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Abstract 
 

This paper proposes a stereovision-based auto-guidance method for 

a riding cultivator. Ridge and furrow are corrugated field structures created 

before seeding operation for good water balance in a field. The stereovision 

provides the ability to aware these field structures and determine a navigation 

path. In developing an efficient ridge and furrow classification algorithm for 

the outdoor application, however, the stereovision would suffer from the 

erratic movement of a vehicle on uneven surface and interferences caused 

by strong sunlight. The developed algorithm adopts a combination of v-

disparity representation, the Otsu’s thresholding and a roll angle 

compensation method proposed to overcome the problems. Feasibility tests 

were conducted using video data collected under outdoor conditions to 

analyze the image classification accuracy of the algorithm. The developed 

algorithm was able to classify the ridge and furrow with over 90% of accuracy 

in the rough outdoor conditions. Field testing with the automatic guided riding 

cultivator equipped with the stereo camera proved the developed ridge 

tracking algorithm would be applicable to a real-world agricultural application, 

showing the lateral deviations of the average RMSE of 2.5cm and 6.2cm in 

a flat field and a hilly field respectively. 

 

Keyword : Stereo camera, ridge/furrow, riding cultivator, potato seeding, 
auto-guidance 
Student Number : 2017-23806 
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Chapter 1. Introduction 

 

1.1. Study Background 

 

During the manual operation of a farm machine in a field, an operator 

controls its steering by referring to field objects such as crop row, windrow, 

ridge and furrow. Previous studies have focused on vision applications for 

crop presented season operations because the distinguish color difference 

between soil and crop was a readily identifiable feature to guide the machine. 

For farm operations before crop exists, however, the traditional crop row 

detection methods are not applicable due to the lack of the color 

characteristic. Ridge and furrow are undulating and corrugated 

microtopography created for irrigation and drainage, especially for row crops. 

Due to the three-dimensional characteristic of ridge and furrow, the operator 

could easily distinguish the traversable path during a seeding or planting. 

The interest in implementation of 3D imaging to agriculture has also been on 

the rise as the 3D camera technology has become more accessible and 

efficient (Vázquez-Arellano et al., 2016). A stereo camera is a type of 3D 

sensors estimating depths based on the principle of triangulation. As a stereo 

camera simulates a human binocular vision, it gives a machine an ability that 

humans have. In this study, the stereo camera is applied to detect ridges and 

furrows for an auto guided planting system. Although the stereo camera has 

an advantage in outdoor field environments which contain well textured 
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scenes, stereovision-based applications in agriculture face some challenges 

in achieving robustness to dynamic scenes caused by a machine movement 

under uneven surface conditions and changes in texture characteristics 

disappearing due to varying sunlight conditions. 

 

 

 

 

1.2. Purpose of Research 

 

The goal of this paper is to develop a stereovision-based ridge detection 

and tracking system adopted in agricultural field conditions. A novel algorithm 

to detect ridge and furrow is proposed to extract guidance components and 

navigate a vehicle. Through two feasibility tests under sunlight conditions 

during a day and in a dynamic situation moving over an uneven surface, the 

developed algorithm is evaluated by an image classification accuracy 

analysis. Furthermore, A field test platform is set by applying the developed 

algorithm to a newly built auto-steering riding cultivator, and field tests is runt 

to verify the potential of the system for practical real-time application. 
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1.3. Review of Literature 

Stereovision based previous works in agricultural application had an 

effort to calibrate 3D data by camera extrinsic parameters for a stable object 

detection. Kise et al. (2005) identified a crop height profile using a stereo 

camera and a navigation point using a cosine function based cross 

correlation model. To generate the crop model, an inter-row space of crop 

field was determined, and it required to be reconstructed for elevation map. 

