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Abstract

The ability to enrich cells with targeted mutations greatly facilitates the process of using engineered nucleases, including
zinc-finger nucleases and transcription activator-like effector nucleases, to construct such cells. We previously used
surrogate reporters to enrich cells containing nuclease-induced mutations via flow cytometry. This method is, however,
limited by the availability of flow cytometers. Furthermore, sorted cells occasionally fail to form colonies after exposure to a
strong laser and hydrostatic pressure. Here we describe two different types of novel reporters that enable mutant cell
enrichment without the use of flow cytometers. We designed reporters that express H-2Kk, a surface antigen, and the
hygromycin resistance protein (HygroR), respectively, when insertions or deletions are generated at the target sequences by
the activity of engineered nucleases. After cotransfection of these reporters and the engineered nuclease-encoding
plasmids, H-2Kk- and HygroR-expressing cells were isolated using magnetic separation and hygromycin treatment,
respectively. We found that mutant cells were drastically enriched in the isolated cells, suggesting that these two reporters
enable efficient enrichment of mutants. We propose that these two reporters will greatly facilitate the use of engineered
nucleases in a wider range of biomedical research.
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Introduction

Engineered nucleases, including zinc-finger nucleases (ZFNs)

and TAL-effector nucleases (TALENs), are promising tools for

targeted genetic engineering [1]. The ability to enrich cells with

targeted mutations greatly facilitates the process of using

engineered nucleases to construct such cells [2]. We previously

developed surrogate reporters that enable the efficient enrichment

of cells containing nuclease-induced mutations via flow cytometry

[3]. This method is, however, limited by the availability of flow

cytometers. Furthermore, sorted cells occasionally fail to form

colonies after exposure to a strong laser and hydrostatic pressure.

Thus, we attempted to develop methods to select mutant cells

without the use of flow cytometers.

Magnetic separation has been used as an alternative method to

isolate cells that express specific antigens [4,5]. Magnetic

separation does not require flow cytometers and is faster and

easier to perform than flow cytometric sorting [4,6]. To separate

transgenic cells from wild-type cells immunomagnetically, H-2Kk,

a truncated mouse MHC class I molecule, is used as a selection

marker [7,8]. H-2Kk is expressed only in some rare mouse strains

such as AKR/J or CBA/J, but not in human or most other murine

cells [9,10], rendering H-2Kk a good marker to distinguish

transgenic cells from control cells. To avoid any effects generated

by the expression of H-2Kk, a truncated H-2Kk that lacks a

cytoplasmic domain is used [7,8]. Magnetic separation using H-

2Kk is effective in the enrichment of transiently transfected cells

[11] and lenti- or retro-virally transduced cells [8,12]. Here we

adopt this system to enrich mutant cells generated by engineered

nucleases.

Selection of cells using resistance factors against antibiotics is

widely used for the isolation of genetically-modified cells in

prokaryotes [13,14] and eukaryotes [15,16]. Hygromycin B is an

aminoglycoside antibiotic produced by the bacterium Stepretomyces

hygroscopicus, which kills both prokaryotes and eukaryotes by

inhibiting protein synthesis through interference with aminoacyl-

tRNA recognition and ribosomal translocation [16–18]. Hygro-

mycin B phosphotransferase, encoded by the hygromycin-

resistance gene that was originally isolated from Escherichia coli,

phosphorylates hygromycin B, resulting in its inactivation [14].

This gene has been successfully used as a selection marker for

transformed prokaryotes [19] and transgenic eukaryotes [15,16].

The hygromycin resistance gene has also been adopted to prepare

donor DNA that will be integrated into a host genome via

engineered nuclease-enhanced homologous recombination, allow-

ing selection of cells with targeted genetic modifications [20,21].

However, the isolation of engineered nuclease-induced mutant

cells using hygromycin selection based on transiently active

episomal reporters has yet to be demonstrated.
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Here we present two novel reporter systems that enable

enrichment of nuclease-induced mutant cells using magnetic

separation and hygromycin selection. These reporters express H-

2Kk and the hygromycin resistance protein, respectively, only

when insertions or deletions (indels) are generated at the target

sequences in the reporter systems, enabling efficient enrichment of

mutant cells without using a flow cytometer.

