

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

특징공간에서의데이터증강을
이용한퓨샷러닝

Few-Shot Learning via
Data Augmentation in Feature Space

2020년 2월

서울대학교대학원

기계항공공학부

정 성 재

ABSTRACT

Few-Shot Learning via

Data Augmentation in Feature Space

by

Seongjae Jeong

Department of Mechanical and Aerospace Engineering

Seoul National University

When applying deep learning to supervised learning problems, a large amount

of labeled data is usually required to achieve good generalization performance. Us-

ing few-shot learning, however, we can train deep learning models that are capable

of recognizing unseen classes even with limited labeled data. As one of the rep-

resentative categories of few-shot learning, hallucination-based methods have been

utilized. To address data deficiency, methods in this category learn an image gen-

erator network and make use of the generator to hallucinate new supplementary

i

data. The downside of the hallucination-based approach is that training the gen-

erator is itself difficult and requires a great deal of time and memory. This thesis

proposes a data augmentation method for a few-shot learning task using various

types of interpolation and extrapolation in feature space. Our approach does not

need any trained generator for data augmentation and can be applied to any few-

shot learning methods which use feature extracting networks. We conduct few-

shot classification experiments using benchmark datasets as well as a visual in-

spection dataset. Experiments demonstrate that classification accuracy improves

as the amount of data increases by the proposed method. Besides, using few-shot

learning scheme and our data augmentation method at manufacturing fields that

suffer from lack of defective data is expected to help reduce the labeling costs by

filtering out the data roughly.

Keywords: Few-shot learning, data augmentation, feature space, interpolation and

extrapolation, visual inspection.

Student Number: 2016-20714

ii

Contents

Abstract i

List of Tables vi

List of Figures viii

1 Introduction 1

1.1 Previous Research . 2

1.2 Contributions of This Thesis . 4

1.3 Organization . 6

2 Preliminaries 7

2.1 Few-Shot Learning . 7

2.1.1 Problem Definition of Few-Shot Learning 7

2.1.2 Classification Problem . 9

2.1.3 Few-Shot Classification Problem: N -way K-shot Problem . . 9

2.2 Two Main Frameworks of Few-Shot Learning 11

2.2.1 Meta-Learning for Few-Shot Learning 12

iii

2.2.2 Transfer learning for Few-Shot Learning 12

2.3 Data Augmentation by Image Manipulations 13

3 Few-Shot Classification via Data Augmentation in Feature Space 16

3.1 Few-Shot Classification Based on Cosine Similarity 16

3.1.1 Details of Few-Shot Learning Based on Transfer Learning . 17

3.1.2 Cosine Classifier . 18

3.2 Data Augmentation in Feature Space 19

3.2.1 Previous Research on Interpolation in Feature Space 19

3.2.2 Various Types of Interpolation in Feature Space 20

4 Experiments and Results 25

4.1 Benchmark Experiments . 25

4.1.1 Datasets . 25

4.1.2 Experiment Details . 27

4.1.3 Evaluation Results . 29

4.1.4 Discussion . 32

4.2 Visual Inspection Experiments . 35

4.2.1 MVTec-AD Dataset . 35

4.2.2 AUC Score . 37

4.2.3 Experiment Details . 38

4.2.4 Evaluation Results . 40

4.2.5 Discussion . 41

4.2.6 Toward Reducing Labeling Costs 49

5 Conclusion 53

iv

Bibliography 55

Abstract 60

v

List of Tables

4.1 5-way classification results on Omniglot and character domain adap-

tation experiments († = linear interpolation, ∗ = triplet interpola-

tion, ? = linear interpolation with extrapolation,] = triplet inter-

polation with extrapolation). 30

4.2 5-way classification results on CUB and miniImageNet experiments

(† = linear interpolation, ∗ = triplet interpolation, ? = linear inter-

polation with extrapolation,] = triplet interpolation with extrapo-

lation). 31

4.3 2-way classification results on MVTec-AD experiments with the bal-

anced support set († = linear interpolation, ∗ = triplet interpola-

tion, ? = linear interpolation with extrapolation,] = triplet inter-

polation with extrapolation). 43

4.4 2-way classification results on MVTec-AD experiments with the im-

balanced support set († = linear interpolation, ∗ = triplet interpo-

lation, ? = linear interpolation with extrapolation,] = triplet inter-

polation with extrapolation). 46

vi

4.5 2-way 5-shot classification results on MVTec-AD experiments with

the imbalanced support set and weighted prediction score († = lin-

ear interpolation, ∗ = triplet interpolation, ? = linear interpolation

with extrapolation,] = triplet interpolation with extrapolation). . . 51

vii

List of Figures

2.1 5-way 5-shot classification example. 10

2.2 Flowchart for few-shot learning based on transfer learning framework. 14

4.1 Examples of benchmark datasets. 28

4.2 Classification accuracy based on the change of naug with fixed ks =

1/3. 33

4.3 Classification accuracy based on the change of ks with fixed naug. . 34

4.4 Examples of all ten object and five texture categories in the MVTec-

AD dataset. 36

viii

1
Introduction

Visual recognition tasks such as image classification, object detection, and seman-

tic segmentation have well been addressed by virtue of the development of deep

learning models. However, for deep learning models to perform well in computer

vision tasks, a large amount of labeled data is required and the visual diversity of

the data must also be ensured. For example, we need thousands of images from

each class during training even with a model pre-trained with a large-scale dataset.

In practice, sufficiently collecting supervised data is burdensome due to the human

annotation cost or the rarity of data. This is why using deep learning often leads

to difficulties when trying to solve vision-related problems.

To cope with data deficiency issues, few-shot learning, or learning from a lim-

ited amount of labeled data, is receiving increased attention in the literature. Since

humans are able to recognize new object categories with few instances, few-shot

learning can also be an important clue to determine whether artificial intelligence

carries the same cognitive capabilities as humans.

1

1.1. Previous Research 2

1.1 Previous Research

The visual intelligence of humans is based on their accumulated knowledge and ex-

periences. In a similar way, few-shot learning assumes that deep learning models

grasp new concepts with limited supervised information after they reach an ad-

equate level of knowledge. In detail, deep learning models are first trained using

sufficient data from base classes, and then validated to determine whether they

are capable of classifying data from novel classes after seeing only a few labeled

examples.

A meta-learning framework has recently been considered one of the most po-

tential approaches to few-shot learning. Using this framework, transferrable knowl-

edge can be obtained from multiple auxiliary tasks and propagated to the target

few-shot problem to prevent overfitting. Recent representative few-shot learning al-

gorithms based on the meta-learning framework can be categorized into two main

methods: metric learning-based and gradient-based methods. Metric learning-based

methods are inspired by the idea that if a model is able to determine how similar

two images are, the model can classify an unlabeled image based on the similarity

to a few labeled images [1]. The similarity between two images is calculated by the

combination of learnable feature extractors and distance metrics. The feature ex-

tractor is mostly a convolutional neural network (CNN), as is the case with many

of the recent advances in computer vision regime. Examples of distance metrics

vary widely, including cosine similarity [2], Euclidean distance [3], relation module

based on CNN [4], and ridge regression [5].

Gradient-based methods address the few-shot learning problem by learning good

initialization of model parameters and optimizing a model with rapid adaptation.

In [6], the proposed approach can learn parameter initialization for a model to be

1.1. Previous Research 3

capable of classifying unseen images with a few steps of standard stochastic gradi-

ent descent (SGD). Several variations of this method are also suggested, showing

improvements in recent years [7, 8, 9, 10, 11]. Meanwhile, in [12], LSTM-based

meta learner is utilized as an optimizer instead of standard SGD.

Besides the meta-learning framework, in a recent study [13], a simple classifi-

cation method based on a transfer learning framework is introduced, which fine-

tunes a cosine classifier on top of a pre-trained deeper backbone network. Although

the cosine similarity-based classification in a few-shot learning setting is well ad-

dressed in other recent studies [14, 15], the authors of [13] demonstrate that in

few-shot scenarios their method performs pretty well and even outperforms repre-

sentative meta-learning-based methods when combined with deep feature extractor

networks.

Hallucination-based methods address data deficiency directly by generating sup-

plementary data. Methods in this category focus on learning a generative model

using abundant data from base classes and use the trained generator to synthesize

new data points for augmenting the limited amount of data. Since training a gen-

erator can be regarded as an independent task, these methods can be integrated

into other few-shot learning methods to further improve performance. In [16], when

given two data instances from the same class, the relative linear offset between

them in feature space is assumed to represent a plausible transformation. The off-

set information is transferred to an unseen data point in feature space by complet-

ing the transformation analogy, leading to obtaining a hallucinated data. Another

type of methods does not transfer information explicitly but combines the gener-

ator directly with a meta-learning algorithm [17].

1.2. Contributions of This Thesis 4

1.2 Contributions of This Thesis

Simple but effective data augmentation method As already mentioned,

existing hallucination-based methods usually focus on training of the generative

model to produce the supplementary data. However, training a generator is itself

difficult due to the problem of mode collapse, especially when dealing with gen-

eral real-world images [18]. Furthermore, using a generator increases the time and

memory costs. The memory issue makes it difficult to use a deep and powerful

network for a feature extractor and also imposes restrictions on the batch size of

the input data.

This thesis proposes a simple but effective data augmentation method that is

exploited in feature space to improve the performance of few-shot learning instead

of using generative models. We apply data augmentation in four different ways:

linear interpolation between two data, triplet interpolation among three data, and

adding extrapolation to each case.

Using our approach, we do not need to train the additional generative model,

thus avoiding the problems of existing hallucination-based methods. Our approach

is also applicable to all other few-shot learning schemes that use a feature extrac-

tor. The experimental results show that various kinds of interpolation and extrap-

olation in feature space can synthesize additional data meaningful enough to help

improve the performance of few-shot classification when combined with the cosine

classifier.

1.2. Contributions of This Thesis 5

Few-shot learning for visual inspection problems This study is also mo-

tivated by the practical difficulties of applying deep learning to visual inspection

problems. Existing vision inspection method has mostly been rule-based. Human

experts first define detailed characteristics and thresholds for defects, and then

target images are inspected according to the settings. However, when defects are

complex and subjective, the rule-based inspection easily becomes difficult and inef-

ficient. Training a deep learning network with large amounts of data is a promising

alternative. If we use the deep learning approach, rules do not have to be specified

explicitly, and even complex, irregular defects can also be identified with ease.

In the field of manufacturing, however, while non-defective data is abundant,

defective data is often highly limited. Furthermore, the training data must all be

labeled by human experts, which is laborious and time-consuming. Since the data

deficiency issue makes it difficult to apply the deep learning method to visual in-

spection problems, we adopt the few-shot learning approach to tackle the issues.

To simulate these more practical problems, we make use of a comprehensive

real-world dataset called MVTec-AD [19]. We then perform a task to distinguish

defective and non-defective data under a few-shot setting. Assuming a pure few-

shot classification task, we experiment with a scenario where the number of labeled

data given to us is the same for the OK and NG classes. In another scenario, the

number of labeled data in the OK class is much larger than the NG class, assuming

a more realistic but less severe visual inspection situation. We believe that this is

the first work that shows few-shot classification results in realistic visual inspection

scenarios as well as popular benchmarks.

