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The use of CRISPR-Cas9 as a therapeutic reagent is hampered by its off-target effects.

Although rationally designed S. pyogenes Cas9 (SpCas9) variants that display higher speci-

ficities than the wild-type SpCas9 protein are available, these attenuated Cas9 variants are

often poorly efficient in human cells. Here, we develop a directed evolution approach in E. coli

to obtain Sniper-Cas9, which shows high specificities without killing on-target activities in

human cells. Unlike other engineered Cas9 variants, Sniper-Cas9 shows WT-level on-target

activities with extended or truncated sgRNAs with further reduced off-target activities and

works well in a preassembled ribonucleoprotein (RNP) format to allow DNA-free genome

editing.
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The determination of the Cas9 crystal structure1 enabled
scientists to rationally design mutant Cas9 proteins
(enhanced specificity Cas9 (eSpCas9) and Cas9-high fide-

lity (Cas9-HF)) with higher specificities than wild-type Cas9
(WT-Cas9)2,3. Their design was based on the hypothesis that
weakening non-specific interactions between a Cas9-RNA com-
plex and its substrate DNA would reduce off-target activity. Since
on-target activity is generally much higher than off-target activity,
these mutant Cas9 variants would show higher specificities than
WT while retaining on-target activity. However, it has been
reported that both eSpCas9 and Cas9-HF are poorly active at
some target sites4–7, calling for alternative approaches to improve
Cas9 specificity. More recently, two additional Cas9 variants,
termed evoCas9 and HypaCas9, with improved specificity and
activity were developed, reflecting unmet needs in this field8,9. In
this study, we present Sniper screen, an E. coli-based selection
method, to isolate SpCas9 variants with high specificity and
activity and compare the resulting Sniper-Cas9 variant with other
engineered SpCas9 variants.

Results
Simultaneous positive and negative selection using E. coli. We
reasoned that directed evolution of Cas9 in E. coli could lead to
Cas9 variants with high specificity without killing on-target
activities. The system we used consists of E. coli strain BW25141
and a plasmid containing the lethal ccdB gene10–12 and the Cas9
target sequence: the disruption of the ccdB gene by Cas9-
mediated plasmid DNA cleavage is essential for cell survival,
creating a positive selection pressure. In addition, a Cas9 off-
target sequence that differs from the on-target sequence by a few
mismatches is introduced in the E. coli genomic DNA: double
strand breaks (DSBs) in E. coli genomic DNA lead to cell death.
We combined such negative selection pressure with ccdB
plasmid-based positive selection pressure to develop “Sniper-
screen,” which selects for Cas9 variants with increased specifi-
cities. Note that Cas9 variants with poor on-target activities or
poor specificities cannot survive in this selection system.

We first inserted a 500-bp PCR product containing an EMX1
fragment into the genomic DNA of the BW25141 strain using a
protocol involving transposase13 (Fig. 1a and Supplementary
Figure 1). The resulting BW25141-EMX1 strain was transformed
with two plasmids (Fig. 1b): a plasmid-expressing ccdB under the
control of the pBAD promoter, which is induced by arabinose,
and a plasmid expressing an single-guide RNA (sgRNA) under
the control of the pltetO1 promoter, which is induced by
anhydrotetracycline (ATC). A target sequence with mismatches
relative to the EMX1 site was inserted into the ccdB plasmid and
the matching guide sequence was inserted into the sgRNA
plasmid. We chose these EMX1 on-target and off-target
sequences because off-target activities had been carefully tested
at the EMX1 site previously using a series of mismatched
sgRNAs14. To screen for Cas9 variants without attenuated on-
target activity, a 21-mer EMX1 sgRNA with the 5′ guanine
mismatched to the target sequence (gX20), which showed
diminished on-target activities with engineered Cas9 variants,
was used (Fig. 1b). In a Sniper screen, the resulting E. coli strain is
electroporated with a pooled library expressing mutant Cas9
variants under the control of a CMV-pltetO1 dual promoter
induced by ATC. There are four possible outcomes with respect
to DNA cleavage in the ccdB plasmid and the genomic DNA
(Fig. 1a): only a mutant variant of Cas9 that discriminates the on-
target sequence present in the ccdB plasmid from the off-target
sequence present in the E. coli genomic DNA can survive. Our
system uses separate Cas9 and sgRNA plasmids, making it easy to
change sgRNA-encoding and target sequence-containing

plasmids in subsequent rounds of selection. Because Cas9 can
also be expressed in mammalian cells via the CMV promoter, it is
possible to check the on-target and off-target activity of the pool
obtained in each round. In addition, Cas9 and sgRNA expression
are controlled by the pltetO1 promoter, allowing regulation of
gene expression by up to 5000-fold15. By increasing the
concentration of ATC, the screening conditions become more
lenient for ccdB cleaving positive selection and harsher for
genomic DNA cleaving negative selection. Such adjustments were
necessary to find the optimum conditions at which control
experiments using WT-Cas9 and a null vector showed a large
window for cleavage for each target-sgRNA pair (Supplementary
Figure 2).

