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ABSTRACT

There have been many attempts to fully understand the mechanism of cancer behavior. Yet, how cancers develop and
metastasize still remain elusive. Emerging concepts of cancer biology in recent years have focused on the communication
of cancer with its microenvironment, since cancer cannot grow and live alone. Cancer needs to communicate with other
cells for survival, and thus they secrete various messengers, including exosomes that contain many proteins, miRNAs,
mRNAs, etc., for construction of the tumor microenvironment. Moreover, these intercellular communications between
cancer and its microenvironment, including stromal cells or distant cells, can promote tumor growth, metastasis, and
escape from immune surveillance. In this review, we summarized the role of proteins in the exosome as communicators
between cancer and its microenvironment. Consequently, we present cancer specific exosome proteins and their unique
roles in the interaction between cancer and its microenvironment. Clinically, these exosomes might provide useful
biomarkers for cancer diagnosis and therapeutic tools for cancer treatment.

Background
Cell release diverse types of extracellular vesicles;
apoptotic bodies whose sizes are 50 to 5,000nm with
their irregular lipid bilayers, as well as microvesicles
whose size 50 to 1,000nm is smaller than apoptotic bod-
ies but also has an irregular shape. Exosomes are 30-
100nm in diameter and contain DNA, miRNA, mRNA,
lncRNA, proteins, etc. within their lipid bilayer mem-
brane [1–5] (Fig. 1). Apoptotic bodies and microvesicles
are originated from cell membrane surface. Exosomes
are smallest extracellular vesicles and originating from
endosomes [6]. Exosomes are secreted by various cell
types and conditions [7]. After being released from the
donor cells the, exosomes travels through the blood and
other body fluids. While traveling through the body,
exosomes enter the recipient cells through membrane
fusion and induce transcriptional and, even more abun-
dantly, translational changes [8–10]. Tumor cells how-
ever secrete more exosomes than normal cells and these

cancer-derived exosomes are involved in tumorigenesis,
metastasis and forming the tumor microenvironment
[11]. Recently, many researches have revealed that the
exosome is a mediator of cell to cell communication and
can be a good candidate for a liquid biopsy biomarker
[12–16]. There have been analyses of breast cancer-
derived exosomal proteins by liquid chromatography-
mass spectrometry (LC-ms/ms), which revealed that the
exosome contains a variety of proteins, for example,
enzymes, membrane proteins, heat shock proteins, and
even transcription factors. This review discusses cancer-
derived exosomal proteins and their roles in the inter-
action with tumor microenvironment.

Exosome isolation and protein digestion for
proteomics
After many research studies proved that exosomes play
a role in cell to cell communication through proteins,
the interest in exosomes continued growing. However,
the method of exosome isolation and analysis is still de-
bated [8]. High yield and purity can not only enhance
quality but also help us to understand the exosome’s role
in specific conditions. Here, we will discuss exosome
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isolation methods and digestion methods of exosomal
proteins from plasma/serum and cells.
Various exosome isolation methods have been devel-

oped [8, 17, 18]. Many of these methods can be catego-
rized into three main categories according to the
characteristics of the exosome; density, size, and immu-
noaffinity. First, sorting exosome by density is the most
common method and utilizes differential centrifugation
by varying the g force. Shortly, this is started with centri-
fuging at 300-500g to remove cells, accelerating the
speed to 2,000-20,000g to remove cellular debris, and fi-
nally speeding up to 100,000-200,000g for the exosome
isolation. Using this method, researchers can get exo-
somes in the pellet. However, isolation takes a long time
and requires a lot of input. The biggest drawback is rela-
tively low efficiency and poor recovery. Recently, com-
mercial precipitation reagents have been developed.
Using a precipitate for exosome isolation has a higher
yield than using an ultracentrifuge, but lower quality
since the precipitate can lead to the precipitation of pro-
teins. Second, using the smaller than 200nm size charac-
teristic of the exosome allows it to be separated by
filtration and size exclusion chromatography. Filtration
and size exclusion chromatography can filter out the cell
membrane, sub-cellular fraction and anything that has a
bigger size than the exosome. To increase efficiency and
purity, many researchers use a combined method, such
as filtration and ultracentrifuge, or filtration and precipi-
tate reagents. Muller et al suggested that this combined
method is better than using only one method [19].
Lastly, the immunoaffinity for isolation method uses
antibodies to capture exosomal proteins. The common

proteins isolated by immunoaffinity are tetraspanins
such as CD9, CD63, and CD81.
After isolation of the exosome, we must lyse the lipid