Hanawa et al. (2012) developed a stereovision-based auto guidance system 

by tracking a marker trace using projected bird’s eye images. Zhang et al 

(2018) projected each disparity values on 3D coordinate system using a set 

of fixed camera extrinsic parameters for the transformation matrix to identify 

crops rows using a stereo camera. In order to use 3D reconstructed data and 

the bird’s eye images, the previous studies employed initially-defined 

camera’s calibration values. Since their methods required extrinsic camera 

parameters such as pitch angle, roll angle, and camera installation height, it 

was hard to actively respond to dynamic vehicle movement on rough surface 

of the field, unless the extrinsic camera parameters would be estimated in 

real-time.  

Blass et al. (2011) suggested a more practical method in use of 

stereovision-based auto guidance system under conditions on uneven 

and/or hilly ground. The swath detection method developed by Blass et al. 

(2011) for an auto-guided baling system defined the swath region in depth 

image by searching a ground plane using RANSAC plane fitting method. This 
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method, however, is difficult to apply in ridge and furrow environment 

because there is no apparent ground plane which would take a form of nearly 

flat horizontal conducting surface and take up a relatively large region in an 

image. The v-disparity presentation, introduced by R. Labayrade and D. 

Aubert, is widely used to configure the ground surface plane for stereovision 

based off-road vehicle navigation (Broggie et al., 2005& Soquet et al., 2007 

& Zhao et al., 2007 & Chen et al., 2008 & Shrivastava et al., 2019). We 

introduced the row-by-row binarization method to classify ridge and furrow 

previously (Yun et al., 2018). The v-disparity representation and the row-by-

row binarization method were used in processing the images of row by row. 

The methods had little impact on longitudinal variations caused by pitch 

movements. Strong roll angles variations, however, could still cause poor 

performance. Herghelegiu et al. (2016) points out the importance of roll angle 

in use of the v-disparity representation and confirm the effect in simulations. 

In this paper, the use of a combination of an appropriate use of the v-disparity 

representation and a proper roll angle compensation method is proposed to 

respond to both erratic pitch and roll movement in ridge and furrow 

environment.  

Another difficulty for an outdoor application is controlling it over lighting 

conditions. Sunlight could cause loss of color information by generating 

reflection light and cast shadow. Halation regions appearing white in an 

image caused by reflected light is unpredictable in outdoor environments, 

because the direction of the sunlight is changing over time and the angle of 

the reflected light, which causes the halation, is varying from place to place 
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(Nishiwaki et al., 2006). Hanawa et al. (2012) also points out the limitation of 

utility of the stereo camera due to partly projected shadow casted by a strong 

sunlight. The white region caused by halation or the black region caused by 

cast shadow remove texture from an image. Since the weak information of 

the image texture provides insufficient local matching evidence to estimate 

range information, the stereo camera easily generates the outliers’ 

measurements in outdoor environments.  
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Chapter 2. Materials and Methods 

2.1. Ridge and Furrow 

In furrow irrigation, the soil is raised and lowered at regular intervals so that 

the water drains well, the area where the crops grow are well-lit and the roots 

breathe easily before the seed is sown. This microtopography of the soil 

formation is called corrugation as in Fig.1. The corrugation is divided into the 

upper part of which the crop is planted and the lower part where the water 

drained, which is called ridge and furrow, respectively. Since the purpose of 

this research is the development of auto-guidance method for riding type 

agricultural vehicle, the ridge and furrow should be defined based on 

Fig. 1 Corrugation, ridge and furrow 
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mechanized operations. The size of corrugation is normally set according to 

the size of the vehicle, implement and type of crop. Fig.2 shows the 

dimension of the vehicle used in this research. In the aspect of vision-based 

detection, however, depending on methods of ridge formation, the detection 

methods could bring up different ideas.  If the corrugation is formed simply 

by ridgers, the color difference between ridge and furrow appears due to the 

difference in soil moisture content. In the modern ridging method for seeding, 

in order to make the soil surface soft and even, the ridging process is mostly 

accompanied with pulverization and bed shaping These processes make the 

color of soil surface uniform. Considering various corrugation environment, 

using the height different between ridge and furrow is most reasonable to 

determine the traversable pathway. 