Construction of the Cas9 library and Sniper screen. SpCas9
mutant libraries with random errors in the whole Cas9 sequence
were constructed using three different kits, resulting in library
complexities of up to 107 overall. Two independent sets of
screenings were performed using the libraries (Supplementary
Figure 3). The first set started with more lenient screening con-
ditions and progressed toward more stringent conditions: DNA
shuffling was performed in the middle of the process to enrich the
diversity. The second set employed harsh conditions without
DNA shuffling. After the final selection steps for both screening
sets, the pooled libraries were tested in mammalian cells to
measure the specificities of the Cas9 variants compared to WT-
Cas9 (Supplementary Figure 4). The pooled libraries showed
higher specificities than WT-Cas9; the first set was more specific
than the other set. One hundred colonies were picked from both
sets and the Cas9-encoding DNA sequences were fully sequenced.
Three Cas9 variants were identified from the first set, which were
designated clone-1, clone-2, and clone-3 (Supplementary Data 1).
The mutations were dispersed throughout domains revealed in
the crystal structure1; none of them overlapped with those in
rationally designed Cas9 variants (Supplementary Figure 5). Site-
directed mutagenesis analyses revealed that no single-point
mutation drastically improved the specificity of WT-Cas9 (Sup-
plementary Figure 6). Since we performed the DNA shuffling
reaction in the middle of our screening, we assumed that the
mutant with the best combination of point mutations survived in
our screening.

Clone selection and characterization. Among the three different
variants, clone-1 showed the highest on-target activity in human
cells (Supplementary Figure 4). Because our major goal was to
select Cas9 mutants without compromised on-target activity, we
chose to characterize clone-1, which was named Sniper-Cas9.
Sniper-Cas9, along with rationally designed Cas9 variants (eSp-
Cas9 (1.1), Cas9-HF1, evo-Cas9, and Hypa-Cas9) and WT-Cas9,
were tested in HEK293T cells at 12 target sites. Because the
nucleotide at the 5′ terminus in sgRNAs, transcribed in vitro
under the control of U6 or T7 promoters, is fixed to a guanine,
the 5′ guanine could be either a match (G) or mismatch (g) to a
target sequence. As shown previously4–6,8,9, other Cas9 variants
showed high activities only with GX19 sgRNAs, whereas Sniper-
Cas9 maintained high on-target activities comparable to WT-
Cas9 not only with GX19 or gX19 sgRNAs but also with trun-
cated and extended sgRNAs (shown as gX20 sgRNA), regardless
of a match or mismatch at the 5′ end (Fig. 2a, b, Supplementary
Figures 7 and 8).

Comparison of Sniper-Cas9 with other engineered Cas9s. We
next compared the specificities of Sniper-Cas9 with those of other
Cas9 variants by measuring indel frequencies at on-target and off-
target sites via targeted amplicon sequencing and calculating the
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ratios of on-target activity to off-target activity. In this analysis,
we excluded Cas9 variant-sgRNA combinations with <70% on-
target activity relative to WT-Cas9 in complex with 20-mer
sgRNAs (Fig. 2c). Although we tested various combinations of
Cas9 variants with truncated sgRNAs16 or extended sgRNAs17 to
achieve the highest specificity, only Sniper-Cas9 and WT-Cas9
were compatible with these modified sgRNAs. Notably, Sniper-
Cas9 achieved the highest specificity ratios in 10 out of the 12 on-
target/off-target pairs. It should be noted that a specificity ratio
higher than 1000 is above the detection limit of targeted deep
sequencing using Illumina MiSeq (0.1%)18. In addition, the use of
truncated sgRNAs is available for only a few targets because such
sgRNAs worked at only 9 out of the 24 targets. To our knowledge,
currently it is not possible to predict whether a truncated sgRNA
will show any on-target activity or a higher specificity ratio prior

to its design. Western blot analysis showed that expression levels
of WT-Cas9 and Cas9 variants were comparable in
HEK293T cells (Supplementary Figure 9). We measured specifi-
city ratios of Sniper-Cas9 and other Cas9 variants in Hela cells
(Supplementary Figure 10). Similar results were obtained, show-
ing that the high specificity of Sniper-Cas9 was not cell-line
specific.