bilayer membrane and digest proteins to peptides for
mass spectrometry (MS) analysis. Here, we summarized
3 protein digestion methods; In-gel digestion, In-sol di-
gestion, and Filter Aided Sample Preparation (FASP)
(Fig. 2) [20]. First, in In-gel digestion, lysed exosomal
proteins are resolved on a polyacrylamide gel and visual-
ized using Coomassie brilliant blue or other staining
reagents. The gel is then sliced to a 1mm size and
destained by ammonium bicarbonate. The next steps are
reduction, alkylation, and digestion. Peptides go through
the process of enrichment and cleanup. Then, dried pep-
tides are resuspended and injected into LC-ms/ms [21].
Second, for In-sol digestion, lysed exosomes are kept in
an aqueous state. Exosomal proteins sequentially
undergo reduction, alkylation, and digestion in the aque-
ous state. Like the in-gel method, peptides are then
enriched and cleaned up before being injected into LC-
ms/ms. Lastly, in the FASP method, all of the above-
mentioned processes are processed on Microcon 30k
centrifugal ultrafiltration units. Lysed exosomes are
loaded onto the filter and discard the elute after centri-
fugation. Reduction, alkylation and digestion are all
processed on the filter. Overall, each method has its ad-
vantages and disadvantages. Here, we summarized meth-
odological properties in Table 1 [21, 22].
Cho (2015) et al., suggested that the biggest issues in

exosome research arise from the exosome isolation
method. Since the proper isolation method for exosome
study remains debated however, we summarized exosome

Fig. 1 Schematic description of the extracellular vesicles, Exosomes are smallest extracellular vesicles (30-100nm) secreted from endosomes.
Microvesicles are small vesicles (50-1,000nm), and apoptotic bodies are largest extracellular vesicles, both are originated from cell membrane
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isolation and exosomal protein digestion methods from
the studies for exome proteome analyses in Table 2.
The exosomes secreted from the cells and biological

fluids are most often separated by a combined method.
The most commonly used method is the fusion of ultra-
centrifugation and filtration. Exosomes are usually
digested by the In-Gel , In- sol and FASP methods. Be-
fore the FASP method arose [61], the most used method
was the In-Gel method. But the FASP method is known
to have both the In-Gel and In-Sol methods’ advantages,
thus recently manystudies used the FASP method for di-
gestion regardless of where exosomes came from.

Cancer-derived exosomal Proteins
Breast cancer
Breast cancer is the deadliest cancer in women. One in
eight women are diagnosed with breast cancer in their
lifetime [62] and breast cancer accounts for 30% of
newly diagnosed cancers in women [63]. For the last 10
years breast cancers’ death rates and incidence rates in
The United States have risen each year. The exosome
has been revealed as a potential liquid biopsy biomarker
and numerous studies using liquid chromatography-
mass spectrometry (LC-ms/ms) have revealed that
cancer derived exosomes contains various proteins,

Fig. 2 Summarization of exosomal protein digestion methods. Exosomes from cell supernatant and body fluid are digested by (1) In-gel
digestion (2) In-sol digestion and (3) FASP methods

Table 1 Advantages and Disadvantages of proteomic digestion techniques

Digestion Method Advantages Disadvantages

In-gel Digestion Reproducible, Cost effective, Removal of mass spectrometry
incompatible detergents (SDS, Triton etc.) and contaminants,
Wide cover range

Time consuming, Inacceptable for extremely acidic or basic
and high or low molecular weight proteins and membrane
proteins

In-sol Digestion Require less time Inacceptable for low resolubilization proteins

FASP Acceptable for membrane proteins, Removal of mass
spectrometry incompatible detergents (SDS, Triton etc.)

Loss of proteins , Bad repoducibility, Require large amount of
protein sample (> 50ug)
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including enzymes, membrane proteins, heat shock pro-
teins, and even transcription factors.
There are many studies on different types of breast

cancer exosomes; the cell line derived exosomes de-
scribed, or exosomes derived from breast cancer patient
biological fluids. An early exosome proteome study iden-
tified that exosomes derived from breast cancer cell lines
MCF-7 and MDA-MB-231 have 59 and 88 proteins, re-
spectively [64]. The MDA-MB-231 derived exosome
contained more enzymatic proteins than the MCF7 de-
rived exosome. The number of common proteins be-
tween the two cell lines are 27. These include
cytoskeleton proteins such as β-actin, tubulin-β, and
integrins; membrane proteins like BASP1; enzymes in-
cluding enolase α and PRDX1; ribosomal proteins like
RS27A; heat shock proteins including HSP90A, HSP90B,
HSP7C; and epigenetic modification related proteins
such as Histone proteins and 14-3-3 proteins. β-actin
and tubulin-β are associated with breast cancer metasta-
sis [65, 66]. Overexpression of these proteins in breast
cancers show high metastatic potential. It has already
been demonstrated by Hoshino et al that exosomal
integrins α6/β4 and α6/β1 were related to lung metasta-
sis and integrin αv/β5 was related to liver metastasis
[32]. They also found that exosomal integrins activate
the Src signaling pathway in the recipient cells, which
induces the inflammatory response. There is no study
yet regarding the correlation of BASP1 and breast can-
cer. But there is a study demonstrating that BASP1 over-
expression promotes cervical cancer cell progression and
can be a prognostic marker [67]. Enolase α is the glyco-
lytic enzyme that catalyzes fructose-1,6-biphosphate to
glyceraldehyde 3-phosphate and dihydroxyacetone phos-
phate. Research has revealed that an increased level of