Fig. 2 Dimension of the 15kW riding cultivator developed by TYM 
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2.2. Principle of Stereovision 

Stereovision simulates human binocular vision by using the principle of 

triangulation. A single digital camera in which photoelectric sensors are 

arranged in two-dimensional array capture color information from a scene 

and record discrete values in a digital image. Each pixel in the image 

represents the color of a projection ray from an object passing through the 

optical center. With 2D array images alone, however, it is not possible to 

estimate the position of the object as all points of the projection ray can be 

projected on the same pixel. Otherwise, two cameras separated by a known 

distance and fixed parallel one to another captures the same object scene, 

and two projection rays projecting on each image from the same object point 

forms a triangle. The plane where the triangle lies is called the epipolar plane. 

The line between the two cameras’ optical centers, O and O’, is called 

baseline (Fig. 3). The intersection between the baseline and each plane is 

the epipole The line passing through the projection point and the epipole is 

Fig. 3 Stereovision (“Image rectification”, 2019) 
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the epipolar line. The epipolar line can also be defined as the line of 

intersection between the epipolar plane and the image plane. The location of 

the projection points on the epipolar line, therefore, determines depth 

information of the object. Since the two projection points are projected from 

the same object point, the local neighborhoods of stereo images take a 

similar texture information. A pair of corresponding points in stereo images is 

indicated using feature matching techniques. The process of triangulation 

recovers three-dimensional information of the object point; this is called 

stereo matching. A pair of images taken from the slightly displaced camera 

lens is distorted and unrectified in real world. Before the process of stereo 

matching, the distorted and unrectified images are required to be 

transformed onto a common image plane and bilinearly interpolated; this 

process is called rectification (Fig. 4). Through the rectification, all epipolar 

lines become parallel to the baseline. Disparity between two matching 

corresponding points on an epipolar line represents the distance in pixels. 

One of the pair of images is set as the reference image and a disparity image 

corresponding to the reference image is obtained. The disparity image is a 

Fig. 4 Rectification (“Image rectification”, 2019) 
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2D array that stores disparity values expressed in pixel and contains three-

dimensional information. The stereovision gives the fine estimation of the 

position of objects in the scene. Because of the process of stereo matching, 

the performance of stereo cameras depends on its method and 

environmental conditions such as white walls and specular areas which 

generate homogenous and textureless regions in the image. Nevertheless, 

the rich information based on the relatively high resolution, density and co-

registered color images of stereo cameras facilitates their use in various 

applications (Szeliski, 2010). 
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2.3. Ridge and Furrow Detection and Tracking Algorithm 

 

Under an uneven field surface condition, erratic movements of camera make 

difficult to interpret 3D data. The erratic movements are specified into pitch 

oscillation and roll oscillation. The proposed algorithm shown in Fig.5 is 

designed to robustly classify the disparity image into ridge and furrow regions 

assigned to binary, without affecting the camera’s oscillations and extract a 

guidance line from the binary image. The disparity images have been 

provided by Stereolabs ZED SDK, and the algorithm is implemented using 

C++ and OpenCV library. 

 

 

 

Fig. 5 Ridge-furrow detection and tracking algorithm 
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2.3.1. Ridge and furrow classification algorithm 

using v-disparity and Otsu’s thresholding 

 

First, to classify the disparity image into ridge and furrow regions, a proper 

binarization process is required in consideration of the pitch oscillation. The 

v-disparity representation is a useful method to describe a longitudinal profile 

of non-flat surface (Labayrade et al, 2002). Since surface takes up most of 

the visual field in common outdoor environments such as road, park, and 

field, the disparity values of the ground surface, which occupies the most 

fraction of the image, emerges as the peak in a histogram of each disparity 

image row. A slanted line, therefore, generally appears on where the ground 

surface exists in the v-disparity map (Broggi et al., 2005 & Soquet et al., 2007 

& Cong et al., 2010). Broggi et al. (2005) defined it as “ground correlation 

line”. Unlike other environment surfaces, since there is no representative 

ground plane in ridge and furrow environment, the v-disparity image taken in 

ridge and furrow environment appears with widely spread and dim lines (Fig. 