Comparison of Sniper-Cas9 with xCas9–3.7. More recently,
Cas9 variants with broad PAM compatibility have been reported
to show higher specificity19. We have tested 20-mer and 21-mer
sgRNAs to characterize on-target and off-target activities of
xCas9–3.7 (Supplementary Figure 12). xCas9–3.7 showed speci-
ficity ratios that were intermediate between those of WT-Cas9
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and Sniper-Cas9 at most targets and its on-target activities were
attenuated significantly at many targets with mismatched 5′
guanines (Fig. 2d). It appears that although xCas9–3.7 exhibits a
broadened PAM compatibility, from NGG to NG, it lost com-
patibility with a 5′ guanine. A recent mechanistic study revealed
that the intrinsic cleavage rates of eSpCas9 (1.1) and Cas9-HF1
are 30 and 39 times slower, respectively, than the WT rate, which
contributes to the higher specificity ratios of the engineered Cas9
variants20. It is speculated that the extensive mutagenesis of other
engineered Cas9 variants including xCas9–3.7 lowers the intrinsic
cleavage rate, resulting in lower on-target activity and a higher
specificity ratio21.

On-target and off-target activities of Sniper-Cas9 RNP. To
further reduce off-target effects, we delivered Sniper-Cas9 into
human cells in a preassembled RNP format22. We chose several
of the on-target/off-target pairs with low specificity ratios shown
in Fig. 2c that used 20-mer sgRNAs. Sniper-Cas9 RNPs were
highly active and more specific than plasmids by a factor of 2–16
fold (Fig. 3).

Mismatch tolerance of Sniper-Cas9. We also tested a series of
guide RNAs containing mismatches relative to the on-target
sequence to investigate whether Sniper-Cas9 and other Cas9
variants tolerate single or double mismatches (Fig. 4a,

Supplementary Figure 11). Among three different targets tested,
direct comparisons between all of the Cas9 variants and WT-Cas9
were possible only at the FANCF01 target site owing to the low
on-target activities of eSpCas9 (1.1) and Cas9-HF1 at other sites.
For 13 out of 19 single mismatch positions, Sniper showed the
highest specificity ratio. Sniper was outperformed by other
engineered Cas9 variants in cases with mismatches at the PAM
distal end (16th, 18th, and 19th). Almost no off-target activity was
observed with Sniper-Cas9 combined with sgRNAs with double
mismatches.

Unbiased genome-wide off-target analysis of Sniper-Cas9.
Next, we performed multiplex Digenome-seq using four sgRNAs
to test the genome-wide specificity of Sniper-Cas9 in the human
gemome23,24. Sniper-Cas9 cleaved human genomic DNA at far
fewer sites than did WT-Cas9 (Fig. 4b, c and Supplementary
Figure 13). We analyzed off-target effects at candidate off-target
sites that were uniquely cleaved by Sniper-Cas9 and that were
cleaved by both Sniper-Cas9 and WT-Cas9 using targeted
amplicon sequencing. No off-target mutations were detectably
induced by Sniper-Cas9 at sites that were cleaved by Sniper-Cas9
alone (Supplementary Figure 15). Next, nine candidate sites,
commonly cleaved by WT-Cas9 and Sniper-Cas9, with the
highest DNA cleavage scores were selected for each sgRNA and
off-target effects were validated at these sites by targeted deep
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sequencing (Fig. 4d, Supplementary Figure 14). Sniper-Cas9
showed lower than WT-level off-target activities at all sites that
were analyzed. In conclusion, Sniper-Cas9 did not cleave any
additional off-target sites in cells, compared to WT-Cas9.

Having confirmed the high genome-wide specificity of Sniper-
Cas9, we further compared its specificity to that of other
engineered Cas9 variants at additional GX19 targets. In this test,
we measured off-target activities at validated targets from previous
GUIDE-seq experiments (Supplementary Figure 16)2,3,7,8. Sniper-
Cas9 showed WT-level on-target activities at all additional GX19
targets, whereas Cas9-HF1, HypaCas9, and evoCas9 showed <70%
of the WT-level on-target activities at some targets. Sniper-Cas9
displayed a specificity comparable to that of other engineered Cas9
variants at most off-target loci and showed off-target activities that
were under the detection limit. Sniper-Cas9 showed high off-
target activities when the sgRNA mismatch was located at the
PAM distal end. However, the mismatch tolerance at the PAM
distal end also enables the use of truncated or extended sgRNAs
with Sniper-Cas9 to achieve a higher specificity ratio at those sites,

as shown previously at the HBB02, HPRT, EMX1, FANCF01, and
ZSCAN2 targets (Fig. 2c).

