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Abstract

Quantification of pathway activity using

RNA-seq data

Sangsoo Lim

Interdisciplinary Program in Bioinformatics

College of Natural Sciences

Seoul National University

Measuring the dynamics of RNA transcripts using RNA-seq data has become

routine in bioinformatics analyses. However, RNA-seq produces high-dimensional

transcriptome data on more than 20,000 genes in humans. This makes the inter-

pretation of the data extremely difficult given a relatively small set of samples.

Therefore, it is desirable to use well-summarized and widely-used information

such as biological pathways for better biological comprehension. However, sum-

marizing transcriptome data in terms of biological pathways is a very chal-

lenging task for several reasons. First, there is a huge information loss when

transforming transcriptome data to pathway space. For example, in humans,

only one third of the entire set of genes being analyzed are present in KEGG

pathways. Second, each pathway consists of many genes; thus, measuring path-

way activity requires a strategy to summarize expression profiles of component

genes into a single value, while considering relationship among the constituent

genes.
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My doctoral study aimed to develop a new method for pathway activity mea-

surement, and to perform extensive evaluation experiments on existing path-

way measurement tools in terms of multiple evaluation criteria. In addition, a

cloud-based system was constructed to deploy such tools, which facilitates users

analyzing their own data easily.

The first study is to develop a new method to summarize transcriptome data

in terms of pathways by using explicit transcript quantity information and con-

sidering relationship among genes in terms of their interactions. In this study,

I propose a novel concept of decomposing biological pathways into subsystems

by utilizing protein interaction network, pathway information, and RNA-seq

data. A subsystem activation score (SAS) was designed to measure the degree

of activation for each subsystem and each patient. This method revealed dis-

tinctive genome-wide activation patterns or landscapes of subsystems that are

differentially activated among samples as well as among breast cancer subtypes.

Next, we used SAS information for prognostic modeling by classification and

regression tree (CART) analysis. Eleven subgroups of patients, defined by the

10 most significant subsystems, were identified with maximal discrepancy in

survival outcome. Our model not only defined patient subgroups with similar

survival outcomes, but also provided patient-specific decision paths determined

by SAS status, suggesting functionally informative gene sets in breast cancer.

The second study aimed to systematically compare and evaluate thirteen

different pathway activity inference tools based on five comparison criteria us-

ing a pan-cancer data set. Although many pathway activity tools are available,

there is no comparative study on how effective these tools are in producing use-

ful information at the cohort level, enabling comparison of many samples. This

study has two major contributions. First, this study provides a comprehensive

survey on computational techniques used by existing pathway activity inference
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tools. Existing tools use different strategies and assume different requirements

on data: input transformation, use of labels, necessity of cohort-level input data,

use of gene relations and scoring metrics. Second, extensive evaluations were

conducted using five comparison criteria concerning the performance of these

tools. Starting from measuring how well a tool maintains the characteristics

of an original gene expression profile, robustness was also investigated by in-

troducing noise into gene expression data. Classification tasks on three clinical

variables were performed to evaluate the utility of tools.

The third study is to build a cloud-based system where a user provides

transcriptome data and measures pathway activities using the tools that were

used for the comparative study. When a user uploads input data to the system

and selects which preferred analysis tools are to be run, the system automati-

cally generates pathway activity values for each tool as well as a summary of

performance comparison for the selected tools. Users can also investigate which

pathways are significant in terms of the given sample information and visually

inspect genes within a pathway-linked KEGG rest API.

In conclusion, in my thesis, I sought to develop an analysis method regard-

ing biological pathways using high throughput gene expression data to compare

different types of tools with comprehensive criteria, and to arrange the tools

in a cloud-based system that is easily accessible. As pathways aggregate var-

ious molecular events among genes in to a single entity, the set of suggested

approaches will aid interpretation of high-throughput data as well as facilitate

integration of diverse data layers such as miRNA or DNA methylation profiles

being taken into consideration.

Keywords: biological pathway, pathway activity, protein-protein interaction,

biological network, gene expression, RNA-seq

Student Number: 2014-30099
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Chapter 1

Introduction

The phenotype of an organism is the outcome of the complex nature of biolog-

ical components such as genes, proteins or metabolites. Reflecting the central

dogma of molecular biology, it is now common practice to investigate biologi-

cal entities in a more comprehensive way such that their complex relationships

are well explained (Khatri et al., 2012). Their cooperative mechanisms work in

a highly correlated manner that together build several coordinated units. To

understand how biological entities are coordinated, it is necessary to use func-

tional annotations of them to improve the interpretability of given molecular

data sets (Mattson, 2004; Vogelstein and Kinzler, 2004; Reynard and Loughlin,

2013). One favorable approach is to utilize biological pathways.

A pathway is a series of relations involving molecules closely related in terms

of a certain biological context (Figure 1.1). Pathways contain not just molecular

entities, but also their regulatory/interactive information from biological find-

ings integrated over decades (Cary et al., 2005). Some pathways contain highly

complex relationships involving single entities of multiple biologically represen-
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Figure 2. An illustration of messenger RNA molecules

Figure 1.1: Example illustration of a biological pathway - ErbB signal-

ing pathway (Yarden and Sliwkowski, 2001). Pathways contain heteroge-

neous biological constituents as well as their regulatory/hierarchical relationships

to explain biological functions.

tative functions. Despite many researches on characterizing the role of genes

in terms of pathways, only one-third of all genes reside in pathway databases

(Khatri et al., 2012). Therefore, it is a challenging task to effectively utilize

pathway databases to compensate for such information loss.

One of the solutions suggested was to summarize component gene expression

values of each pathway to a single value, called pathway activity (Rahnenführer

et al., 2004). Calculating pathway activity is a quantitative way of explaining

the dynamics of a pathway using gene expression data. There are a variety of

such tools adapting external resources to better reflect complicated relationships

within a pathway (Mitrea et al., 2013; Jaakkola and Elo, 2015; Bayerlová et al.,

2015). However, some of the tools fail to reflect structural information among

2



the genes and comparative elaboration with previous tools.

1.1 Biological background

1.1.1 Biological pathways

Efforts have been made to integrate the rich information accumulated over the

decades to categorize genes according to their functional or molecular charac-

teristics (Haeussler et al., 2018; Sayers et al., 2019). This categorization was

dedicated to design a series of genes or constituents that are closely related so

as to build de novo entities – biological pathways. There are many pathway

databases available including the famous KEGG and Reactome (Kanehisa and

Goto, 2000; Croft et al., 2013) (Figure 1.2). They share the same basic idea of

building a single pathway from biological components that are closely related

in a certain context. In the meantime, the databases differentiate themselves by

focusing on specific biological context such as signaling or disease (Figure 1.3)

(Paz et al., 2010; Caspi et al., 2013).

1.1.2 Gene expression

The level of gene expression is in general considered to be the amount of messen-

ger RNA (mRNA) in a sample. It is a crucial molecular signature to understand

the dynamics of organisms (Ahr et al., 2001; Sotiriou and Pusztai, 2009; Liber-

zon et al., 2015). However, the fact that there are more than 20,000 genes to

be measured in human makes analyzing each gene, one at a time, difficult to

investigate the genome-wide landscape of mRNA profiles.

One of the breakthroughs in gene expression measurement was to use array-

based measurement techniques (TAUB et al., 1983). Genome-wide measurement

of mRNA levels became affordable since array-based measurement entered the

3



Figure 3. INTRO_PATHWAY_DATABASES
Figure 1.2: Pathway databases in terms of their popularity and size

(Bader et al., 2006). As databases have their own context, they were cat-

egorized into six different types: Metabolic Pathways, Protein-Protein Interac-

tions, Transcription Factors/Gene Regulatory Networks, Protein-Compound In-

teractions, Signaling Pathways, and others.

mainstream. Microarray technology gained its popularity due to its rapid mea-

surement of a large number of samples (Barrett et al., 2010). However, it re-

quires predesigned complementary DNA (cDNA) fragments matched to target

genes (or mRNAs). This becomes the bottleneck in finding new discoveries re-

garding the nature of RNA, as extensive splicing events cannot be detected

(Mortazavi et al., 2008; Sultan et al., 2008). It also has difficulty in measuring

absolute amounts of mRNA molecules. Reduced sensitivity to low abundance

mRNAs also sets another hurdle for its application to further genome-wide

studies. Meanwhile, DNA sequencing techniques, first released in 1977 (Sanger

4



Figure 4. Pathway example – cell cycle pathway from KEGG database
Figure 1.3: Cell cycle pathway of KEGG database (Kanehisa and Goto,

2000). There are proteins (genes) with relational information between them.

There are also links to other pathways as many important genes are shared among

pathways.

et al., 1977), were considered as a counterpart of array-based technologies as se-

quencing does not require template DNA fragments to read mRNA (or cDNA)

sequence. Once a primer is prepared against the target DNA fragment to be

sequenced, sequential light signals at four different wavelengths indicate which

character is present at the corresponding position.

Since the advent of high-throughput sequencing of genomic materials, mea-

suring gene expression profiles using RNA sequencing (RNA-seq) has become

routine in genome-wide molecular analysis of diseases (Kawashima et al., 2012;

5



Figure 5. RNA-seq protocol
Figure 1.4: Overview of RNA-seq analysis protocol (Avraham et al.,

2016).
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Wang et al., 2009; Trapnell et al., 2010). RNA-seq generates sequence reads

from captured mRNA molecules in a massively parallel manner that results in

a huge number of sequence records (Figure 1.4). Many advantages of RNA-seq

over previous array-based measurements include higher dynamic range, greater

sensitivity, being unbiased and no limitations because of prior genomic knowl-

edge (Marioni et al., 2008; Zhao et al., 2014). RNA-seq provides unprecedented

opportunities in genome-wide projects, with greater numbers of samples being

analyzed at reduced cost (Hrdlickova et al., 2017). Several studies have also

demonstrated the usefulness of RNA-seq on large data sets (Park et al., 2012;

Lonsdale et al., 2013; Leiserson et al., 2015).

1.1.3 Pathway-based analysis

Most genome-wide studies focus on identifying differentially expressed genes

(DEGs) in gene expression data sets. However, there has been a paradigm shift

in interpreting the data from gene to pathway levels since the release of tailored

pathway databases (Slonim, 2002; Ravasz et al., 2002; Ge et al., 2003; Wagner

et al., 2007). This is because using pathways can empower identification of risk

factors for complex diseases by measuring the aggregate effects of individual

genes (Huang et al., 2008).

Pathway-based analysis is to identify pathways that are statistically signif-

icantly enriched with genes of interest at a certain confidence level. This type

of analysis gained its popularity in elucidating mechanisms of complex diseases

(Emmert-Streib and Glazko, 2011). Such methods, in general, adapt statistical

or machine learning-based techniques to investigate significance. GSEA (Subra-

manian et al., 2005) and DAVID (Huang et al., 2007) are two major examples

of tools employed to investigate enrichment of certain pathways or ontologies

from given gene list. Both tools measure significance based on how many genes

7



are statistically enriched in a pathway. PARADIGM (Vaske et al., 2010) is a

tool aimed at modeling actual known relationships within a pathway by using

Bayesian network approaches.

1.1.4 Pathway activity measurement

In addition to simply identifying pathways enriched with DEGs or genes of

interest, other approaches have focused on assigning a score for each pathway

(Rahnenführer et al., 2004). Compared to conventional pathway-based analy-

sis, calculating pathway activity values throughout the samples and pathways

can identify individual variation in the samples. For example, GSVA uses a

non-parametric approach to identify the degree of perturbation to pathways

(Hänzelmann et al., 2013). GSVA further divides itself into two subsequent

tools (GSVAmax and GSVAdif) to better reflect the nature of input gene ex-

pression data. Meanwhile, PLAGE (Tomfohr et al., 2005) simply uses the first

principal component of each pathway genes as pathway activity. These meth-

ods can be extended to build a machine learning model for disease classification

problems (Gatza et al., 2010).