6c). Instead of segmenting the ground correction line, looking deeper into the 

v-disparity image (Fig. 7b), each row of v-disparity image returns a shape of 

(a) (b) (c) 

u 

v 

d 

v 

Fig. 6 (a) Left image (b) Right image (c) v-disparity image 
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bimodal distribution (Fig. 7c) (Broggi et al., 2005 & Soquet et al., 2007 & 

Cong et al., 2010). The two groups at each peak in the bimodal distribution 

are included in ridge region and furrow region respectively. Otsu’s method, 

which is known to function rigidly to find a threshold value with a histogram 

of bimodal distribution, is used to separate pixels into ridge and furrow 

regions in each row of v-disparity image (Yuan et al., 2015). By applying 

Otsu’s thresholding to all rows of the v-disparity image, the resulting binary 

image of Fig. 8 which indicates the location of ride and furrow could be 

obtained. This way, the proposed algorithm provides effective discrimination 

capability between ridge and furrow without the pitch oscillation effect. 
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Fig. 7 Ridge and furrow classification using v-disparity map and Otsu’s method (a) A 

row in v-disparity map (b) Disparity image (c) v-disparity map 

(a) (b) 

Fig. 8 (a) Color image - left (b) Binary image of ridge and furrow 
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2.3.2. Roll angle compensation 

 

The rolling oscillations occurred by vehicle movement over uneven surfaces 

makes each row of the disparity image appear to follow a non-horizontal 

pattern (Fig.9b). This profile deformation negates the previous classification 

step because the single threshold value is unable to slice the boundary of 

ridge and furrow (Fig.9). The suggested solution for this problem is to 

reversely rotate the image as much as the camera is horizontally tilted with 

respect to the ground surface, so that the image x-axis turns to become 

parallel to the surface profile. This is called a relative rolling offset. In order 

to determinate the relative rolling offset, trend surface analysis is performed 

using isolines that connect points of equal disparity values (Fig. 10a). The 

disparity image should be previously blurred by computing the local mean of 

(a) (b) 

Fig. 9 Image projection problem caused by a rolling offset 
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the neighborhood area with the kernel size of 7 by 31 pixels, to remove high 

frequency components in the disparity image before drawing the isolines. A 

slope of linear trend of each isoline in the image coordinate is approximately 

equal to the rolling offset, as the geometrical relationship shown in Fig. 10b. 

Since points on an isoline indicate surface spots which are equidistant from 

the principal plane of the camera and located on a slice plane parallel to the 

image plane; the angle between the image x-axle and the trend line is 

corresponding to the rolling offset, β, (Fig. 10b). The average slope of all 

trend lines in one image is used as the image rotation angle, and the rotated 

disparity image becomes adequate to apply the proposed ridge and furrow 

classification method. After that, by rotating the image back, the final resulting 

binary image is aligned with the original position. The overall process of the 

algorithm is possible to successfully classify ridge and furrow for any 

movements of the vehicle. 

(a) (b) 

Fig. 10 (a) Plot of disparity isolines in image coordinate (b) Geometric relationship 

between the isolines and rolling offset 
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2.3.3. Sliding window technique 

Once a binary image is obtained by the previous processes, the position of 

middle points of the center ridge is collected using row-wise sliding window 

technique shown in Fig.11 (Fan et al., 2011). The row-wise sliding window 

technique starts at the bottom row. Both sides of initial sliding windows are 

set to the width of half the bottom row width and the height set to one pixel. 