On-target and off-target activities of Sniper-Cas9 BE3. We also
investigated whether the mutations in Sniper-Cas9 can improve
the specificity of base editors (BEs). To this end, Sniper-Cas9
mutations were introduced into BE325 to create Sniper-Cas9 BE3,
which was tested in HEK293T cells to determine its base-editing
efficiency (Fig. 5). Sniper-Cas9 BE3 was as efficient as WT-BE3 at
the EMX1 on-target site. At several pre-validated off-target sites
that had been identified by Digenome-seq26, Sniper-Cas9
BE3 showed much reduced off-target base-editing effects
(2.4–16.2 fold less) compared to WT-BE3. In addition, the use of
truncated sgRNA further eradicated off-target activities to near
background level without significant loss of on-target activity.
This result suggests that the nickase version of Sniper-Cas9 also
exhibits higher specificity than the WT Cas9 nickase, without
killing its on-target activity, unlike the nickase form derived from

AAVS

a b

c d

AAVS

FANCF01

FANCF01

HBB04

DMD

FANCF01 HBB04

DMD

WT-Cas9

No sgRNA
0 5

Cas-HF1 eSpCas9(1.1) Sniper-Cas9 Wt-Cas9

10 15 20 25

22
21

20

19
18

17
16

15
14

13

12

11

10 9 8

7

6

5
4

3

2

1X
22

21
20

19
18

17
16

15
14

13

12

11

10 9 8

7

6

5
4

3

2

1X

22
21

20

19
18

17
16

15
14

13

12

11

10 9 8

7

6

5
4

3

2

1X
22

21
20

19
18

17
16

15
14

13

12

11

10 9 8

7

6

5
4

3

2

1X

30 35 40 45 50

Indel %

WT-Cas9 WT-Cas9

WT-Cas9Sniper-Cas9

Sniper-Cas9

Sniper-Cas9

Sniper-Cas9

311 361

66 49 6

12 55

77 26

14 2 0.000

0.000

0.000

0.000

0.001

(–) Cas9-HF1 eSpCas9(1.1) Sniper-Cas9 WT-Cas9

0.01 0.1 1 10 100
Indel (%)
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Cas9-HF (HF-BE3), which shows ~70% on-target activity com-
pared to WT-BE327. In addition, Sniper-BE3 showed WT-level
activities with both GX19 and gX19 sgRNAs (Supplementary
Figure 17), unlike BEs derived from Hypa-Cas9 and Cas9-HF1,
which were reported to show low on-target activities with both
forms28. Because the number of sgRNAs that could be used to
edit specific bases in the target is limited, the use of Sniper-Cas9
would increase the number of targetable nucleotides compared to
other engineered Cas9 variants by at least a factor of 4.

Sniper-Cas9 RNP as potential therapeutic modality. Finally, we
tested the performance of Sniper-Cas9 RNPs as possible ther-
apeutic agents. Primary human T cells and induced pluripotent
stem cells (iPSC) were used in this proof-of-principle study.
Although nucleofection of Cas9-encoding plasmid DNA into
primary cells is possible, the low efficiency and high toxicity of
this process represent a major hurdle for clinical applications29,30.
The use of RNPs successfully resolved these issues in previous
therapeutic development studies involving primary cells31–34 with
the additional advantage of reducing off-target activity compared
to plasmid DNA22.

The AAVS gene was selected as a hypothetical target because it
is therapeutically relevant35 and its use as safe-harbor site is not
limited to a particular disease type. In addition, it is the most
challenging target in terms of the number of candidate genome-
wide off-targets identified by Digenome-seq (Fig. 4b) and the low
specificity ratio of a validated off-target site containing a single
mismatch (Fig. 2c). Finally, only Sniper-Cas9 showed WT-level
on-target activity at this target locus, whereas all of the other
engineered Cas9 variants failed (Fig. 2a).

We delivered into human T cells and iPS cells the purified
Sniper-Cas9 protein in complex with 5′hydroxyl gX19 sgRNAs to
further reduce toxicity caused by a triphosphate group present in
in vitro-transcribed sgRNAs36. After RNP electroporation, no
changes in cell morphology and the number of viable cells were
observed, indicating that the RNP delivery was not cytotoxic
(Supplementary Figure 20). Importantly, Sniper-Cas9 showed
WT-level on-target activity with higher specificity ratios,
compared to WT-Cas9 (1189 vs. 477), for the off-target site with

a single-nucleotide difference (Fig. 6). Both Sniper-Cas9 and WT-
Cas9 did not induce off-target indels at any of the other top nine
candidate sites found by Digenome-seq (Supplementary Fig-
ure 18), showing that off-target activities were cell-line depen-
dent. Note that, gX19 sgRNAs were not compatible with other
engineered Cas9 variants (Fig. 2a and Supplementary Figure 8)
due to their lack of on-target activities caused by the mismatched
5′ guanine. In contrast, Sniper-Cas9 is compatible with 5′
mismatched or truncated or extended sgRNAs and can be
delivered as purified, preassembled RNPs.

