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Table 3. 1.

Mylar film

STD for source LET Activity

(Gy/min) (Gy) (cm) attenuation (kev/ g m) (MBq)
(pieces)

0.05 0-1 2.43 0 110 3.71

0.1 0-1 2 2 140 0.3

0.5 0-2 2.43 0 110 3.71

1 0-2 2 2 140 0.3
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Abstract

Study on Alpha Particles Dose Rate Effect of
Cellular Response in Low Dose Exposure

Donghyun Lee
Department of Energy Systems Engineering
The Graduate School

Seoul National University

Alpha particles exposure mainly occurs as an internal
exposure on human body. Mostly, the epidemiological studies and in
vitro studies with very low dose range have been proceeded to find
the biological responses of alpha part icles exposure. However, the
number of in vitro studies using alpha particles are relatively low
compared to the in vitro studies using other types of radiation.
Therefore, the in vitro studies about cellular responses of alpha
particles are necessary. In this study, the in vitro experiments were
proceeded to find the cellular response on the low dose of alpha
particles and the effect of dose rates on the cellular response. Also,
the effect of LET on the cellular response was observed.

In this study, ratd iencephalon cell and rat gliosarcoma cell were
used as a normal and a tumor cell. The SNU - ALPHACELL that is
built in Radbio Labatory at Seoul National University was used as the
alpha particle irradiator. Both cells were irradiated with the alpha
particles at the dose rates of 0.05, 0.1, 0.5, and 1 Gy/min. 9 different
doses, including a control group (0 Gy), were set for the cell

irradiation. Survival were measured by clonogenic assay.
40



Both cells formed more colonies than the control group in the low
dose (<0.2 Gy) range at the dose rate of 0.05 and 0.1 Gy/min and
considered this phenomenon to be a Hormesis. The hormesis was not
observed at the dose rate of 0.5 and 1 Gy/min and the cell survival
curve followed a linear model. Through with  this results, it was
confirmed that as the dose rate increased, the hormesis disappeared.
Also , comparing the slopes of the cell survival curves at the dose rate
of 0.5 and 1 Gy/min, the slope at the dose rate of 0.5 Gy/min was
steeper. The same trend was shown from the s lopes of cell survival
curve at 0.05 and 0.1 Gy/min. Therefore, the slope at 0.05 Gy/min
was steeper.

It was assumed that hormesis was observed due to the low
concentration of nitric oxide produced during low dose alpha particles
exposure. The previous stu  dy found that the low concentration of
nitric oxide increases the cell proliferation. Also, it was assumed that
the slope difference of the cell survival curve for each dose rate was
due to the LET (Linear Energy Transfer) difference between dose
rates set as experimental conditions. So the RBE (Relative Biological
Effectiveness) was calculated by measuring the LET values from
each dose rate. The RBE increases exponentially for the LET and
then decreases at the certain point. Since this experiment was
perfo rmed in the section where the RBE decreases after the
maximum value, the slope difference between the cell survival curves
can be explained by the overkilling effect.

Although the public interest in the hazards of alpha particle
exposure is increasing day by day, there are not enough researches
on low dose alpha particles exposure. This is because the fact that
the cell survival curve of high LET radiation exposure, such as alpha

particles, follows the linear model was accepted without objection.

41



However, t he in vitro result in this study did not follow the existing
model. The hormesis that was observed in this in vitro experiment
should be considered in subsequent researches on the risk
assessment of alpha particles exposure. Also, more accurate cellular
re sponses can be identified by conducting more in vitro experiments

with various dose conditions.

Keywords : low dose, alpha particles, Hormesis, LET, Relative
Biological Effectiveness (RBE), overkilling effect
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