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Abstract

This paper proposes a stereovision-based auto-guidance method for
a riding cultivator. Ridge and furrow are corrugated field structures created
before seeding operation for good water balance in a field. The stereovision
provides the ability to aware these field structures and determine a navigation
path. In developing an efficient ridge and furrow classification algorithm for
the outdoor application, however, the stereovision would suffer from the
erratic movement of a vehicle on uneven surface and interferences caused
by strong sunlight. The developed algorithm adopts a combination of v-
disparity representation, the Otsu’s thresholding and a roll angle
compensation method proposed to overcome the problems. Feasibility tests
were conducted using video data collected under outdoor conditions to
analyze the image classification accuracy of the algorithm. The developed
algorithm was able to classify the ridge and furrow with over 90% of accuracy
in the rough outdoor conditions. Field testing with the automatic guided riding
cultivator equipped with the stereo camera proved the developed ridge
tracking algorithm would be applicable to a real-world agricultural application,
showing the lateral deviations of the average RMSE of 2.5cm and 6.2cm in
a flat field and a hilly field respectively.
Keyword : Stereo camera, ridge/furrow, riding cultivator, potato seeding,

auto-guidance
Student Number : 2017-23806



Table of Contents

Chapter 1. Introduction...................cccciiiii 1
1.1. Study Background ................ccccooiiiiii i 1
1.2. Purpose of Research .............ccccccoeiiiiiiiii s 2
1.3. Review of Literature ...............ccccccovviiiiiiii 3

Chapter 2. Meterials and Methods ....................cccccooiiiiii s 6
2.1. Ridge and FUITOW...............ccooviiiiiiiiii e 6
2.2. Principle of Stereovision...................oooooiiiiiiiiii, 8

2.3. Ridge and Furrow Detection and Tracking Algorithm 11

2.3.1 Ridge and Furrow Classification Algorithm using v-

disparity and Otsu’s thresholding ...........................ccooo . 12
2.3.2 Roll Angle Compensation .................cccccvviiiniiininnnnns 15
2.3.3 Sliding Window Technique..................ccccuvviiiiinninnnns 17
2.3. 4ROl Setting .........oooviiiiiiiiiii 18
2.3.5 Path Tracking Model ......................oooiiiiiiiiiii, 19

2.4, Feasibility Tests............coooooe 23
2.4.1 Data Collection.................cceuvuiiiiiiiiiiiiiiiiiis 23
2.4.2 Image Calssification Accuracy Analysis................. 25

2.5. Field Testing .........coooiiiiiiiiii 26
2.5.1 Ridge Tracking System ................cccccoiiiiiiiiniiininnnns 26
2.5.2 Test Fields and Performance Evaluation................. 28

ii



Chapter 3. Results and Discussion .................cccccccceeiiiiieenieenn, 31
3.1. Effect of Sunlight on Detection Performance ............. 31

3.2. Feasibility of Using Roll Angle Compensation Method for

Uneven Surface Movement.................oocoiiiiiiiiieeee 33
3.3.Field Test Result.................cccciiiiiiiie 35
Chapter 4. Conclusions ...............cccooeviiiiiiii e 38
Bibliography ... 39
Abstract in Korean ...............ccccccvvvviiiiiiiiiiiiie 43

iii



Tables

Table 1 Result for the daylight feasibility test

Table 2 Result for the dynamic situation feasibility test..........

Table 3 RMSE of the ridge tracking resulit......

v



Figures

Fig. 1 Corrugation, ridge and furrow ....................c.ccccooooiiiiinnnn, 6

Fig. 2 Dimension of the 15kW riding cultivator developed by TYM

........................................................................................................ 7
Fig. 3 Stereovision (“Image rectification”, 2019)........................ 8
Fig. 4 Rectification (“Image rectification”, 2019) ........................ 9
Fig. 5 Ridge-furrow detection and tracking algorithm ............. 1"

Fig. 6 (a) Left image (b) Right image (c) v-disparity image....... 12
Fig. 7 Ridge and furrow classification using v-disparity map and
Otsu’s method (a) Arow in v-disparity map (b) Disparity image (c)
V=-diSParity Map.........ccooiiiiiiiii e 14
Fig. 8 (a) Color image (b) Binary image of ridge and furrow ... 14
Fig. 9 Image projection problem caused by a rolling offset....15
Fig. 10 (a) Plot of disparity isolines in image coordinate (b)
Geometric relationship between the isolines and rolling offset..16
Fig. 11 Guidance line extraction using sliding window method .17
Fig. 12 (a) Region of Interest, ROI (b) Disparity image without
occlusion filling (c) Disparity image after applying occlusion
FilliNG. . 18
Fig. 13 Guidance line schematic (a) projected field view (b)

Components ontheimage .............ccccccceiiiii i, 20



Fig. 14 Geometric relations between the camera, the vehicle and
the surface (a) side view (b) 3D view ............cccccoeeiiiiiiiiiiiiininnnn, 22
Fig. 15 Image collecting environment (a) Camera installation (b)