1.3. Organization 6

1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2, we review the con-

cept of few-shot learning and introduce the N -way K-shot problem. Two major

frameworks for few-shot learning that have emerged recently are also presented.

We then briefly review the traditional data augmentation methods applied at the

image level. Chapter 3 covers the key methodologies used in this thesis. We in-

troduce a few-shot learning approach based on transfer learning framework and

cosine similarity, followed by the way interpolation and extrapolation can be ex-

ploited in feature space for data augmentation. Chapter 4 contains the details,

results, and analysis of our experiments. It is divided into two parts: benchmark

experiments and visual inspection experiments. We finally summarize the contri-

butions and results of this paper in Chapter 5 and outline the hint about future

works.

2
Preliminaries

This chapter covers the basics of few-shot learning and transfer learning, which are

the basis for the methods and experiments described in the following chapters. To

prevent confusion with the concept of data augmentation in feature space proposed

in this thesis, we also introduce representative data augmentation methods based

on image manipulations.

2.1 Few-Shot Learning

2.1.1 Problem Definition of Few-Shot Learning

Since the few-shot learning problem is a special case of general machine learning

problems, it is good to first look at the definition of machine learning.

Definition 2.1.1. (Machine learning [20]) A computer program is said to learn

from experience E with respect to some classes of task T and performance measure

P if its performance can improve with E on T measured by P .

7

2.1. Few-Shot Learning 8

For instance, a standard image classification problem can be described using

this definition. In this case, T is an image classification task and P is the accuracy

based on the specified metric. E is the training procedure using large amounts of

labeled data.

Few-shot learning is part of machine learning, which aims to achieve good

learning performance. The only difference is that the amount of data given is very

limited. Hence few-shot learning can be defined by adopting Mitchell’s definition

of machine learning.

Definition 2.1.2. (Few-Shot Learning [21]) Few-shot learning is a type of machine

learning problems (specified by E, T and P) where E contains little supervised

information for the target T .

Here is the image classification problem revisited, where T is the image classi-

fication task and P is the classification accuracy. What is different from the stan-

dard classification problem is there are not many labeled images in E. In practice,

E not only means a limited amount of labeled data, but also all types of prior

knowledge, such as images of different classes or pre-trained models. If P improves

with E, we can say the few-shot learning successfully applied to the given T and

expect the model to perform well in the many-shot setting.

The word “little” in this definition is not scientifically clear, but this is because

“few-shot” itself contains the unclear word “few”. If we set the exact number of

data given per class, we may obtain a clearer name and definition of the problem

(e.g., 1-shot learning when only one labeled data is given per class). In practice,

most recent few-shot learning studies report the results of 1-shot and 5-shot sce-

narios. There is also a problem called zero-shot learning, but it is beyond the scope

of this thesis.

2.1. Few-Shot Learning 9

2.1.2 Classification Problem

Unless otherwise noted, few-shot learning problems mostly mean few-shot classifi-

cation problems. As the relationship between few-shot learning and machine learn-

ing, the few-shot classification problem is a special case where there is a lack of

data in standard classification problems.

The goal of the classification problem is predicting the label y ∈ C = {c1, ..., cN}
of a given d-dimensional input vector x ∈ X ⊆ Rd, where X and C are a finite set

of data and classes respectively. In the supervised setting, the classification prob-

lem can be viewed as estimating the function f : X → C using a given training

set D = {(xi, yi)}Mi=1 where M is the number of training data. If the function f is

well trained, then we can predict the correct label y for the unseen data x.

In most cases, the function f is just a classifier that takes the extracted fea-

tures as input and predicts the labels of them. The feature extractor fθ parametrized

by parameters θ exists separately, the role of which is to transform raw data into

features aiming for the features to have as much information about raw data as

possible. When it comes to image classification problems, a set of 2-D image data

Xraw ⊆ Rw×h are given as raw data and the CNN architecture followed by fully

connected layers is functioning as a feature extractor fθ if deep learning framework

is used. After an image xraw ∈ Xraw passes through fθ, it becomes a d-dimensional

vector x. This vector x is used as an input to the classifier f and this is where

the classification process described in the previous paragraph takes place.

2.1.3 Few-Shot Classification Problem: N-way K-shot Problem

In short, the case where M is extremely small is the few-shot classification prob-

lem, which is commonly formulated as a N -way K-shot problem. It is a supervised

2.1. Few-Shot Learning 10

classification problem with the support set Dsupport = {(xi, yi)}Ms
i=1 that is used for

training and the query set Dquery = {xj}Mq

j=1 that is used for evaluation. If K

labeled examples for each of N classes exist in the support set, this problem is

called N -way K-shot with Ms = KN . Although N can be any number, most ex-

perimentation is done in the 5-way or 20-way setting. K should be very small in

the few-shot scenario, and as mentioned earlier, it is usually assumed to be 1 or 5.

In Figure 2.1, we illustrate the 5-way 5-shot classification problem as an example.

5-way

5-shot

Query setSupport set

Model

Training

Test

Figure 2.1: 5-way 5-shot classification example.

2.2. Two Main Frameworks of Few-Shot Learning 11

2.2 Two Main Frameworks of Few-Shot Learning

Strictly speaking, in few-shot learning problems, the learning model does not learn

with just one or five labeled examples per class in general. The model is pre-

trained with copious data from the source classes that are disjoint with the target

classes. After that, the model is used to solve the few-shot learning problem with

limited labeled data of target classes. This learning process is the same as that

of humans that use their accumulated knowledge when solving new problems or

learning new concepts faster and better.

In the few-shot learning literature, there are two main frameworks to allow

the learning model to accumulate knowledge: meta-learning and transfer learning.

Both frameworks aim to convey knowledge from the source tasks to the target

task. To distinguish the source tasks from the target task, we should first split

the dataset into base classes and novel classes. The few-shot classification setting

can be described by a whole dataset D = {(xi, yi)}Mi=1, where x ∈ Rd, y ∈ C, and

C is a finite set of all given classes. We have labeled data abundant enough to be

used for the source tasks, and the abundant data are in the set of base classes

Cb ⊂ C. Meanwhile, the amount of labeled data for the target tasks is limited,

and the data are in the set of novel classes Cn ⊂ C. If validation process is re-

quired, validation classes also need to be assigned separately. These subsets must

be completely disjoint with each other.

The difference between the two frameworks is how knowledge is accumulated.

We describe each of these in detail below.

2.2. Two Main Frameworks of Few-Shot Learning 12

2.2.1 Meta-Learning for Few-Shot Learning

The method proposed in [2], called set-to-set learning or episodic learning, plays a

key role in this framework. The main idea is exploiting the N -way K-shot problem

repeatedly in the training stage, mimicking the tasks of the test stage. In each

episode, we have N classes randomly selected from Cb. From the selected classes,

the support set Dsupport for training is given with K labeled examples per class.

The query set Dquery is used to determine if the model has acquired knowledge

from the support set correctly. The model is trained with tens of thousands of

episodes. Repeating the N -way K-shot problem in multiple episodes, we expect

the model to learn how to learn a new concept from limited amounts of labeled

data. This is why we call this approach ”meta-learning”.

2.2.2 Transfer learning for Few-Shot Learning

Transfer learning is a traditional way to use when we do not have sufficient labeled

data by transferring knowledge from source tasks to a target task. In the Few-

shot learning literature, the transfer learning approach has been revisited in recent

years, and it is demonstrated that the performance is competitive compared to the

conventional meta-learning methods.

The whole learning process consists of two learning phases. The first phase

can be thought of as a pre-training stage, where a feature extractor and a base

classifier are trained using data in base classes Db = {(xi, yi)}Mb
i=1 with yi ∈ Cb ⊂ C

aiming to perform a standard classification task. During this stage, the feature

extractor adjusts itself to be capable of extracting robust features that generalize

well even with very few data. In the second phase, the pre-trained feature extractor

is fixed and a new classifier is fine-tuned with the examples in the support set from

2.3. Data Augmentation by Image Manipulations 13

novel classes Dn = {(xi, yi)}Mn
i=1 with yi ∈ Cn ⊂ C. The fine-tuned classifier then

performs the N -way K-shot classification task for the unlabeled examples of the

query set. A few-shot learning process based on the transfer learning framework

is illustrated in Figure 2.2.

2.3 Data Augmentation by Image Manipulations

Data augmentation is a simple but effective method to avoid overfitting. In this

section, we cover several well-known data augmentation methods in computer vi-

sion literature with reference to [22]. This kind of augmentation is applied at the

image level, so it should be distinguished from the data augmentation in feature

space.

Flipping is one of the easiest data augmentation methods. It is usually applied

horizontally, not vertically. The important thing is whether the flipped image be-

longs to the same class as the original image. This makes it difficult to apply the

method to character datasets such as MNIST and Omniglot.

Cropping means to crop a portion of the original image. There are two main

types of cropping: center cropping and random cropping. Center cropping is a pro-

cess that crops a central patch of an image, which can be useful for images with

different height and width. Random cropping is a method that randomly crops a

part of the original image to the desired size. The cropped image might not retain

the label depending on the desired crop size.

Color jittering denotes randomly manipulating brightness, contrast, and sat-

uration of an input image. It can also be thought of as making random changes

to the RGB values of an image. Even though the label of images rarely changes

after applying color jittering, sometimes color is important in classifying images.

2.3. Data Augmentation by Image Manipulations 14

Base class data

(abundant)

Feature

extractor Base classifier

Pre-training

Novel class data

(limited) Feature

extractor

(fixed)

Few-shot

classifier

Fine-tuning

fθ

fθ

{xb, yb} ∈ Cb

{xn, yn} ∈ Cn

xb

xn

C(·|Wb)

C(·|Wn)

yb

yn

ỹ

ỹ

Figure 2.2: Flowchart for few-shot learning based on transfer learning framework.

2.3. Data Augmentation by Image Manipulations 15

The red color, for example, is the key to distinguishing blood from other liquids.

In such cases, it is necessary to apply the color jittering method carefully.

3
Few-Shot Classification via Data

Augmentation in Feature Space

In this chapter, we describe in more detail how the transfer learning framework is

exploited in the few-shot classification setting based on cosine similarity. We also

subsequently address how a data augmentation method using interpolation and

extrapolation in feature space can be integrated into the few-shot classification

problem.

3.1 Few-Shot Classification Based on Cosine Similarity

In this section, we sketch the details of a few-shot classification method using a

cosine classifier. This concept of cosine similarity-based classification has recently

been studied for the purpose of using in the few-shot classification setting. Partic-

ularly, in [13], the authors show that learning a cosine classifier achieves competi-

tive performance with the state-of-the-art meta-learning methods by using deeper

16

3.1. Few-Shot Classification Based on Cosine Similarity 17

networks as feature extractors.