Some tools were revisited in previous reviews to help understand the differ-

ences between them, and focusing on the ability to identify known significant

pathways (Mitrea et al., 2013; Jin et al., 2014; Jaakkola and Elo, 2015; Bay-

erlová et al., 2015). These reviews mainly focus on describing calculation pro-

cesses and usefulness in classification problems, or by simply cataloging their

features. However, there needs to be an unbiased review that provides exten-

sive evaluation on such tools using a large number of data sets with thorough

criteria.

8



1.2 Challenges in pathway activity measurement

This thesis is dedicated to addressing three main problems (Figure 1.5). The

first problem concerned how to effectively leverage pathway information to as-

sign a single representative pathway activity. The second problem was to sys-

tematically evaluate pathway activity inference tools by suggesting several com-

parative criteria for the tools through extensive elaboration. The final issue was

to provide users who are not familiar with but interested in using such tools

with easy access, and to help navigate the results arising from their own data.

1.2.1 Calculating effective pathway activity values from RNA-

seq data

Even though it is valuable to use pathways in analyzing gene expression data,

most pathway databases envelope a smaller number of genes than the number

of genes being analyzed. This is because the curation of most databases has

been biased toward the most studied genes. Therefore, it is natural that doc-

umentation is inevitably biased to certain well-studied findings. Nevertheless,

describing a pathway with a single value is still a desirable practice since the

abstraction of gene level information can also be regarded as enrichment of the

essential biological information (Khatri et al., 2012; Ramanan et al., 2012).

One of the applications of pathway activity is to build a machine learning

model, regarding pathways as features for disease classification (Gatza et al.,

2010; Lee et al., 2008). Calculating pathway activity for each sample from gene

expression data can then be considered as a powerful way of transforming gene

dimensions into pathway dimensions to avoid potential over-fitting issues. Di-

rectly using genes as features from currently available large-scale gene expres-

sion data suffers from significantly insufficient number of samples. However,

9



Figure 1. Problem definition
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Pathway Activity Tools
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Figure 1.5: Technical problems to be addressed in this thesis. As there are

complex gene relationships present in pathways, it is important to utilize them to

summarize component gene expression profiles into a single value. Such challenge

was addressed by several tools. Therefore, it requires an extensive comparison

of them to understand which of the tools are more useful by evaluating on five

different criteria. Finally, users should be able to have an easy access to the tools

through a single unified system.
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biological pathways as features can provide more precise and straightforward

biological essence, while meeting the sufficiency for building a machine learning

model to solve many classification problems. A model based on such features

also should be able to solve more difficult classification problems such as survival

outcome or cancer subtypes (Kim et al., 2012).

1.2.2 Lack of comparative criteria to evaluate pathway activity

tools

Previous reviews on pathway activity tools focus on simply cataloging or com-

paring tools in terms of whether a tool incorporates other information such

as relationships between genes (Mitrea et al., 2013; Jaakkola and Elo, 2015;

Bayerlová et al., 2015). For example, as there are various types of approach for

pathway activity inference, some techniques are sensitive to subtle perturba-

tions in gene expression data. Reliable outcomes are not guaranteed, especially

when the perturbation is not from biological factors but rather from technical

issues (Goncalves et al., 2011; Wang et al., 2012; DeLuca et al., 2012; Zwiener

et al., 2014; Danielsson et al., 2015). In addition, it is desirable to know to what

extent a tool sustains the structure of the original input data when transform-

ing to pathway activity. Therefore, a systematic criteria for the comparison of

pathway activity inference tools in various aspects needs to be established.

1.2.3 Absence of a user-friendly environment of pathway activ-

ity inference tools

Regardless of the significance a tool to a particular field of study, it is almost

impossible for a user to implement all the available tools alone, especially when

not familiar with bioinformatic tools, or without sufficient computational re-

sources. One such examples is Enrichr (Chen et al., 2013), a web-based suite
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of tools that accepts a list of genes provided by the user. Simple submission of

a gene list provides a wide range of results, including the enrichment of var-

ious ontology-based databases. It was spotlighted as being user-friendly, with

interactive visualization of results and the capability of analyzing genes from

species other than human. However, it introduces only a single analysis strategy

for various database libraries. One is also not aware of which tools are valid for

the relevant research without thorough comparisons. Therefore, it is important

for a set of tools to be easily accessible online.

1.3 Outline of the thesis

In this thesis, a series of solutions are suggested throughout three chapters

to tackle the above problems using biological pathway databases with gene

expression data and other resources.

In chapter 2, I developed a method to calculate pathway activity using the

relational information between genes within each pathway. Both gene expression

values and the relational information of the genes within each pathway are taken

into consideration to reflect that nearby genes share more in common. This work

was extended to decompose a pathway that has more than a single biological

significance into several components in terms of the given gene expression data.

In chapter 3, a comprehensive evaluation of pathway activity inference tools

was undertaken to demonstrate their usefulness against several performance

criteria. Five criteria were introduced that covers different aspects of the tools,

including distance preservation and robustness to noise.

In chapter 4, I deployed previously compared pathway activity tools on a

cloud-based web platform. Users can upload their own gene expression data

to run selected tools, visualize the results in terms of significance, and direct
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the result to the pathway database. The comparative analysis criteria from a

previous study were adapted in this platform to help users comprehend which

of the tools are appropriate for their own data.

Collectively, chapter 5 summarizes both the significance and potentials of

scoring pathway activity using biological pathways in interpreting RNA-seq

gene expression data. The thesis is concluded with a bibliography of references

and appendices.
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Chapter 2

Measuring pathway activity from
RNA-seq data to identify breast
cancer subsystems using
protein-protein interaction
network

2.1 Related works

Prognostication and prediction of patients’ survival are one of the major goals in

breast cancer research. Practical decision making of the breast cancer treatment

plan is based on clinicopathological features such as tumor size, lymph-node

metastasis, histological grade and three receptor (ER, PR, and HER2) responses

to endocrine therapy (Reis-Filho and Pusztai, 2011). Although these methods

have been widely and successfully used since 1970s, they are not effective for

diagnosis of the cancer at earlier stages and precise clinical decisions requires

more than the clinicopathological features (EBCTCG et al., 2005). Thus, inves-

tigation on the genome-wide landscape of molecular features in breast cancer
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has been extensively performed (Perou et al., 2000; Sotiriou et al., 2006; TCGA

et al., 2012; Ross et al., 2015). These efforts initiated a new paradigm of clus-

tering patients followed by annotating characteristic labels on the clusters of

patient groups in terms of survival outcome (Curtis et al., 2012).

In an effort to develop a model for clustering patients, there were several

array-based gene expression studies grouping patents based on a set of genes

that are differentially expressed among the cohort, yielding molecular subtypes

based on patient clusters (Perou et al., 2000; Sorlie et al., 2001; Van De Vijver

et al., 2002; Van’t Veer et al., 2002; Sørlie et al., 2003; Paik et al., 2004; Ma

et al., 2004; Chang et al., 2005; Hu et al., 2006).

Surprising discovery from these studies was that only a small number of

genes were sufficient to characterize patient groups at the molecular level. In

addition, genes selected by different studies show similarities in terms of gene

expression levels. These gene expression signatures proved themselves as a de-

terminant to survival outcome without resorting to anatomical prognostic vari-

ables such as tumor size or nodal status (Reis-Filho et al., 2010). Most of the

methods showed equipotent performances in terms of prognostic modeling with

a high concordance rate (Fan et al., 2006). Among them, PAM50 method be-

came standardized as the fundamental requirement for molecular diagnosis of

breast cancer, of which assigns subtypes by incorporating microarray expression

values to the centroids of 50 genes (Parker et al., 2009).

However, even PAM50 subtypes remained heterogeneous in receptor status;

for example, among basal-like subtype patients, 17 % of the samples were in

neither ER-negative or HER2-negative statuses, despite that being accepted

as typical clinical-pathological features of basal-like subtype (Prat and Perou,

2011). In another study by Parker et al. (2009), it was suggested that luminal B

subtype can be divided into at least five subgroups. One reason for this would
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be from the fact that the selection of genes in PAM50 was not guided by ac-

curate gene expression profiles that are measured by microarray technologies.

This can be resolved by leveraging RNA-seq technologies as demonstrated in

a study by Wang et al. (2014). In comparison with microarray data, RNA-seq

produced more accurate gene expression measurements at the whole transcrip-

tome level by showing that RNA-seq data had much higher concordance rate

with expression profiles measured by qRT-PCR and also that RNA-seq achieved

much better sensitivity for low-abundant genes.

Another technical issue for characterizing biological mechanisms underlying

breast cancer is to consider relational nature of deregulated genes with con-

text. Pang et al. (2006) used random forests for prioritizing important path-

ways in several diseases such as breast and lung cancer, rather than simply

listing important genes for the diseases. Another popular technique is to use

network. Recently, a consortium of network biology was launched to analyze

multi-dimensional genomic data (Krogan et al., 2015). PIN is one of the most

widely used network-based analysis techniques to cover true relational charac-

teristics (Han, 2008). For example, Hofree et al. (2013) used PIN as a template

to diffuse the significance of somatic mutation profiles and discovered biologi-

cal modules crucial for identifying patient clusters of several cancers. This was

consistent with previous studies that mutational events are localized to certain

area (modular structure) of a network, hardly perturbing the whole biological

structures (Jeong et al., 2000; Yook et al., 2004).

2.2 Motivation

Importance of pathway and network utilization Wang et al. (2008)

classified module identification methods into three categories: expression-based,
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Figure 2.1: Motivating example of the PI3K-Akt signaling pathway.

(A) Analysis on DEGs among the breast cancer subtypes and the mapping of the

identified DEGs to the KEGG pathway. Horizontal dotted line indicates Bonfer-

roni correction threshold for multiple comparison. (B) Boxplot of average gene

expression values for each subtype of all the genes in the pathway. (C) Heatmap

showing correlation of gene expression values among the subtypes. (D) Pathway

decomposition revealed six subsystems of the pathway. Each subsystem shows

distinct biological functions (represented in GO:Biological Process). Boxplots

of the subsystems show discriminant patterns among the subtypes. p-values were

calculated by ANOVA and asterisks at the end of the GO terms showed ANOVA

significance (0 <*** <0.001 <** <0.01 <* <0.05).
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pathway-based, and network-based approaches and this categorization was re-

cently revisited and well summarized by Creixell et al. (2015).

As biological knowledge discovery moving toward deciphering the functions

of cooperative machinery rather than individual DEGs, identifying the cluster

or gene set modules became one of the popular research topics (Ravasz et al.,

2002; Ge et al., 2003; Wagner et al., 2007). These methods mostly used machine

learning or statistical techniques to identify systems of coordinated genes. In

addition, several studies focused on the measurement of activity or level of

perturbation using pathway information and expression profiles (Kristensen

et al., 2014). It is desirable to use multi-dimensional omics data to precisely

measure the activity of a pathway as performed by Vaske et al. (2010). However,

the integrated analysis of multi-omics data needs to be further developed.

Fortunately, there are many studies using only gene expression data to mea-

sure the degree of distorting the original (trained) distribution of gene set or

metagene scores (West et al., 2001; Huang et al., 2003; Ahn et al., 2014). For

example, a Bayesian regression model introduced by West et al. (2001) used

a set of 100 genes that maximally discriminates the ER status of breast can-

cer. This approach was extended to examine the status of several oncogenic

pathways by using metagene concept (Huang et al., 2003). A further analysis

of 18 representative pathways was successful to classify human breast cancer

subtypes (Gatza et al., 2010).

In addition, there are a number of studies that utilized well curated networks

other than biological pathways. Among biological networks, PIN is widely used.

As PIN covers a lot more number of genes than biological pathways, there were

several studies that initiated the identification of prognostic signatures (Cheng

et al., 2013; Wu and Stein, 2012). Wu and Stein (2012) did a seminal work

that incorporated gene expression information to PIN. In their analyses, edge
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weights in PIN were defined by using microarray-based gene expression data

and then network modules were identified by using the MCL clustering method.