Google Earth view of the test field (c) llluminance during day

Fig. 17 Size of ridge............cccoiiiiiiiii 28
Fig. 18 Aand B points on the ridge.................cccccciiiiiiiiiiiiiinnns 29
Fig. 19 A and B points in the UTM coordinate .......................... 30
Fig. 20 GPS pointdatagap...............cccevvvriiiiii e, 30
Fig. 21 Feasibility test result under daylight condition............ 31
Fig. 22 Errors caused by sunlight......................cccccoiiiiinnn, 32

Fig. 23 Feasibility test result under condition of vehicle moving
ON UNEVEN SUIMAaCEe.............oiiiiiiiii e 34
Fig. 24 An example of erratic result of guidance line extraction (a)
without rolling offset compensation (b) with rolling offset
COMPENSAtION ... 34
Fig. 25 Lateral devotion between auto-guided path and manually-
driven path on (a) flat field (b) hilly field................................... 35
Fig. 26 Trajectory plot (a) flat field (b) hilly field ....................... 36

Fig. 27 Steering angle command (a) flat field (b) hilly field ..... 37

Vi



Chapter 1. Introduction

1.1. Study Background

During the manual operation of a farm machine in a field, an operator
controls its steering by referring to field objects such as crop row, windrow,
ridge and furrow. Previous studies have focused on vision applications for
crop presented season operations because the distinguish color difference
between soil and crop was a readily identifiable feature to guide the machine.
For farm operations before crop exists, however, the traditional crop row
detection methods are not applicable due to the lack of the color
characteristic. Ridge and furrow are undulating and corrugated
microtopography created for irrigation and drainage, especially for row crops.
Due to the three-dimensional characteristic of ridge and furrow, the operator
could easily distinguish the traversable path during a seeding or planting.
The interest in implementation of 3D imaging to agriculture has also been on
the rise as the 3D camera technology has become more accessible and
efficient (Vazquez-Arellano et al., 2016). A stereo camera is a type of 3D
sensors estimating depths based on the principle of triangulation. As a stereo
camera simulates a human binocular vision, it gives a machine an ability that
humans have. In this study, the stereo camera is applied to detect ridges and
furrows for an auto guided planting system. Although the stereo camera has

an advantage in outdoor field environments which contain well textured
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scenes, stereovision-based applications in agriculture face some challenges
in achieving robustness to dynamic scenes caused by a machine movement
under uneven surface conditions and changes in texture characteristics

disappearing due to varying sunlight conditions.

1.2. Purpose of Research

The goal of this paper is to develop a stereovision-based ridge detection
and tracking system adopted in agricultural field conditions. A novel algorithm
to detect ridge and furrow is proposed to extract guidance components and
navigate a vehicle. Through two feasibility tests under sunlight conditions
during a day and in a dynamic situation moving over an uneven surface, the
developed algorithm is evaluated by an image classification accuracy
analysis. Furthermore, A field test platform is set by applying the developed
algorithm to a newly built auto-steering riding cultivator, and field tests is runt

to verify the potential of the system for practical real-time application.



1.3. Review of Literature

Stereovision based previous works in agricultural application had an
effort to calibrate 3D data by camera extrinsic parameters for a stable object
detection. Kise et al. (2005) identified a crop height profile using a stereo
camera and a navigation point using a cosine function based cross
correlation model. To generate the crop model, an inter-row space of crop
field was determined, and it required to be reconstructed for elevation map.
Hanawa et al. (2012) developed a stereovision-based auto guidance system
by tracking a marker trace using projected bird’s eye images. Zhang et al
(2018) projected each disparity values on 3D coordinate system using a set
of fixed camera extrinsic parameters for the transformation matrix to identify
crops rows using a stereo camera. In order to use 3D reconstructed data and
the bird’s eye images, the previous studies employed initially-defined
camera’s calibration values. Since their methods required extrinsic camera
parameters such as pitch angle, roll angle, and camera installation height, it
was hard to actively respond to dynamic vehicle movement on rough surface
of the field, unless the extrinsic camera parameters would be estimated in
real-time.

Blass et al. (2011) suggested a more practical method in use of
stereovision-based auto guidance system under conditions on uneven
and/or hilly ground. The swath detection method developed by Blass et al.
(2011) for an auto-guided baling system defined the swath region in depth

image by searching a ground plane using RANSAC plane fitting method. This



method, however, is difficult to apply in ridge and furrow environment
because there is no apparent ground plane which would take a form of nearly
flat horizontal conducting surface and take up a relatively large region in an
image. The v-disparity presentation, introduced by R. Labayrade and D.
Aubert, is widely used to configure the ground surface plane for stereovision
based off-road vehicle navigation (Broggie et al., 2005& Soquet et al., 2007
& Zhao et al., 2007 & Chen et al., 2008 & Shrivastava et al., 2019). We
introduced the row-by-row binarization method to classify ridge and furrow
previously (Yun et al., 2018). The v-disparity representation and the row-by-
row binarization method were used in processing the images of row by row.
The methods had little impact on longitudinal variations caused by pitch
movements. Strong roll angles variations, however, could still cause poor
performance. Herghelegiu et al. (2016) points out the importance of roll angle
in use of the v-disparity representation and confirm the effect in simulations.
In this paper, the use of a combination of an appropriate use of the v-disparity
representation and a proper roll angle compensation method is proposed to
respond to both erratic pitch and roll movement in ridge and furrow
environment.