Materials and Methods

Reporter vector construction
The 2A sequence was inserted into the pRGS reporter [3] using

synthesized oligonucleotides (Bioneer, Daejon, South Korea). The

mouse H2-Kk gene was amplified from pMACS Kk (Miltenyi

Biotech, Germany) using appropriate primers (Table S1), and the

amplified product was cloned into the modified pRGS vector by

isothermal cloning [22]. The hygromycin B resistance gene was

amplified from pBABE-hygro-hTERT (Addgene, plasmid #1773)

using appropriate primers (Table S1), and the amplified product

was cloned into the NheI site of the modified pRGS vector.

ZFNs, TALENs, and reporters
Plasmids encoding the ZFNs and TALENs used in this study

were previously described [3,23] or obtained from ToolGen

(Seoul, South Korea). Reporters were prepared as previously

described [3]. Briefly, oligonucleotides that contained target sites

were synthesized (Bioneer, Daejon, South Korea) and annealed in

vitro. The annealed oligonucleotides were ligated into the vector.

The sequences of reporters that contain Z891 target sites are

included in Notes S1 and S2.

Cell culture
Human embryonic kidney 293T (HEK293T) cells and Huh 7.5

cells were maintained in Dulbecco’s modified Eagle medium

(DMEM, Invitrogen) supplemented with 100 units/ml penicillin,

100 mg/ml streptomycin, and 10% fetal bovine serum.

Transfection
Cells were transfected using lipofectamine 2000 (Invitrogen,

Carlsbad, CA) or polyethyleneimine (linear, MW,25,000, Poly-

sciences) at a weight ratio of 1:1:2 (plasmid encoding a ZFN:

plasmid encoding the other ZFN: magnetic reporter) or 10:10:1

Figure 1. Overview of the episomal reporters used for the enrichment of nuclease-induced mutant cells via magnetic separation. (A)
The working mechanism of the H-2Kk magnetic reporter. mRFP is constitutively expressed by the CMV promoter (PCMV), whereas eGFP and H-2Kk are
not expressed without the activity of engineered nucleases because their sequences are out of frame. If a double-strand break is introduced into the
target sequence by engineered nucleases, the break is repaired by nonhomologous end-joining (NHEJ), which often results in indels. Indel generation
can cause frame shifts, making eGFP and H-2Kk in frame and leading to the expression of eGFP and H-2Kk. (B) A schematic depicting the enrichment
of mutant cells using the H-2Kk reporter. H-2Kk-expressing cells can be magnetically separated using anti-H-2kk antibody conjugated to magnetic
beads. Mutant cells were enriched in this population of H-2kk-expressing cells. Reporter plasmids and chromosomal target loci are shown. Black spots
represent mutations.
doi:10.1371/journal.pone.0056476.g001

Flow Cytometer-Free Enrichment of Mutant Cells
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(hygromycin reporter). Huh 7.5 cells were electroporated using a

100-ml tip at voltage 1, 100 V, width 30 ms, and one pulse in the

Neon Transfection System (Invitrogen) with a total of 8 mg

plasmid DNA (1:1:2 weight ratio).

Magnetic separation
The transfected cells were cultured for one day at 37uC followed

by culture at 30uC (cold shock) [24] for two days and subjected to

magnetic separation. Trypsinized cell suspensions were mixed with

magnetic bead-conjugated antibody against H-2Kk (MACSelect

Kk microbeads; Miltenyi Biotech, Germany) and incubated for

20 min at 4uC. Labeled cells were separated using a column

(MACS LS column; Miltenyi Biotech) according to the manufac-

turer’s instructions.

Hygromycin selection
Two days after transfection, hygromycin selection was per-

formed by culturing the cells in the presence of 2 mg/ml of

hygromycin B for two days at 37uC. For clonal analysis,

hygromycin-selected cells were plated at a density of 3,000 cells/

100 mm dish, and the clonal colonies were manually picked 10

days after plating.