This study produced many false positives because using the microarray data do

not have accurate gene expression information and co-expression information

was not explicitly used. Furthermore, activation status of a module was simply

calculated by averaging the gene expression values in the module without incor-

porating the relationships among the genes. This drawback can be remedied by

utilizing RNA-seq expression data to use more accurate gene expression infor-

mation and also by defining network modules in a stringent way (Wang et al.,

2009).

Necessity of Subsystems As discussed in the previous subsection, gene

expression or transcriptome data can be better analyzed in terms of biologi-

cal pathways. Commonly used pathway databases are KEGG (Kanehisa and

Goto, 2000), REACTOME (Joshi-Tope et al., 2005) and NCI cancer pathway

(Schaefer et al., 2009). A pathway is defined to model a series of actions among

molecules in a cell that leads to a certain product or a change in a cell. As a

result, some pathways consist of multiple complex biochemical functions, rather

than a single biological function. This led to several research efforts to define

multiple coherent units of a pathway. Overbeek et al. (2005) pioneered the use

of a subsystems approach to annotate genomes by categorizing genes into sin-

gle functional groups. Chang et al. (2009) proposed a strategy of decomposing

pathway information into smaller modular structures. All these studies assure

that defining functional units of a pathway is desirable and useful. However,

there is no systematic study on defining subsystems of a specific disease using

transcriptome data measured from many samples.

The goal of this study is to reveal biological mechanisms underlying breast
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cancer in terms of pathways. To achieve this goal, a computational method

needs to be developed to define functional units or subsystems of a pathway us-

ing transcriptome data. This approach is illustrated using PI3K-Akt Signaling

pathway that consist of 293 genes in Figure 2.1. The widely used DEG analysis

results in too many statistically significant genes that can be mapped to many

pathways, so the DEG approach does not distinguish core pathways from many

activated pathways when expression values of all DEGs are mapped to path-

ways. To measure the activation status of a pathway, when expression values of

all genes in the pathway were simply averaged to a single value, the difference

in the activation status of the pathway was not clear among cancer subtypes

(Figure 2.1A to 2.1C). However, the approach of decomposing the pathway into

a set of distinct subsystems was effective to explain the differential activation

status of the pathway among cancer subtypes (Figure 2.1D).

2.3 Methods

2.3.1 Breast cancer subsystems

The overview of the subsystem identification is illustrated in Figure 2.2A. PIN

from STRING (ver.9.1; Franceschini et al. (2013)) was used as a template net-

work. For the edges in the template network, Spearman’s correlation coefficient

values were calculated by using the gene expression values from RNA-seq data

of breast invasive carcinoma from TCGA (http://cancergenome.nih.gov/).

Then, the template PIN network was instantiated by multiplying the weight

(combined score) specified in STRING and the absolute Spearman’s corre-

lation coefficient for each pair of genes in the network. This instantiated the

PIN of 2,004,213 edges (16,807 vertices) as BRCAPIN. To generate clusters

from the network, BRCAPIN was divided into clusters by using Markov cluster

20



Template PIN

A
Transcriptome data

(n = 1,215)

Spearman’s 
Correlation
Coefficient

Breast Cancer
PIN

MCL

…
…

GSEA

Template 
Subsystems

KEGG

: Template subsystems

…
P
1
P
2
P
3
…
P
n’

Subsystems (S)

Pa
tie

nt
s 

(n
’ =

 9
99

)

Prognostic 
Modeling with 
Subsystems

Cohort  matrix

Survival 
Analysis

MCL 
Clusters

…

…

CART

Closeness 
Centrality

Expression

Each patient

Weight on 
edge 

	
	

Trapezoidal
Expansion

Activity 
Calculation

SASSubsystem = Av(Acte)

Acte 	 	 	 	

Template Subsystem

B

Recurrence 
Analysis

CNV
Analysis

C

	

Figure 2.2: Overview of the research protocol in this paper. (A) A tem-

plate PIN was instantiated by weighting Spearman’s correlation coefficient cal-

culated from breast cancer transcriptome data to the edges of PIN. In this way,

a breast cancer PIN (BRCAPIN), a breast cancer PIN, was generated. (B) SAS

calculation. When subsystems were generated, topological significance (closeness

centrality) of each gene in each MCL cluster was set as a template value to be in-

flated by transcriptome data. SAS calculation is geometrically defined for a pair of

genes where topological significance. i.e., closeness centrality, and gene expression

of each gene is used as the two bases of a right trapezoid and relationship between

genes is used as the height of the trapezoid. Then SAS is defined naturally as an

average of area of the trapezoids. (C) For each subsystem and each patient, SAS

was calculated and the matrix of n patients and subsystems was utilized for the

prognostic modeling by CART followed by relapse and CNV analyses.
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algorithm (MCL; http://micans.org/mcl/; Dongen (2000)). For each MCL

cluster, a modified Fisher’s exact test (EASE; Hosack et al. (2003)) followed

by the Bonferroni correction was performed to investigate whether there was

an enrichment of KEGG pathways (Kanehisa and Goto, 2000) or not (adjusted

p-value < 0.01). The largest connected component between MCL cluster and its

enriched KEGG pathway was defined as a subsystem. In total, 855 subsystems

were identified.

2.3.2 Subsystem Activation Score

It is not trivial to measure the activation status of a subsystem since there

are quite a number of genes in a subsystem. Simply using the average expres-

sion level of all genes in a subsystem as a value for subsystem activity is not

correct. Thus, I developed a new scoring scheme for the activation status of a

subsystem, called Subsystem Activation Score (SAS; Figure 2.2B). The scheme

was designed to utilize both topological importance and transcriptional abun-

dance of genes. The topological importance of a gene was determined by the

closeness centrality value of a gene, which was to weight a gene in terms of

the shortest distance to all other genes within MCL cluster from the gene. The

transcriptional abundance was to utilize co-expression of two adjacent genes in

the network. Then two factors were combined together to define a right trape-

zoid between two genes (Equation 2.1), where two parallel bases are weighted

gene expressions and the height defined ‘edge centrality’ as Equation 2.2.

Acte = (wi + wj) × eij ×
1

2
(2.1)

eij =
wi + wj

vi + vj
(2.2)
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where w is the gene expression (v) weighted by the closeness centrality (c)

of a gene i and j. In this way, the area of the trapezoid between two genes was

defined. Finally, SAS was calculated as an average of areas of all trapezoids of

a subsystem (Equation 2.3).

SAS =

∑
edges

Acte∑
edges

(2.3)

Then, a matrix of subsystems vs. breast cancer samples was generated using

SAS (Figure 2.2C).

2.3.3 Prognostic modeling

To determine subsystems related to the patient survival outcome, a classifica-

tion and regression tree analysis (CART; Breiman et al. (1983)) was performed

by using the rpart library of R package (Therneau et al., 2010). The overview

of the CART analysis is shown in (Figure 2.2C). CART analysis produced a

tree where branching at each node, i.e., subsystem, was determined by the SAS

value. CART was used to select a set of subsystems that characterize the pa-

tient survival and also predict the hazard ratio by using a regression model.

Parameter setting for the CART analysis was guided by two prior large-scale

analysis of breast cancer transcriptome data. Gatza et al. (2010) reported that

the number of clusters of breast cancer patients remained stable near 20 as

the number of patients increase. Curtis et al. (2012) showed that there were at

least 10 clusters of breast cancer patients with distinct molecular characteris-

tics and survival outcome. To incorporate these findings, a parameter for the

minimum number of patients in each terminal node of the tree was set to be
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50, which approximately corresponds to a maximum of 20 theoretical groups

for 999 patients.

2.3.4 Hierarchical clustering of patients and subsystems

Hierarchical clustering of patients was performed by ward.D2 method using

Manhattan distance of SAS values. To find the optimum number of patient

clusters, we used Adjusted Rand Index (ARI) implemented in mclust library

of R package. ARI is to measure the level of similarity between the two clustering

objects, here hierarchical clustering object and PAM50 subtypes.

The number of SCs was determined by Normalized Mutual Information

(NMI). As NMI monotonically increased as the number of clusters to examine

increased from 1 to 100, we performed local linear regression using the seven

consecutive NMI values. To visualize the relationship among the subsystems by

setting 855 subsystems as nodes and their relationships as edges (365,085 edges),

PCC of SAS values among the subsystems within and outside the SCs were

calculated. To maximally gain the edges within the SCs and remove the edges

outside SCs, we utilized accuracy varying the PCC threshold. The accuracy

was defined here as the proportion of the sum of remaining edges within SCs

and removed edges outside SCs when applied PCC threshold to the all possible

365,085 edges. The maximum accuracy was obtained when this threshold was

set as 0.39.

For each SC, a set of subsystems with their ANOVA F-value of SAS with

respect to the subtypes were calculated. To summarize the SAS and F-values for

the subsystems into a single value for each patient, we averaged SAS weighted

by the corresponding F-values. This means that the subsystem with more sig-

nificant difference among the subtypes contribute more to the final value.
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2.3.5 Tools used in this study

MCL clustering algorithm followed by Python with stats of scipy library was

used to generate subsystems. Network view generation was done by Cytoscape

3.0.1. Survival and CNV analyses were done by R.

2.4 Results

2.4.1 Pathways were decomposed into coherent functional units

- subsystems

MCL divided the instantiated BRCAPIN into smaller subnetworks (MCL clus-

ters), by utilizing the edge weights. Enrichment analysis for the MCL clus-

ters was performed to identify the intersection between each MCL cluster and

KEGG pathways. As a result, a total of 855 breast cancer subsystems with

non-zero SAS values were identified from 186 MCL clusters. As 855 subsys-

tems were identified out of 269 KEGG pathways, there were some KEGG path-

ways decomposed into more than a single subsystem. Positive correlation was

found between the size of a pathway and the number of subsystems in a path-

way (r = 0.52; Figure 2.3A). However, regardless of the number of genes in

a pathway, pathways related to signaling (e.g. PI3K-Akt signaling pathway

and Toll-like receptor signaling pathway) tended to have more subsystems than

other pathways. Pathways of specific metabolic pathways such as Glutathione

metabolism and Sphingolipid metabolism contained only a single subsystem.

Among the KEGG pathways, 9 pathways including Lysosome, Adrenergic sig-

naling in cardiomyocytes, Hippo signaling pathway were decomposed into 7 or

more subsystems. As shown in Figure 2.1, average gene expression profile of a

big pathway is not distinct among breast cancer subtypes. However, when de-

composed into subsystems, the activation status is distinct among breast cancer
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Figure 2.3: Scatterplot of the number of genes and the number of sub-

systems in KEGG pathways. Larger pathways share more number of subsys-

tems.

subtypes and also at the patient level, representing distinct biological functions.

2.4.2 Landscape of subsystems reflect the breast cancer biology

To see the landscape of subsystems through their relationships, the 855 subsys-

tems were divided into clusters called subsystem clusters (SCs). To determine

the number of SCs, investigation was performed varying the numbers (Fig-

ure 2.5B). As the number of clusters increases, marginal increase in positiveness

gradually converged to zero. For example, using the first 5 points, the rate of in-

crease in NMI with respect to the number of clusters (regression coefficient) was

0.093 (red line), and it decreased to 0.061 when using the next 5 points (blue

line). Here, we set the number of clusters to be the point when the regression

coefficient becomes right before below 0.01. This means that the increase in the

number of clusters gives no more marked improvement in the clustering perfor-
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Figure 2.4: Landscape of breast cancer subsystems. (A) Heatmap of SAS

in a matrix of subsystems vs. breast cancer samples. Labels for ER, PR, and

HER2 status along with PAM50 subtypes were shown in the left panel of the

heatmap. (B) Network visualization shows co-activation of the subsystems and

their relationships. 11 colors indicate the subsystem clusters identified from (A).