In summary, we developed Sniper screen in E. coli to create a
SpCas9 variant with increased specificity and full on-target
activity. It is anticipated that directed evolution of other Cas9
orthologues or Cpf1 by the Sniper screen would also generate
highly efficient and specific derivatives ideal for therapeutic
applications.

Methods
Plasmid construction. Each type of plasmid used in the Sniper-screen contains
replication origins and resistance markers that are compatible with each other.
(Fig. 1b) The ccdB plasmid (p11-lacY-wtx1) was a kind gift from the Zhao lab9. It
was double-digested with SphI and XhoI enzymes (Enzynomics), which was ligated
to oligos (Cosmogenetech) containing target sequences (Supplementary Table 1)
with T4 DNA ligase (Enzynomics). The sgRNA vector was constructed (Supple-
mentary Figure 19) with a temperature-sensitive Psc101 replication origin12 (from
pgrg36, a kind gift from Nancy Craig), tetR (from the tn10 locus of ElectroTen-Blue
Electroporation Competent Cells, Agilent), a Kanamycin resistance marker, the
pltetO1 promoter and the sgRNA sequence containing two BsaI sites (synthesized at
Bioneer). The components were PCR-amplified and Gibson assembled (NEBuilder
HiFi DNA Assembly kit, NEB). The guide RNA sequences to EMX1 with various
mismatches (Supplementary Table 1) were cloned into the vector after BsaI
digestion. The Cas9 library plasmid (Supplementary Figure 19) was derived from
human codon-optimized WT-Cas9 (p3s-Cas9HC; Addgene plasmid #43945)37, dual
CMV-pltetO1 (synthesized at Bioneer) and the p15a replication origin and chlor-
amphenicol resistance marker (from the PBLC backbone, Bioneer). The compo-
nents were Gibson assembled.

EMX1 genome insertion. Human EMX1 containing various sgRNA target
sequences (~500 bp) was PCR-amplified and integrated into the pgrg3612 vector
between the NotI and XhoI sites (Supplementary Table 2). The cloned pgrg36-
EMX1 vector was then transformed into the BW25141 strain to integrate the
EMX1 sequence into the tn7 site in the genomic DNA. EMX1-BW25141 was
selected using the standard pgrg36 protocol15 (Supplementary Figure 1).
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Fig. 5 Base editor (BE3) on-target and off-target activities measured in HEK293T cells. (−) indicates the absence of sgRNA. Substitutions were measured
using targeted deep sequencing. Substitution of C5 (represented by green type) to T was measured. The PAM is shown in blue. Error bars indicate s.e.m.
(n= 3)
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Library construction. SpCas9 mutant libraries were constructed using three
independent protocols. For the first library, the Cas9 library plasmid was trans-
formed into XL1-red competent cells (Agilent), which were grown according to
instructions in the vendor's manual. For the second and third libraries, error-prone
PCR was performed on whole WT-SpCas9 from Cas9 library plasmid sequences
using Genemorph II (Agilent) and Diversify PCR random mutagenesis (Clontech)
kits under low error rate (0–5 mutations per kb) conditions with primers designed
for Gibson Assembly (Supplementary Table 3); PCR products were subsequently
gel purified (4.3 kb). The purified randomly mutagenized library and the backbone
of the Cas9 library plasmid (double-digested with BamHI and XbaI, followed by gel
purification of the 3 kb fragment) were Gibson assembled. The assembled libraries
were transformed into Endura™ electrocompetent cells (Lucigen) and incubated on
chloramphenicol LB plates (12.5 μg/mL) at 37 °C overnight. A total of 3 × 106

colonies were obtained for each library, resulting in a library complexity of 107

overall. Pooled library plasmids were purified using a midi prep kit (NucleoBond
Xtra Midi EF, Macherey-Nagel).