Another difficulty for an outdoor application is controlling it over lighting
conditions. Sunlight could cause loss of color information by generating
reflection light and cast shadow. Halation regions appearing white in an
image caused by reflected light is unpredictable in outdoor environments,
because the direction of the sunlight is changing over time and the angle of

the reflected light, which causes the halation, is varying from place to place _
4 =T



(Nishiwaki et al., 2006). Hanawa et al. (2012) also points out the limitation of
utility of the stereo camera due to partly projected shadow casted by a strong
sunlight. The white region caused by halation or the black region caused by
cast shadow remove texture from an image. Since the weak information of
the image texture provides insufficient local matching evidence to estimate
range information, the stereo camera easily generates the outliers’

measurements in outdoor environments.



Chapter 2. Materials and Methods

2.1. Ridge and Furrow

In furrow irrigation, the soil is raised and lowered at regular intervals so that
the water drains well, the area where the crops grow are well-lit and the roots
breathe easily before the seed is sown. This microtopography of the soil
formation is called corrugation as in Fig.1. The corrugation is divided into the
upper part of which the crop is planted and the lower part where the water
drained, which is called ridge and furrow, respectively. Since the purpose of
this research is the development of auto-guidance method for riding type

agricultural vehicle, the ridge and furrow should be defined based on

« Fumow +*— Ridge —

Corrugation —-

Fig. 1 Corrugation, ridge and furrow
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Fig. 2 Dimension of the 15kW riding cultivator developed by TYM
mechanized operations. The size of corrugation is normally set according to
the size of the vehicle, implement and type of crop. Fig.2 shows the
dimension of the vehicle used in this research. In the aspect of vision-based
detection, however, depending on methods of ridge formation, the detection
methods could bring up different ideas. If the corrugation is formed simply
by ridgers, the color difference between ridge and furrow appears due to the
difference in soil moisture content. In the modern ridging method for seeding,
in order to make the soil surface soft and even, the ridging process is mostly
accompanied with pulverization and bed shaping These processes make the
color of soil surface uniform. Considering various corrugation environment,
using the height different between ridge and furrow is most reasonable to

determine the traversable pathway.



2.2. Principle of Stereovision

Stereovision simulates human binocular vision by using the principle of
triangulation. A single digital camera in which photoelectric sensors are
arranged in two-dimensional array capture color information from a scene
and record discrete values in a digital image. Each pixel in the image
represents the color of a projection ray from an object passing through the
optical center. With 2D array images alone, however, it is not possible to
estimate the position of the object as all points of the projection ray can be
projected on the same pixel. Otherwise, two cameras separated by a known
distance and fixed parallel one to another captures the same object scene,
and two projection rays projecting on each image from the same object point
forms a triangle. The plane where the triangle lies is called the epipolar plane.
The line between the two cameras’ optical centers, O and O’, is called
baseline (Fig. 3). The intersection between the baseline and each plane is

the epipole The line passing through the projection point and the epipole is

P

P1

Left image P>

Right image
lane
R P3

Epipolar plane

eI
0" =X AZ o
Epipolar line Epipolar line
to p’ top

Fig. 3 Stereovision (“Image rectification”, 2019)
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the epipolar line. The epipolar line can also be defined as the line of
intersection between the epipolar plane and the image plane. The location of
the projection points on the epipolar line, therefore, determines depth
information of the object. Since the two projection points are projected from
the same object point, the local neighborhoods of stereo images take a
similar texture information. A pair of corresponding points in stereo images is
indicated using feature matching techniques. The process of triangulation
recovers three-dimensional information of the object point; this is called
stereo matching. A pair of images taken from the slightly displaced camera
lens is distorted and unrectified in real world. Before the process of stereo
matching, the distorted and unrectified images are required to be
transformed onto a common image plane and bilinearly interpolated; this
process is called rectification (Fig. 4). Through the rectification, all epipolar
lines become parallel to the baseline. Disparity between two matching
corresponding points on an epipolar line represents the distance in pixels.
One of the pair of images is set as the reference image and a disparity image

corresponding to the reference image is obtained. The disparity image is a

o
N

2

/

Fig. 4 Rectification (“Image rectification”, 2019)
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2D array that stores disparity values expressed in pixel and contains three-
dimensional information. The stereovision gives the fine estimation of the
position of objects in the scene. Because of the process of stereo matching,
the performance of stereo cameras depends on its method and
environmental conditions such as white walls and specular areas which
generate homogenous and textureless regions in the image. Nevertheless,
the rich information based on the relatively high resolution, density and co-
registered color images of stereo cameras facilitates their use in various

applications (Szeliski, 2010).
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2.3. Ridge and Furrow Detection and Tracking Algorithm