(C): Boxplots for each of 11 SCs in terms of PAM50 subtypes.
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mance, which was determined to be 11. A graph was built where subsystems are

nodes and weighted edges are defined by Pearson’s correlation coefficient (PCC)

of SAS values (Figure 2.4). In this graph, subsystems are naturally formed into

clusters since correlated subsystems are connected by edges. To visualize this

relationship among the subsystems, a threshold was set for PCC at 0.39 (Fig-

ure 2.5A). As a result, Figure 2.4B displayed that subsystems within SC were

densely localized while maintaining distant positions to the subsystems of other

SCs.

Figure 2.5: Subsystem Cluster Determination. Subsystem Cluster Determi-

nation. (A) For the 855 subsystems, there were edges connecting these subsystems

within and outside 11 SCs. Pearson’s correlation coefficient of SAS between two

subsystems were calculated and visualized as within and outside SCs. (B) Varying

the cluster numbers, normalized mutual information was calculated between the

generated clusters and MCL clusters. Localized linear regression was performed

using 5 consecutive points and the threshold was set at 0.01 for the regression

coefficient.

Since subsystems are functional units and they are grouped into clusters
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when correlated in terms of SAS, we now compare SCs and investigate the

difference in 11 SCs among the subtypes (Figure 2.4C). Note that the PAM50

subtypes were well classified using SAS of subsystems (see Section 2.4.3). Thus it

is interesting how well each of the 11 SCs can classify the PAM50 subtypes. Since

each SC has distinct biological functions by design, if a certain SC classifies the

PAM50 subtypes well, we are able to explain how much different the biological

mechanisms are. To investigate the difference both among the PAM50 subtypes

and among subsystems, representative value for each SC was calculated as the

weighted sum of SAS. We found that SC#11 with 89 subsystems was the most

effective, as higher SAS in more aggressive subtypes. Subsystems included in

SC11 were mostly from the pathways related to cellular proliferation such as

Cell cycle, DNA replication, and DNA repair mechanisms (Figure 2.6), of which

SAS values among the subtypes share highly similar pattern. This pattern was

also observed in SC5, of which 31 subsystems were related to the regulation of

cyclase activity.

2.4.3 SAS revealed patient clusters associated with PAM50

subtypes.

In addition to the subsystem clusters, SAS also should be able to mirror conven-

tional clinical annotations such as the PAM50 subtypes. By varying the number

of sample clusters from 1 to 100, ARI values were calculated and visualized in

Figure 2.7. As a result, the maximum number of ARI value was obtained when

the number of clusters was set as 8. We call these 8 clusters as Patient Clusters

(PC1 8). The distribution of PAM50 subtypes for the PCs was summarized in

Table 2.1. There were eight Patient Clusters (PCs) identified by hierarchical

clustering of the SAS matrix (Figure 2.4A and Table 2.1). In general, each PC

was correlated with the PAM50 subtypes. For example, 89.4% of the PC6 were
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Figure 2.6: Subsystems within SC11. There are 89 subsystems enriched to

KEGG pathways with corresponding ANOVA p-value of SAS among the subtypes.

Right panel shows the mapping of genes in selected subsystems to their enriched

KEGG pathways and boxplot of SAS among the subtypes.
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Table 2.1: Association of Patient Clusters (PCs) from hierarchical clus-

tering of SAS values with PAM50 subtypes Numbers are the number of

patients.

Normal Luminal A Luminal B HER2-enriched basal-like

PC1 0 30 22 5 0

PC2 20 52 57 28 9

PC3 27 153 64 16 3

PC4 18 35 22 8 30

PC5 4 35 125 23 4

PC6 118 8 0 0 6

PC7 6 11 13 72 12

PC8 0 0 1 5 173

Normal subtypes, while 96.6% of the PC8 were basal-like subtypes. These PCs

also showed strong association with 3 receptor statuses - ER, PR, and HER2.

In summary, subsystems and their activation status in SAS was able to classify

the PAM50 subtypes with functional explanation.

2.4.4 Prognostic modeling by subsystems showed 11 patient

subgroups with distinct survival outcome

When the survival information was set as response variable, CART generated a

subsystem tree to separate the patients to maximize the discriminatory power

in survival outcome. In Figure 2.8A, the whole cohort was separated into 11

patient subgroups with 10 selected subsystems out of 855 subsystems. There

were five subsystems each that improved survival outcome when activated or

deactivated, respectively. Survival outcome of the 11 subgroups were shown in

Kaplan-Meier plot (Figure 2.8B; p < 1e-16).
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Figure 2.7: Adjusted Rand Index (ARI) varying the number of patient

clusters (PCs). ARI was calculated between the generated PCs and PAM50

subtypes.
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Figure 2.8: Classification and regression trees (CART) on breast cancer

patients’ survival prediction. (A) A branch is followed using a patient’s SAS

value. if it is above a specified threshold value, a red arrow branch is followed,

otherwise a blue arrow branch. Each black rectangle indicates a decision point

(subsystem). ĤR is the predicted hazard ratio of the patients in the correspond-

ing subgroup, which is calculated for the patient subgroups at terminal nodes.

The number in the bottom-left box in a subsystem node is a hazard ratio and

the number in the bottom-right box is SAS threshold. (B) Kaplan-Meier plot is

displayed for the 11 patient subgroups identified in (A). (C) The first subsystem

identified as significant in CART divided the cohort into two patient sub-cohorts.
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A subsystem “Calcium ion transport (TRP)” was chosen to be the primary

target of survival classification in the subsystem tree (Figure 2.8A). This sub-

system consisted of four genes (TRPA1, TRPV2, TRPV3, TRPV4 ). When the

SAS of this subsystem was above 185.0, the hazard ratio of the corresponding

patient subgroup (n = 56) was predicted as 0.11, while the hazard ratio of the

other patient group (n = 943) was 1.06. To see how much degree the two sub-

groups differ in survival outcome, Kaplan-Meier plot was shown in Figure 2.8C

(p = 0.0032). Kaplan-Meier plots shows discrimination power of the other 9

subsystems in Figure 2.9. Previously, up-regulation of TRPV2 was shown to

be crucial to the induction of apoptotic cell death in bladder cancer (Yamada

et al., 2010; Morelli et al., 2012; Nabissi et al., 2013). Those TRP genes would

be the candidates of survival outcome determinant of breast cancer, which cor-

responds to the implications from previous studies (Prevarskaya et al., 2007;

Shapovalov et al., 2011; Ouadid-Ahidouch et al., 2013). This finding, the im-

portance of “Calcium ion transport (TRP)” for breast cancer, needs serious

further investigation since its importance is already reported in bladder cancer

and its discriminatory power for survival outcome is great in TCGA data.

To evaluate the prediction power on patient survival, area under curve

(iAUC; Song and Zhou (2008)) on receiver operating characteristic curve was

measured followed by 10-fold cross-validation. Since the label for classification

was survival outcome that is the combination of both days to initial diagno-

sis and event occurrence, a time-dependent AUC should be considered in this

case. An AUC developed by Song and Zhou (2008) was chosen in this work

to assess the time-dependent classification performance. It measures AUC for

each user-defined time point and integrates all AUC values over the times to

generate iAUC. R library of caret (Kuhn, 2015) was utilized for the 10-fold cross-

validation. The performance of this system based on BRCAPIN was superior
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Figure 2.9: Kaplan-Meier plots for the subsequent subsystems (slowro-

mancapii@ slowromancapx@) in Figure 2.8
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Table 2.2: Comparison of predictive power of subsystems with BR-

CAPIN, permuted PIN, and PAM50 subtypes.

Method iAUC

SAS (breast cancer PIN) 0.750

SAS (permuted PIN) 0.720

Pathifier 0.720

PAM50 subtypes 0.527

in classification performance to the permuted one and the PAM50 subtypes in

terms of the iAUC (Table 2.2).

2.4.5 Relapse rate and CNVs were enriched to worse prognostic

subgroups

We observed that patients’ survival outcome became worse under relapse, thus

the subsystem tree should also be able to significantly differentiate the relapse

rate as well. There were 5 subsystems (I, IV, V, VI, X) that enriched relapse

rate more than 1.5-fold (Relapse Enrichment Score; RES > 1.5) to the worse

prognostic side (Figure 2.10). This generated five relapse paths, each navigating

from the top of the subsystem tree to the corresponding subsystems.

Copy number variations (CNVs) are one of the major drivers of transcrip-

tional perturbations. Recently, copy number loss of CDH1 gene of invasive lob-

ular carcinoma (ILC) was cataloged as an underlying genetic driver that ac-

celerates the depletion of Cadherin-1, which was further implicated as a major

characteristic of ILC-type breast cancer (Ciriello et al., 2015). Here, we exam-

ined whether there was a CNV that occurred more frequent along the paths

and the occurrence of some CNVs even increased the relapse rate. We found 26

CNVs that were more likely to be present in each of the four paths. Twelve of
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RES = 2.55ⅠPath1

Ⅰ Ⅱ Ⅲ ⅤPath2 RES = 2.05

RES = 1.95Ⅰ Ⅱ ⅣPath3

Ⅰ Ⅱ Ⅳ ⅥPath4 RES = 1.76

Ⅰ Ⅱ Ⅳ ⅥPath5 RES = 1.62Ⅸ Ⅹ

*RES: Relapse Enrichment Score

Figure 2.10: Five relapse paths that enriched patients’ relapse rate. RES was

calculated to the ratio of relapse rate of the patients who followed the full paths

over the patients who followed the paths except the last subsystem.

these CNVs enriched the relapse rate within the path. In addition, fifteen CNVs

increased the relapse rate under CNV occurrence while following the path.

2.5 Discussion

Gene expression information is typically interpreted in terms of biological path-

ways to characterize biological mechanisms underlying phenotypes. However, a

pathway is a model for series of actions among molecules in a cell that leads to a

certain product or a change in the cell (https://www.genome.gov/27530687#al-1).

Thus, a pathway is often not a single functional unit. This fact is a major hur-

dle to perform functional analysis from transcriptome data. In this paper, we

proposed a novel concept of subsystems of a pathway that can be a functional

unit as shown in Figure 2.1. To define the activation score of a subsystem, we

introduce a novel concept called SAS by combining gene expression information

and the relationship between genes defined by manipulating PIN. SAS calcula-

tion is geometrically defined as an average area of the trapezoids for a set of

pairs of genes where topological significance, i.e., closeness centrality, of each

gene is used as the weight and the relationship between adjacent genes is used
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as the height of a right trapezoid. Then SAS is defined naturally as an average of

areas of trapezoids. In this way, we identified 855 subsystems out of 269 KEGG

pathways. With SAS, we showed that the landscape of subsystem activation is

distinguishable among breast cancer subtypes. We also show that the subsys-

tems can be further grouped to eleven subsystem clusters (SCs) and each cluster

represents biological functions important to breast cancer. In particular, SC11

of 89 subsystems had different SAS values among cancer subtypes, especially

higher SAS values in more aggressive subtypes. Biological functions related to

SC11 were cellular proliferation such as Cell cycle, DNA replication, and DNA

repair mechanisms (Figure 2.6), which demonstrates the utility of subsystems

and SAS.

The subsystems with SAS information can be used to model patient survival

at cohort level. With the patient survival information, we built a classification

and regression tree (CART). At the leaves of the tree, eleven patient groups

were defined, each of which has a distinct survival outcome. In particular, there

were two subgroups of which no deaths were presented (subgroups 1 and 2).

This modeling leverages the tree structure; thus the tree model explains how

the survival classification is done with which subsystems. In Figure 2.8, we

showed which subsystems are important for patient survival prediction, thus

subsystem paths were produced. Since different survival outcomes are observed

at the leaves of the tree, this model can be useful for explaining heterogeneity

of cancer patients and their underlying biological landscape. In the subsystem

path, some subsystems were well documented in the literature and others such

as a subsystem with transient receptor proteins are subsystems that suggest

further investigation. Note that these subsystems in the decision path show

clear difference in survival outcomes, thus subsystems in the decision path are

surely important for survival prediction, just yet to be characterized. Subsys-
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tems were also explanatory for relapse and CNV in addition to the patient

survival outcomes.