T7E1 assay
The T7E1 assay was performed as previously described [3,23].

Briefly, genomic DNA was isolated using the DNeasy Blood &

Tissue Kit (Qiagen) according to the manufacturer’s instructions.

The region of DNA containing the nuclease target site was PCR-

amplified using the primers previously described [3]. The

amplicons were denatured by heating and annealed to form

heteroduplex DNA, which was treated with 5 units of T7

endonuclease 1 (New England Biolabs) for 15 to 20 min at 37uC
and then analyzed by 2% agarose gel electrophoresis.

Sequencing analysis
PCR amplicons that included ZFN-target sites were purified

using the Gel Extraction Kit (MACHERRY-NALGEN) and

cloned into the T-Blunt vector using the T-Blunt PCR Cloning Kit

(SolGent). Cloned plasmids were sequenced using the primers used

for PCR amplification.

Results and Discussion

Enrichment of mutant cells using magnetic reporters
We first devised reporters that express mRFP, eGFP, and a

truncated H-2Kk surface marker (H-2Kk). To allow measurement

Figure 2. Magnetic separation-mediated enrichment of CCR5-disrupted cells using an episomal reporter. (A) Enrichment of GFP+ cells
after magnetic separation. Scale bar = 50 mm. (B) ZFN-driven mutations detected by the T7E1 assay. Arrows indicate the expected positions of DNA
bands cleaved by mismatch-sensitive T7E1. The numbers at the bottom of the gel indicate mutation percentages calculated by band intensities. (C)
DNA sequences of the wild-type (WT) and mutant clones, with ZFN recognition sites underlined. Dashes indicate deleted bases, and small bold letters
indicate inserted bases. The number of occurrences is shown in parentheses; X1 indicates that each clone was detected once. Mutation frequencies
were calculated by dividing the number of mutant clones by the number of total clones.
doi:10.1371/journal.pone.0056476.g002
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of the activity of engineered nucleases, we inserted the nuclease

target sequence between the sequences encoding mRFP and H-

2Kk (Figure 1). To prevent the expression of H-2Kk and GFP in

the absence of the engineered nuclease activity, we prepared

double barriers: we made sequences encoding GFP and H-2Kk out

of frame and also placed a stop codon before GFP and H-2Kk.

When target sequences in the reporter plasmids are cleaved by the

engineered nucleases and indels are generated via mutagenic non-

homologous end-joining, the frame-shifting mutations generated

at the target sequences can make GFP and H-2Kk in frame,

leading to the expression of GFP and H-2Kk. To test this reporter

system, we cotransfected plasmids encoding the CCR5-specific

ZFN (Z891) [23] and its reporter into HEK293 cells. CCR5 is a

coreceptor of human immunodeficiency virus (HIV) and the

knockout of this gene using ZFNs has been reported to prevent

HIV infection into T cells [25,26]. One day after transfection, a

significant fraction of cells expressed mRFP, whereas eGFP-

expressing cells were hardly observed (Figure S1). The number of

eGFP-expressing cells gradually increased over 3 days, suggesting

that the ZFN cleaved the target sequence in the reporter plasmid

to induce frame-shifting indels [3]. Three days after transfection,

H-2Kk-expressing cells were magnetically separated after labeling

with anti-H-2Kk antibody conjugated with magnetic beads.

Fluorescent microscopy showed that magnetically separated cells

were enriched with GFP+ cells (Figure 2A). We measured the

mutation frequencies (or indel %) in sorted and unsorted cells

using T7 endonuclease I (T7E1), an enzyme that specifically

recognizes and cleaves heteroduplexes formed by the hybridiza-

tion of wild-type DNA sequences and mutant sequences. This

assay showed that the mutation frequency at the CCR5 gene in H-

2Kk+ cells was 46%, 12-fold higher than that in unseparated cells

(3.7%) (Figure 2B), demonstrating efficient enrichment of CCR5-

disrupted cells. To confirm this strong enrichment of mutant cells,

we next determined the DNA sequences around the target site,

and found that the mutation frequency in the magnetically

separated cells was 60%, 21-fold higher than that in unseparated

cells (Figure 2C). The relatively lower fold enrichment observed

with the T7E1 assay as compared to DNA sequencing may be

attributable to the fact that at high mutation frequencies, mutant

sequences can form homoduplexes, which are insensitive to

digestion by T7E1. Thus, the T7E1 assay often underestimates

fold enrichments [3].