Under an uneven field surface condition, erratic movements of camera make
difficult to interpret 3D data. The erratic movements are specified into pitch
oscillation and roll oscillation. The proposed algorithm shown in Fig.5 is
designed to robustly classify the disparity image into ridge and furrow regions
assigned to binary, without affecting the camera’s oscillations and extract a
guidance line from the binary image. The disparity images have been
provided by Stereolabs ZED SDK, and the algorithm is implemented using

C++ and OpenCV library.

| ZED SDK | Left image Right image

]

Contouring |

!

Calculate roll angle
B= %E?:l m; ,m:slope of trend of contour)

| Disparity Image generation

ROI setting

v-disparity representation |
v
Otsu’s Thresholding |

)

| Rolling compensation

l

| Ridge/furrow classification

l

| Guidance line extraction

!

Sliding window technique |
v

Linear Regression
on set of ridge mid-points

MRS

| Steering angle calculation 5= f(Y,6)
i 8, Steering angle
Y, Lateral deviation
Steering Angle 6, Heading deviation

Fig. S Ridge-furrow detection and tracking algorithm



2.3.1. Ridge and furrow classification algorithm

using v-disparity and Otsu’s thresholding

First, to classify the disparity image into ridge and furrow regions, a proper
binarization process is required in consideration of the pitch oscillation. The
v-disparity representation is a useful method to describe a longitudinal profile
of non-flat surface (Labayrade et al, 2002). Since surface takes up most of
the visual field in common outdoor environments such as road, park, and
field, the disparity values of the ground surface, which occupies the most
fraction of the image, emerges as the peak in a histogram of each disparity
image row. A slanted line, therefore, generally appears on where the ground
surface exists in the v-disparity map (Broggi et al., 2005 & Soquet et al., 2007
& Cong et al., 2010). Broggi et al. (2005) defined it as “ground correlation
line”. Unlike other environment surfaces, since there is no representative
ground plane in ridge and furrow environment, the v-disparity image taken in
ridge and furrow environment appears with widely spread and dim lines (Fig.
6¢). Instead of segmenting the ground correction line, looking deeper into the

v-disparity image (Fig. 7b), each row of v-disparity image returns a shape of

d

(b) (c)

Fig. 6 (a) Left image (b) Right image (c) v-disparity image
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bimodal distribution (Fig. 7c) (Broggi et al., 2005 & Soquet et al., 2007 &
Cong et al., 2010). The two groups at each peak in the bimodal distribution
are included in ridge region and furrow region respectively. Otsu’s method,
which is known to function rigidly to find a threshold value with a histogram
of bimodal distribution, is used to separate pixels into ridge and furrow
regions in each row of v-disparity image (Yuan et al., 2015). By applying
Otsu’s thresholding to all rows of the v-disparity image, the resulting binary
image of Fig. 8 which indicates the location of ride and furrow could be
obtained. This way, the proposed algorithm provides effective discrimination

capability between ridge and furrow without the pitch oscillation effect.

13
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2.3.2. Roll angle compensation

The rolling oscillations occurred by vehicle movement over uneven surfaces
makes each row of the disparity image appear to follow a non-horizontal
pattern (Fig.9b). This profile deformation negates the previous classification
step because the single threshold value is unable to slice the boundary of
ridge and furrow (Fig.9). The suggested solution for this problem is to
reversely rotate the image as much as the camera is horizontally tilted with
respect to the ground surface, so that the image x-axis turns to become
parallel to the surface profile. This is called a relative rolling offset. In order
to determinate the relative rolling offset, trend surface analysis is performed
using isolines that connect points of equal disparity values (Fig. 10a). The

disparity image should be previously blurred by computing the local mean of
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Fig. 9 Image projection problem caused by a rolling offset
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Rolling offset

Trend line of surface

Camera viewing frustum
with zero rolling offset

..~.- Camera viewing frustum
with a rolling offset

() (b)

Fig. 10 (a) Plot of disparity isolines in image coordinate (b) Geometric relationship
between the isolines and rolling offset

the neighborhood area with the kernel size of 7 by 31 pixels, to remove high
frequency components in the disparity image before drawing the isolines. A
slope of linear trend of each isoline in the image coordinate is approximately
equal to the rolling offset, as the geometrical relationship shown in Fig. 10b.
Since points on an isoline indicate surface spots which are equidistant from
the principal plane of the camera and located on a slice plane parallel to the
image plane; the angle between the image x-axle and the trend line is
corresponding to the rolling offset, B, (Fig. 10b). The average slope of all
trend lines in one image is used as the image rotation angle, and the rotated
disparity image becomes adequate to apply the proposed ridge and furrow
classification method. After that, by rotating the image back, the final resulting
binary image is aligned with the original position. The overall process of the
algorithm is possible to successfully classify ridge and furrow for any

movements of the vehicle.
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2.3.3. Sliding window technique