The tree model with subsystems and SAS have several advantages over

existing patient survival models. First, most existing models make prognostic

decisions as either good or bad while my model provides quantitative decisions

as a hazard ratio. My tree model also explain which biological mechanisms are

associated with the decision in terms of subsystem decision path, which is not

provided by any of the existing models including the widely used PAM50 model.
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Chapter 3

Comprehensive evaluation of
pathway activity measurement
tools on pan-cancer data

3.1 Related works

Biological pathway is a series of actions among molecules in a cell that leads to

a certain product or a change in the cell (NHGRI, 2015). Accumulation of bio-

logical knowledge over the years has produced a rich set of pathway databases

(Kanehisa and Goto, 2000; Romero et al., 2004; Joshi-Tope et al., 2005; Schae-

fer et al., 2008; Elkon et al., 2008; Pico et al., 2008; Mi et al., 2012; Yang et al.,

2014). Then, an important question is how to utilize biological pathway in-

formation to explain transcriptome data measured from biological experiments

that are designed to investigate scientifically specific questions. The most widely

used approach is to investigate enriched pathways by identifying DEGs (Huang

et al., 2008; Rahmatallah et al., 2015). However, selection of DEGs is often

subjective and, more importantly, DEGs are mapped to a small fraction of
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pathways. This often results in many highly expressed genes being excluded

at the pathway level analysis, thus this approach does not explain pathway

activities as a whole.

There are other issues when it comes to a cohort level. The steep decrease

in sequencing cost accelerated the generation of cohort-level gene expression

data to elucidate sample-wise molecular characteristics (Weinstein et al., 2013;

Lonsdale et al., 2013). At the cohort level, variations among samples are high,

even for experiments performed under the same condition. Thus, rather than

investigating at the gene level, it is much easier to investigate sample-wise

variations at the pathway level (Pang et al., 2006; Bild et al., 2006; Gatza

et al., 2010). The most important issue is how to measure the activity of a

pathway in a single value and how to utilize the pathway activity values for

further analyses. In fact, a number of computational tools were developed to

generate abstract quantification of pathways and used them as features for

characterizing underlying biological mechanisms (Efroni et al., 2007; Lee et al.,

2008).

3.2 Motivation

There are several comparative studies of existing pathway activity measurement

tools (Tarca et al., 2013; Bayerlová et al., 2015; Jaakkola and Elo, 2015). The

main focus of these studies is to evaluate how different pathway activities are

between tumor and normal samples or between different cancers. This approach

of comparing pathways has the same problem as for the DEG selection task since

selection of pathways can be different, depending on the criteria being used. To

make comparative study robust and meaningful, it is necessary to measure the

pathway activities from the transcriptome data consistently, regardless of the

41



Figure 3.1: Illustration of the strategy for the comparative evaluation

of pathway activity inference tools. Each tool takes gene expression data

as input and produces pathway vs sample matrix, which can be interpreted as a

mapping of cohort-level samples to the pathway dimension created by the tool,

ti, 1 ≤ i ≤ 13. Because different tools use different methods to map samples to

the pathway dimension, the tools are evaluated at the pathway level using five

comparison criteria.
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Table 3.1: Pathway activity inference tools investigated in this study.

They are listed with their abbreviated name and categories followed by reference.

Input transformation: how to transform input gene expression data, Labels:

use of tumor vs normal information into calculation of activity, Cohort: necessity

of cohort-level data to calculate pathway activity, Gene relations: use of data-

driven or prior gene-gene relationships within a pathway, Scoring type: strategy

of measuring pathway activity values.

Tools Input

transfor-

mation

Labels Cohort Gene rela-

tions

Scoring

type

Reference

CORG z-score N Y - arithmetic Lee et al. (2008)

DART z-score Y Y correlation

Network

arithmetic Jiao et al. (2011)

ESEA mutual in-

formation

Y Y pathway

structure

enrichment Han et al. (2015)

GSVAdif rank N Y - enrichment Hänzelmann et al.

(2013)

GSVAmax rank N Y - enrichment Hänzelmann et al.

(2013)

IndividPath explicit Y Y stable pairs enrichment Wang et al. (2015)

LLR log likeli-

hood

Y Y - arithmetic Su et al. (2009)

PADOG t-score Y Y - arithmetic Tarca et al. (2012)

PathAct median

polishing

N Y - arithmetic Mogushi and

Tanaka (2013)

Pathifier SD-based

normaliza-

tion

Y Y - PCA Drier et al. (2013)

PLAGE explicit Y Y - PCA Tomfohr et al.

(2005)

SAS explicit N N pathway

structure

arithmetic Lim et al. (2016)

ssGSEA rank N Y - enrichment Barbie et al. (2009)

PCA: principal component analysis, SD: standard deviation
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evaluation criteria, and then evaluate the measured pathway activities in terms

of multiple criteria. What this study outlines can be explained in two steps:

• Step 1: Mapping each sample from the gene dimension to the pathway

dimension (the left panel of Figure 3.1).

• Step 2: Using multiple evaluation criteria, investigate how well samples

are distinguished in the pathway dimension that is defined by each path-

way activity measurement tool (the right panel of Figure 3.1).

By mapping samples or patients from the gene dimension to the pathway di-

mension, the transcriptome data can be interpreted more easily in a biologically

meaningful way. This is because the number of dimensions reduced dramatically

from about 20,000 genes to about 300 pathways that are well curated biological

knowledge. Then, what are the challenges? The main challenge is only 1/3 of

genes are mapped to the pathway dimension. Thus, mapping the transcriptome

data of each sample to the pathway dimension is achieved with a huge infor-

mation loss. Though interpretation of the transcriptome data at the pathway

level is desirable, can we distinguish samples in the pathway dimension defined

by each pathway activity measurement tools? Since the pathway dimension is

high, it is not practical, maybe not feasible, to evaluate whether samples are

correctly mapped in the pathway dimension. A practical approach is to evaluate

the tools in terms of biological and clinical significance. Therefore, the ultimate

question is how the pathway activity space produced by each tool is valuable at

the cohort level, e.g., patient survival and cancer subtype classification.

In this study, we systematically compared and evaluated 13 different path-

way activity inference tools (Table 3.1) based on five comparison criteria using

pan-cancer data sets. Starting from measuring how well a tool maintains the

44



characteristics of original gene expression values, robustness was also investi-

gated by adding noise into gene expression data. Classification tasks on three

clinical variables (tumor vs normal, survival, and cancer subtypes) were per-

formed to evaluate the utility of tools for their clinical applications. In addition,

the inferred activity values were compared between the tools to see how much

similar they are along with the scoring schemes they use.

3.3 Materials and methods

3.3.1 Pathway activity inference Tools

The list of tools compared is shown in Table 3.1. The tools were categorized

based on techniques used for computing pathway activity at the cohort level:

data transformation, measurement of pathway activity from gene expression

data, and then evaluation of the resulting matrix of pathway activities vs sam-

ples.

Different transformation techniques are used to process input gene expres-

sion data: rank- or statistic-based methods in CORG (Lee et al., 2008), DART

(Jiao et al., 2011), GSVAdif (Hänzelmann et al., 2013), GSVAmax (Hänzelmann

et al., 2013), LLR (Su et al., 2009), PADOG (Tarca et al., 2012), PathAct (Mo-

gushi and Tanaka, 2013), and ssGSEA (Barbie et al., 2009); mutual information

based transformation in ESEA (Han et al., 2015); and standard deviation based

transformation in Pathifier (Drier et al., 2013). Instead of using data trans-

formation, IndividPath (Wang et al., 2015), PLAGE (Tomfohr et al., 2005), and

SAS (Lim et al., 2016) used explicit gene expression values directly to pathway

activity calculation.

After the data transformation step, an important issue is how to measure

the activity of a pathway from gene expression data. This task can be viewed as
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Table 3.2: TCGA gene expression data sets for pathway analysis. Data set is

selected when the number of corresponding normal samples is more than 30.

Code Source Samples (normal + tumor)

BRCA breast invasive carcinoma 1212 (112 + 1100)

COAD colorectal adenocarcinoma 326 (41 + 285)

HNSC head and neck squamous cell carcinoma 566 (44 + 522)

KIRC kidney renal clear cell carcinoma 606 (72 + 534)

KIRP kidney renal papillary cell carcinoma 323 (32 + 291)

LIHC liver infiltrate hepatocellular carcinoma 423 (50 + 373)

LUAD lung adenocarcinoma 567 (50 + 517)

LUSC lung squamous cell carcinoma 552 (51 + 501)

PRAD prostate adenocarcinoma 550 (52 + 498)

STAD stomach adenocarcinoma 450 (35 + 415)

THCA thyroid carcinoma 568 (59 + 509)

aggregating expression values of genes in a pathway to a single activity value of

the pathway. Most of the tools use arithmetic aggregation of gene level values,

or enrichment of gene level perturbations. Tools, such PLAGE and Pathifier,

use PCA to create a feature space in calculation of pathway activity values.

3.3.2 Data sets

We used The Cancer Genome Atlas (TCGA) RNA-seq data sets and cor-

responding clinical information. The data sets were downloaded from Fire-

browse (http://firebrowse.org/). We used the RSEM-processed normal-

ized gene expression data sets from each of the cancer types by the name

‘illuminahiseq rnaseqv2-RSEM genes normalized’. Eleven TCGA cancer projects
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(BRCA, COAD, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, STAD,

and THCA) with sufficient number of normal samples (n ≥ 30) were chosen for

this study (Table 3.2). Subtype information for the cancers (COAD, PRAD,

and STAD) were from the original articles. A list of BRCA subtypes is gen-

erated in this study by the PAM50 classification method (Parker et al., 2009)

using log2-transformed RNA-seq data (Table 3.3) since the original article of

BRCA did not include subtype information for many samples (TCGA et al.,

2012).

3.3.3 Pathway database

We used 314 pathways from the Kyoto Encyclopedia of Genes and Genomes

(KEGG; Kanehisa and Goto (2000)) database. Graph structural information of

the pathways were retrieved using ESEA library in R.

3.3.4 Notations

The following notations will be used throughout this paper.

gene expression matrix We used a gene expression matrix for each cancer

type to run each of the methods to infer pathway activity. The data sets are

denoted as D = { BRCA, COAD, . . . , THCA }. The gene expression matrix

for cancer d ∈ D is denoted as Md ∈ Rnd × Rgd where nd is the number of

samples and gd is the number of genes in data d.

tools A set of tools are defined here as T = {CORG, DART, . . . , ssGSEA}

and each tool as t.

pathways We denoted a set of KEGG pathways as P = { pk, 1 ≤ k ≤ 314

}. Since the number of pathways that can be inferred by tools varies, each was
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Table 3.3: Cancer data set with subtypes. The number assigned to each

subtype indicates the number of samples for the corresponding subtype. Subtypes

with few assigned samples were removed from the scope of analysis.

Cancer Total List of subtypes Source

BRCA 1208 LumA (321), LumB (298), HER2

(161), Basal (234), Normal (194)

1

COAD 259 CMS1 (42), CMS2 (82), CMS3

(38), CMS4 (72), NOLBL (25)

Guinney et al. (2015)

PRAD 317 ERG (152), ETV1 (28), ETV4

(14), SPOP (37), other (86)

Network et al. (2014)

STAD 280 CIN (139), EBV (25), GS (54),

MSI (62)

Network et al. (2015)

Breast cancer subtype was obtained for each sample in this study by using

RNA-seq data and PAM50 (Parker et al., 2009).
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defined as pt.

pathway activity matrix We define an inferred pathway activity matrix for

data set d ∈ D by a set of tools as Ad,t ∈ Rnd × Rpt .