The ridge boundary points are searched at where the nearest change point 

from each window middle exists. Each ridge boundary point becomes the 

window middle of the next row, and the width of the next window on both 

sides is defined as the half-length between the ridge boundary points. The 

ridge midpoints are collected by searching the center position of the two ridge 

boundary points on each row (Fig. 11). Finally, the guidance line is extracted 

by applying linear regression to the set of ridge midpoints. This way, whether 

the path on ridge and furrow is straight or slightly curved, the guidance line 

is robustly extracted from the binary image. 

Fig. 11 Guidance line extraction using sliding window method 
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2.3.4. ROI Setting 

 

Setting Region of Interest (ROI) is also an important part to reduce potential 

errors in use of disparity images. ROI functions to cut unnecessary regions 

off. The first part of the cutoff is border occlusion regions. Since some of the 

portion is captured out of the overlap between the two lenses from the field 

of views, the occlusion is easily generated at the border area of an image 

(Fig. 12b) (Huq et al., 2013). Even though the occlusion filling algorithm 

provided by ZED SDK in Fig.12c also estimates missing disparity values 

occurred by both, border occlusion and non-border occlusion, it is still better 

to remove the unreliable regions at the borders. The second one is unreliable 

range regions. At far detection ranges, it is hard for the stereo camera to 

estimate range values. Therefore, the stereo camera reliability diminishes 

due to its resolution and the limited baseline length. Otherwise, objects 

approaching the camera too close, due to an excessive pitch movement or 

some parts of vehicle structures, are possible to be captured at the bottom 

region of the image, based on the installed location. The shape of ROI looks 

like in Fig.12a. 

(a) (b) (c) 
Fig. 12 (a) Region of Interest, ROI (b) Disparity image without occlusion filling (c) 

Disparity image after applying occlusion filling 
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2.3.5. Path Tracking model 

Once the guidance line is extracted by the previous processes, the final stage 

of the developed method determines the steering angle of the vehicle. The 

steering angle of vehicle ( 𝛿 ) is calculated by the PD control-based 

Ackermann kinematic model (Lenain et al., 2007): 

𝛿(𝑌, 𝜃) = tan−1 (𝐿 [
cos3 𝜃

(1 − 𝑌𝑐(𝑠))
2 (−𝐾𝑑(1 − 𝑌𝑐(𝑠)) tan 𝜃 − 𝐾𝑝𝑌

+𝑐(𝑠)(1 − 𝑌𝑐(𝑠)) tan2 𝜃) +
𝑐(𝑠)𝑐𝑜𝑠𝜃

1 − 𝑌𝑐(𝑠)
]) (1)

 

where L is the vehicle wheelbase, 𝐾𝑑  is the derivative gain, 𝐾𝑝  is the 

proportional gain and c(s) is the curvature of a path. The variables of t Eq. (1) 

are lateral and angular deviation, respectively 𝑌  and 𝜃  ̃, which can be 

calculated from the obtained guidance line, also defined as target line (Fig. 

13). Fig. 13a shows the schematic top view of the tracking field,the XYZ 

coordinate system is defined on a metric space. The lateral deviation of the 

tracking model is defined as the perpendicular distance of the look ahead 

point from the X-axis, which is 𝑌𝐿𝐴𝑃. The lateral deviation at the look-ahead 

point, 𝑥𝐿𝐴𝑃, in Fig. 13b, is defined in a pixel coordinate system, xy. The pixel 

distance of the look-ahead points perpendicular to the heading line. The 

heading line in the image, which is indicating the travel direction of the vehicle 

as well as the principle line of the camera, should be aligned to the X-axis 

when the camera is installed on the vehicle and rigidly mounted. In order to 

calculate the lateral deviation by reading the pixel distance, the relationship 

between the disparity value, d, and the metric distance value, D, is required. 
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The equation is: 

𝐷 =
𝑓 ∙ 𝑇

𝑑
 (2) 

where f is focal length, and T is the length of baseline of the stereo camera. 