enolase α is related to breast cancer metastasis and drug
resistance [68, 69]. PRDX1 is an antioxidant enzyme, but
its role in breast cancer is controversial. It is, however,
clearly overexpressed in breast cancer tissue relative to
normal tissue [70]. Recently, Bajor et al demonstrated
that PRDX1 is involved in reducing exogenous oxidative
stress and induces cell growth in breast cancer [71]. The
H2B1 (Histone H2B type 1-C/3/F/G/I) proteins are re-
lated to epigenetic regulation. Exosomal histone proteins
have been detected in cancers and other diseases, and
even in normal conditions [72, 73]. However, there are
quantitative differences between those detected in cancer
versus normal conditions. The role of exosomal histone
proteins in recipient cells is currently controversial, but
exosomes also contain 14-3-3 protein, which has been
shown to bind with histone proteins [74, 75]. So, H2B1
can potentially induce epigenetic changes in recipient
cells by binding with exosomal 14-3-3 proteins.
The most abundant MCF-7 derived exosomal proteins

are the structural proteins such as fibronectin, annexin
A1, vimentin, actin α, etc., and heat shock proteins.
Fibronectin is also known to induce tumor progression
and metastasis. The amount of fibronectin is much
higher in the exosome of breast cancer patients’ plasma
than normal plasma exosome [76]. A study revealed that
fibronectin secreted by myeloma cell is attached to the
recipient cell membrane and turns on p38 and pERK
signaling [77]. Activated p38 and pERK signaling induces
myeloma cell progression by activating DKK1 and
MMP-9. The second largest presence after fibronectin is
annexin A1, which is attached to the phospholipid mem-
brane. Annexin A1 inhibits phospholipase A2 and
induces anti-inflammatory activity [78]. Similarly, it is
suggested that annexin A1 induces metastasis, macro-
phage polarization, and poor prognosis [79]. This pro-
vides support for Okano et al’s claim that increase in the
amount of annexin A1 results in cell invasion which pro-
gresses into metastasis [80]. 5’-NTD (5’- nucleosidase,
CD73) is the next dominant protein in the exosome of
MCF7 cells. 5’-NTD is the enzyme that catalyzes the
carbon 5’-nucleoside phosphorolytic cleavage and thus is
essential for recycling adenosine and cell growth [81]. It
is also overexpressed in many breast cancers. When 5’-
NTD is overexpressed in breast cancer cells, it acceler-
ated adhesion, migration and invasion of cancer cells
[81–84]. So, it can be a clue for how MCF7 changes it
microenvironment. That is cancer cells secretes a metas-
tasis accelerator via the exosome. The 5’-NTD is also
related to the immune response [85]. Exosomal 5’-NTD
produces adenosine and indirectly modulates regulatory
T cell (Treg) mediated immunity. Immune modulation
for Treg by 5’-NTD in cancer microenvironment also
helps cancer cells for their growth and metastasis.
Among the 59 proteins identified in the exosome

Table 2. Summarization of used techniques for cancer-derived
exosomes isolation and exosomal protein digestion methods

Origin of
Exosome

Isolation Method Digestion
Method

Reference

Cell Ultracentrifuge In-Gel Digestion [23–30]

In-Sol Digestion [26, 31, 32]

Precipitation
reagent

In-Gel Digestion [33–37]

FASP [38, 39]

Combined method In-Gel Digestion [28, 35, 36, 40–51
]

In-Sol Digestion [52–54]

FASP [51, 55–59]

Plasma/
Serum

Ultracentrifuge In-Sol Digestion [60]

FASP [56]

Combined method In-Gel Digestion [43]

In-Sol Digestion [44, 52]

FASP [51, 57, 58]
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secreted by MCF7, 30 proteins have been known to
participate in breast cancer growth, metastasis, and
chemoresistance.
The most abundant MDA-MD-231 derived exoso-

mal protein is β-actin, which is frequently used as a
housekeeping gene in the exosome. There are also
other structural proteins in the exosome such as
tubulin-β and keratins. In general, these cytoskeletal
proteins of β-actin, tubulin-β and keratin are all asso-
ciated with breast cancer metastasis. Fourteen other
exosomal proteins are also known to be involved in
the metastasis of breast cancer [65, 66, 86]. Tubulin-β
is also known to induce chemotherapy resistance [87].
Palazzolo et al identified 32 proteins that are more
abundant in the MDA-MB-231 exosome than MCF7
cells [88]. Of these 32 proteins, 5 overlap with exoso-
mal proteins that Kruger et al identified. These 5 pro-
teins, 14-3-3 protein epsilon, β-actin, annexin A1/5,
heat shock protein 71 and galectin 3 binding protein
can be potential biomarker candidates for breast
cancer-derived exosome. In addition, a study also sug-
gested del-1 as an early stage breast cancer exosome
biomarker [89].
Klinke et al identified 27 and 28 proteins from other