3.4 Comparative approach

3.4.1 Radar chart criteria

This study introduces five criteria of comparison to evaluate the tools:

• Preservation of distance between samples

• Robustness against noise

• Classification on tumor vs normal information

• Classification on survival information

• Classification on cancer subtypes

Scores from each of the criteria in the radar chart are min-max normalized.

Criterion 1: Preservation of distance between samples

Since all tools are designed to use RNA-seq data, it will be interesting to see

how well sample differences at the gene level are preserved at the pathway level

(Vitali et al., 2017). For d ∈D and t ∈T, the distance at the gene level is defined

as dMd
in terms of gene expression values Md and the distance at the pathway

level is defined as dAd,t
in terms of activity values Ad,t that were produced by

each tool t. We then summarize these values as distance preservation (DPt)

for each tool as the reciprocal of the weighted average of Mean Squared Error

(MSE) between dMd
and dAd,t

as follows:
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dMd
(x, y) := Sim(Mx

d ,M
y
d ), (3.1a)

dAd,t
(x, y) := Sim(Ax

d,t, A
y
d,t), (3.1b)

MSE(d, t) :=
1(
nd
2

) ∑
1≤x,y≤nd

{
dMd

− dAd,t

}2
, (3.1c)

DPt :=
nd∑

d∈D
nd ·MSE(d, t)

, (3.1d)

where Md = [M1
d . . .M

nd
d ], Ad,t = [A1

d,t . . . A
nd
d,t] and Sim is cosine similarity

such as

Sim(u, v) :=
u · v

∥u∥ ∥v∥
, (3.2)

for non-zero vectors u, v.

Criterion 2: Robustness against noise

Generation of perturbed data : All data contain some degree of errors,

thus we performed experiments on how much tolerant each tool is to noise or

error in the gene expression data each tool is. When pathway activity values

are measured using BRCA data, impact of noise on RNA-seq data was partly

assessed in previous studies (Li et al., 2014; Jia et al., 2017). First, gene expres-

sion value m:= M ij
BRCA from Md = (M ij

BRCA) was log2-transformed to generate

z (Equation 3.3a). Then perturbed expression value z′ was generated based

on the normal distribution with a mean value of z and standard deviation of

ze/100, where e is the perturbation factor to inflate the level of applied noise

ranging from 1 to 200 (e ∈ {1, 2, 3, 4, 5, 10, 30, 50, 100, 200}; Equation 3.3b).

This is based on the previous research showing that log2-transformed RNA-seq

FPKM or RPKM values are shown to be normally distributed (Bengtsson et al.,

2005). The error generation was performed 30 times for each value of e to gen-

erate 300 matrices in total. For example, perturbed gene expression values of m
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with the factor e at iteration i is termed as m′(e, i) (Equation 3.3c). Thirteen

tools were then run for each of the matrices to calculate perturbed pathway

activity values. We define perturbed activity value matrix of tool t as A
′
t(e, i)

(abbreviation: A
′
t).

z := log2(m + 1), (3.3a)

z′(e, i) ∼ N (z, (ze/100)2) (3.3b)

m′(e, i) := 2z
′(e,i) − 1. (3.3c)

Measuring robustness : Robustness to noise of a tool was defined as the

degree of correlation of pathway activity values from between noisy data and

the original data. Given an original activity matrix and a perturbed activity

matrix A′
t, a mean Spearmans’s correlation coefficient value Spearmanpk,t(e, i)

was computed (Equation 3.4a). Spearmanpk,t(e, i) was averaged for i and then

weighted-summed up over e followed by averaging on the set of pathways to

generate Robustness(t) (Equation 3.4b).

Spearmanpk,t(e, i) =
cov

(
rank(A·j

t (e, i)), rank(A
′·j
t (e, i))

)
σ
rank(A·j

t (e,i))
σ
rank(A

′·j
t (e,i))

(3.4a)

Robustness(t) =
1

pt

∑
pt

∑
e

30∑
i=1

Spearmanpk,t(e, i)

30∑
i=1

e

(3.4b)

where rank(v) is a rank-transformation of a given vector v.
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Criterion 3: Classification - Tumor vs Normal

The next experiment was to measure how well the inferred pathway activity

values can be used to classify between tumor and normal samples (Table 3.2).

We performed tumor vs normal classification experiments using Gaussian Naive

Bayes (GaussianNB) and Random Forest (RF) classifiers using sklearn library

(Pedregosa et al., 2011) in Python. Since there are a lot more tumor samples

than normal samples, i.e., highly unbalanced data, weighted F1 score was used

for performance evaluation. Weighted F1 score calculates F1 score (also called

F1 measure) weighted by the number of samples in each of subtypes. Meanwhile

the original F1 score is a measure of accuracy by calculating the harmonic mean

of precision and recall.

Criterion 4: Classification - Survival Information

Survival data from clinical information were also used to evaluate the inferred

pathway activity values. We utilized rfsrc library to measure concordance

index in R followed by a 5-fold cross-validation. The folds were generated by

using createFolds function of caret library (Kuhn et al., 2008) in R.

Criterion 5: Classification - Cancer Subtypes

Subtype classification of cancer is a difficult classification task even when gene

expression information of all genes are used. Thus, measuring subtype classifi-

cation accuracy using the inferred pathway activity values will be challenging

and meaningful. Cancer subtypes to be analyzed are listed in Table 3.3. These

subtypes are mostly based on molecular signatures from high-throughput se-

quencing data. We performed subtype classification experiments as in tumor vs

normal classification task.
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3.4.2 Similarity among the tools

It is also interesting to see how much the inferred activity values by each tool

t are similar to each other. We calculated similarity using the pathway activity

values on multiple cancer data sets (Figure 3.2). Since some tools produce

activity values for a subset of pathways, we used consensus pathways as the

intersection of the pathway sets for all the activity matrices Ad,t (Figure 3.2).

We measured pairwise cosine similarity Sim(t1, t2) of two tools for each cancer

data d. We measured pairwise cosine similarity Sim(t1, t2) of two tools for each

cancer data d. Aggregating for all cancer data to compute the similarity of two

tools, Association(t1, t2), is a weighted sum of Sim(t1, t2) according to the data

size (Equation 3.5). To see how similar the 13 tools are in terms of pathway

activity values, hierarchical clustering was performed by using the Average

clustering option in hclust library of R.

Association(t1, t2) =

∑
d Sim(t1, t2)d × nd∑

d n
d

(3.5)

3.5 Results

3.5.1 Distance preservation

The distance between samples was defined as a measure to characterize the

activity values. The two distance metrics, dMd
from the raw expression data

and dAd,t
generated by a tool t, were compared for each cancer d. By taking a

reciprocal of the weighted average of MSE for each tool, termed as DPt, we

estimated how much a tool maintains the original characteristic from RNA-seq

data (Equation 3.1). The smaller the distance between RNA-seq data and ac-

tivity values, the greater the DPt value is. This means that the sample space of

the inferred pathway activity values is closer to that of the original gene expres-
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Clustering of Inferred Pathway Activity Values:

Weighted Cosine Similarity (WCS)
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Figure 3.2: Schematic diagram of measuring similarity between path-

way activity inference tools. Cosine similarity among the tools was first

calculated for each cancer data set d. These cosine similarity values Simd are

then averaged over all cancer data sets weighted by sample size nd to calculate

Association(t1, t2).
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LLR
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Figure 3.3: DPt values for the tools. Distance preservation (DP) was calcu-

lated by measuring the difference between the distances between samples in gene

expression data and in pathway activity values of a tool. The greater the DPt

value, the more data characteristic was sustained in pathway activity inference.

sion. Note that only a small portion of genes, approximately 1/3 of all genes,

are included in pathways. Then, when tools measure the activity of pathways,

it is interesting to see how well distance between samples in terms of path-

way activity values can preserve the characteristics of the original data, i.e., all

genes.

As it can be seen in Figure 3.3, DPt for PLAGE is the largest among all the

tools RCPLAGE = 18.20). It seems that the use of PCA by PLAGE is effective

in preserving characteristics of the original gene expression data while trans-

forming the transcriptome data at the pathway level. Pathifier performed

the second best. Pathifier is also in line with PLAGE in using PCA for the

data transformation which is likely effective in preserving the characteristics of

the original data. SAS that uses the explicit gene expression information and

performed next best.
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Figure 3.4: Effect of noise in input gene expression data. (a) Boxplots of

Spearman’s correlation coefficient (Spearmanpk,t(e, i)) values for hsa04110:Cell

cycle pathway across the perturbation factor e. Each subplot was drawn for 30

repeated experiments on i. Dotted lines with red and blue at Spearmanpk,t(e, i)

= 1 and -1 indicate theoretical maximum and minimum, respectively. (b) Barplot

of Robustness(t) values across the tools.
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Table 3.4: Pathway databases used in this study

Database
Number of unique entities Source

pathway gene interaction gene interaction

KEGG 314 7,200 47,589 https://www.kegg.jp/kegg/rest

NCI 165 2,495 24,391 http://www.ndexbio.org

REACTOME 675 6,025 11,929 (Liberzon et al., 2011) https://reactome.org/download-data

Additional comparative analyses of the tools were performed to investigate

whether there is any dependency on using other pathway databases such as

NCI and Reactome (Table 3.4). Marginal but statistically insignificant changes

in DPt values were observed between the databases (Table 3.4). As KEGG

database includes more genes and interactions than the other two databases

do, comparative analysis throughout the study was performed using KEGG

(Table 3.4).

3.5.2 Robustness against noise

The goal of this experiment is to measure the tolerance of each tool against

noise in the data. The test metric is how similar the perturbed activity val-

ues (A′
t) are to the original activity values (At) in terms of ranks. The tools

were similar in Spearmanhsa04110,t(1, 1) values at low level of noise. Most of

the tools show almost perfect correlation to the original data at 0.99, PADOG

showed relatively low correlation. Steady decrease in Spearmanpk,t(e, i) was

observed in most of the tools, while it is the most dramatic between e ≥10.

Spearmanhsa04110,SAS(e, 1) showed a decreasing pattern as the level of applied

noise increases from 0.996 at e=1 to 0.173 at e=200. The overall trend over

different perturbation levels (e) is depicted in Figure 3.4a. This validates that

whichever details in pathway activity inference uses can sustain a certain level

of robustness to random introduction of noise in input gene expression data.
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Figure 3.5: Performance Comparison of the tools to classify tumor vs

normal samples by classifiers: GaussianNB and RF. The metric to evaluate

the performance is weighted F1 score. Each box in boxplot was built on across

the cancer data sets.
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Figure 3.6: Performance comparison of tools to classify survival infor-

mation by c-index. The vertical red line indicates the performance at random.

Each subplot was depicted for the performance of a tool on pan-cancer data set.
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To collectively summarize the above experiment results as a single mea-

surement value, we measured Robustness(t) throughout the pathways as in

Equation 3.4 (Figure 3.4b). As the theoretical upper bound of Robustness(t) is

approximately 2.45, eight tools (CORG, DART, GSVAdif, GSVAmax, LLR, PathAct,

SAS, ssGSEA) are shown to be highly robust to noise. This indicates that using

raw expression values in the inference pipeline is advantageous to stay robust

against introduction of noise. Meanwhile, tools such as IndividPath, PADOG,

and PLAGE are below average to be stable. PADOG seems suffering from down-

weighting genes that are assigned to more than a single pathway, thus letting

itself sensitive to noise.

We note here that both DART and IndividPath suffer from decrease in

the number of inferred pathways as the level of applied noise increases (Fig-

ure 3.7). This is due to their own mechanism of leveraging pathway database

that uniquely apply denoising algorithm of template relational structure within

a pathway. As noise increases, the algorithm would drive itself to remove ele-

vated noise and less relationships would survive. This can be considered as both

minor drawback and advantage for both tools by losing information from re-

moved pathways, in the meantime by refining robust pathways. LLR, at extreme

level or noise (here at e=200), forces all the perturbed activity values either 1

or 0 as it uses cumulative probability of each gene expression value to calculate

log-likelihood (data not shown).