As the geometric relationship shown in Fig. 14b, the lateral deviation is 

defined as following equations: 

𝑌 = 𝑌𝐿𝐴𝑃 =  
𝐷𝐻_𝐿𝐴𝑃 ∙ 𝑥𝐿𝐴𝑃

𝑓
=

𝑇 ∙ 𝑦𝐿𝐴𝑃

𝑑𝐻_𝐿𝐴𝑃
, 𝑌1 =

𝑇 ∙ 𝑦1

𝑦1
, 𝑌2 =

𝑇 ∙ 𝑦2

𝑑2

(3) 

where 𝑌 = Lateral deviation for the Eq. (1) (cm), 

Fig. 13 Guidance line schematic (a) projected field view (b) Components on the image 

(a) 

(b) 
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𝑌𝐿𝐴𝑃 = Lateral deviation of the point on the heading line at LAP (cm) 

𝐷𝐻_𝐿𝐴𝑃 = Distance between the camera and the point on the heading 

line at LAP (cm) 

𝑑𝐻_𝐿𝐴𝑃 = disparity value the point on the heading line at LAP (pix) 

𝑌1 = Lateral deviation of the point, p1, in Fig.13a (cm) 

𝑌2 = Lateral deviation of the point, p2, in Fig.13a (cm) 

𝑦1 = Lateral deviation of the point, p1, in Fig.13b (pix) 

𝑦2 = Lateral deviation of the point, p2, in Fig.13b (pix) 

 

To calculate the angular deviation, the projected distance of the field of view, 

𝑋12, is required as well as two lateral displacement parameters, 𝑌1 and 𝑌2, 

obtained from Eq. (3). Fig. 14a shows the relationship between the projected 

distance and the camera’s vertical angels. Eq. (4) defines the relationship 

between the measured distances and the vertical angels at points p1 and p2: 

ℎ = 𝐷𝐻1 cos(𝛼1) = 𝐷𝐻2 cos(𝛼2) (4) 

where 𝐷𝐻1 is the distance value at the point perpendicularly dropped from 

𝑝1 to the heading line, 𝐷𝐻2 is the distance value at the point perpendicularly 

dropped from 𝑝2 , 𝛼1  is the vertical angle between the Z-axis and the 

projection axis to 𝑝1, and 𝛼2 is the vertical angle between the Z-axis and 

the projection axis to 𝑝2. Using the relationship between the vertical angles 

and the vertical field of view of the ROI, 𝑓𝑜𝑣𝑣 , Eq. (4) is solved by the 

following equations: 

𝛼2 = 𝛼1 + 𝑓𝑜𝑣𝑣 (5) 
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𝛼1 = atan (
𝑐𝑜𝑠(𝑓𝑜𝑣𝑣) −

𝐷𝐻2
𝐷𝐻1

𝑠𝑖𝑛(𝑓𝑜𝑣𝑣)
) =  atan (

𝑐𝑜𝑠(𝑓𝑜𝑣𝑣) −
𝑑𝐻1
𝑑𝐻2

𝑠𝑖𝑛(𝑓𝑜𝑣𝑣)
) (6) 

The angular deviation of Eq. (1) is calculated by the following equations: 

𝑋12 = 𝐷𝐻2 sin(𝛼2) − 𝐷𝐻1sin (𝛼1) = 𝑓 ∙ 𝑇 (
sin (𝛼1 + 𝑓𝑜𝑣𝑣)

𝑑2
−

sin (𝛼1)

𝑑1
) (7) 

𝜃 =  atan (
𝑌2 − 𝑌1

𝑋12
) (8) 

(a) 

(b) 

Fig. 14 Geometric relations between the camera, the vehicle and the surface (a) side 

view (b) 3D view 
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2.4. Feasibility Tests 