3.1.1 Details of Few-Shot Learning Based on Transfer Learning

In the training phase, we train a feature extractor fθ and the classifier C(·|Wb)

parametrized by the network parameters θ and the weight matrix Wb ∈ Rd×c

respectively, where d is the dimension of the extracted feature and c is the number

of output classes. Using the training data in the base classes Db = {(xi, yi)}Mb
i=1, the

training procedure is performed in a way that minimizes a standard cross-entropy

loss Lpred. The classifier C(·|Wb) is typically composed of a linear layer W>
b fθ

followed by a softmax function σ. The softmax function is defined as follows:

σ(x)i =
exp(xi)∑d
j=1 exp(xj)

, (3.1.1)

where i = 1, 2, ..., d and x = (x1, x2, ..., xd) ∈ Rd. After a vector of d real num-

bers passes through the softmax function, each element is mapped to be in the

interval of (0, 1) and the elements add up to 1, which is to say, the input vec-

tor is normalized into a probability distribution of d probabilities proportional to

the exponentials of the components in the input vector. In the classification set-

ting, the softmax function maps the output of a neural network to a probability

distribution over output classes.

In the fine-tuning phase, the network parameter θ is fixed in the pre-trained

feature extractor fθ. With the fixed feature extractor, we can train a new classi-

fier C(·|Wn) which is parametrized by the weight matrix Wn. The new classifier

adapts itself to recognize novel classes by fine-tuning with only a small amount

of labeled data in the novel classes. The N -way K-shot problem emerges in the

fine-tuning phase. The support set Dsupport = {(xij , ci), i = 1, 2, ..., N and j =

1, 2, ...,K} is the training data and the query set Dquery = {xi}Mq

i=1 is the test data.

3.1. Few-Shot Classification Based on Cosine Similarity 18

3.1.2 Cosine Classifier

In deep metric learning and few-shot classification problems, reducing intra-class

variations of features is known to be highly important [14, 23]. In [13], the classifier

design using cosine similarity is proposed to achieve the goal of reducing intra-class

variations of features. Most of the contents in this section refer to [13].

Before describing the cosine classifier, let us recall what the cosine similarity

is. The cosine similarity between two non-zero d-dimensional vectors a and b of

an inner product space is defined as follows:

s = cos θ =
a · b
‖a‖ ‖b‖ =

∑d
i=1 aibi√∑d

i=1 a
2
i

√∑d
i=1 b

2
i

, (3.1.2)

where ai and bi are components of a and b respectively. The similarity value ranges

from -1 to 1, where -1 means two vectors are exactly opposite to each other and 1

means two vectors are the same. If the value is zero, two vectors are orthogonal.

Except for the design of the classifier, the training process is the same as what

is described in Section 3.1.1 when a cosine classifier is used. Although weight

matrices Wb,Wn ∈ Rd×c still exist in the training phase and fine-tuning phase

respectively, the matrices are used to calculate cosine similarity scores between

weight vectors and an input feature. Viewing a matrix as a collection of column

vectors, the weight matrix can be rewritten as [w1, ...,wc], where a d-dimensional

weight vector wi ∈ Rd exists for each class. For a given input feature fθ(x), the

cosine similarity scores [s1, s2, ..., sc] can be obtained for all classes, where si is

computed using the cosine similarity as follows:

si =
fθ(x)>wi

‖fθ(x)‖ ‖wi‖
. (3.1.3)

The softmax function subsequently takes the similarity scores as input so that

these scores are normalized and functioning like a probability distribution. The

3.2. Data Augmentation in Feature Space 19

classifier can then predict the label of input by selecting the class with the high-

est probability value. Learning the classifier is equivalent to learning weight vectors

[w1, ...,wc], each of which represents the corresponding class. Hence, in a similar

manner as [2, 3] propose, we can think of the weight vectors as prototypes for each

class and the cosine similarity as a measure of how close the learned prototypes

are to the input feature.

3.2 Data Augmentation in Feature Space

We hypothesize that high-quality interpolation or extrapolation between data in

feature space can produce additional data meaningful enough to be incorporated

into the training set. However, intuitively, pixel-wise interpolation or extrapolation

between images does not produce realistic images. In addition, high-level represen-

tations usually live in a space with much lower dimensions where interpolation and

extrapolation of features would more likely to navigate through relevant regions.

In this section, we outline some of the recent studies that have reported notice-

able results about regularization using only simple interpolation methods between

features. Furthermore, we also describe how we use various types of interpolation

and extrapolation in this thesis to improve few-shot classification performance.

3.2.1 Previous Research on Interpolation in Feature Space

According to [24], “high-quality” interpolation should have two main properties.

First, data points created by interpolation look realistic enough to be indistin-

guishable from real data. Secondly, a natural shift occurs between the intermediate

data, resulting in a semantically smooth transition between the two original data.

3.2. Data Augmentation in Feature Space 20

To achieve these two properties, the authors of [24] propose Adversarially Con-

strained Autoencoder Interpolation (ACAI) algorithm. The main idea is to train

a critic network to identify whether the input image is from interpolation or not,

while the autoencoder is trained to trick the critic network and reconstruct the

input image at the same time. Under this adversarial regularization strategy, the

autoencoder is expected to generate more realistic interpolated outputs.

Another line of research on interpolation is Manifold Mixup [25], which lever-

ages linear interpolations in deep hidden layers as additional training examples.

Using this algorithm, we can obtain smoother decision boundaries at multiple lay-

ers of neural networks and class-representations which have fewer directions of

variance. Experimental results demonstrate that neural networks trained with the

algorithm show better generalization performance in terms of error and log-likelihood.

3.2.2 Various Types of Interpolation in Feature Space

In this thesis, we exploit various types of interpolation in feature space to augment

data in the few-shot classification setting. To be more specific, the data augmen-

tation approach is applied to the support set in the fine-tuning stage where the

labeled data are limited. As a result, the original N -way K-shot problem can be

transformed into the N -way K
′
-shot problem with K

′
> K.

Linear interpolation When using ACAI algorithm, it appears to be hard to

train the neural networks with realistic datasets like CUB, miniImageNet, and

MVTec-AD. More precisely, it is difficult to properly train both the autoencoder

and the critic network. Often only one of them converges well while the other does

not. This is a common problem in using adversarial strategy. The result of the

Manifold Mixup is, however, quite encouraging in that simple linear interpolation

3.2. Data Augmentation in Feature Space 21

can make sense without any adversarial processes or additional neural networks.

Moreover, even intermediate data generated by simple linear interpolation with-

out any critic network can represent sufficiently realistic data when close to the

endpoints (i.e., mixing coefficient is close to zero). We thus conjecture that sim-

ple linear interpolation between data in feature space can potentially improve the

performance of few-shot learning.

Let fθ be a trained feature extractor. For two raw data z1 and z2, we first get

features x1 = fθ(z1) and x2 = fθ(z2) from the raw data. The interpolated data

point xα in feature space can then be calculated as follows:

xα = (1− α)fθ(z1) + αfθ(z2) = (1− α)x1 + αx2, (3.2.4)

where the mixing coefficient α is sampled from the uniform distribution U(0, ks).

The hyperparameter ks is a spreading factor of interpolation, which means how

far xα exists from x1 in the feature space. ks must be less than 0.5 to ensure that

xα belongs to the same class as x1 while keeping xα close to the data manifold.

At the same time, to enforce some extent of spreading, ks should not be too close

to zero. The detailed process of using linear interpolation for data augmentation

is described in Algorithm 1.

Triplet interpolation using De Casteljau’s algorithm Data created by lin-

ear interpolation of two data exists only on the straight line connecting the end-

point data. It may not be a problem if the data is abundant, but the amount of

data given is so small that linear interpolation alone cannot properly cover feature

space in the few-shot setting. We thus are motivated to use triplet interpolation

for data augmentation, leading to exploring inside the triangle that consists of the

three data as vertices.

3.2. Data Augmentation in Feature Space 22

Let fθ be a trained feature extractor again. For three raw data z1, z2, and z3,

we obtain features x1 = fθ(z1), x2 = fθ(z2), and x3 = fθ(z3) respectively through

fθ. The intermediate data from triplet interpolation xα in feature space can be

obtained as follows:

x12 = (1− α1)x1 + α1x2, (3.2.5)

x23 = (1− α2)x2 + α2x3, (3.2.6)

xα = (1− α3)x12 + α3x23. (3.2.7)

where the mixing coefficients α1 and α3 are sampled from the uniform distri-

bution U(0, ks), while α2 is from U(0, 1). In triplet interpolation, ks should be less

than 0.25 for the same reason of labeling as in linear interpolation. The sampling

range of α2 is specified to make the most of the space between x2 and x3. This

method of calculating xalpha in triplet interpolation is a variation of De Casteljau’s

algorithm [26], which is a recursive algorithm to obtain a Bézier curve. Although

augmentation can be achieved using more than three data (e.g., quadruplet inter-

polation), in this thesis only triplet interpolation is applied because of the com-

putational cost. We describe the process of triplet interpolation in Algorithm 2.

Adding extrapolated data The limitation of the two methods described above

is that the augmented data exist within the convex hull of the given data. We

can overcome this limitation by considering extrapolation in feature space for data

augmentation. It is not difficult to obtain extrapolated data with a little modifica-

tion of the previous two interpolation algorithms: changing the sampling range of

the mixing coefficients. We use the uniform distribution U(−ks, ks) for sampling

α in the linear case and α3 in the triplet case.

3.2. Data Augmentation in Feature Space 23

Algorithm 1 Data augmentation via linear interpolation in N -way K-shot setting

1: initialization Support set data in N -way K-shot setting Dsupport =

{(x11, c1), (x12, c1), ..., (xNK , cN)}, a repeat count of augmentation naug, and

a spreading factor ks.

2: Daug = Dsupport
3: for k = 1 to naug do

4: Sample a set of mixing coefficient A = {αi}KNi=1 , where αi ∼ U(0, ks).

5: D′support = ReorderRandomly(Dsupport)
6: Dinterp = LinearInterpolation(Dsupport,D′support, A)

7: Daug = Concatenate(Daug,Dinterp)
8: end for

9: Dsupport = Daug

3.2. Data Augmentation in Feature Space 24

Algorithm 2 Data augmentation via triplet interpolation in N -way K-shot set-

ting

1: initialization Support set data in N -way K-shot setting Dsupport =

{(x11, c1), (x12, c1), ..., (xNK , cN)}, a repeat count of augmentation naug, and

a spreading factor ks.

2: Daug = Dsupport
3: for k = 1 to naug do

4: Sample sets of mixing coefficient A1 = {α1,i}KNi=1 , A2 = {α2,i}KNi=1 , and A3 =

{α3,i}KNi=1 , where α1,i, α3,i ∼ U(0, ks) and α2,i ∼ U(0, 1).

5: D′support = ReorderRandomly(Dsupport)
6: D′′support = ReorderRandomly(Dsupport)
7: Dinterp1 = LinearInterpolation(Dsupport,D′support, A1)

8: Dinterp2 = LinearInterpolation(D′support,D′′support, A2)

9: Dinterp = LinearInterpolation(Dinterp1,Dinterp2, A3)

10: Daug = Concatenate(Daug,Dinterp)
11: end for

12: Dsupport = Daug

4
Experiments and Results

Two types of few-shot classification experiments are performed in this thesis. The

first uses a benchmark dataset to demonstrate that our data augmentation method

works, and the second assumes a more practical and novel scenario using a visual

inspection dataset. In this chapter, we describe the details of used datasets and

the experimental setup of few-shot classification using transfer learning-framework

and cosine classifier. Experimental results are also reported, followed by analysis

and discussion.