3.5.3 Classification: Tumor vs Normal

Here, the task is to measure how well tumor vs normal samples can be distin-

guished by using the inferred pathway activity values. We used two machine

learning classifiers (NaiveBayes and RF) from sklearn library in Python. All

tools performed very well, achieving a weighted F1 score of 0.9 or higher. The
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Figure 3.7: The number of pathways to infer activity values in DART (red)

and IndividPath (blue) with respect to the varying noise level e.

performance of all tools is summarized in Figure 3.5. As aforementioned, only

about 1/3 of all genes are included in pathways, thus the high performance in

the tumor vs normal classification task indicates that all tools are successful in

summarizing transcriptome data at the pathway level.

ESEA performed the best with a weighted F1 score of 0.996. It is also inter-

esting that ESEA showed the best performance at perfect classification for both

of the classifiers in cancer data sets (BRCA, KIRC, LIHC, LUAD, LUSC, and

THCA).This seems because ESEA projects the distance between samples with

respect to normal samples in terms of the difference in mutual information.

In addition, variable importance (VI) from RF classifier was measured to rank

pathways in order of significance to classification for each cancer type and tool.

This revealed that many pathways commonly detected by multiple tools were

discovered to be valuable (Data not shown).
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Figure 3.8: Performance Comparison of the tools to classify a) BRCA,

b) COAD, c) PRAD, d) STAD cancer subtypes. Red bar shows the the

performance of GaussianNB classifier, while blue one shows that of RF classifier.

For a tool at maximum performance on average for both classifiers is marked

with ⋆. Note that the scale ranges from 0.2 to 0.8 to maximally distinguish the

comparison ( Performance of LLR in COAD was 0.197.)

3.5.4 Classification: survival information

The task is to measure how well the inferred pathway activity values predict

patient survival. We built a RF model using pathway activity values and the

goodness of fit of the survival model was measured by concordance index (c-

index).

Figure 3.6 shows boxplot of c-index values of the tools across pan-cancer

data set. Overall, all tools were successful in predicting patient survival for most

of patients since the first quartile is above the random performance, except

PADOG. In terms of median, Pathifier performed best in this task. In terms

of all cancer data sets, SAS performed best since no survival prediction was

below the random performance. It was notable that 7 tools nominated ‘Cell

cycle pathway (hsa04110)’ in KIRP data at an average rank of 3.7.
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3.5.5 Classification: cancer subtypes

The presence of heterogeneity among the samples within a single cancer data

hampers the interpretation of genuine characteristic of a disease under study.

As such, there have been several studies to develop sub-classes to better un-

derstand and provide treatment of the disease called ‘subtypes’. Since they are

partially built on genome-wide omics data such as gene expression, we investi-

gated whether there is further capability of pathway activity on differentiating

subtypes within each cancer. As a result, it was more distinctive among the

tools in classifying subtypes than previous tasks - tumor vs normal and sur-

vival information.

The performance of all 13 tools is summarized in Figure 3.8. SAS performed

best in classification of BRCA and PRAD cancer subtypes on average of both

classifiers. IndividPath and PADOG showed the best performance in COAD

and STAD cancer subtypes, respectively. ESEA showed quite low classification

performance for all the cancer types, which we conjecture that ESEA highly

focus on the difference between tumor and normal information, thus is unable

to capture the distance between tumor samples.

We note that the performances of the tools vary significantly for the subtype

classification task, compared to the other four evaluation experiments. This is

because the subtype classification task is the most challenging. More study such

as on simulation is needed to understand why the performance variations are

high for the subtype classification task.

3.5.6 Similarity among the tools

Additional investigation was performed on how much the tools are similar in

their pathway activity values, we calculated cosine similarity on each cancer
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Figure 3.9: Radar charts of the pathway activity inference tools for 5

comparative criteria. Each vertex counter-clockwise from 12 o’clock of pentag-

onal radar chart indicates distance preservation, robustness against introduction

of noise, classification performance on tumor vs normal information, classification

performance on survival information, and classification performance on subtype

information. The highest scorer for each standard was marked with blue star at

corresponding vertex.

data set (Figure 3.10). It is reasonable that the similarity between GSVAmax

and GSVAdif was the greatest as they share the same background framework.

Their difference arises from the point where the former focus on the maximum of

whether deviation from zero, while the latter focus on both positive and negative

deviations (Hänzelmann et al., 2013). The tools (GSVAdif, GSVAmax, CORG,

and PathAct) were clustered together in a greater scale, except for ssGSEA, as

they share the same characteristic of both using tumor vs normal information

and cohort-level input data.
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3.6 Discussion

In this study, we compared pathway activity inference tools in terms of five

evaluation criteria. The performance comparison results are summarized as a

radar chart (Figure 3.9).

Pathifier, PLAGE and SAS performed the best in terms of preserving the

characteristics of the original gene expression data. It seems that using PCA was

effective in preserving characteristics of the original gene expression data while

transforming the transcriptome data at the pathway level. Transformation of

raw input data (e.g. rank transformation) was able to sustain sample distance

even by distorting the original data structure.

For the tolerance to noise, ssGSEA was the most robust. Many other tools

were also comparable in robustness to ssGSEA. This reinforces the utility of

pathway activity inference tools as subtle fluctuation in the input gene expres-

sion data can even out when genes of rich biological context are grouped into a

set of pathways.

In terms of tumor vs normal classification, ESEA performed best, achieving

the perfect classification on all six cancer data sets. All tools achieved very good

performance, which shows that pathway activity inference from gene expression

data is done well.

For the patient survival prediction, all tools made reasonably good predic-

tion above random prediction performance. In average, Pathifier performed

best for all patients. In terms of all cancer data sets, SAS performed best since

no survival prediction was below the random performance.

For the cancer subtype classification, SAS and PADOG showed best. This is

because both tools take into account the gene importance in terms of pathway

structural context for pathway activity inference.
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As we can see in the three classification tasks, majority of the tools show sub-

tle difference in performance. However, for the preservation of the original data

structure and robustness to the noise, it seems reasonable to choose the tools

with balanced radar in Figure 3.9, such as SAS, Pathifier, and IndividPath.

There are pathway entities representing the same biological phenomena in

different pathway databases. Five representative pathways from each path-

way database were chosen and compared both on the constituent genes and

their pathway activities (Data not shown). Since the pathways commonly share

few genes for the 3 pathway databases, their activity values were also signif-

icantly different (p-value < 2e-16 by ANOVA). It was also interesting that

IndividPath, Pathifier, and SAS managed to preserve distance profile whichever

pathway database was used (Data not shown).

In addition, ‘PI3K/AKT/mTOR signaling pathway’ was chosen from (Er-

sahin et al., 2015) to compare with the corresponding pathway in KEGG:

hsa04151. They shared some genes in common (Jaccard Index = 0.18). Activity

values from 10 tools revealed that enrichment based tools (GSVAdif, GSVAmax,

ssGSEA) produce significantly different activity values between the two path-

ways (Data not shown). This indicates that such enrichment-based techniques

are highly sensitive to the way how a pathway is defined. Other three tools

(ESEA, IndividPath, PADOG) were not applicable to the given pathway as they

require a collection of pathways in their analysis pipeline but Ersahin et al.

(2015) contains only a single entity.
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Figure 3.10: Similarity among the tools. Pairwise distance was calculated

from pan-cancer cosine similarity values (See Approach).
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Chapter 4

A cloud-based system of pathway
activity inference tools using
high-throughput gene expression
data

4.1 Related works

Biological pathway is information accumulated over the decades to categorize

genes according to the functional or molecular characteristics Haeussler et al.

(2018); Sayers et al. (2019). Pathway databases have been extensively used

along with high-throughput gene expression profiles to investigate biological

functions of a disease Schadt et al. (2005); Draghici et al. (2007).

There are several web-based platforms addressing how to identify significant

pathways out of user-provided list of DEGs or genes of interest Huang et al.

(2007); Liberzon et al. (2011); Xie et al. (2011); Wang et al. (2013, 2017). They

extensively integrated various databases to help users find the significance from

the list of genes. Such platforms perform statistical analysis on input genes
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against database using their basis strategy. Hosack et al. (2003); Subramanian

et al. (2005).

It becomes more important to build a platform or a tool with easy access

and visual inspection of the results. Such examples include Cytoscape Kohl

et al. (2011) and Enrichr Chen et al. (2013); Kuleshov et al. (2016). Cytoscape

offers a new type of platform offering various graphical visualization techniques.

It can be extended by using plugin software to perform additional analysis of

the entities. ClueGO and CluePedia are examples that investigate the genes in

in terms of biological pathways Bindea et al. (2009, 2013). Enrichr is a platform

that significantly extended the scope of knowledge-based analysis by integrating

a large number of gene sets from more than a hundred of libraries. Its highly ef-

ficient environment with user-friendly layout paved a new way of demonstrating

pathway-level analysis.

4.2 Motivation

Despite popularity in identifying significant pathways, current pathway databases

still recruit approximately one-third of the whole genes being analyzed in ex-

pression profiles (Table 3.4). To address the issue, pathway activity measure-

ment was suggested. Pathway activity values inferred from gene expression val-

ues were used as input for machine learning model that considers pathway as

feature to learn characteristics of the given data (Figure 3.5).

Moreover, individual pathway activity inference tools use their own libraries

which often discourages its widespread use. Some tools built their standalone

libraries in Bioconductor Gentleman et al. (2004), users still need to follow

thorough instructions to get final outcome. It is more difficult for those who

are not prepared with computational language skills or prior knowledge on
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bioinformatics, demanding a great deal of time and effort. It is also impossible

to be aware which of the tools are more appropriate to their analysis without

systematic comparisons on the tools. Therefore, a framework is necessary that

help users utilizing pathway activity tools as well as comparing the results in

the context of input data.

In this work, a web-based system called PathwayCloud is introduced to

provide an environment where users can calculate pathway activity inference.

The platform imports both gene expression profiles and sample information

from a user. PathwayCloud runs the user-selected tools on a cloud/web server,

analyzes the data and visualizes the results on a web-based platform. It performs

pathway activity calculation and visualization of the results under interactive

environment, also directing the results to KEGG pathway images of involving

genes. Comparative analysis on the selected tools is also available on user-

provided data to help users understand from which of the tools the result is

more reliable.

4.3 Implementation

Web-based system PathwayCloud is based on an environment where users

can easily use pathway activity inference tools. The system is written in JAVA

and JSP based on Spring framework and deployed on Apache web server. Visu-

alization of the results and graphs are based on D3 JavaScript library. To resolve

the limitation on physical computational resources, PathwayCloud provides a

cloud environment image. This enables the inference of pathway activities from

RNA-seq data with improved flexibility and on-demand access without consid-

ering detailed configurations.
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Input data Users can use PathwayCloud using their own data or public data

including both gene expression profiles and sample information. The data file

should be in a csv-formatted structure. so that the system can process the input

to the tools. The labels in sample information should be in binary format terms

as ‘CASE’ or ‘CONTROL’. All the genes should be in official gene symbols.

Pathway activity inference tools There are ten pathway activity infer-

ence tools in PathwayCloud. All the pathway activity inference tools except

IndividPath are written either in R or Python. IndividPath was employed in

this work using both shell script and awk based on the strategy described

in the original paper (TABLE 3.1).

Comparison of the tools PathwayCloud provides a comparative analysis

of the tools using the input data. After calculating pathway activity from each

tool, distance preservation described in Chapter 3.4.1.

4.4 Results

The results will be illustrated by using TCGA bladder cancer (BLCA) RNA-seq

data set as an example. The data set has 326 number of samples (285 cancer and

41 normal samples) downloaded from Firebrowse (http://firebrowse.org/).

4.4.1 Calculating pathway activity values

When TCGA BLCA gene expression and sample information data are provided

to PathwayCloud, both files are transferred to selected pathway activity infer-

ence tools on the cloud server. Pathway activity values are calculated and then

returned back to the web server. PathwayCloud will automatically send an e-

mail to the user with a notice and a direct link to the result page. Users can
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Chapter 4. Figure 1. Overview

Users prepare
 gene expression profile

 sample information

Run selected tools

...