Positive and negative screening for evolving SpCas9. BW25141-EMX1 was co-
transformed with the ccdB and sgRNA plasmids. The transformed BW25141-
EMX1 cells were plated on ampicillin (50 μg/mL)/kanamycin (25 μg/mL) LB plates,
which were then incubated overnight at 32 °C. Transformants were cultured in
liquid S.O.B. medium containing 0.1% glucose, ampicillin, and kanamycin until the
OD600 reached 0.4 for electrocompetent cell production (Sniper-Screen). Hundred
nanograms of SpCas9 from each library was transformed into 50 μL of electro-
competent Sniper-Screen cells using a Gene Pulser (Gene Pulser II, Bio-Rad) fol-
lowing the manufacturer’s instructions. Transformed Sniper-screen cells were
mixed with 250 μL of S.O.C. medium. Twenty-five microliters of transformed cells
was incubated without ATC (Sigma-Aldrich) and 250 μL of cells was incubated
with 10 ng/mL ATC for 1 h at 37 °C. The Sniper-screen cells recovered in the
absence of ATC were plated on chloramphenicol/kanamycin LB plates (non-
selective conditions) and cells recovered in the presence of ATC were plated on
chloramphenicol/kanamycin/arabinose (1.5 mg/mL, Sigma-Aldrich) LB plates
(selective conditions) containing 100 ng/mL ATC followed by overnight culture at
32 °C. Viable colonies were counted using OpenCFU software38 and the survival

frequency was calculated (survival frequency= the number of colonies on a
selective plate/the number of colonies on a non-selective plate × 10). Colonies on
the selective plates from three libraries were pooled and incubated in
chloramphenicol-containing LB medium overnight at 42 °C to clear ccdB and
sgRNA plasmids. Screened SpCas9 variant plasmids were purified using a midi
prep kit (Macherey-Nagel) and 10 ng of pooled library was continuously trans-
formed into the Sniper-screen until the survival frequency reached a plateau
(Supplement Fig. 3). The ATC concentration in the selective conditions was
maintained as 100 ng/mL for the two-mismatch conditions and as 10 ng/mL for the
one-mismatch condition (Supplementary Figure 2). Selected SpCas9 gene variants
obtained from the two-mismatch conditions were shuffled to increase library
diversity (DNA-Shuffling Kit, Jena Bioscience) following the manufacturer’s
instructions. Screening of the shuffled SpCas9 library was performed again under
the one-mismatch condition, and 100 colonies on a selective plate after six rounds
of screening were individually cultured in chloramphenicol-containing LB medium
at 42 °C to obtain evolved SpCas9 mutant plasmids. Each plasmid was Sanger-
sequenced and the top three most frequent variants were chosen to be tested in a
human cell line.

Plasmids encoding Cas9 variants and sgRNA. The WT-Cas9-encoding plasmid
(p3s-Cas9HC; Addgene plasmid #43945)37 and the sgRNA plasmid (pRG2;
Addgene plasmid #104174)4 have been described previously. Plasmids encoding
human codon-optimized eSpCas9 (1.1) and Cas9-HF1 (p3s-eCas9 (1.1), Addgene
plasmid #104172; p3s-Cas9-HF1, Addgene plasmid #104173)4 were Gibson
assembled into the p3s-Cas9HC plasmid backbone to change the location of the
nuclear localization signal (NLS) from the N-terminus to the C-terminus. Human
codon-optimized evoCas9, HypaCas9, and xCas9–3.7 (evoCas9, Addgene plasmid
#107550, HypaCas9, Addgene plasmid #101178 and xCas9–3.7, Addgene plasmid
#108379)8,9,19 constructs were created by Gibson assembly of sequences containing
the necessary site mutations into the p3s-Cas9HC plasmid backbone. All constructs
were confirmed by Sanger sequencing (Supplementary Data 1). Human codon-
optimized WT-BE3 and Sniper-BE3 were made by exchanging WT-SpCas9 from
CMV-BE3 (a kind gift from David Liu; Addgene plasmid # 73021)25 with WT-
Cas9 and Sniper-Cas9 derived from p3s-Cas9HC.
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Cell culture and transfection conditions. HEK293T cells (ATCC, CRL-11268)
were maintained in DMEM medium supplemented with 10% FBS and 1% anti-
biotics. For WT Cas9, eSpCas9(1.1), Cas9-HF1, and Sniper Cas9-mediated genome
editing, HEK293T cells were seeded into 48-well plates at 70–80% confluency
before transfection and transfected with Cas9 variants expression plasmids (250 ng)
and crRNA plasmids (250 ng) using lipofectamine 2000 (Invitrogen). For base
editing, HEK293T cells (1.5 × 105) were seeded on 24-well plates and transfected at
~80% confluency with BE plasmid (Addgene plasmid #73021) (1.5 µg) or the
Sniper-Cas9 expression plasmid and sgRNA plasmid (500 ng) using Lipofectamine
2000 (Invitrogen). Genomic DNA was isolated with the DNeasy Blood & Tissue Kit
(Qiagen) 72 h post transfection.