Once a binary image is obtained by the previous processes, the position of
middle points of the center ridge is collected using row-wise sliding window
technique shown in Fig.11 (Fan et al., 2011). The row-wise sliding window
technique starts at the bottom row. Both sides of initial sliding windows are
set to the width of half the bottom row width and the height set to one pixel.
The ridge boundary points are searched at where the nearest change point
from each window middle exists. Each ridge boundary point becomes the
window middle of the next row, and the width of the next window on both
sides is defined as the half-length between the ridge boundary points. The
ridge midpoints are collected by searching the center position of the two ridge
boundary points on each row (Fig. 11). Finally, the guidance line is extracted
by applying linear regression to the set of ridge midpoints. This way, whether
the path on ridge and furrow is straight or slightly curved, the guidance line

is robustly extracted from the binary image.

@ Guidance line @ Sliding window
o Ridge midpoints Q Ridge boundary points B Window middle

Ridge region = white  Furrow region = black

17 ) .H - T.
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2.3.4. ROI Setting

Setting Region of Interest (ROI) is also an important part to reduce potential
errors in use of disparity images. ROI functions to cut unnecessary regions
off. The first part of the cutoff is border occlusion regions. Since some of the
portion is captured out of the overlap between the two lenses from the field
of views, the occlusion is easily generated at the border area of an image
(Fig. 12b) (Huq et al., 2013). Even though the occlusion filling algorithm
provided by ZED SDK in Fig.12c also estimates missing disparity values
occurred by both, border occlusion and non-border occlusion, it is still better
to remove the unreliable regions at the borders. The second one is unreliable
range regions. At far detection ranges, it is hard for the stereo camera to
estimate range values. Therefore, the stereo camera reliability diminishes
due to its resolution and the limited baseline length. Otherwise, objects
approaching the camera too close, due to an excessive pitch movement or
some parts of vehicle structures, are possible to be captured at the bottom
region of the image, based on the installed location. The shape of ROI looks

like in Fig.12a.

Border occlusion regions
| Unreliable range regions

Border occlusion

Non-border occlusion

(a) (b) (c)
Fig. 12 (a) Region of Interest, ROI (b) Disparity image without occlusion filling (c)
Disparity image after applying occlusion filling
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2.3.5. Path Tracking model

Once the guidance line is extracted by the previous processes, the final stage
of the developed method determines the steering angle of the vehicle. The
steering angle of vehicle (&6 ) is calculated by the PD control-based

Ackermann kinematic model (Lenain et al., 2007):

3
8(Y,6) = tan™? (L [ng(—l(d(l —Yc(s))tan 6 — K,Y
(1 — Yc(s))
+c(s)(1—Ye(s)) tan? 0) + % > €))

where L is the vehicle wheelbase, K; is the derivative gain, K, is the

proportional gain and c(s) is the curvature of a path. The variables of t Eq. (1)
are lateral and angular deviation, respectively Y and 6, which can be
calculated from the obtained guidance line, also defined as target line (Fig.
13). Fig. 13a shows the schematic top view of the tracking field,the XYZ
coordinate system is defined on a metric space. The lateral deviation of the
tracking model is defined as the perpendicular distance of the look ahead
point from the X-axis, which is Y; 4p. The lateral deviation at the look-ahead
point, x;4p, in Fig. 13b, is defined in a pixel coordinate system, xy. The pixel
distance of the look-ahead points perpendicular to the heading line. The
heading line in the image, which is indicating the travel direction of the vehicle
as well as the principle line of the camera, should be aligned to the X-axis
when the camera is installed on the vehicle and rigidly mounted. In order to
calculate the lateral deviation by reading the pixel distance, the relationship
between the disparity value, d, and the metric distance value, D, is required.

19 S



s &&= Heading line (Optical axis)
—— Target line (middle of ridge)
) Red = Look ahead point (LAP)

Fig. 13 Guidance line schematic (a) projected field view (b) Components on the image

The equation is:

where f is focal length, and T is the length of baseline of the stereo camera.