4.1 Benchmark Experiments

4.1.1 Datasets

There are several representative benchmark datasets in the few-shot learning lit-

erature: Omniglot [27], EMNIST [28], CUB [29], and miniImageNet [12]. Figure

4.1 shows some example images of these datasets. Unless otherwise mentioned, we

follow the setup of [13] in the preparation of the benchmark datasets.

25

4.1. Benchmark Experiments 26

Omniglot is a dataset that contains 1623 handwritten characters from 50 lan-

guages. 20 examples exist for each character, where an individual person draws

each example. We augment the character classes with rotations in 90, 180, 270

degrees. Consequently, we obtain a total of 6492 classes and the classes are di-

vided into 4112 base classes, 688 validation classes, and 1692 novel classes.

EMNIST dataset contains 10 digits from 0 to 9, with English alphabetic char-

acters in both upper and lower case letters, resulting in 62 classes in total. EM-

NIST dataset is not used alone, but is used for domain adaptation experiments

between different character datasets following the experiments in [13]. We train a

model with Omniglot dataset and evaluate the few-shot classification performance

on EMNIST dataset. Therefore, we distribute a total of 62 classes evenly between

validation classes and novel classes. For base classes, we first exclude 26 Latin char-

acters from Omniglot dataset to avoid sharing information between base classes

and novel classes. Since no data augmentation is applied to the rest of Omniglot

dataset, 1597 classes belong to base classes in total.

CUB and miniImageNet datasets are frequently used in the few-shot learn-

ing regime. CUB dataset contains 11,788 images from 200 bird species. Since the

CUB dataset consists only of bird photos, it can be used for fine-grained recogni-

tion experiments. 200 classes are randomly divided into 100 base classes, 50 vali-

dation classes, and 50 novel classes for our experiments.

miniImageNet is a dataset first introduced by [2]. It is a subset of ImageNet

dataset [30] and consists of 100 classes with 600 color images per class. We use

the split proposed in [12] which is widely adopted in the few-shot literature. We

then have 64 base classes, 16 validation classes, and 20 novel classes.

The data belonging to the validation classes are used to verify the performance

during the training stage when using the meta-learning framework. When using

4.1. Benchmark Experiments 27

the transfer learning framework, however, there is no validation stage, so the val-

idation data are not used at all.

4.1.2 Experiment Details

The common process of experiments with the benchmark datasets is as follows. In

the pre-training stage, We train a model for the standard classification task using

data from the base classes. The model consists of a CNN-based feature extractor

followed by a cosine classifier. The Adam optimizer with learning rate 10−3 and

weight decay 10−5 is used to train the model.

In the fine-tuning stage, we set a support set and a query set respectively using

the novel class data to conform to the N -way K-shot problem. We evaluate the

few-shot classification performance on 5-way 1-shot and 5-way 5-shot settings. A

new cosine classifier is trained for 100 iterations using only the support set data

with a batch size of 4. In addition, we conduct experiments with data augmen-

tation via various types of interpolation and extrapolation in feature space. We

compare the results from the proposed data augmentation against those without

the augmentation. When data is augmented by our approach, there may be hun-

dreds of data in the support set. We accordingly set the batch size to the smaller

number between 64 and the total number of data in the support set. In the query

set, there are 15 data for each class, leading to measuring classification perfor-

mance using 75 data.

In the Omniglot-only experiment and domain adaptation experiment (Omniglot

→EMNIST), we adopt 4-layer CNN as a feature extractor. The learning model is

pre-trained for 5 epochs without any image-manipulating data augmentation.

4.1. Benchmark Experiments 28

Armenian KoreanFuturama Hebrew Tengwar

(a) Examples of Omniglot.

Black Footed Albatross Indigo Bunting Gray Catbird Northern Flicker White Eyed Vireo

(b) Examples of CUB.

Coral ReefAshcan Malamute UprightTrifle

(c) Examples of miniImageNet.

Figure 4.1: Examples of benchmark datasets.

4.1. Benchmark Experiments 29

On the other hand, CUB and miniImageNet datasets that consist of real pho-

tos are much more complicated than character datasets, which means neural net-

works with larger capacity should be used as a feature extractor. We therefore

adopt ResNet-18 [31] as our feature backbone and pre-train the model for 350

epochs. In the pre-training stage, we exploit several data augmentation methods

at the image level, including random crop, horizontal flip, and color jitter.

4.1.3 Evaluation Results

We conduct experiments using the benchmark datasets on 5-way 1-shot and 5-way

5-shot classification setting: Omniglot, character domain adaptation (Omniglot →
EMNIST), CUB, and miniImageNet. We report the average of the classification

results from 1200 test episodes and the 95% confidence intervals in Table 4.1 and

Table 4.2.

The hyperparameters that can be adjusted when applying our data augmenta-

tion method are the repeat count of augmentation naug and the spreading factor

ks as described in Algorithm 1. For naug > 0, the number of data in the support

set increases from KN to (naug + 1)KN . ks controls how close the intermediate

data created by interpolation is from the original endpoint data.

We report the results from the augmentation setting of ks = 1/3. The repeat

count naug varies depending on the dataset and how many “shots” we have. In

Table 4.1, the results of Omniglot and character domain adaptation experiments

are reported with naug = 100 for 1-shot setting and naug = 30 for 5-shot setting.

In Table 4.2, we report the results of CUB and miniImageNet experiments with

naug = 50 for 1-shot setting and naug = 25 for 5-shot setting.

As we can observe from tables, few-shot classification performance improves

with data augmentation in feature space. Among many experiment settings, the

4.1. Benchmark Experiments 30

character domain adaptation experiment with 5-shot classification shows signifi-

cant improvement when data augmentation is applied. In the CUB experiments

with 5-shot, on the other hand, the classification accuracy increased just slightly.

Using triplet interpolation is better than using linear interpolation, but the dif-

ference is not so significant. The results of including extrapolation also show no

noticeable performance improvement.

Table 4.1: 5-way classification results on Omniglot and character domain adapta-

tion experiments († = linear interpolation, ∗ = triplet interpolation, ? = linear

interpolation with extrapolation,] = triplet interpolation with extrapolation).

Omniglot Omniglot→EMNIST

1-shot 5-shot 1-shot 5-shot

With aug.† 96.16 ± 0.25 99.15 ± 0.08 70.31 ± 0.56 88.05 ± 0.38

With aug.∗ 96.19 ± 0.25 99.16 ± 0.09 70.51 ± 0.56 87.84 ± 0.39

With aug.? 96.18 ± 0.25 99.13 ± 0.09 70.47 ± 0.57 87.85 ± 0.39

With aug.] 96.06 ± 0.27 99.12 ± 0.08 70.74 ± 0.56 87.81 ± 0.40

Without aug. 95.41 ± 0.29 98.41 ± 0.14 69.01 ± 0.56 82.83 ± 0.44

4.1. Benchmark Experiments 31

Table 4.2: 5-way classification results on CUB and miniImageNet experiments († =

linear interpolation, ∗ = triplet interpolation, ? = linear interpolation with extrap-

olation,] = triplet interpolation with extrapolation).

CUB miniImageNet

1-shot 5-shot 1-shot 5-shot

With aug.† 68.58 ± 0.64 83.78 ± 0.37 50.10 ± 0.55 69.73 ± 0.45

With aug.∗ 68.60 ± 0.63 83.51 ± 0.37 50.55 ± 0.54 69.67 ± 0.46

With aug.? 68.65 ± 0.63 83.94 ± 0.36 50.46 ± 0.57 69.32 ± 0.47

With aug.] 69.07 ± 0.63 84.13 ± 0.36 49.84 ± 0.56 69.50 ± 0.45

Without aug. 67.38 ± 0.63 83.32 ± 0.37 48.59 ± 0.55 68.83 ± 0.46

4.1. Benchmark Experiments 32

4.1.4 Discussion

Effect of varying naug with fixed ks We measure the accuracy by varying

naug with fixed ks to see how naug affects the few-shot classification. The results

are in Figure 4.2. Regardless of the dataset and “shot”, classification performance

with small naug is not evidently better than that without augmentation and even

worse in most cases. In contrast, when naug becomes large enough, as the naug

value increases the performance also improves. Once naug reaches a certain level

or more, the performance change according to naug is no longer significant.

We have anticipated that, if there is a performance improvement via our data

augmentation, the improvement will be greater in character datasets like Omniglot

than in datasets composed of real photos such as CUB or miniImageNet. This an-

ticipation is evident in the 5-shot experiments, where the real photo datasets have

a competitive accuracy when naug = 0. This may be because the complexity of the

image affects how meaningful interpolation and extrapolation in feature space are.

A character image consists only of a handwritten character with a simple white or

black background. In real photos, however, subjects have a variety of poses, and

the background is also different for each image. We should also consider the angle

and lighting at which the picture is taken.

Effect of varying ks with fixed naug In Figure 4.3, the results from varying

ks with fixed naug are reported. We fix the naug following the setting of Section

4.1.3. The results with changing ks show no particular tendency. When ks is 1, the

data generated through our data augmentation could be mislabeled. We thus have

expected the accuracy would be greatly degraded. The actual results with ks = 1

are, however, not worse than we expected and even competitive to the results with

ks ≤ 0.5. On the other hand, when ks becomes too small, we have not anticipated

4.1. Benchmark Experiments 33

0 10 20 30 40 50 60 70 80 90 100

Repeat count of augmentation n
aug

88

89

90

91

92

93

94

95

96

97

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(a) Omniglot 1-shot.

0 5 10 15 20 25 30 35 40 45 50

Repeat count of augmentation n
aug

91

92

93

94

95

96

97

98

99

100

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(b) Omniglot 5-shot.

0 10 20 30 40 50 60 70 80 90 100

Repeat count of augmentation n
aug

63

64

65

66

67

68

69

70

71

72

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(c) Omniglot → EMNIST 1-shot.

0 5 10 15 20 25 30 35 40 45 50

Repeat count of augmentation n
aug

80

81

82

83

84

85

86

87

88

89

A
cc

ur
ac

y
(%

)
linear

triplet

linear + extra

triplet + extra

(d) Omniglot → EMNIST 5-shot.

0 10 20 30 40 50 60 70 80 90 100

Repeat count of augmentation n
aug

61

62

63

64

65

66

67

68

69

70

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(e) CUB 1-shot.

0 5 10 15 20 25 30 35 40 45 50

Repeat count of augmentation n
aug

76

77

78

79

80

81

82

83

84

85

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(f) CUB 5-shot.

0 10 20 30 40 50 60 70 80 90 100

Repeat count of augmentation n
aug

43

44

45

46

47

48

49

50

51

52

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(g) miniImageNet 1-shot.

0 5 10 15 20 25 30 35 40 45 50

Repeat count of augmentation n
aug

61

62

63

64

65

66

67

68

69

70

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(h) miniImageNet 5-shot.

Figure 4.2: Classification accuracy based on the change of naug with fixed ks = 1/3.

4.1. Benchmark Experiments 34

0 5 10 15 20 25 30 35 40 45 50

Reciprocal of k
s

93.5

94

94.5

95

95.5

96

96.5

97

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(a) Omniglot 1-shot.

0 5 10 15 20 25 30 35 40 45 50

Reciprocal of k
s

96.5

97

97.5

98

98.5

99

99.5

100

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(b) Omniglot 5-shot.