breast cancer cell lines, BT-474 and SKBR-3, respectively
by secretome profiling through LC-ms/ms [90]. Some
common proteins with MCF7 and MDA-MB-231 -de-
rived exosomal proteins emerged, for example, β-actin,
heat shock proteins, aldolase α, enolase α, 14-3-3 pro-
teins, etc. BT-474 and SKBR-3 are HER2 positive cell
lines, and secreted exosomes highly enriched with pro-
teins involved in antigen presenting (HSPA5, CALR,
PSME1,2, PSMA 3,6, PSMB 2,4, and HLA-C) and glyco-
lytic metabolism (G6PD, TP1, and PGAM1). These pro-
teins could lead to cancer immune-surveillance and
malfunctioned energy synthesis in breast cancer micro-
environment [91–93]. In addition, BT-474-derived exo-
somal proteins have a strong relation with neutrophil
GO terms; DDX3X, VCP, HSP90AA1, ILF2, HSPA8,
PNP, MME, MME2, PAB37, SERPINB6, GDI2, ALDOA,
PGAM1, and GPI, which are related with neutrophil de-
granulation, mediated immunity and neutrophil activa-
tion. Immune suppression by cancer exosomes and its
relation to neutrophils have already been studied [94]. In
a breast cancer-bearing mice model, neutrophils were
activated and exosome levels in blood were much higher
than the normal control group. It is also suggested that
exosomes derived from tumors interact with neutrophils
and induce cancer-associated thrombosis. All these evi-
dences strongly suggest the importance of cancer-
derived exosome in the immune modulation.
In addition, exosomes are thought to help increase

breast cancer tumorigenesis. This is due to the specifi-
city of the proteins found in the exosomes. Firstly, the

exosomes isolated from the serum of breast cancer pa-
tients had high amounts of survivin [95], a protein that
controls anti-apoptosis of the surrounding cells, and
exosomes isolated from the cell line had large amounts
of MTA1 [96], a protein that promotes proliferation, .
Secondly, there is a large amount of drug and chemore-
sistance proteins in the exosome. GSTP1, TGF-β1,
TPRC5, and UCH-L1 are examples [97–100]. Finally,
proteins that induce metastasis present highly in exo-
somes. A typical example is nephronectin, which has
been reported to be high in the serum of patients with
metastases [101]. It is also notable that analysis of breast
cancer cells and their metastasized cancer cell derived
exosomes revealed that integrin α6/β4, caveolin-1, peri-
ostin and myoferlin are more enriched in metastasized
cancer cells than primary breast cancer cells [31, 32, 36,
102], although their roles need to be further investigated.
These proteins might serve as biomarker candidates for
breast cancer.

Lung Cancer
Lung cancer is the most common cause of cancer re-
lated death in both sexes and also shows the highest in-
cidence rate among cancer in the United States [63].
Non-small cell lung cancer (NSCLC) accounts for the
largest proportion of lung cancer patients. This is further
categorized into adenocarcinoma, squamous cell carcin-
oma, and large cell carcinoma. Lung cancer is found
later than any other cancer because it has no symptoms
that can be discerned through self-awareness. Thus, re-
gardless of the many developed treatments for lung can-
cer, after diagnosis it is often too late to treat. This leads
to a poor 5-year survival rate and motivates the search
for scanning biomarkers. Here, we classify and
summarize the roles of the NSCLC-derived exosomal
proteins.
Clark et al analyzed two of the NSCLC cell lines, A549

and HCC827 [51]. They normalized the LC-ms/ms data
with normal lung cell line HBE3. The number of pro-
teins that expressed twice more in A549 than normal
HBE3 is 58. Mucin 5 AC and B proteins are highly
enriched in A549 derived exosome. Mucin 5 AC and B
are known to only be expressed in lung adenocarcinoma.
Overexpression of these proteins leads to lung cancer re-
lapse and metastasis [103, 104]. Furthermore, there are
Annexin proteins, ADAM10, EGFR, integrin, JAK, and
metabolism related enzymes found in the A549 derived
exosome. Of the 58 proteins, 12 (20%) are correlated
with neutrophil degranulation and neutrophil-mediated
immunity (JUP, C3, VCP, CD44, etc.). The HCC827 exo-
some has 93 more proteins than the HBE3 derived exo-
some. The most abundant protein is desmoglein-2. It
has been reported that desmoglein-2 is overexpressed in
NSCLC tissues and induce NSCLC growth by regulating
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p27 and CDK2 [105]. The next most enriched protein is
EGFR. Given that EGFR is an oncogene in lung cancer,
this can be a powerful clue to explain the exosome’s
extreme tumorigenicity role in the neighboring micro-
environment [106]. HCC827 derived exosomes also con-
tain several kinds of other proteins; Integrin, Annexin
proteins, guanine nucleotide-binding proteins (GPCR),
and 14-3-3 proteins. Like in the A549 derived exosomal
proteins, there are also neutrophil-related proteins
enriched in the HCC287 derived exosome as well
(22.5%).
The exosomes secreted by lung cancer, like the exo-