As the geometric relationship shown in Fig. 14b, the lateral deviation is

defined as following equations:

Dy pap Xrap T Yiap T-y; Ty,
Y=Y p= —= = , Y= , Y= 3)
Lar f dy_Lap ! Y1 g d;
where Y = Lateral deviation for the Eq. (1) (cm),
. =8 & 7
20 . .-"tw. = E.] '::'-' 11!
sy 3 — 7 =l

L



Y, 4p = Lateral deviation of the point on the heading line at LAP (cm)
Dy 1ap = Distance between the camera and the point on the heading
line at LAP (cm)

dy 1ap = disparity value the point on the heading line at LAP (pix)

Y, = Lateral deviation of the point, p1, in Fig.13a (cm)

Y, = Lateral deviation of the point, p2, in Fig.13a (cm)

y, = Lateral deviation of the point, p1, in Fig.13b (pix)

y, = Lateral deviation of the point, p2, in Fig.13b (pix)

To calculate the angular deviation, the projected distance of the field of view,
X,,, is required as well as two lateral displacement parameters, Y; and Y,,

obtained from Eq. (3). Fig. 14a shows the relationship between the projected

distance and the camera'’s vertical angels. Eq. (4) defines the relationship

between the measured distances and the vertical angels at points p1 and p2:

£ = Dy cos(ay) = Dy, cos(az) (4)
where Dy, is the distance value at the point perpendicularly dropped from
p1 tothe headingline, Dy, is the distance value at the point perpendicularly
dropped from p,, a; is the vertical angle between the Z-axis and the
projection axis to p;, and «a, is the vertical angle between the Z-axis and
the projection axis to p,. Using the relationship between the vertical angles
and the vertical field of view of the ROI, fov,, Eq. (4) is solved by the
following equations:

a, = a + fov, £ 3 (5)



D d
cos(fov,) — D—zi cos(fov,) — d—:;
% = atan sin(fov,) atan sin(fov,) ®)

The angular deviation of Eq. (1) is calculated by the following equations:

X1y = Dyry sin(az) _ DHlsin(a1) — f -T (Sin(ald-z fovy) _ Sind(ixl)> (7)
6 = atan (YZX_ Y1> (8
12
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Fig. 14 Geometric relations between the camera, the vehicle and the surface (a) side
view (b) 3D view
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2.4. Feasibility Tests

2.4.1. Data Collection

First, to evaluate the developed system under harsh lighting outdoor
condition, a set of video data of stereo images were collected from 11am to
5:30pm on a sunny day, when harsh sunlight and cast shadow would occur;
for 20 seconds interval, in two different ridge and furrow environment, (which
are for bare ridges and mulched ridges), at the same time (Fig.15(a)). The
ridges were manually formed in a rounded shape with height of 20cm and
width of 80cm, along an azimuth about +168 degree measured using Google
Earth Pro (Fig. 15b). The peak illuminance reached about 60,000 Lux at
1:00pm (Fig. 15c).

Then, to evaluate and simulate a vehicle’s dynamic situation, a set of video
data of stereo images was collected during a stereo camera installed cart,
shown in Fig. 15a, travelling over 30m length of ridges and furrows on a
sunny day. The stereo camera was mounted on a cart, one meter above the
ground, which was drawn manually. Although the cart was lighter than any
other real agriculture vehicle, and fluctuating more than real applications, the
data collected with it was useful to evaluate and simulate the feasibility, even

under rough conditions.
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2.4.2. Image Classification Accuracy Analysis

To evaluate a ridge-furrow classification performance of the developed
algorithm, pixel-wise classification accuracy was assessed in comparison to
manually-labelled ground truth data. The evaluation program is designed that
an assessor discerns boundary lines between ridge and furrow by reading
the corresponding RGB image. Based on the designated boundary lines,
pixels on ridge regions are set to white value, and pixels on furrow regions
are set to to black value. The accuracy measurement is useful to provide a
quantitative evaluation result (Reina et al., 2016). The classification accuracy

is defined as:

TP+TN B TP+TN
(TP + TN + FN + FP)  Number of all pixel in ROIs

(4)

Accuracy =

Where TP = True positive, number of ridge pixel in ridge region

TN = True negative, number of ridge pixel in furrow region

FP = False positive, number of ridge pixel in ridge region

FN = False negative, number of ridge pixel in furrow region
For the feasibility test on daylight condition, approximately 2300 images of
both bare ridge and mulched ridge were evaluated and manually-labelled
once for each set of videos. Concerning the feasibility test for dynamic
situation, since every image in the collected video have different orientations,
the ground truth data was generated by manually-labeling at each image.

The evaluation program helped to analyze the data efficiently.
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2.5. Field Testing

2.5.1. Ridge Tracking System

The test platform used for ridge tracking was a 15kW prototype intelligent
riding-type cultivator provided by TYM. The riding-type cultivator is a straddle
tractor which has an extensive ground clearance, 530mm, and is suitable for
inter-row cultivation in Korea, where most farms are small. The developed
ridge tracking system is designed to track the ridge located at the center of a
vehicle and used to track a path for potato seeding (Fig.16). The ridge
tracking system is used to track a path for potato seeding as in Fig.16. The
major components of the auto tracking system are a stereo camera, an
embedded workstation and an electric power steering installed like shown in
Fig. 16. The ZED mini stereo camera used in this research provides a
software development kit which can capture 3D videos at resolution of 720p
and frame rate up to 60fps (Stereolabs, 2019). Since the ZED stereo camera
requires CUDA to compute the disparity image in real-time, the embedded
workstation is equipped with Quadro P3000. The other parts of the algorithm
are implemented in CPU environment using C++ and OpenCYV library. The
steering angle computed in the workstation is sent to an ECU board in
Electric Power Steering (EPS) via CAN bus and is updated in 5Hz. In order
to evaluate the tracking performance of the developed system, a dual GPS
INS composed of a Novatel OEM-617-D GPS receiver with dual antennas
and an SBG Ellipse2-D inertial sensor, mounted on the top of the riding
cultivator, was used to measure the tractor’s accurate location with a VRS-
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RTK connected to the GPS data link via the workstation (Fig.16).