0 5 10 15 20 25 30 35 40 45 50

Reciprocal of k
s

68

68.5

69

69.5

70

70.5

71

71.5

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(c) Omniglot → EMNIST 1-shot.

0 5 10 15 20 25 30 35 40 45 50

Reciprocal of k
s

86

86.5

87

87.5

88

88.5

89

89.5

A
cc

ur
ac

y
(%

)
linear

triplet

linear + extra

triplet + extra

(d) Omniglot → EMNIST 5-shot.

0 5 10 15 20 25 30 35 40 45 50

Reciprocal of k
s

66.5

67

67.5

68

68.5

69

69.5

70

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(e) CUB 1-shot.

0 5 10 15 20 25 30 35 40 45 50

Reciprocal of k
s

81

81.5

82

82.5

83

83.5

84

84.5

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(f) CUB 5-shot.

0 5 10 15 20 25 30 35 40 45 50

Reciprocal of k
s

47.5

48

48.5

49

49.5

50

50.5

51

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(g) miniImageNet 1-shot.

0 5 10 15 20 25 30 35 40 45 50

Reciprocal of k
s

67.5

68

68.5

69

69.5

70

70.5

71

A
cc

ur
ac

y
(%

)

linear

triplet

linear + extra

triplet + extra

(h) miniImageNet 5-shot.

Figure 4.3: Classification accuracy based on the change of ks with fixed naug.

4.2. Visual Inspection Experiments 35

that our data augmentation would work because the generated data must be con-

centrated around the endpoints. Nevertheless, even the performance with small ks

(e.g., ks = 1/50) turns out to be competitive. It can thus be concluded that the

effect of ks appears insignificant if naug is large enough. The difference according

to the type of interpolation or the inclusion of extrapolation is not obvious as well.

4.2 Visual Inspection Experiments

4.2.1 MVTec-AD Dataset

MVTec-AD (MVTec Anomaly Detection) dataset is invented for the task of anomaly

detection [19]. Mimicking real-world visual inspection scenarios, it contains 5354

high-resolution color images of 15 product categories: 10 objects and 5 textures.

There are 88 classes in total, including 15 non-defect classes for each product cate-

gory and 73 different types of defect classes (e.g., scratch, dent, or contamination)

across the 15 categories. Several examples of the dataset are illustrated in Figure

4.4 with one non-defective and one defective data for every category. For each cat-

egory, images on the top row represent non-defective data, whereas the middle row

shows defective ones. The bottom row shows a close-up view of the defective re-

gion [19]. Following the original intention of anomaly detection, only non-defective

data should be used as training data and the trained model must become capa-

ble of classifying unseen defective data. Therefore, the training set of one category

consists only of non-defective data, while the test set contains both defective and

non-defective data.

We use the dataset for 2-way few-shot classification to determine if an unseen

image is defective or non-defective. We thus manipulate the dataset to better suit

the transfer learning-based approach. What we first do is to combine the data for

4.2. Visual Inspection Experiments 36

Figure 4.4: Examples of all ten object and five texture categories in the MVTec-

AD dataset.

4.2. Visual Inspection Experiments 37

each category that are originally divided into the training set and test set. Af-

terward, one of 15 product categories is designated as a novel category and the

remaining 14 categories become base categories. For the novel category, we inte-

grate all kinds of defect classes into NG classes, so that there are only two classes,

OK and NG. Consequently, more than 80 base classes and 2 novel classes exist

with 15 different cases depending on what the novel category is. We split again

the data from base classes into the training set and validation set at a ratio of

8:2. The validation set is used to monitor the model’s generalization performance

during training for the standard classification task.

4.2.2 AUC Score

Receiver operating characteristics (ROC) curves and area under curve (AUC) val-

ues are frequently used to measure the performance of binary classification mod-

els [32]. A ROC curve plots true positive rate (TPR) against false positive rate

(FPR) under various threshold values of the classifier. TPR (also called recall) is

the proportion of positive samples correctly categorized as positive among total

positive samples. FPR represents the ratio between the number of negative sam-

ples wrongly predicted as positive and the total number of actual negative samples.

Lowering the classification threshold means the classifier becomes less conservative,

and it increases both FPR and TPR because more samples are classified as posi-

tive.

The AUC is the area underneath the ROC curve. AUC = 1 means we get

a perfect classifier, while AUC = 0.5 indicates that the classifier makes a purely

random prediction. A larger AUC value means a better classifier. When there ex-

ists a class imbalance, AUC is a good measure of classification performance. Using

the classification accuracy may not reflect the actual performance of the trained

4.2. Visual Inspection Experiments 38

model if the data is imbalanced. Besides, since the cost of a false positive often

differs from the cost of a false negative, a threshold-independent score needs to be

considered.

As has been noted, one of the practical difficulties of visual inspection is that

defective data is often difficult to collect while non-defective data is plentiful. Let

us assume that we are given 95 non-defective data and 5 defective data as an il-

lustration. If all the data are predicted to be non-defective, the classification accu-

racy is 95%, which seems pretty good. Nevertheless, since all the defective data are

wrongly classified as non-defective, a big problem arises that the defective product

cannot be filtered out. In conclusion, the AUC score is definitely suitable for the

visual inspection scenario.

4.2.3 Experiment Details

Two main scenarios are considered in visual inspection experiments depending on

the presence of base class data. The first scenario assumes that labeled data of the

novel category is not given much, but 14 base categories are rich in labeled data.

This simulates the situation where a new product has started to be manufactured

in a line that has already produced other products. We can thus pre-train the

model from scratch using abundant data of about 80 base classes in this scenario.

On the other hand, the second scenario is when data of base categories is not

given at all, and only a small amount of labeled data from the novel category is

available. It simulates manufacturing products completely for the first time. Since

the base class data is assumed to be absent, the experiment was performed using

a model pre-trained with the ImageNet dataset instead.

ResNet-18 is used as a feature extractor in visual inspection experiments. The

pre-training epoch is set to 200, but the model used for fine-tuning is the one

4.2. Visual Inspection Experiments 39

that shows the best validation performance. The optimizer and data augmentation

at the image level during pre-training and batch size setting for fine-tuning are

identical to the CUB and miniImageNet experiments.

Balanced support set experiment The pre-trained model is fine-tuned to

solve the 2-way 1-shot and 2-way 5-shot classification problems for the novel cat-

egory data. In the novel category dataset, one (1-shot) or five (5-shot) randomly

selected examples from OK and NG class respectively are incorporated into the

support set, whereas the query set contains imbalanced data with much more non-

defective examples than the defective counterparts. To construct the query set,

we first consider data that is not included in the support set as query set candi-

dates. Since the number of non-defective candidates is larger than defective can-

didates, we exclude some non-defective data at random to ensure that the num-

ber of non-defective candidates and defective candidates can be the same. After

that, the query set finally consists of 5 defective data extracted from the defective

candidates and all of the remaining non-defective candidates. The number of OK

class data in the query set depends on what the novel category is. Like the bench-

mark experiments, we compare the few-shot classification performance depending

on whether or not the support set data is augmented in feature space.

Imbalanced support set experiment In addition, we conduct experiments

with a lot of OK class data in the support set. This scenario is, strictly speaking,

about an imbalanced setting rather than a few-shot setting. It applies the class im-

balance setting of visual inspection to the support set as well as the query set. If

we configure the support set and query set as described above, non-defective data

that is not included in either set still exists. We use the remaining non-defective

data as part of the support set. Therefore, “K-shot” in this case means there are

4.2. Visual Inspection Experiments 40

K defective examples and large amounts of non-defective examples in the support

set. How to augment data through interpolation or extrapolation in the imbal-

anced setting is slightly different from the few-shot setting. Since non-defective

data is sufficient, only defective data is the target of data augmentation, making

the number of defective data equal to the number of non-defective data.

4.2.4 Evaluation Results

We conduct experiments with the MVtec-AD dataset to evaluate the 2-way 1-shot

and 2-way 5-shot classification performance. The average value of AUC from 1200

randomly selected test episodes is reported with 95% confidence interval in Table

4.3 and 4.4. We also display side-by-side the results of different pre-trained models,

each pre-trained with MVTec-AD and ImageNet respectively. Furthermore, follow-

ing the way the authors of [19] split the entire dataset into objects and textures,

we divide the table into two parts: the upper part for 10 object categories and the

lower part for 5 texture categories.

In Table 4.3, the results with the balanced support set are shown. The repeat

count of augmentation naug is set to 50 and 25 for 1-shot and 5-shot setting re-

spectively. The spreading factor ks is fixed to 1/4. The results with the imbalanced

support set are reported in Table 4.4, where our augmentation is applied only to

defective data so that the number of defective data is the same as the number

of non-defective ones. Spreading factor ks is set to 1/4 as well in the imbalanced

case. In both tables, the category name with †, ∗, ?, and] means that the corre-

sponding row shows the results of linear interpolation, triplet interpolation, linear

interpolation with extrapolation, and triplet interpolation with extrapolation re-

spectively. In the 2-way 1-shot setting, the triplet method is not evaluated since

there are only two data in the support set.

4.2. Visual Inspection Experiments 41

4.2.5 Discussion

Balanced support set experiment Overall, no significant performance im-

provement is observed when our data augmentation is applied. Some categories

show worse performance, while those with better AUC improved only slightly. Fur-

thermore, like the benchmark results, there is no significant improvement or dete-

rioration in performance depending on the interpolation and extrapolation types.

These observations lead to the conclusion that our augmentation method has no

meaningful effect in the balanced support set experiment. However, there are sev-

eral categories where performance improvement is noticeable in 5-shot setting: bot-

tle, hazelnut, and metal nut. What they have in common is that the object itself

occupies a large portion of the image and most defects are relatively apparent.

From a practical perspective, since AUC values are not even over 95% at all,

it seems difficult to apply the few-shot learning scheme to visual inspection prob-

lems. The only categories that show the potential are leather and bottle, with

AUC values above 90% in the 5-shot setting. Comparing the type of base class

data, the performance of the model pre-trained with ImageNet dataset is better

except for fabric categories such as leather and carpet. This indicates that large

datasets such as ImageNet dataset, albeit not intended for visual inspection, may

be more effective for transfer learning in visual inspection.

Imbalanced support set experiment This time, we analyze imbalanced sup-

port set experiments that simulate a more realistic scenario of visual inspection.

In our experiments, there are hundreds of non-defective data in the support set,

while there is only one or five defective data. Since non-defective data dominates in

the support set, the fine-tuned model predicts most query images as non-defective.

4.2. Visual Inspection Experiments 42

This tendency can be observed in Table 4.4; the results of 1-shot and 5-shot are

not very different, and sometimes the result of 1-shot is even better.

Using our data augmentation method, we increase the amount of defective data

to a level similar to the amount of non-defective ones. As shown in Table 4.4, our

method leads to the substantial improvement of AUC in many categories, partic-

ularly under a 5-shot condition. Results of our method in 1-shot setting, however,

are not as meaningful as in 5-shot except when evaluating texture categories using

the pre-trained model with ImageNet dataset. This is probably due to the variety

of defects in each category. There are as many as eight different kinds of defects in

one category. Therefore, in the case of 1-shot experiment, defect types unseen in

the fine-tuning process are more likely to exist in the query set than in the 5-shot

case. Even if we increase the amount of NG data by interpolation with OK data,

it may not be easy to cover unseen defect types.