somes secreted by breast cancer, are also involved in
tumorigenesis. Most cancers are characterized by metas-
tasis only to certain organs, called organotropic metasta-
sis [107]. Recent studies suggest that exosomes are also
involved in organotropic metastasis [32]. Integrin plays a
very important role. Hoshino et al revealed that treat-
ment of exosomes isolated from lung cancer cells redi-
rects lung cancer cells to metastasize to bone [32].
Exosomal integrins α6β4 and α6β1 are involved in lung
cancer organotropic metastasis. As such, proteins in exo-
somes can induce metastasis by reprogramming cells.
Exosomal Leucine-Rich-Alpha2-Glycoprotein 1 (LRG1)
secreted from lung cancer cells induces angiogenesis
through TGF-beta signaling in recipient cells [108]. This
exosomal protein is also found in exosomes isolated
from urine in patients with lung cancer [109], which
may serve as a good prognostic marker. Another
example is T-cell immunoglobulin- mucin-domain-
containing molecule 3 (Tim-3) and its ligand Galectin-9
(Gal-9). Tim3 and Gal-9 exhibit anti-tumor immune re-
sponses, by blocking Th1 type immune responses [110].
Both proteins were found to be higher in the plasma de-
rived exosomes of lung squamous cell carcinoma pa-
tients than in lung adenocarcinoma patients [110]. It is
not yet known why these two proteins are contained in
the exosome. Yet Tim-3 and Gal-9, can be used as prog-
nostic and diagnostic markers of lung cancers.
NY-SEO-1, EGFR, PLAP, and EpCam were high in

exosomes isolated from the plasma of lung cancer pa-
tients [111], and Vykoukal et al also revealed that SGRN,
TPM3, THBS1, and HUWE1 levels in plasma-derived
exosomes in lung cancer patients is higher than control
group [112]. EGFR is a protein that is highly related to
lung cancer, and is abundant in exosomes isolated from
lung cancer cells, lung biopsies and plasma, thus making
it the most powerful biomarker from the revealed candi-
dates [111, 113, 114]. Exosomes derived from NCI-
H838, another NSCLC cell line, contain more MUC1 as
revealed in patients’ plasma exosomes. Other report also
revealed that MUC1 in NSCLC patient plasma exosome
as much higher than that in the normal control group
plasma exosome [115].

Other cancers
Among all women and men diagnosed with cancer each
year, there is a high proportion of people diagnosed with
colon cancer [63]. Colon cancer cell derived exosomal
proteins are identified by Choi et al [42] and Mathivanan
et el [33]. The common proteins of both studies are re-
lated with cancer progression and metastasis. Choi et al
also suggested that the identified proteins have relation
with immune modulation. Furthermore, human colon
cancer ascites derived exosomes have similar tumorigen-
esis potential with proteins related to cancer progres-
sion, immune modulation, and metastasis [116]. Not
only ascites, but also serum exosome can be a good
diagnostic marker. Annexin proteins, and tspan 1 from
the serum exosome are suggested colon cancer diagnos-
tic markers [35, 117]. However, most cancer derived
exosomes, as mentioned in breast and lung cancer de-
rived exosomes as above, contain a lot more annexin
and tetraspanin proteins than normal control derived
exosome. So, these two proteins rather are pan-cancer
exosome proteins.
Pancreatic cancer incidence and death rate have been

increasing. Moreover, the 5-year relative survival rates of
pancreatic cancer is only 9%, whereas other cancers such
as prostate is 98% and melanoma is 92% [63]. Pancreatic
cancer cell derived exosome that induce metastasis [118,
119] and chemoresistance [27] have been revealed. Sev-
eral proteins, glypican-1, CD44, Tspan8, EpCam, MET
and CD104, have been suggested as pancreatic cancer
exosome-derived biomarkers [31, 120]..
Renal cancer incidence rate is 3 to 5 % for both males

and females, but there is no accurate biomarker for renal
cancer. Raimondo et al identified renal cancer patients’
urinary exosomes [121]. They suggested 10 proteins for
renal cancer exsome biomarker, 5 of which are abundant
in renal cancer patients; matrix metalloproteinase 9
(MMP-9), ceruloplasmin (CP), podocalyxin (PODXL),
dickkopf related protein 4 (DKK4) and carbonic anhydrase
IX (CAIX). Oppositely, aquaporin-1 (AQP1), extracellular
Matrix metalloproteinase Inducer (EMMPRIN), neprilysin
(CD10), dipeptidase 1 and syntenin-1 are abundant in the
exosome of healthy control. They claimed that these 10
proteins have great potential for early stage diagnosis of
renal cancer with clinical value. A summary of selected
exosomal proteins is given in Table 3.