i GPS module
e ¥ evaluation pu
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Steering angle
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Fig. 16 Stereovision based ridge tracking system overview
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2.5.2. Test Fields and Performance Evaluation

The ridge tracking tests were run in two different places respectively in May
2019 and in August 2019. The ridges were formed on a nearly flat field in the
first place, then on a hilly field. The ridges had a width of 100 cm and height
of 20 cm (Fig. 17). To compare the performance of the developed system to
human driving, GPS data were collected while the vehicle was travelling over
the same ridge path, operating in both auto-guided control and manual
control. The collected GPS data output was in the UTM coordinate format
(Han et al., 2013).

Since the ridge was not formed perfectly straight and the paths of GPS data
were collected at different times, a proper analysis method of the collected
GPS data was required to evaluate the tracking performance of the

developed system reasonably. The lateral deviation is the displacement of

Fig. 17 Size of ridge
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the vehicle relative to the target course in the normal direction. In the ridge
tracking situation, the target course is the ridge lined pathway. Because it is
difficult to calculate the normal vector of every point on the non-straight ridge
line, the straight line between the start point (A) and the end point (B) of the
manually driven path (Fig.18) was set as reference axis, thus the normal
vector becomes uniform. Fig.19 shows the GPS data in latitude and longitude
UTM coordinates Fig.20 shows the coordinate with AB line to x-axis,
transforming through the translation and rotation. Shown in Fig.20, the GPS
point data gap between the manually driven path and the auto-guided path
exist. The gap is simply eliminated by filling out intermediate values of the
GPS points of the manually driven path through the linear interpolation. As a
result, the lateral deviation of every GPS point of auto-guidance paths is

calculated corresponding to the manually driven paths
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Chapter 3. Results and Discussion

3.1. Effect of Sunlight on Detection Performance

Under daylight conditions, the developed algorithm successfully classifies
the ridge and furrow in most daytime (Fig. 21). The standard deviation
between the accuracy results by time is negligibly small and relatively steady
for both cases (Table 1). However, at certain times, 11:05am, 13:14pm, and
16:00pm, the accuracy in the plastic mulched ridge sharply decreased. 3D
projected elevation maps shown in Fig. 22, displays well the cause of error
at those specific times. At 11:05am, the region where the halation appears,
disparity values collapsed. At 16:00am, the region where shadow is casted,

disparity values also collapsed. At 13:14am, both halation and cast shadow

Classification Accuracy Analysis
T T

100 T T T T
og - w Bare ridge —
—_ —Muiched ridge
R 9% . . i
% 94 - H;W"J\’““ ”‘)""‘,h"“"”\f"‘-' "“"'-.__r*\f'.""‘ﬁﬂ' M q‘,n‘,»b\lf,w‘,'.~N'..,-M;\4\"‘l‘\\wwl*./\,ml;\’_\% “’\\'“.1“.‘|'W’I'\,%PW”'I\‘-“I :’ -"-, s o -
2 o - el W L‘-wlﬁ\\‘ me"'v’“\v,“-‘-”x"v“‘w“v.ew |
90 - 8
88 1 1 | | | |
10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
Time(hh:mm)
Fig. 21 Feasibility test result under daylight condition
Table 1 Result for the daylight feasibility test
Type of Average Standard Deviation
) Maximum (%) | Minimum (%)
ridge (%) (%)
Bare 94.482 0.636 95.936 93.263
Mulched 92.892 0.742 93.930 90.941
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appear at the same time and show minimum accuracy. At the textureless
regions in RGB images, caused by lights reflected from smooth surface
points, and shades near boundaries between ridge and furrow, the stereo
camera is not able to measure reliable disparity values, since the stereo
matching algorithm does not perform well (Chang et al.,, 2016). As the
textureless regions in this experiment occupy relatively small areas and other
center points at each segment redeem error points, the extracted guidance

lines still resulted practically.