Similar to the results of the balanced support set experiments, our augmen-

tation method is effective in bottle, hazelnut, and metal nut among the object

categories. In addition, performance is improved by using our data augmentation

method in the texture categories except for grid, and the effect is more dramatic

when using the pre-trained model with ImageNet dataset. Our method does not

work for the grid category only, probably because the grid has the shape of en-

tangled wires, while the other texture categories have solid surfaces. Besides, when

our augmentation method is applied, the model pre-trained with ImageNet dataset

outperforms the model pre-trained with MVTec-AD dataset in most categories ex-

cept for the leather and carpet. Even in these two categories, the performance of

both models is competitive in the 5-shot setting. What kind of interpolation and

extrapolation is used does not make any meaningful difference. In conclusion, us-

ing the ImageNet-driven model and our data augmentation strategy is likely to

4.2. Visual Inspection Experiments 43

achieve good classification performance under the imbalanced support set condi-

tion regardless of the type of interpolation and extrapolation.

Table 4.3: 2-way classification results on MVTec-AD experiments with the bal-

anced support set († = linear interpolation, ∗ = triplet interpolation, ? = linear

interpolation with extrapolation,] = triplet interpolation with extrapolation).

MVTec-AD pre-trained ImageNet pre-trained

Category 1-shot 5-shot 1-shot 5-shot

Object Bottle† 68.06 ± 0.94 80.45 ± 0.68 77.00 ± 0.86 91.96 ± 0.44

Bottle∗ - 79.87 ± 0.68 - 91.52 ± 0.44

Bottle? 68.23 ± 0.91 80.50 ± 0.69 77.10 ± 0.85 92.14 ± 0.43

Bottle] - 80.25 ± 0.67 - 91.57 ± 0.44

Bottle 67.47 ± 0.95 80.22 ± 0.66 77.87 ± 0.85 91.06 ± 0.47

Cable† 54.31 ± 0.87 61.85 ± 0.82 57.43 ± 0.81 66.55 ± 0.76

Cable∗ - 60.25 ± 0.85 - 65.95 ± 0.77

Cable? 55.17 ± 0.88 61.49 ± 0.81 57.17 ± 0.82 66.38 ± 0.78

Cable] - 61.69 ± 0.80 - 66.28 ± 0.74

Cable 56.38 ± 0.85 61.32 ± 0.84 57.39 ± 0.84 66.63 ± 0.78

Capsule† 52.57 ± 0.82 54.86 ± 0.82 54.22 ± 0.7 59.82 ± 0.78

Capsule∗ - 55.30 ± 0.80 - 59.52 ± 0.78

Capsule? 52.62 ± 0.81 56.01 ± 0.79 54.71 ± 0.78 60.01 ± 0.74

Capsule] - 56.34 ± 0.80 - 60.04 ± 0.77

Capsule 52.11 ± 0.84 55.64 ± 0.79 54.64 ± 0.74 59.47 ± 0.76

Hazelnut† 56.18 ± 0.86 63.53 ± 0.77 69.32 ± 0.84 85.15 ± 0.55

Hazelnut∗ - 63.06 ± 0.79 - 84.28 ± 0.56

Hazelnut? 55.87 ± 0.83 63.07 ± 0.79 69.20 ± 0.86 85.10 ± 0.56

Hazelnut] - 63.41 ± 0.77 - 85.02 ± 0.58

Hazelnut 57.05 ± 0.85 62.33 ± 0.80 69.80 ± 0.84 83.81 ± 0.58

4.2. Visual Inspection Experiments 44

Metal nut† 58.85 ± 0.98 69.86 ± 0.82 59.51 ± 0.82 73.12 ± 0.77

Metal nut∗ - 68.26 ± 0.85 - 72.11 ± 0.80

Metal nut? 60.42 ± 0.98 68.57 ± 0.84 59.42 ± 0.86 72.86 ± 0.72

Metal nut] - 69.54 ± 0.83 - 72.63 ± 0.76

Metal nut 59.25 ± 0.99 67.23 ± 0.84 59.29 ± 0.82 71.73 ± 0.75

Pill† 54.77 ± 0.82 59.74 ± 0.80 56.12 ± 0.81 62.56 ± 0.76

Pill∗ - 59.33 ± 0.79 - 62.39 ± 0.74

Pill? 54.18 ± 0.83 59.80 ± 0.78 56.15 ± 0.78 61.72 ± 0.77

Pill] - 60.03 ± 0.79 - 62.31 ± 0.77

Pill 54.26 ± 0.80 58.97 ± 0.77 55.76 ± 0.79 62.45 ± 0.75

Screw† 51.08 ± 0.78 51.00 ± 0.77 53.06 ± 0.80 56.91 ± 0.79

Screw∗ - 50.82 ± 0.76 - 56.83 ± 0.78

Screw? 50.71 ± 0.77 51.50 ± 0.75 53.21 ± 0.81 56.94 ± 0.77

Screw] - 52.29 ± 0.73 - 56.62 ± 0.78

Screw 51.20 ± 0.75 51.37 ± 0.77 52.60 ± 0.81 56.70 ± 0.77

Toothbrush† 51.40 ± 0.78 52.76 ± 0.75 55.27 ± 0.84 62.00 ± 0.82

Toothbrush∗ - 52.11 ± 0.76 - 61.14 ± 0.83

Toothbrush? 51.48 ± 0.77 52.44 ± 0.75 55.12 ± 0.84 61.90 ± 0.83

Toothbrush] - 52.63 ± 0.78 - 61.62 ± 0.80

Toothbrush 51.34 ± 0.78 52.65 ± 0.74 55.50 ± 0.86 61.13 ± 0.81

Transistor† 58.10 ± 0.94 68.13 ± 0.80 59.37 ± 0.92 69.81 ± 0.78

Transistor∗ - 67.63 ± 0.80 - 70.04 ± 0.78

Transistor? 58.65 ± 0.97 68.11 ± 0.80 55.12 ± 0.84 70.23 ± 0.79

Transistor] - 67.93 ± 0.81 - 70.41 ± 0.79

Transistor 58.72 ± 0.94 67.34 ± 0.78 60.34 ± 0.91 70.04 ± 0.74

Zipper† 61.77 ± 1.07 71.23 ± 0.77 62.37 ± 0.88 74.99 ± 0.70

Zipper∗ - 70.98 ± 0.77 - 74.59 ± 0.73

Zipper? 62.26 ± 1.03 71.40 ± 0.76 62.89 ± 0.88 74.71 ± 0.70

Zipper] - 71.06 ± 0.76 - 75.02 ± 0.69

Zipper 62.91 ± 1.04 70.91 ± 0.82 62.42 ± 0.88 74.27 ± 0.69

4.2. Visual Inspection Experiments 45

Texture Leather† 81.94 ± 0.89 93.70 ± 0.31 77.60 ± 0.89 90.80 ± 0.40

Leather∗ - 93.28 ± 0.38 - 90.21 ± 0.41

Leather? 82.69 ± 0.86 94.16 ± 0.29 77.78 ± 0.85 90.59 ± 0.41

Leather] - 93.83 ± 0.34 - 91.00 ± 0.37

Leather 81.46 ± 0.90 93.76 ± 0.34 77.97 ± 0.85 90.97 ± 0.37

Carpet† 74.32 ± 1.20 84.68 ± 0.65 68.22 ± 0.94 81.06 ± 0.64

Carpet∗ - 84.10 ± 0.69 - 80.33 ± 0.65

Carpet? 73.73 ± 1.20 84.39 ± 0.64 67.93 ± 0.94 81.37 ± 0.62

Carpet] - 84.68 ± 0.64 - 80.71 ± 0.62

Carpet 74.84 ± 1.17 84.33 ± 0.94 69.14 ± 0.90 81.15 ± 0.62

Grid† 51.61 ± 0.76 54.15 ± 0.75 52.76 ± 0.80 56.23 ± 0.79

Grid∗ - 55.74 ± 0.80 - 56.54 ± 0.81

Grid? 50.89 ± 0.74 53.78 ± 0.77 52.03 ± 0.84 55.94 ± 0.80

Grid] - 56.37 ± 0.79 - 56.42 ± 0.79

Grid 51.41 ± 0.75 54.11 ± 0.77 52.10 ± 0.79 55.13 ± 0.79

Tile† 60.11 ± 0.93 69.97 ± 0.73 67.95 ± 0.99 80.68 ± 0.66

Tile∗ - 70.19 ± 0.71 - 81.07 ± 0.66

Tile? 59.69 ± 0.97 69.81 ± 0.76 69.42 ± 0.95 80.48 ± 0.67

Tile] - 69.93 ± 0.72 - 81.60 ± 0.64

Tile 59.81 ± 0.96 69.37 ± 0.73 67.84 ± 0.99 80.77 ± 0.64

Wood† 54.74 ± 0.83 62.48 ± 0.79 60.74 ± 0.91 73.12 ± 0.72

Wood∗ - 63.05 ± 0.77 - 71.73 ± 0.70

Wood? 55.10 ± 0.80 63.19 ± 0.79 61.07 ± 0.89 72.84 ± 0.69

Wood] - 62.80 ± 0.80 - 73.53 ± 0.72

Wood 55.40 ± 0.82 62.45 ± 0.77 61.26 ± 0.87 72.76 ± 0.73

4.2. Visual Inspection Experiments 46

Table 4.4: 2-way classification results on MVTec-AD experiments with the imbal-

anced support set († = linear interpolation, ∗ = triplet interpolation, ? = linear

interpolation with extrapolation,] = triplet interpolation with extrapolation).