Next, we tested whether this reporter system is portable to other

ZFNs and TALENs. For this, we first used this reporter system

with a TP53 gene-targeting ZFN pair [3] in HEK293 cells. TP53-

targeting ZFNs can be used to mutate or repair TP53, an

important tumor suppressor gene [27]. The T7E1 assay showed

that the mutation frequency in magnetically separated cells was

25%, 17-fold higher than that in unseparated cells (1.5%)

(Figure 3A). We next tested this reporter using a CD81-targeting

ZFN pair in a different cell line, Huh 7.5 cells (a human

hepatocyte cell line). The T7E1 assay revealed that the mutation

frequency was 8.6%, whereas that in the unseparated group was

below the detection range (,0.5%) (Figure 3B), suggesting at least

17-fold enrichment of mutant cells. When we performed this

reporter-mediated magnetic separation using a BRCA1-targeting

TALEN pair, the T7E1 assay showed that the mutation frequency

in the H-2Kk+ cells was 47%, 17-fold higher than that in

unseparated cells (2.7%) (Figure 3C), suggesting that this magnetic

reporter system is compatible with TALENs as well.

Figure 3. Surrogate reporter-mediated magnetic separations enrich ZFN- and TALEN-driven mutant cells. Nuclease-driven mutations
were detected by the T7E1 assay. Arrows indicate the expected positions of DNA bands cleaved by mismatch-sensitive T7E1. The numbers at the
bottom of the gels indicate mutation percentages calculated by band intensities.
doi:10.1371/journal.pone.0056476.g003
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Mutant cell enrichment using hygromycin reporters
We next sought to make reporters that rely on neither flow

cytometers nor magnetic separation systems. For this, we

developed reporters that express a hygromycin-resistance protein

(HygroR)-GFP fusion protein only when the target sequences are

cleaved by nucleases (Figure 4). Hygromycin treatment after

transfection of Z891-encoding plasmids and its reporter into

HEK293 cells led to the enrichment of GFP+ cells (Figure 5A).

The T7E1 assay revealed that the mutation frequency at the CCR5

gene in the hygromycin-resistant cells was 42%, 16-fold higher

than that in unselected cells (Figure 5B). DNA sequencing of this

region corroborated this result by showing that the mutation

frequency was 39%, 8.5-fold higher than that in unselected cells

(4.6%) (Figure 5C). Furthermore, this reporter system allowed 15-

fold enrichment of mutant cells induced by a BRCA1-targeting

TALEN (Figure S2), suggesting that the hygromycin reporters are

compatible with TALENs as well as ZFNs.

We next performed clonal analysis to determine whether

hygromycin reporters can facilitate the generation of cells with

bi-allelic mutations. After hygromycin treatment, the drug-

resistant cells were plated at a density of 3,000 cells/100 mm

dish, and the clonal colonies were manually picked 10 days after

plating and subjected to analysis. The T7E1 assay revealed that

the frequency of mutant colonies in the hygromycin-selected group

was 39% (11/28), 22-fold higher than that in the unselected group,

in which the frequency was 1.8% (1/56) (Figure S3). Subsequent

DNA sequencing confirmed that all 11 colonies were mutant in

the hygromycin-selected group, whereas only one colony out of 56

colonies was mutant in the unselected group (Figure 6). Among the

11 colonies, 6 colonies had bi-allelic mutations, suggesting that bi-

allelic mutant colonies can be obtained in a highly efficient

manner using the hygromycin reporter.