Cla55|f cation Accuracy Analysts

WW*VW\WM A DAY
@ g i aﬁﬂwm

90 + 1 1 1
1

Accuracy(%)

13.00 \\\ 14:00 15A00 16A00\ 17:00 18:00
‘\Time(hh:mm)

Fig. 22 Errors caused by sunlight
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3.2. Feasibility of Using Roll Angle Compensation

Method for Uneven Surface Movement

To verify the effectiveness of the rolling offset compensation method, the
complete oscillation compensated algorithm was compared with the
algorithm using only the ridge and furrow classification without the rolling
offset compensation by the accuracy analysis employed on the same image
data set. The accuracy results showed that the developed algorithm
performed with the average of 93.5% and the standard deviation of 1.62%,
while the algorithm without the rolling compensation resulted with a large
variation with the average of 89.3% and the standard deviation of 6.68% (Fig.
23 & Table 2). Without the rolling offset compensation, the boundary of either
side becomes ambiguous and it would occur an unreliable result to extract a
guidance line; an example of it is shown in Fig. 24. It proves the feasibility of
the developed algorithm against dynamic movements in the uneven field

environment.
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Fig. 23 Feasibility test result under condition of vehicle moving on uneven surface

Table 2 Result for the dynamic situation feasibility test

Average Standard Deviation
Algorithm Maximum (%) | Minimum (%)
(%) (%)
With Rolling
93.5 1.62 95.9 89.1
Compensation
Without
Rolling 89.3 6.68 97.7 74.6
compensation

(a) (b)

Fig. 24 An example of erratic result of guidance line extraction (a) without rolling offset
compensation (b) with rolling offset compensation
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3.3. Field

Test Result

The RMS results of lateral deviation between the auto-guided path and the

manually-driven path show that the developed system performs no different

than the human task on flat field. Its values are 2.15cm, 2.27cm 2.63cm, and

Lateral deviation (auto - manual) in flat field

,é\ 15 T T T T T
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(&)
T o
o
2
T S
©
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®
- _15 L 1 1 1 1
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Longitudinal displacement(cm)
(a)
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5
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cC MW M
o ’\'\W
g 5 / ,MNM,M ‘l“ \‘ ,‘r Wh, \ \v t / |
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Fig. 25 Lateral devotion between auto-guided path and manually-driven path on (a)

flat field (b) hilly field
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Fig. 26 Trajectory plot (a) flat field (b) hilly field

2.78cm for each of the four trials respectively (Fig. 25a). On the hilly field, the
RMS results are larger than the one on the flat field. For all of the three trials,
the values are 8.67cm, 3.61cm and 6.22cm (Fig. 25b). This is can be
explained by the trajectories of the paths. Also, the auto-guided trajectory on
the hilly field have similar pattern with the manually-driven one but move
away downhill from it (Fig. 26b). Fig. 27 shows the steering angle command
calculated from the developed algorithm. Unlike the flat field case (Fig. 27a),
the steering angle command for the hilly field is biased and the direction of it
is the clockwise which is opposite to downhill (Fig. 27b). This means the

steering angles calculated by the developed algorithm have commanded the
36 21



vehicle to move to the direction of uphill, but the vehicle could not conduct

the command. To improve the tracking performance, the modified tracking

algorithm is required to respond to the side slip at low velocity (Han et al,

2019 & Bell, 1999). The speed of vehicle for the riding cultivator during the

tests is evenly about 0.25m/s. Even though there are the small location

biases for hilly field tests, overall results show the developed system has

been able to robustly trace the inter-row path of ridge and furrow.

Steering angle command in flat field

Steering angle command in hilly field
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Fig. 27 Steering angle command (a) flat field (b) hilly field
Table 3 RMSE of the ridge tracking result
Mean of steering
Type of ) ) RMSE of Lateral
Trial Velocity (m/s) angle command
field deviation (cm)
(degree)
1 0.25 2.15 -0.28
2 0.25 2.27 -0.16
Flat
3 0.25 2.63 -0.30
4 0.25 2.78 -0.37
1 0.25 8.67 1.20
Hilly 2 0.25 3.61 1.05
3 0.25 6.22 1.22
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Chapter 4. Conclusions

Stereovision-based guidance extraction algorithm for ridge and furrow field
is developed using v-disparity representation, Otsu’s thresholding, roll angle
compensation, and row-wise sliding window approach. The feasibility tests
under daylight condition and the dynamic situation were performed using
classification accuracy assessment. In ridge and furrow environment,
unreliable disparity data collected by the stereo camera was occurring at the
white regions by the halation, and at the black regions by the cast shadow in
the image. The errors caused by the sunlight appear partly in the image.
Using the other reliable data, the guidance line could be extracted robustly.
The proposed rolling compensation method has also worked well under the
rough surface condition in the harsh testing environment set up by the cart.
Overall, the developed algorithm has been proven to handle the rough
outdoor conditions and extract the guidance line to trace the inter-row path
of ridge and furrow. The field tests are meaningful to verify that the developed
algorithm operates satisfactorily within the automatic steering system in real
time. The ridge tracking system has successfully traced the straight interrow
paths of ridge and furrow, even though it had biased tracking performance
on hilly field. For further studies, it would be required to figure out the effect
of the slip caused by the side slope on the auto-guided tracking system to

improve the path tracking model.
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