MVTec-AD pre-trained ImageNet pre-trained

Category 1-shot 5-shot 1-shot 5-shot

Object Bottle† 76.63 ± 0.78 85.58 ± 0.56 89.15 ± 0.55 95.54 ± 0.32

Bottle∗ - 84.73 ± 0.59 - 95.74 ± 0.30

Bottle? 77.27 ± 0.78 85.53 ± 0.56 89.48 ± 0.51 95.81 ± 0.30

Bottle] - 85.46 ± 0.55 - 96.07 ± 0.28

Bottle 90.67 ± 0.41 90.38 ± 0.45 88.46 ± 0.35 87.73 ± 0.36

Cable† 61.58 ± 0.82 64.51 ± 0.77 63.45 ± 0.89 72.96 ± 0.74

Cable∗ - 64.73 ± 0.79 - 73.38 ± 0.76

Cable? 61.73 ± 0.80 66.11 ± 0.75 63.17 ± 0.88 73.57 ± 0.74

Cable] - 66.02 ± 0.75 - 73.45 ± 0.76

Cable 75.08 ± 0.67 75.88 ± 0.64 56.58 ± 0.76 56.47 ± 0.73

Capsule† 54.28 ± 0.81 59.17 ± 0.79 59.86 ± 0.78 64.54 ± 0.74

Capsule∗ - 58.80 ± 0.80 - 64.17 ± 0.78

Capsule? 53.93 ± 0.80 59.37 ± 0.77 60.92 ± 0.74 65.05 ± 0.69

Capsule] - 58.91 ± 0.80 - 64.49 ± 0.73

Capsule 56.24 ± 0.69 56.98 ± 0.67 68.44 ± 0.74 68.66 ± 0.75

Hazelnut† 60.27 ± 0.82 68.04 ± 0.73 80.46 ± 0.67 92.32 ± 0.38

Hazelnut∗ - 68.61 ± 0.72 - 92.40 ± 0.39

Hazelnut? 60.27 ± 0.78 68.23 ± 0.71 80.17 ± 0.66 91.63 ± 0.43

Hazelnut] - 68.33 ± 0.71 - 92.32 ± 0.39

Hazelnut 57.54 ± 0.70 57.13 ± 0.74 66.16 ± 0.65 65.56 ± 0.63

Metal nut† 63.53 ± 0.94 73.00 ± 0.72 69.66 ± 0.77 80.33 ± 0.68

Metal nut∗ - 72.81 ± 0.73 - 80.97 ± 0.67

Metal nut? 62.98 ± 0.92 72.20 ± 0.73 70.22 ± 0.77 80.63 ± 0.67

4.2. Visual Inspection Experiments 47

Metal nut] - 73.09 ± 0.75 - 80.38 ± 0.64

Metal nut 72.08 ± 0.67 71.28 ± 0.68 69.36 ± 0.61 68.86 ± 0.59

Pill† 57.06 ± 0.80 63.32 ± 0.76 61.99 ± 0.77 67.81 ± 0.72

Pill∗ - 63.56 ± 0.73 - 67.83 ± 0.73

Pill? 57.64 ± 0.79 63.57 ± 0.73 62.49 ± 0.79 68.01 ± 0.70

Pill] - 63.66 ± 0.71 - 67.34 ± 0.74

Pill 56.88 ± 0.74 57.29 ± 0.73 65.71 ± 0.68 66.00 ± 0.68

Screw† 52.43 ± 0.74 53.47 ± 0.76 57.96 ± 0.75 61.08 ± 0.77

Screw∗ - 53.28 ± 0.76 - 60.82 ± 0.75

Screw? 51.74 ± 0.77 52.55 ± 0.75 58.04 ± 0.76 61.04 ± 0.76

Screw] - 52.84 ± 0.76 - 60.68 ± 0.79

Screw 51.78 ± 0.72 51.83 ± 0.73 63.00 ± 0.69 62.85 ± 0.71

Toothbrush† 53.70 ± 0.78 52.23 ± 0.79 59.56 ± 0.82 64.29 ± 0.81

Toothbrush∗ - 52.40 ± 0.78 - 64.05 ± 0.81

Toothbrush? 54.09 ± 0.77 52.54 ± 0.79 60.61 ± 0.80 65.68 ± 0.79

Toothbrush] - 52.77 ± 0.77 - 65.21 ± 0.80

Toothbrush 64.62 ± 0.73 65.50 ± 0.77 70.56 ± 0.73 70.34 ± 0.71

Transistor† 64.86 ± 0.84 73.53 ± 0.68 70.33 ± 0.76 76.87 ± 0.66

Transistor∗ - 73.91 ± 0.70 - 76.74 ± 0.64

Transistor? 64.66 ± 0.85 73.52 ± 0.68 71.46 ± 0.73 77.19 ± 0.66

Transistor] - 73.27 ± 0.69 - 76.51 ± 0.65

Transistor 67.18 ± 0.69 67.07 ± 0.72 75.16 ± 0.71 75.48 ± 0.68

Zipper† 69.11 ± 0.86 75.47 ± 0.61 73.97 ± 0.69 81.30 ± 0.55

Zipper∗ - 74.90 ± 0.64 - 81.40 ± 0.55

Zipper? 70.30 ± 0.81 75.00 ± 0.63 74.17 ± 0.69 81.87 ± 0.54

Zipper] - 75.61 ± 0.63 - 81.98 ± 0.54

Zipper 75.35 ± 0.68 74.94 ± 0.69 73.43 ± 0.55 73.87 ± 0.53

Texture Leather† 91.56 ± 0.38 96.24 ± 0.19 87.02 ± 0.59 95.13 ± 0.23

Leather∗ - 96.14 ± 0.20 - 95.34 ± 0.22

Leather? 92.07 ± 0.36 96.30 ± 0.20 86.41 ± 0.62 95.40 ± 0.21

4.2. Visual Inspection Experiments 48

Leather] - 96.02 ± 0.21 - 95.08 ± 0.22

Leather 85.51 ± 0.48 84.44 ± 0.50 50.84 ± 0.63 48.22 ± 0.62

Carpet† 79.04 ± 1.04 86.51 ± 0.59 73.96 ± 0.86 86.85 ± 0.50

Carpet∗ - 86.37 ± 0.59 - 86.28 ± 0.52

Carpet? 80.01 ± 0.97 86.43 ± 0.61 73.13 ± 0.88 86.70 ± 0.49

Carpet] - 86.54 ± 0.60 - 86.38 ± 0.51

Carpet 79.11 ± 0.58 78.45 ± 0.61 47.83 ± 0.68 46.20 ± 0.68

Grid† 55.44 ± 0.75 56.26 ± 0.75 55.20 ± 0.79 58.14 ± 0.80

Grid∗ - 56.20 ± 0.75 - 58.58 ± 0.78

Grid? 55.72 ± 0.78 56.73 ± 0.76 55.31 ± 0.79 58.82 ± 0.78

Grid] - 56.57 ± 0.73 - 58.93 ± 0.77

Grid 58.94 ± 0.78 59.03 ± 0.78 53.97 ± 0.71 53.29 ± 0.72

Tile† 66.95 ± 0.83 75.49 ± 0.59 74.87 ± 0.89 85.97 ± 0.54

Tile∗ - 75.38 ± 0.58 - 86.30 ± 0.50

Tile? 67.86 ± 0.77 75.60 ± 0.59 75.26 ± 0.87 85.73 ± 0.52

Tile] - 75.72 ± 0.58 - 85.62 ± 0.53

Tile 65.79 ± 0.75 65.71 ± 0.73 51.65 ± 0.73 49.85 ± 0.75

Wood† 62.77 ± 0.78 68.76 ± 0.72 64.96 ± 0.85 79.59 ± 0.60

Wood∗ - 69.04 ± 0.71 - 79.88 ± 0.59

Wood? 63.16 ± 0.74 69.19 ± 0.74 64.91 ± 0.84 79.88 ± 0.60

Wood] - 68.74 ± 0.72 - 79.61 ± 0.61

Wood 65.05 ± 0.76 65.01 ± 0.75 44.92 ± 0.61 44.48 ± 0.65

4.2. Visual Inspection Experiments 49

4.2.6 Toward Reducing Labeling Costs

Based on the experimental results so far, it seems hard to obtain satisfactory per-

formance entirely only through the few-shot learning scheme in visual inspection

problems due to low accuracy. However, even though we cannot classify a whole

query set very accurately, we can reduce labeling costs by roughly filtering out

non-defective data. Let’s say we adjust the threshold of the classifier so that the

query data is more easily predicted as defective data. If all actual defective data

can be classified as defective data, data predicted as non-defective data can simply

be labeled as non-defective data.

In Table 4.5, we report the results of 2-way 5-shot classification experiments

with the imbalanced support set and query set in the form of a confusion ma-

trix. The rows with †, ∗, ?, and] correspond to the results of linear interpolation,

triplet interpolation, linear interpolation with extrapolation, and triplet interpola-

tion with extrapolation respectively. By adding 1 to the score for predicting defec-

tive data, the query data is classified more as the defective one. Since the number

of non-defective data in a query set is different for each category, to facilitate com-

parison, the confusion matrix is scaled as if there are 95 non-defective data. We

also set that there are 5 defective data in query set regardless of category. We con-

duct experiments only with the 4 categories that show high AUC values in Table

4.4.

As shown in Table 4.5, the actual defective data is mostly classified as non-

defective data without our augmentation method. However, when interpolation or

extrapolation is applied, the defective query data is properly predicted. Although

non-defective data may be misclassified as defective one, this is not a problem for

the purpose of roughly filtering out non-defective data. A closer analysis shows

4.2. Visual Inspection Experiments 50

that there is no significant difference between the results of applying linear inter-

polation and triplet interpolation. On the other hand, when extrapolated data is

included, the input data is classified more as non-defective. Since this tendency

acts more strongly on actual non-defective data, when extrapolation is applied,

the efficiency of filtering increases while the reliability deteriorates slightly. Based

on the AUC results in the imbalanced setting, however, we can conjecture that

the addition of extrapolated data does not greatly affect the filtering performance.

It’s a matter of how much weight is given to the prediction score. If we add extra

weight to the prediction score when extrapolation is included, we can get confusion

matrices similar to those with only interpolation.

The use of the model pre-trained with ImageNet dataset increases the rate

at which defective data is correctly classified in all four categories, which means

the filtering can be more reliable. When using the ImageNet-driven model, the

classification performance of non-defective data is better in bottle and hazelnut,

but worse in the other two fabric categories. Thus, in the fabric categories, there

exists a trade-off between the reliability and efficiency of filtering depending on

the dataset for pre-training.

4.2. Visual Inspection Experiments 51

Table 4.5: 2-way 5-shot classification results on MVTec-AD experiments with the

imbalanced support set and weighted prediction score († = linear interpolation,

∗ = triplet interpolation, ? = linear interpolation with extrapolation,] = triplet

interpolation with extrapolation).

MVTec-AD pre-trained ImageNet pre-trained

Category Predicted-OK Predicted-NG Predicted-OK Predicted-NG

Bottle Actual-OK† 18.77 76.23 52.73 42.27

Actual-NG† 0.13 4.87 0.11 4.89

Actual-OK∗ 17.95 77.05 52.94 42.06

Actual-NG∗ 0.10 4.89 0.11 4.89

Actual-OK? 29.87 65.13 60.17 34.83

Actual-NG? 0.26 4.74 0.18 4.82

Actual-OK] 29.63 65.37 60.15 34.85

Actual-NG] 0.25 4.75 0.17 4.83

Actual-OK 95.00 0.00 95.00 0.00

Actual-NG 5.00 0.00 4.77 0.23

Hazelnut Actual-OK† 33.37 61.63 62.16 32.84

Actual-NG† 0.67 4.33 0.36 4.64

Actual-OK∗ 34.10 60.90 62.61 32.39

Actual-NG∗ 0.78 4.22 0.32 4.68

Actual-OK? 42.67 52.33 67.10 27.90

Actual-NG? 1.04 3.96 0.41 4.59

Actual-OK] 42.63 52.37 68.47 26.53

Actual-NG] 0.99 4.01 0.45 4.55

Actual-OK 95.00 0.00 94.41 0.59

Actual-NG 5.00 0.00 5.00 0.00

4.2. Visual Inspection Experiments 52

Leather Actual-OK† 67.93 27.07 42.08 52.92

Actual-NG† 0.14 4.86 0.01 4.99

Actual-OK∗ 68.31 26.69 42.36 52.64

Actual-NG∗ 0.10 4.90 0.01 4.99

Actual-OK? 71.14 23.86 47.69 47.31

Actual-NG? 0.13 4.87 0.02 4.98

Actual-OK] 71.80 23.20 48.77 46.23

Actual-NG] 0.17 4.83 0.02 4.98

Actual-OK 95.00 0.00 93.64 1.36

Actual-NG 4.53 0.47 4.95 0.05

Carpet Actual-OK† 55.14 39.86 35.37 59.63

Actual-NG† 0.55 4.45 0.22 4.78

Actual-OK∗ 55.16 39.84 35.59 59.41

Actual-NG∗ 0.53 4.47 0.23 4.76

Actual-OK? 63.31 31.69 39.84 55.16

Actual-NG? 0.59 4.41 0.27 4.73

Actual-OK] 64.87 30.13 40.49 54.51

Actual-NG] 0.61 4.38 0.26 4.74

Actual-OK 95.00 0.00 93.79 1.21

Actual-NG 5.00 0.00 5.00 0.00

5
Conclusion

In this thesis, we proposed a data augmentation method in feature space using in-

terpolation and extrapolation. The proposed data augmentation is applied to few-

shot learning problems. Most existing few-shot learning methods that address the

data deficiency directly, which are called hallucination-based methods, employ a

generator network to generate more data. Our approach, however, deals with the

problem of data shortage in a simple but effective way without the need to train

additional networks.