Users can
 download pathway activity data

 investigate significant pathways

 be directed to KEGG with result

 evaluate tools for comparison

Analyze / Visualize the results

report

rank

visualize

compare

visualize

download

Figure 4.1: An overview of PathwayCloud. When input data (gene expres-

sion matrix and sample information) is ready, PathwayCloud runs the selected

tools to generate pathway activity values.

also download the pathway activity matrices for further analysis.

4.4.2 Identification of significant pathways

After the calculating step, PathwayCloud uses the pathway activity itself to

investigate which pathway is significantly perturbed between the given class

information. Student’s t-test followed by FDR correction is performed for each

pathway across the tools. The resulting significance is depicted to a graph in

descending order so that the user can easily recognize which pathway to further

investigate Figure 4.2.

4.4.3 Visualization in KEGG pathways

When investigating which pathway is significant from given data, it is also use-

ful to further see which genes contributed more to such significance (Figure 4.3).

PathwayCloud provides a direct link to KEGG pathway database for each path-
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Chapter 4. Figure 4. PathwayCloudFigure 4.2: Identification of significant pathways from pathway activ-

ity. Pathway activity values from SAS for each pathway were compared between

the sample groups and visualized as a graph. Users can investigate the name of

pathways and its significance when placing the cursor on each bar in the graph.
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way with individual fold-change as significance. Fold-change value is represented

as color-coded format, blue for down-regulated and red for up-regulated.

It is different from the previous method in showing information of all the

genes in a pathway. While DAVID shows only the intersection between user-

provided genes and pathway genes, PathwayCloud provides the whole landscape

of a pathway in a color-coded format to visually inspect how many and where

the genes are expressed.

Chapter 4. Figure 5. PathwayCloudFigure 4.3: Example direction to KEGG pathway - Cell cycle from

pathway activity values SAS. Colors are automatically assigned to genes using

the input gene expression data.
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4.4.4 Comparison of the tools

Since there are eleven pathway activity tools to be selected in PathwayCloud,

comparative analysis of the pathway tools are provided (Figure 4.4). Reflecting

Chapter 3, one of the criteria to evaluate the tools was to calculate the distance

between pathway activity and input gene expression values. This sample-wise

metric can be applied regardless of the number of features as it compares the

pairwise distance between the samples.

Distance preservation of the tools in calculating pathway activity

Distance Preservation (DPt)

Figure 4.4: Comparison of the tools using Distance Preservation (DP)

PathwayCloud performs an evaluation of the tools using Equation 3.1.

4.5 Discussion

PathwayCloud displays the output of pathway activity results using various

ways. The result can be seen similar to previously mentioned tools such as

DAVID or Enrichr, as both also show the list of significant pathways given

data. However, what makes PathwayCloud different is that the analysis resulted

from using actual genome-wide expression values unlike other tools mentioned
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previously such as DAVID or Enrichr solely using filtered list of genes. This

makes PathwayCloud more comprehensive as a whole set of genes in each path-

way is considered before investigating the significance in terms of given class

information.

One of the features of PathwayCloud is that users can download pathway

activity value matrices from the tools that is the very beginning of the re-

sult. In addition to list up significant pathways, users can further utilize other

machine learning tools out of the pathway activity matrix, considering path-

ways as features. Revisiting that using pathway activity was very effective in

reducing dimension of the given gene expression data (Chapter 2.3), various

machine learning models that can aid interpretation of the data are useful such

as Random Forests generating variable importance.
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Chapter 5

Conclusion

Long time accumulation of biological knowledge lets us learn from the past to

make valuable discoveries out of new technologies. This means that addressing

biological or technical challenges at that time can provide a different way of

interpretation on data. This thesis suggests a pathway-based interpretation of

high-throughput molecular data as one of such contributions to be valuable for

further researches. There are three challenges addressed in this thesis:

1. Summary of gene expression profiles to a single representative value for

each pathway

2. Criteria on comparison of pathway activity inference tools

3. Lack of a platform to run and compare pathway activity tools all together.

In the first study, a method to infer pathway activity, SAS, using explicit

gene expression data was developed. Many pathways consist of multiple bio-

logical functions. To characterize the complex biological mechanisms underly-

ing disease, use of well curated biological pathways was an effective approach.
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However, it was challenging how to summarize gene expression values into sin-

gle pathways. Thus, to perform the pathway-based characterization of disease,

subsystems are defined by decomposing biological pathways into multiple func-

tional units by utilizing PIN and defining a scoring scheme. This showed that

the landscape of subsystem activity was distinctive among breast cancer sub-

types.

The second study provided a comprehensive survey on pathway activity in-

ference tools in terms of input transformation, use of labels, necessity of cohort-

level input data, use of gene relations, and scoring metric. Though there are

several approaches to represent a pathway for each sample with a single value

from gene expression data, there is no comprehensive evaluation on such tools

with systematic criteria. Thus, I performed extensive evaluation on the perfor-

mance of these tools by introducing five criteria. Overall, SAS performed best

among 13 tools. In addition, IndividPath can also be considered a useful tool

since it measures relative orderings of the relations within a pathway to detect

perturbed pathways in each sample. Both SAS and IndividPath are favorable

than other tools since they performed better than other tools when all five

criteria were considered.

In the last study, a web-based system called PathwayCloud was developed to

help users understand and utilize pathway activity tools. PathwayCloud takes

gene expression profiles and corresponding sample information as input to cal-

culate pathway activity values and evaluate them on a cloud server. The results

are shown on a web-based system to provide users easy access and comprehen-

sion on pathway activity tools.

In conclusion, my doctoral study addressed three challenges in utilizing bi-

ological pathways along with high-throughput gene expression data. This con-

tributed to the field of bioinformatics by making an effort to solve the challenges
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and provide convenient way of using pathway activity tools.
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초록

RNA-seq 데이터를 사용하여 RNA 전사체의 변화량을 측정하는 것은 생물정보학

분야에서 필수적으로 수행하고 있는 분석 방법 중 하나이다. 그러나 RNA-seq은

인간의 2만개 이상의 유전자를 포함하는 고차원의 전사체 데이터를 생성하기 때

문에, 상대적으로 적은 양의 샘플들을 분석하고자 할때는 데이터 해석에 있어서

어려움이 있다. 따라서, 더 나은 생물학적 이해를 위해서는 생물학적 패스웨이와

같이 잘 요약되고 널리 사용되는 정보를 사용하는 것이 유용하다. 그러나 전사체

데이터를 생물학적 패스웨이로 요약하는 것은 몇 가지 이유로 매우 어려운 작업

이다. 첫째, 전사체 데이터를 패스웨이 차원으로 변환할 때 엄청난 정보 손실이

발생한다. 예를 들어, 인간에 존재하는 전체 유전자의 1/3만이 KEGG 패스웨이

데이터베이스에서 보고되고 있다. 둘째, 각 패스웨이는 많은 유전자로 구성되어

있으므로 패스웨이의 활성도를 측정하려면 구성하고 있는 유전자 간의 관계를 고

려하면서 유전자 발현 값을 단일 값으로 요약해야 한다.

본 박사 학위 논문은 패스웨이 활성도 측정을 위한 새로운 방법을 개발하고

여러 비교 기준에 따라 기존에 보고된 패스웨이 활성도 도구들에 대한 광범위한

평가실험을수행하고자한다.또한일반사용자가자신의데이터를쉽게분석할수

있도록 앞서 언급한 도구들을 웹 기반 시스템 구축을 통해 쉽게 사용할 수 있도록

하였다.

첫 번째 연구에서는 전사체 유전자 발현양 정보를 그대로 사용하고, 상호작

용 네트워크 측면에서 유전자 간의 관계를 고려하여 패스웨이의 관점으로 전사체

데이터를요약하는새로운방법을개발하였다.이연구에서는단백질상호작용네

트워크, 패스웨이 데이터베이스 및 RNA-seq 전사체 데이터를 활용하여 생물학적

패스웨이를여러개의시스템으로구분하는새로운개념을제안하고자한다.각시

스템 및 각 샘플마다의 활성화 정도를 측정하기 위해 SAS (Subsystem Activation
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Score)를개발하였다.이방법은샘플들간및유방암아형들사이에서차별적으로

활성화되는 특유의 유전체 상에서의 활성화 패턴 또는 서브 시스템을 표현할 수

있었다. 그런 다음, 분류 및 회귀 트리 (CART) 분석을 수행하여 예후 모델링을

위해 SAS 정보를 사용했습니다. 그 결과, 10 개의 가장 중요한 하위 시스템으로

정의 된 11 개의 환자 하위 그룹은 생존 결과에 있어 최대 불일치로 확인되었다.

이 모델은 유사한 생존 결과를 가진 환자 하위 그룹을 정의했을뿐만 아니라 기능

적으로 유익한 유방암 유전자 세트를 제안하는 하위 시스템의 활성화 상태에 따라

결정되는 샘플 특이적인 상태의 판단 경로를 제공한다.

두 번째 연구는 전 암 (pan-cancer) 데이터 세트를 사용하여 다섯 가지 비교

기준에 따라 13 가지의 패스웨이 활성도 측정 도구를 체계적으로 비교 및 평가하

는 연구이다.현존하는 패스웨이 활성도 측정 도구가 많이 있지만, 이러한 도구가

코호트 수준에서 유용한 정보를 제공하는지에 대한 비교 연구는 없다. 이 연구는

크게두가지부분에대해서의미가있다.첫째,이연구는기존의패스웨이활성도

측정 도구에서 사용되는 계산 기법에 대한 포괄적인 정보를 제공한다. 패스웨이

활성도 측정은 다양한 접근법을 사용하고, 입력 데이터의 변환, 샘플 정보의 사용,

코호트 수준의 인풋 데이터의 필요성, 유전자 관계 및 점수체계의 사용 등에서

다양한 요구 사항을 가정해야 한다. 둘째, 이러한 도구의 성능에 대한 다섯 가지

비교 기준을 사용하여 광범위한 평가가 수행되었다. 도구가 원래의 유전자 발현

프로파일의 특성을 얼마나 잘 유지하는지를 측정하는 것부터, 유전자 발현 데이터

에 노이즈를 임의로 도입하였을 때 얼마나 둔감한지 등을 조사했다. 임상 적용을

위한 도구의 유용성을 평가하기 위해 세가지 변수 (종양 대 정상, 생존 및 암의

아형)에 대한 분류 작업을 수행했다.

세 번째 연구는 사용자가 전사체 데이터를 제공하고, 앞선 연구에서 비교한

활성도 측정 도구를 사용하여 패스웨이 활성도를 측정하는 클라우드 기반 시스템

(PathwayCloud)을 구축하는 것이다. 사용자가 데이터를 시스템에 업로드하고 실

행할 분석 도구를 선택하면, 이 시스템은 각 도구에 대한 패스웨이 활성도 값과

선택한 도구에 대한 성능 비교 요약을 자동으로 수행한다. 사용자는 또한 주어진
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샘플 정보의 측면에서 어떤 패스웨이가 중요한지 조사 할 수 있으며, KEGG rest

API를 통해서 직접 패스웨이의 어떤 유전자의 변화가 유의미한지를 시각적으로

분석할 수 있다.

결론적으로, 본 학위 논문은 고용량의 유전자 발현 데이터를 사용하여 생물학

적패스웨이에대한분석방법을개발하고,다른유형의도구를포괄적인기준으로

비교하고, 사용자가 이 도구들에 쉽게 접근할 수 있는 웹 기반 시스템을 제공하는

것을 목표로 한다. 이 전반적인 접근 방식은 생물학적 패스웨이 측면에서 유전자

발현 데이터를 이해하는 데 중요했다.

주요어: 패스웨이, 패스웨이 활성도, 생물학적 네트워크 분석, 유전자 발현, RNA

시퀀싱

학번: 2014-30099
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