The role of exosome proteins in tumor
microenvironment: Friend or Foe ?
Tumor microenvironment
Many approaches to conquer cancer are ongoing all over
the world. Nevertheless, incidence and death rates of
cancer are on the rise every year [63]. The main cause of
the increasing incidence rate and mortality is not only
primary tumors, but also distant tumors [122]. Many
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Table 3 Description of the selected exosomal proteins in
cancer

Exosomal Protein Description

Breast Cancer

β-actin Breast cancer metastasis [65]

Tubulin-β Breast cancer metastasis,
chemotheray resistance [66, 87]

Integrin α6/β4, α6/β1 Lung metastasis [32]

Integrinαv/β5 Liver metastasis [32]

BASP1 Overexpression leads to ovarian
cancer cell progression [67]

Enolase A Breast cancer metastasis and drug
resistance [68, 69]

PRDX1 Induce cell growth in breast cancer
and overexpressed in breast
cancer [70]

14-3-3 protein Bind to histone protiens and induce
epigenetic changes [75]

Fibronectin Tumor progression and
metastasis [76]

Annexin A1 Induce tumor metastasis and
macrophage polarization [78–80]

5’-NTD Overexpressed in breast cancer cells
and induce metastasis [81–85]

Survivin Overexpressed in breast cancer
serum derived exoxome, Anti
apoptosis [95]

MTA1 Promote proliferation [96]

GSTP1 Drug and chemotherapy
resistance [97]

TGF-β1 Drug resistance [98]

TPRC5 Chemotherapy resistance [99]

UCH-L1 Chemotherapy resistance [100]

Nephronectin Induce tumor mestasis [101]

Caveolin-1 Enriched in metastasized cancer
cell [36]

Periostin Enriched in metastasized cancer
cell [102]

Myoferlin Enriched in metastasized cancer
cell [31]

Lung Cancer

Mucin 5AC, B Lung cancer relapse and
metastasis [103, 104]

Desmoglein-2 overspressed in non small cell
lung cancer and induce cell
growth [105]

EGFR Oncogene in lung cancer
[106, 111, 113, 114]

LRG1 Induce angiogenesis [108]

Tim-3 Induce anti-tumor immune
response [110]

NY-SEO-1 Overexpressed in lung cancer [111]

Table 3 Description of the selected exosomal proteins in
cancer (Continued)
Exosomal Protein Description

PLAP Overexpressed in lung cancer [111]

EpCam Overexpressed in lung cancer [111]

SGRN Overexpressed in lung cancer [112]

TPM3 Overexpressed in lung cancer [112]

THBS1 Overexpressed in lung cancer [112]

HUWE1 Overexpressed in lung cancer [112]

MUC 1 Overexpressed in lung cancer [112]

Colon Cancer

Annexin family Colon cancer progression and
metastasis [33, 42]

Tetraspanin 1 Colon cancer progression and
metastasis [33, 42]

Pancreatic Cancer

Glypican-1 Abundant in pancreatic cancer
exosome [31, 120]

CD44 Abundant in pancreatic cancer
exosome [31, 120]

Tspan 8 Abundant in pancreatic cancer
exosome [31, 120]

EpCam Abundant in pancreatic cancer
exosome [31, 120]

MET Abundant in pancreatic cancer
exosome [31, 120]

CD104 Abundant in pancreatic cancer
exosome [31, 120]

Renal Cancer

MMP-9 Abundant in renal cancer
exosome [121]

CP Abundant in renal cancer
exosome [121]

PODXL Abundant in renal cancer
exosome [121]

DKK4 Abundant in renal cancer
exosome [121]

CAIX Abundant in renal cancer
exosome [121]

AQP1 Abundant in renal cancer
exosome [121]

EMMPRIN Abundant in renal cancer
exosome [121]

CD10 Abundant in renal cancer
exosome [121]

Dipeptidase 1 Abundant in renal cancer
exosome [121]

Syntenin-1 Abundant in renal cancer
exosome [121]
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researchers have been trying to understand the mechan-
ism of metastasis to find a cure the cancer [123–125]. A
rising concept for the metastasis mechanism is that the
tumor is collaborating with the tumor microenviron-
ment through exosomes.
The tumor microenvironment consists of immune

cells, fibroblasts, the extracellular matrix, basement
membrane, endothelial cells, and cancer cells [126–129].
Several roles of the tumor microenvironment have been
suggested [126]. Component cells of the tumor micro-
environment have roles in tumor initiation, progression,
and metastasis. Many studies have revealed that the
components of the tumor microenvironment communi-
cate via exosomes [1, 130–134]. Here, we summarized
potential roles of the exosome between cancer cells and
tumor microenvironment cells, and the effect on tumori-
genesis (Fig. 3).