In our benchmark experiments, we found that our data augmentation can im-

prove few-shot classification accuracy. Our results also show that for the augmen-

tation to work, the amount of generated data should reach a certain level. If the

amount of data obtained through augmentation is sufficient, the spreading factor

does not seem to have a significant impact on performance. Moreover, we applied a

few-shot setting to visual inspection problems using the MVTec-AD dataset, unlike

most studies that have only focused on benchmark experiments. For a more realis-

tic scenario, the query set is always assumed to be imbalanced, and we experiment

53

54

separately for the situation where the support set is balanced and imbalanced. It

turns out that the proposed data augmentation is effective for the imbalanced sup-

port set, especially when using the ImageNet dataset for pre-training. However,

according to our results, it seems difficult to apply a few-shot learning scheme

and our augmentation method to actual visual inspection problems. We thus in-

troduced rough filtering as a less ambitious goal. Experimental results demonstrate

that our augmentation method is useful for roughly filtering out non-defective data

with the imbalanced support set, which means our approach has potential to help

reduce the labeling costs.

Our method of data augmentation via interpolation and extrapolation in fea-

ture space is so simple that there must surely be methods that better exploit the

structure of the data manifold. However, since the performance of few-shot classi-

fication can improve by our approach, interpolation and extrapolation cannot be

ruled out just because it is simple. Recent studies on mixup have focused on the

validity of intermediate data by adversarial training of a critic network rather than

simply applying interpolation. If we add a critic network to our method, it would

be important to investigate the trade-off between performance and cost through a

lot of experiments because we cannot overcome the disadvantages of the existing

hallucination-based methods by introducing a critic network.

Bibliography

[1] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural

networks for one-shot image recognition. In ICML deep learning workshop,

volume 2, 2015.

[2] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al.

Matching networks for one shot learning. In Advances in neural information

processing systems, pages 3630–3638, 2016.

[3] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-

shot learning. In Advances in Neural Information Processing Systems, pages

4077–4087, 2017.

[4] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timo-

thy M Hospedales. Learning to compare: Relation network for few-shot learn-

ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1199–1208, 2018.

[5] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi.

Meta-learning with differentiable closed-form solvers. arXiv preprint

arXiv:1805.08136, 2018.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-

learning for fast adaptation of deep networks. In Proceedings of the 34th

International Conference on Machine Learning-Volume 70, pages 1126–1135.

JMLR. org, 2017.

[7] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to

learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

55

BIBLIOGRAPHY 56

[8] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic

meta-learning. In Advances in Neural Information Processing Systems, pages

9516–9527, 2018.

[9] Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm.

arXiv preprint arXiv:1803.02999, 2, 2018.

[10] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pas-

canu, Simon Osindero, and Raia Hadsell. Meta-learning with latent embed-

ding optimization. arXiv preprint arXiv:1807.05960, 2018.

[11] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your

maml. arXiv preprint arXiv:1810.09502, 2018.

[12] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learn-

ing. 2016.

[13] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Wang, and Jia-Bin

Huang. A closer look at few-shot classification. In International Conference

on Learning Representations, 2019.

[14] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning with-

out forgetting. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4367–4375, 2018.

[15] Hang Qi, Matthew Brown, and David G Lowe. Low-shot learning with im-

printed weights. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5822–5830, 2018.

BIBLIOGRAPHY 57

[16] Bharath Hariharan and Ross Girshick. Low-shot visual recognition by shrink-

ing and hallucinating features. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 3018–3027, 2017.

[17] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. Low-

shot learning from imaginary data. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 7278–7286, 2018.

[18] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-

ford, and Xi Chen. Improved techniques for training gans. In Advances in

neural information processing systems, pages 2234–2242, 2016.

[19] Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec

ad–a comprehensive real-world dataset for unsupervised anomaly detection. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 9592–9600, 2019.

[20] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,

USA, 1 edition, 1997.

[21] Yaqing Wang and Quanming Yao. Few-shot learning: A survey. arXiv preprint

arXiv:1904.05046, 2019.

[22] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data aug-

mentation for deep learning. Journal of Big Data, 6(1):60, 2019.

[23] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Deep transfer metric learning. In

Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, pages 325–333, 2015.

BIBLIOGRAPHY 58

[24] David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. Understanding

and improving interpolation in autoencoders via an adversarial regularizer.

arXiv preprint arXiv:1807.07543, 2018.

[25] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis

Mitliagkas, Aaron Courville, David Lopez-Paz, and Yoshua Bengio. Manifold

mixup: Better representations by interpolating hidden states. arXiv preprint

arXiv:1806.05236, 2018.

[26] Gerald Farin and Dianne Hansford. The essentials of CAGD. AK Peters/CRC

Press, 2000.

[27] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum.

One shot learning of simple visual concepts. In Proceedings of the annual

meeting of the cognitive science society, volume 33, 2011.

[28] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik.

Emnist: an extension of mnist to handwritten letters. arXiv preprint

arXiv:1702.05373, 2017.

[29] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Be-

longie. The caltech-ucsd birds-200-2011 dataset. 2011.

[30] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-

agenet: A large-scale hierarchical image database. In 2009 IEEE conference

on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 770–778, 2016.

BIBLIOGRAPHY 59

[32] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,

27(8):861–874, 2006.

국문초록

지도학습 문제에 딥러닝을 사용할 때, 일반적으로 라벨링된 데이터가 충분히 많아야

좋은 성능을 기대할 수 있다. 하지만 퓨샷 러닝 기법을 통해서라면 아주 적은 양의

라벨링된 데이터로 학습한 딥러닝 모델도 뛰어난 분류 성능을 보일 수 있다. 퓨샷

러닝의 대표적인 방법 중 하나로 이미지 생성 네트워크를 학습하여 데이터의 양을

늘리는 방법이 제시되어왔다. 그러나 이미지 생성 네트워크는 그 자체로 학습하기가

어려울 뿐만 아니라 시간과 메모리 소요가 크다는 단점이 있다. 본 논문에서는 보다

간단하게 특징 공간에서 보간과 외삽을 통해 데이터의 양을 늘리는 방법을 제안한다.

이러한 방식을 사용하면 이미지 생성 네트워크를 추가적으로 학습할 필요도 없으며,

특징 추출 네트워크를 사용하는 방법이라면 어디에든 적용할 수 있다는 장점이 있다.

본 연구에서는 퓨샷 러닝에 쓰이는 대표적인 데이터셋, 그리고 비전 검사용 데이터

셋을 이용해 퓨샷 분류 실험을 수행하였다. 결과적으로 특징 공간에서 보간과 외삽을

이용해 데이터의 양을 늘리면 분류 정확도가 상승하는 것을 확인하였다. 또한 정상

데이터에 비해 결함 데이터가 부족하여 문제를 겪는 제조업 현장에서 퓨샷 러닝과 우

리의 데이터 증강 방법을 이용한다면 대략적으로 데이터를 필터링하여 라벨링 비용을

줄이는 데 도움이 될 것으로 기대된다.

주요어: 퓨샷 러닝, 데이터 증강, 특징 공간, 보간 및 외삽, 비전 검사

학번: 2016-20714

60

	1 Introduction
	1.1 Previous Research
	1.2 Contributions of This Thesis
	1.3 Organization

	2 Preliminaries
	2.1 Few-Shot Learning
	2.1.1 Problem Definition of Few-Shot Learning
	2.1.2 Classification Problem
	2.1.3 Few-Shot Classification Problem: N-way K-shot Problem

	2.2 Two Main Frameworks of Few-Shot Learning
	2.2.1 Meta-Learning for Few-Shot Learning
	2.2.2 Transfer learning for Few-Shot Learning

	2.3 Data Augmentation by Image Manipulations

	3 Few-Shot Classification via Data Augmentation in Feature Space
	3.1 Few-Shot Classification Based on Cosine Similarity
	3.1.1 Details of Few-Shot Learning Based on Transfer
	3.1.2 Cosine Classifier

	3.2 Data Augmentation in Feature Space
	3.2.1 Previous Research on Interpolation in Feature Space
	3.2.2 Various Types of Interpolation in Feature Space

	4 Experiments and Results
	4.1 Benchmark Experiments
	4.1.1 Datasets
	4.1.2 Experiment Details
	4.1.3 Evaluation Results
	4.1.4 Discussion

	4.2 Visual Inspection Experiments
	4.2.1 MVTec-AD Dataset
	4.2.2 AUC Score
	4.2.3 Experiment Details
	4.2.4 Evaluation Results
	4.2.5 Discussion
	4.2.6 Toward Reducing Labeling Costs

	5 Conclusion
	Bibliography
	Abstract (Korean)

<startpage>11
1 Introduction 1
 1.1 Previous Research 2
 1.2 Contributions of This Thesis 4
 1.3 Organization 6
2 Preliminaries 7
 2.1 Few-Shot Learning 7
 2.1.1 Problem Definition of Few-Shot Learning 7
 2.1.2 Classification Problem 9
 2.1.3 Few-Shot Classification Problem: N-way K-shot Problem 9
 2.2 Two Main Frameworks of Few-Shot Learning 11
 2.2.1 Meta-Learning for Few-Shot Learning 12
 2.2.2 Transfer learning for Few-Shot Learning 12
 2.3 Data Augmentation by Image Manipulations 13
3 Few-Shot Classification via Data Augmentation in Feature Space 16
 3.1 Few-Shot Classification Based on Cosine Similarity 16
 3.1.1 Details of Few-Shot Learning Based on Transfer Learning17
 3.1.2 Cosine Classifier 18
 3.2 Data Augmentation in Feature Space 19
 3.2.1 Previous Research on Interpolation in Feature Space 19
 3.2.2 Various Types of Interpolation in Feature Space 20
4 Experiments and Results 25
 4.1 Benchmark Experiments 25
 4.1.1 Datasets 25
 4.1.2 Experiment Details 27
 4.1.3 Evaluation Results 29
 4.1.4 Discussion 32
 4.2 Visual Inspection Experiments 35
 4.2.1 MVTec-AD Dataset 35
 4.2.2 AUC Score 37
 4.2.3 Experiment Details 38
 4.2.4 Evaluation Results 40
 4.2.5 Discussion 41
 4.2.6 Toward Reducing Labeling Costs 49
5 Conclusion 53
Bibliography 55
Abstract (Korean) 60
</body>