Recombinant Cas9 protein production. Recombinant WT-Cas9 and Sniper-Cas9
proteins were purified from E. coli. The Cas9 DNA sequence was sub-cloned into
pET28-b(+)17. Recombinant Cas9 protein containing a NLS, the HA epitope, and a
His-tag at the N-terminus was expressed in strain BL21(DE3), purified using Ni-
NTA agarose beads (Qiagen), and dialyzed against 20 mM HEPES pH 7.5, 150 mM
KCl, 1 mM DTT, and 10% glycerol. The purified Cas9 protein was concentrated
using an Ultracel 100 K cellulose column (Millipore). The purity and concentration
of the Cas9 protein were analyzed by SDS-PAGE.

Preparation of guide RNAs for RNP production. RNA was in vitro-transcribed
through run-off reactions with T7 RNA polymerase using a MEGAshortscript T7
kit (Ambion) according to the instructions in the manufacturer’s manual. Tem-
plates for sgRNA or crRNA were generated by annealing and extension of two
complementary oligonucleotides as described previously22. Briefly, sgRNAtem-
plates were generated by annealing two complementary oligonucleotides purchased
from Macrogen. These oligonucleotides were reverse-phase-purified using the
vendor’s MOPC purification method and quality-checked using MALDI-TOF.
sgRNA templates were incubated with T7 RNA polymerase in reaction buffer
(40 mM Tris-HCl, 6 mM MgCl2, 10 mM DTT, 10 mM NaCl,2 mM spermidine,
NTP, RNase inhibitor, at pH 7.9) for 8 h at 37 °C. Transcribed sgRNAs were
preincubated with DNase I to remove template DNA, and purified using PCR
purification kits(Macrogen). For 5′OH sgRNA generation only, the 5′-triphosphate
was removed from guide RNAs with CIP (New England BioLabs) as follows: 10 µg
of in vitro-transcribed RNA was treated with 250 units of CIP for 3 h at 37 °C in
the presence of 100 units of RNase inhibitor (New England BioLabs). Following
CIP treatment (or following in vitro transcription in the case of 5′PPP sgRNA), the
RNA was cleaned up using a miRNeasy Mini kit (Qiagen).

RNP delivery. To introduce DSBs in HEK293T cells using an RNP complex, 2 ×
104 cells were transfected with WT-Cas9 protein or Sniper-Cas9 (4 μg) premixed
with in vitro-transcribed sgRNA (4 μg). To make RNP complexes, Cas9 protein in
storage buffer (20 mM HEPES pH 7.5, 150 mM KCl, 1 mM DTT, and 10% glycerol)
was mixed with sgRNA dissolved in nuclease-free water and incubated for 10 min
at room temperature. RNP complexes were electroporated into HEK293T cells with
a Neon transfection system (ThermoFisher) using the following settings: 1300 V,
30 ms, and 1 pulse. Genomic DNA was isolated with a DNeasy Blood & Tissue kit
(Qiagen) 48 h post transfection.

Western blotting. The WT-Cas9, Sniper-Cas9, eSpCas9(1.1), Cas9-HF1, evoCas9,
and HypaCas9 proteins expressed in HEK293T cells after transfection were
detected using western blotting. Cas9 and GAPDH were detected using anti-HA
(diluted 1:200, Santa Cruz Biotechnology, sc-7392) and anti-GAPDH (diluted
1:200, Santa Cruz Biotechnology, sc-32233) primary antibodies. Goat anti-mouse
IgG-HRP antibody (diluted 1:1000, Santa Cruz Biotechnology, sc-2005) was used
for signal detection. ImageQuant LAS4000 (GE healthcare) was used for digital
imaging.

In vitro cleavage of genomic DNA. Genomic DNA was purified from
HEK293T cells with a DNeasy Blood & Tissue Kit (Qiagen). Genomic DNA (10 µg)
was incubated with Cas9 or Sniper1 protein (100 nM) and four sgRNAs (75 nM
each) in a reaction volume of 1 mL for 8 h at 37 °C in a buffer (100 mM NaCl,
50 mM Tris-HCl, 10 mM MgCl2, 100 μg/mL BSA, at pH 7.9). Digested genomic
DNA was treated with RNase A (50 µg/mL) for 30 min to degrade sgRNAs and
purified again with a DNeasy Blood & Tissue Kit (Qiagen).

Whole-genome and digenome sequencing. Genomic DNA (1 µg) was frag-
mented to the 400- to 500-bp range using the Covaris system (Life Technologies)
and blunt-ended using End Repair Mix (Thermo Fischer). Fragmented DNA was
ligated with adapters to produce libraries, which were then subjected to whole-
genome sequencing (WGS) using a HiSeq X Ten Sequencer (Illumina) at Mac-
rogen. WGS was performed at a sequencing depth of 30–40×. DNA cleavage sites
were identified using Digenome 1.0 programs18.