Cancer associated fibroblast (CAF)
A predominant stromal cell component of the tumor
microenvironment is activated by a fibroblast, termed
cancer-associated fibroblast (CAF) [135]. Several studies
have revealed that CAFs are highly involved in tumor
progression [136–138]. Mammary carcinoma-derived
exosomes induce mammary fibroblast motility by trans-
ferring AHNAK [139]. As such, the exosome secreted by
cancer cells can affect fibroblasts, but here we also dis-
cuss how fibroblast-derived exosome can affect cancer
cells. Many researchers have suggested that CAFs have a
relation to cancer proliferation, chemoresistance, and
metastasis. Takasugi et al demonstrated that senescent

fibroblast-derived exosome can induce MCF7 cell prolif-
eration by transferring EphA2 [140]. In pancreatic can-
cer, it is reported that chemotherapy stimulated CAFs to
release more exosomes, which in turn promoted recipi-
ent cancer epithelial cells’ proliferation and drug resist-
ance [141]. Exosomes secreted by CAFs also induce
epithelial-mesenchymal transition (EMT), migration, and
invasion, resulting in metastasis and cell growth of blad-
der cancer by activating IL-6 signaling [142]. TGFβ1 is
enriched in ovarian CAFs and affects ovarian cancer
cells into EMT by SMAD signaling activation [143]. In
lung cancer, CAF-derived exosome also enhance metas-
tasis by activation of the IL-6/STAT3 signaling pathway
[144]. Furthermore, exosomes secreted by CAFs can
affect chemotherapy resistance [145]. It is suggested
CAFs-derived exosome in colorectal cancer stem cells
can promote drug resistance and enhance cancer stem
cell properties and also growth.

Natural killer (NK) cell
Natural killer (NK) cells are large granular cytotoxic
lymphocytes that kill the target cancer cells without
stimuli. There are several mechanisms by which NK
cell-derived exosomes kill the recipient cells [146]. Acti-
vated NK cell-derived exosomes are cytotoxic because
they can induce the cell death pathway by perforin
(PFN), granzymes (Gzm-A/B) and granulysin (GNLY).
Wen et al suggested that activated NK cell exosomes de-
liver caspase inducers which lead to cancer death by ac-
tivation of the caspase-dependent cell death pathway.
Perforin is delivered to form the pores and granzymes

Fig. 3 The function of cancer and other components of tumor microenvironment-derived exosome. Cancer-derived exosomes contain various
types of proteins for immune suppression, cancer progression and metastasis
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enter into the recipient cells. Granzymes induce caspase-
dependent and -independent cell death. Cancer cells
incubated with activated NK cells showed an increased
expression of activated caspase-3, -7, and -9 [147]. Pros-
tate cancer-derived exosomes downregulate NKG2D
expression on NK cells and CD8+ T-cells. This leads to
downregulation of NKG2D-mediated cytotoxic response
in prostate cancer patients via immune escape [148].
Berchem et al showed that hypoxic tumor-derived exo-
somes transfer TGF-β1 to NK cells, which leads to the
down regulation of NK cell’s surface expression of
NKG2D receptor [149]. Decreasing NKG2D inhibits NK
cell function. Renal cancer cell-derived exosomes are
enriched with TGF-β1 and activate the TGF-β1/SMAD
pathway in NK cells to facilitate immune escape [150].
Another mechanism of NK cell immune response escape
is related to p75NTR. NK cells in tumor microenviron-
ment have high expression of p75NTR and exosomes se-
creted by lung cancer contain proNGF and sortilin,
which bind to p75NTR and induce NK cell apoptosis
[151]. Interestingly, exosomes released from cancer cells
do not always inhibit the activity of NK cells. Wang et al
revealed that ovarian cancer cell-derived exosomes en-
hance the cytotoxicity effect of NK cells [152]. Exosomes
secreted by ovarian cancer cell contain phosphorylated
IRF-3 that promotes NK cell cytotoxicity by inducing
interferon gene expression in NK cells.

T-cell
Cancer-derived exosomes are known as immune sup-
pressors because they can inactivate effector T cells and
induce T cell apoptosis. There were a lot of research
conducted on cancer-derived exosomes and T cell inter-
action. Cancer-derived exosomes could induce T cell
suppression by delivering Fas ligand (FasL), PD-L1,
TGF-β, adenosine and galectin-9. Abusamra et al dem-
onstrated that prostate cancer cell-derived exosomes
have FasL that induces T cell apoptosis upon delivery by
caspase activation [153]. Colorectal cancer-derived exo-
somes have shown the same effect on T cell apoptosis
[154]. The exosome isolated from head and neck cancer
patients’ serum also induces T cell apoptosis [155].
Tumor cells expressing PD-L1 in their membrane can
escape form the immune response. PD-L1 is also de-
tected in cancer-derived exosomes. Prostate and melan-
oma cancer cell-derived exosomal PD-L1 binds to
effector T cell’s membrane PD-1 receptor, thereby
impairing their growth [156]. Melanoma patients’ circu-
lating exosomes also have PD-L1, which also induces
immune surveillance.
Exosomal TGF-β 1 is a well-known immune surveil-

lance factor [157]. Hypoxia conditioned BT-474 and
MDA-MB-231 secreted more exosomes than normoxia

condition. These exosomes have an increase in TGF-β
which inhibits T cell proliferation. Colorectal cancer-
derived exosomes were enriched with TGF-β1, which in-
duces alteration of T cell phenotype to T regulatory cells
by activating TGF-β/Smad signaling and inactivating
SAPK signaling [158]. Prostate cancer cell line-derived
exosomes also contribute to immune evasion by trans-
ferring exosomal TGP-β1 [159].
Adenosine is also a key factor in a known pathway that