Comparison of reporters
We next compared the efficiencies of mutant cell enrichment

obtained with the two new reporter systems to those obtained via

flow cytometry. When a CCR5-targeting ZFN pair (Z891) is used,

the enrichment of mutant cells using flow cytometric sorting,

magnetic separation, and hygromycin selection was 11-, 12-, 16-

fold, respectively, suggesting comparable enrichment folds

(Table 1). In case of a TP53-targeting ZFN pair, the enrichment

folds by flow cytometric sorting and magnetic separation were 13-

and 17-fold, respectively. Similar fold enrichment was also

observed when a BRCA1-targeting TALEN pair was used: 17-

fold enrichment by magnetic separation and 15-fold enrichment

by hygromycin selection. Collectively, enrichment of mutant cells

Figure 4. Overview of the episomal reporters used for the enrichment of nuclease-induced mutant cells via hygromycin selection.
(A) The working mechanism of the hygromycin reporter. mRFP is constitutively expressed by the CMV promoter (PCMV), whereas the HygroR-eGFP
fusion gene is not expressed in the absence of engineered nucleases because the HygroR and eGFP sequences are out of frame. If a double-strand
break is introduced into the target sequence by engineered nucleases, the break is repaired by non-homologous end-joining (NHEJ), which often
results in indels. Indel generation can cause frame shifts, rendering HygroR-eGFP in frame and expressed. (B) A schematic depicting the enrichment of
mutant cells using the hygromycin reporter. HygroR-eGFP fusion gene-expressing cells can be selected using hygromycin treatment. Mutant cells
were enriched in this population of HygroR-eGFP-expressing cells. Reporter plasmids and chromosomal target loci are shown. Black spots represent
mutations.
doi:10.1371/journal.pone.0056476.g004
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via these new reporter systems was as efficient as that obtained via

flow cytometry.

We summarized the characteristics of the three reporter systems

(Table 2). Hygromycin selection does not need any special

instruments or machines, whereas flow cytometric sorting requires

flow cytometers, which can be expensive and complicated.

Magnetic separation requires magnetic separation instruments,

which are much less expensive and simpler than flow cytometers.

Thus, if these special facilities or instruments are not available,

hygromycin selection would be the choice. If the time required for

the enrichment process needs to be short, flow cytometric and

magnetic separation would be preferred. These methods take only

several hours, whereas hygromycin selection takes several days.

Furthermore, hygromycin concentration and exposure time often

needs to be determined for each cell type, whereas vigorous

optimization processes are less critical in flow cytometric sorting

and magnetic separation (although the performance of a flow

cytometer machine should be optimized for proper cell sorting). If

cells are sensitive to hydrostatic pressure and laser exposure,

magnetic separation and hygromycin selection should be consid-

ered. Research environments vary and researchers can choose

appropriate reporters depending on their experimental conditions.

In addition, the magnetic and hygromycin reporters can be also

used for flow cytometric enrichment of mutant cells because these

two reporters express GFP in addition to H-2Kk or HygroR when

indels are generated in their target sequences. Thus, our two new

reporters will practically replace the previously described fluores-

cent reporters.