Targeted deep sequencing. Target sites and potential off-target sites (Supple-
mentary Table 4) were analyzed by targeted deep-sequencing appropriate primers
(Supplementary Table 5). Deep-sequencing libraries were generated by PCR.

TruSeq HT Dual Index primers were used to label each sample (Supplementary
Table 6). Pooled libraries were subjected to paired-end sequencing using MiniSeq
(Illumina).

iPS cell genome editing. iPSC generation has been described previously39. Briefly,
BJ cells were cultured in DMEM supplemented with 10% FBS. A total of 1 × 106 BJ
cells were resuspended in a single-cell suspension using trypsin and were electro-
porated with three reprogramming plasmids (pCXLE-hOCT4-shp53 (Addgene
plasmid #27077), pCXLE-hSK (Addgene plasmid #27078), and pCXLE-hUL
(Addgene plasmid #27080)) using the Neon Transfection System (Invitrogen). Neon
transfection conditions used were 1400 V, 20 ms, 2 time pulses for BJ cells. The
transfected cells were seeded on a 6-cm dish and were cultured in BJ cell culture
media for five days. The cells were then replated at a density of 1−3 × 104 cells per
well in a 6-well plate pre-coated with vitronectin (STEMCELL Technologies) and
cultured in BJ cell cutlure media for two more days; finally, the medium was changed
to ips cell induction medium until all the iPSC colonies were harvested. CRISPR/
Cas9-mediated genome editing of iPS cells (ATCC CRL-2522) was carried out as
follows. iPSCs maintained on vitronectin-coated dishes (STEMCELL Technologies)
in TeSR-E8 medium (STEMCELL Technologies) were detached using Gentle Cell
Dissociation Reagent (STEMCELL Technologies). We used a four-dimensional
nucleofector from Amaxa in combination with a P3 Primary Cell Kit for transfec-
tion. Four micrograms of recombinant Streptococcus pyogenes Cas9 (Toolgen) and 1
μg of 5′-OH sgRNA were incubated for 20min prior to electroporation to generate
Cas9-gRNA RNP complexes. A total of 2 × 105 iPSCs re-suspended in P3 buffer
were added to the pre-incubated Cas9-gRNA RNP complexes. Cells were nucleo-
fected using program CA-137. Electroporation-only controls were nucleofected
without RNP complexes using the same conditions. One microgram of enhanced
green fluorescent protein (EGFP) messenger RNA (TriLink) was nucleofected into
cells for the green fluorescent protein control under the same conditions. Cells were
counted using Countess II Fl (Life technologies). Images of the cells were taken using
an EVOS Fl Cell Imaging System (Thermo Fisher Scientific).

T-cell genome editing. CRISPR/Cas9-mediated genome editing of T cells was
carried out as follows. Human peripheral blood pan-T cells were purchased from
STEMCELL Technologies. Upon thawing, the T cells were allowed to rest overnight
in RPMI supplemented with FBS, hrIL-2 (Peprotech, 50 U/mL), and hrIL-7
(Peprotech, 5 ng/mL) prior to activation. Activation was induced by the addition of
Dynabeads Human T Activator anti-CD3/28 (ThermoFisher SCIENTIFIC) at a
bead-to-cell ratio of 3:1 in RPMI supplemented with 10% FBS. 3 days later, the
activating beads were removed and electroporation was carried out using an
Amaxa P3 Primary Cell kit and 4D-Nucleofecter (Lonza). Eight micrograms of
recombinant S. pyogenes Cas9 (Toolgen) and 2 μg of 5′-OH sgRNA were incubated
for 20 min prior to electroporation to generate Cas9-gRNA RNP complexes. A total
of 5 × 105 stimulated T cells re-suspended in P3 buffer were added to the pre-
incubated Cas9-gRNA RNP complexes. Cells were nucleofected using program
EO-115. Following electroporation, cells were seeded at 5 × 105 cells per mL in
RPMI supplemented with 10% FBS, hIL-2 (Peprotech, 50 U/mL), and hIL-7
(Peprotech, 5 ng/mL). Electroporation-only controls were nucleofected without
RNP complexes using the same conditions. Cells were counted using Countess II Fl
(Life technologies). Images of the cells were taken using an EVOS Fl Cell Imaging
System (Thermo Fisher Scientific).

Data availability. High-throughput sequencing data have been deposited in the
NCBI Sequence Read Archive database SRR6374811.
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