induces T cell suppression. Tumor exosomes have been
known to contain CD39 and CD73 on the membrane sur-
face. Exosome-mediated transfer of CD39 and CD73 leads
to hydrolysis of ATP to adenosine. Accumulated adeno-
sines participate in T cell inactivation by binding with their
receptors (A1, A2A, A2B, and A3) [160]. Adenosine binds
their receptors in Treg cells and triggers the cyclic AMP
(cAMP) and protein kinase A (PKA) signal [161]. This sig-
nal can regulate either survival or apoptosis of the T cell,
depending on the signal strength and duration [162].
Galectin also has a role in tumor-derived exosome

induced immune escape. Galectin-1 is a type of β-
galactosidase protein expressed in immune cells. Recently,
it has been shown that tumors secreting galectin-1 on a
high level affect immune cells by binding to N-
acetyllactosamine on the T cell membrane. Interaction of
galectin-1 and the galectin ligand induces immune escape
through T cell apoptosis [163]. It is also demonstrated en-
richment of galectin in head and neck cancer-derived exo-
some induced suppression of CD8+ T cell [164].

Macrophage
Macrophages belong to the innate immune system. Macro-
phages are divided into two types by Th1 and Th2
polarization, which are called M1 and M2, and have the
characteristics of pro-inflammatory and anti-inflammatory,
respectively [165]. Tumor-associated macrophages (TAMs)
consist of M2 characteristic macrophages and promote
angiogenesis, invasion, and metastasis [166]. M2 macro-
phages secrete tumor metastasis supporting cytokines such
as CCL2, MIP2, IL-8, and IL-Rα and attenuating antitumor
cytokines such as TIMP-1, IFN-γ, IL-1Rα, IL-13, and IL-16
[167, 168]. Chen et al described how colorectal cancer-
derived exosomes induce M2 macrophages by cytoskeleton
rearrangement [169]. Gastric cancer-derived exosomes also
have effect to M2 macrophage [170].
On the other hand, it has been also reported that gas-

tric cancer-derived exosomes activate the NF-kB path-
way in recipient macrophages, leading to up-regulation
of pro-inflammatory factors [171] such as IL-6 and
TNF-α which promote gastric cancer progression [172].
A similar result was also reported that breast cancer cell
line-derived exosome stimulates the NF-kB pathway in
macrophages, which leads to the secretion of pro-
inflammatory factors such as IL-6, TNF-α, GCSF, and
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CCL2 [173]. Breast cancer exosomal protein HSP72 and
RNAs are involved in stimulating the NK-kB pathway. It
was also demonstrated that breast cancer-derived exo-
somes promote macrophage polarization and induce
lymph node metastasis [174]. It has been also shown
that breast cancer-derived exosomes are enriched with
gp130, which induces gp130/STATS signaling in macro-
phage and leads to the secretion of IL-6 for macrophage
polarization [175]. From this point of view, tumor-
derived exosomes are assumed to play both anti-
inflammatory and pro-inflammatory roles by stimulating
M2 and M1 macrophages, respectively.
TAM-derived exosomes also participate in tumorigen-

esis. For example, TAM-derived exosomes enhance
tumor invasion by delivering wnt5a in macrophages to
breast cancer cells. Delivered wnt5a enhances tumor in-
vasion by leading to the activation of β-catenin-
independent Wnt signaling [176].

Conclusion
Since exosomes are known as cellular communicators,
there are many approaches for isolation and exosomal
content analysis. Sadly, the big hurdles of exosome re-
search still remain. The establishment of isolation and
digestion standards remain essential. In this review, we
briefly summarized the current methods of exosome iso-
lation and its protein digestion. For cell supernatant exo-
some analysis, exosomes are isolated by combined
methods and proteins are digested mostly by In-Gel di-
gestion and FASP. Body fluid exosomes are isolated by
the same methods, but proteins are digested by FASP
for mass spectrometry.
Cancer-derived exosomes contain various proteins.

Exosomal proteins from cancer cells affect the tumor
microenvironment in their favor through suppressive
modulation of immune cells including NK cells, T
cells, and Macrophages and immune surveillance.
Cancer stem cell progression and chemotherapy re-
sistance are acquired by modulating cancer associated
fibroblasts. Together, cancer-derived exosomes and
tumor microenvironment cell-derived exosomes alter
the cancers to be more aggressive and be able to
metastasize. In the process, these tumor-derived exo-
somes are enriched and can be detected in biological
fluids. Recent discoveries in exosome fields will also
alter cancer management. Indeed, non-invasive diag-
nosis and prognosis could become possible via plasma
exosomes. Thus, it is suggested that strategies based
on the blocking of exosomal immune suppression
could be developed for the treatment of cancer pa-
tients. Since exosome fields are expanding, further ef-
forts to reveal fundamental mechanisms of exosome
cargo selection and biogenesis are necessary to fully
understand the roles of proteins in exosomes.
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