Conclusions

Here we described two novel episomal reporter systems that can

enrich cells with nuclease-induced mutations using magnetic

separation and hygromycin selection. The magnetic and hygro-

mycin reporters contain the target sequences of the engineered

nucleases and express H-2Kk and HygroR, respectively, only when

indels are generated in the target sequences by the activity of

engineered nucleases. The mutant cell enrichment efficiencies

using magnetic and hygromycin reporters were comparable to that

using the previously reported fluorescent reporters. Furthermore,

our new reporters also allow mutant cell enrichment using flow

cytometers as well. Given that ZFNs and TALENs are used in

various research environments, our two new reporters will

practically replace the previously reported fluorescent reporter

Figure 5. Hygromycin selection through use of a surrogate reporter system enriches nuclease-induced mutant cells. (A) Enrichment of
GFP+ cells after hygromycin selection. Scale bar = 50 mm. (B) ZFN-driven mutations detected by the T7E1 assay. Arrows indicate the expected
positions of DNA bands cleaved by mismatch-sensitive T7E1. The numbers at the bottom of the gel indicate mutation percentages calculated by
band intensities. (C) DNA sequences of the wild-type (WT) and mutant clones, with ZFN recognition sites underlined. Dashes indicate deleted bases,
and small bold letters indicate inserted bases. The number of occurrences is shown in parentheses; X1, X2, and X3 indicate the number of times that
each clone was detected. Mutation frequencies were calculated by dividing the number of mutant clones by the number of total clones.
doi:10.1371/journal.pone.0056476.g005
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Figure 6. Clonal analysis of hygromycin-selected colonies. After CCR5-targeting ZFN (Z891) treatment, the mutant cells were selected by
hygromycin treatment. The selected cells were plated at a density of 3,000 cells/100 mm dish, and the clonal colonies were manually picked 10 days
after plating. The genomic DNA was isolated from the clonal colonies and analyzed. DNA sequences of the wild-type (WT) and mutant clones are
shown, with ZFN recognition sites underlined, deleted bases indicated by dashes, and inserted bases in lower case. The number of occurrences is
shown in parentheses; X1 and X2 indicate the number of each clone. Mutation frequencies were calculated by dividing the number of mutant clones
by the number of total clones.
doi:10.1371/journal.pone.0056476.g006

Table 1. Efficiencies of mutant cell enrichment via different reporter systems.

Target gene Mutation frequency (%) Fold enrichment Enrichment method Reference

Before enrichment After enrichment

CCR5 (Z891 ZFN) 0.8 8.7 11 Flow cytometry Kim et al2

3.7 46 12 Magnetic separation This study

2.7 42 16 Hygromycin selection This study

TP53 (ZFN) 2.8 37 13 Flow cytometry Kim et al2

1.5 25 17 Magnetic separation This study

BRCA1 (TALEN) 2.7 47 17 Magnetic separation This study

2.3 35 15 Hygromycin selection This study

doi:10.1371/journal.pone.0056476.t001

Flow Cytometer-Free Enrichment of Mutant Cells
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system and facilitate the use of engineered nucleases in a wider

range of biomedical research.

Supporting Information

Figure S1 Expression of RFP and GFP in HEK293 cells
after cotransfection of a magnetic reporter plasmid and
plasmids encoding a ZFN pair. HEK293 cells were

cotransfected with a magnetic reporter plasmid and plasmids

encoding ZFNs that target the CCR5 gene and observed daily

using fluorescent microscopy. Scale bar = 100 mm.

(TIF)

Figure S2 Enrichment of TALEN-driven mutant cells
using the hygromycin reporter. Two days after a reporter

plasmid and plasmids encoding a BRCA1-targeting TALEN were

cotransfected into HEK293 cells, cells were cultured in either the

absence or presence of 2 mg/ml hygromycin for two days. T7E1

assays were performed using genomic DNA isolated from the

selected cells. An arrow indicates the expected position of DNA

bands cleaved by T7E1.

(TIF)

Figure S3 Enrichment of clonal populations of cells with
ZFN-driven mutations using the hygromycin reporter.
Two days after a reporter plasmid and plasmids encoding ZFN

(Z891) were cotransfected into HEK293 cells, hygromycin

selection was performed by culturing the cells in the presence of

2 mg/ml hygromycin B for two days. The selected or unselected

(control) cells were plated at a density of 3,000 cells/100 mm dish,

and the clonal colonies were manually picked 10 days after plating.

T7E1 assays were performed using genomic DNA isolated from

the colonies. Arrows indicate the expected position of DNA bands

cleaved by T7E1. When we analyzed single cell-derived colonies,

the frequency of mutant colonies was 39% (11/28) in the

hygromycin-selected group and 1.8% (1/56) in the untreated

group, demonstrating 26-fold enrichment of mutant cells.

(TIF)

Table S1 The sequences of primers used in this study.

(DOCX)

Note S1 The sequence of the Z891 H-2Kk+ reporter. The

ZFN recognition site is underlined.

(DOCX)

Note S2 The sequence of Z891 hygromycin reporter.
The ZFN recognition site is underlined.

(DOCX)
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