by significantly reducing

the false-positive rate while reproducing most of the residues reported in both

studies.

In the second study, SpliceHetero, an information-theoretic approach for

measuring spliceomic intratumor heterogeneity from bulk tumor RNA-seq data,

was developed to solve technical problems caused by complex cancer spliceome.

Despite studies that show intercellular differences at the spliceome level, the

clinical effect of sITH has not been studied sufficiently because there is no

sITH model. SpliceHetero is a sITH model based on local analysis approach

that avoids transcriptome assembly which is not easy in cancer RNA-seq. The

proposed model was extensively tested for its performance using synthetic data,

xenograft tumor data, and TCGA pan-cancer data. As a result, sITH has shown

a strong association with cancer progression and clonal heterogeneity as well

as clinically relevant features such as cancer progression, survival outcome, and

PAM50 subtype.

In the last study, Tumor2Vec, a supervised learning algorithm for extracting

subnetwork representations of cancer RNA-seq data using protein interaction

networks, was developed. Current dimensional reduction techniques have limi-

tations in that they do not provide a biological interpretation. Tumor2Vec is a

machine learning model developed to extract subnetwork features that best de-
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scribe biological phenotype while considering interactions among subnetworks

in the training phase. It was tested to identify subnetwork features associated

with lymph node metastasis with early oral cancer data. It was able to repro-

duce clinical knowledge and identify potential subnetwork markers.

In conclusion, my doctoral study challenged three major barriers in decoding

and utilizing RNA-seq using machine learning techniques. It contributed to the

field of bioinformatics by providing solutions to key challenges and opened the

way to integrate three transcriptomic domains (ie, RNA editing, alternative

splicing, and gene expression) to see an overall picture of transcriptomic events.
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초록

진핵 세포 시스템에서는 mRNA 분자가 전사된 이후 완전히 처리되어 단백질로

번역될때까지여러단계의전사후조절과정을거치게된다.전사후조절과정은

RNA 편집, 선택적 접합, 선택적 아데닐화 등을 포함한다. 즉 어느 한 시점에서 전

사체를 들여다보면 그 내부는 다양한 중간체들의 혼합물로 구성되어 있는 것이다.

이러한 복잡한 조절 시스템 때문에 전사체를 전체적인 수준에서 이해하기가 쉽지

않다. 본 학위 연구는 RNA 시퀀싱 데이터를 해독하고 활용하기 위한 기계학습 기

법들에 대한 연구이며 RNA 편집, 선택적 접합 및 유전자 발현의 관점에서 수행된

세 가지 연구로 구성된다.

RNA 편집은 ADAR(A=>I) 과 APOBEC(C=>U) 두 가지 효소에 의해 촉매

되는 전사 후 RNA 서열 조절 기작이다. RNA 편집은 단백질 활성도, 선택적 접합

및 miRNA 표적 조절 등 다양한 세포 기작을 제어하는 것으로 알려진 중요한 새

포 내 조절 시스템이다. RNA 시퀀싱을 이용해 RNA 편집 현상을 검출하는 것은

RNA 편집 현상의 생물학적 기능을 이해하는 데에 매우 중요하다. 문제는 이 과

정에서 상당한 양의 위양성이 발생한다는 점이다. 샘플당 수만 개 이상 발생하는

RNA 편집 잔기들 모두를 실험적으로 검증할 수 없기 때문에 이를 걸러내기 위한

전산학적 모델이 요구된다. RDDpred는 RNA 시퀀싱 데이터로부터 RNA 편집

현상을 검출하는 과정에서 발생하는 위양성 잔기들을 기계학습 기술에 기반하여

구분하는 모델이다. RDDpred는 두 개의 기 발표된 RNA 편집 연구 데이터를

이용하여 검증되었다.

RNA시퀀싱기술이활용될수있는또하나의복잡한문제로접합체차원에서

의 종양 이질성 (ITH) 측정 문제가 있다. ITH는 암 조직을 구성하는 세포 집단의

다양성의 지표이며, 최근 출판된 연구들의 결과는 유전자 발현량 데이터에 기반

하여 측정된 전사체 수준에서의 ITH가 암 환자의 예후예측에 유용함을 시사한다.
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접합체는 유전자 발현량과 함께 전사체를 구성하는 주요 요소 중 하나이며 따라서

접합체 수준에서 ITH를 측정하는 것은 보다 전체적인 수준에서 전사체 ITH를

연구하기 위한 자연스러운 흐름이다. RNA 시퀀싱 데이터를 이용하여 암 접합체

수준에서 ITH를 측정하는 과정에는 복잡한 접합 패턴과 광범위한 인트론 연장 변

이 및 짧은 시퀀싱 판독 길이 등의 심각한 기술적 난관들이 있다. SpliceHetero는

이러한 문제들을 고려하여 접합체 수준에서의 ITH (즉, sITH)를 측정하기 위한

도구이며 내부적으로 정보이론을 활용한다. SpliceHetero는 시뮬레이션 데이터,

이종이식 종양 데이터 및 TCGA pan-cancer 데이터 등을 활용하여 광범위하게

검증되었으며 ITH를 잘 반영하는 것으로 확인되었다. 이뿐 아니라 sITH는 암의

진행과 암 환자의 예후 및 PAM50와 같은 잘 알려진 분자 아형들과도 높은 상관

관계를 가지는 것으로 확인되었다.

마지막 연구 주제는 유전자 발현량 데이터에 기반하여 특정 암 표현형에 특

이적인 환자 부분 공간을 정의하는 기계학습 알고리즘을 개발하는 것이다. RNA

시퀀싱 데이터는 암 환자의 유전자 발현량 프로파일을 얻는 데에 유용한 도구이지

만, 2만개이상의차원을가진매우고차원의데이터이기때문에실질적인용도로

사용되기 위해서는 그 차원의 크기를 축소할 필요가 있다. 이때 각 유전자들은

복잡하지만 고유한 방식으로 서로 상호작용한다는 점을 이용할 수 있다. 실험적으

로 검증된 단백질 간의 상호작용 정보를 모아 네트워크 형태로 묶은 것을 단백질

상호작용 네트워크 (혹은 PIN)라 부른다. 이 PIN을 활용하여 RNA 시퀀싱 데이

터의 차원을 줄이면서도 데이터로부터 생물학적으로 유의미한 특징들을 추출할

수 있다. Tumor2Vec은 이렇게 추출된 PIN 수준의 특징들을 활용하여 특정 암

표현형에 특이적인 환자 부분 공간을 정의한다. Tumor2Vec은 조기 구강 암에서

림프절 전이를 예측하기 위한 파일럿 연구에 적용되었으며 그 결과 RNA 시퀀싱

데이터의차원을줄여림프절전이예측모델을생성했고이과정에서암표현형을

잘 설명하는 PIN 수준의 특징들을 보존하는 데에도 성공했다.

주요어: RNA 시퀀싱, RNA 편집, 선택적 접합, 유전자 발현, 기계학습, 정보이론,

그래프 임베딩, 차원 축소, 오토인코더
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