2.4.1. Data Collection 

First, to evaluate the developed system under harsh lighting outdoor 

condition, a set of video data of stereo images were collected from 11am to 

5:30pm on a sunny day, when harsh sunlight and cast shadow would occur; 

for 20 seconds interval, in two different ridge and furrow environment, (which 

are for bare ridges and mulched ridges), at the same time (Fig.15(a)). The 

ridges were manually formed in a rounded shape with height of 20cm and 

width of 80cm, along an azimuth about +168 degree measured using Google 

Earth Pro (Fig. 15b). The peak illuminance reached about 60,000 Lux at 

1:00pm (Fig. 15c).  

Then, to evaluate and simulate a vehicle’s dynamic situation, a set of video 

data of stereo images was collected during a stereo camera installed cart, 

shown in Fig. 15a, travelling over 30m length of ridges and furrows on a 

sunny day. The stereo camera was mounted on a cart, one meter above the 

ground, which was drawn manually. Although the cart was lighter than any 

other real agriculture vehicle, and fluctuating more than real applications, the 

data collected with it was useful to evaluate and simulate the feasibility, even 

under rough conditions. 
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(a) 

(b) 

(c) 

Fig. 15 Image collecting environment (a) Camera installation (b) Google Earth view of 

the test field (c) Illuminance during day hours 
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2.4.2. Image Classification Accuracy Analysis 

 

To evaluate a ridge-furrow classification performance of the developed 

algorithm, pixel-wise classification accuracy was assessed in comparison to 

manually-labelled ground truth data. The evaluation program is designed that 

an assessor discerns boundary lines between ridge and furrow by reading 

the corresponding RGB image. Based on the designated boundary lines, 

pixels on ridge regions are set to white value, and pixels on furrow regions 

are set to to black value. The accuracy measurement is useful to provide a 

quantitative evaluation result (Reina et al., 2016). The classification accuracy 

is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃)
=

𝑇𝑃 + 𝑇𝑁

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑅𝑂𝐼𝑠
(4) 

Where  𝑇𝑃 = True positive, number of ridge pixel in ridge region 

𝑇𝑁 = True negative, number of ridge pixel in furrow region 

𝐹𝑃 = False positive, number of ridge pixel in ridge region 

𝐹𝑁 = False negative, number of ridge pixel in furrow region 

For the feasibility test on daylight condition, approximately 2300 images of 

both bare ridge and mulched ridge were evaluated and manually-labelled 

once for each set of videos. Concerning the feasibility test for dynamic 

situation, since every image in the collected video have different orientations, 

the ground truth data was generated by manually-labeling at each image. 

The evaluation program helped to analyze the data efficiently.  
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2.5. Field Testing 

2.5.1. Ridge Tracking System 

The test platform used for ridge tracking was a 15kW prototype intelligent 

riding-type cultivator provided by TYM. The riding-type cultivator is a straddle 

tractor which has an extensive ground clearance, 530mm, and is suitable for 

inter-row cultivation in Korea, where most farms are small. The developed 

ridge tracking system is designed to track the ridge located at the center of a 

vehicle and used to track a path for potato seeding (Fig.16). The ridge 

tracking system is used to track a path for potato seeding as in Fig.16. The 

major components of the auto tracking system are a stereo camera, an 

embedded workstation and an electric power steering installed like shown in 

Fig. 16. The ZED mini stereo camera used in this research provides a 

software development kit which can capture 3D videos at resolution of 720p 

and frame rate up to 60fps (Stereolabs, 2019). Since the ZED stereo camera 

requires CUDA to compute the disparity image in real-time, the embedded 

workstation is equipped with Quadro P3000. The other parts of the algorithm 

are implemented in CPU environment using C++ and OpenCV library. The 

steering angle computed in the workstation is sent to an ECU board in 

Electric Power Steering (EPS) via CAN bus and is updated in 5Hz. In order 

to evaluate the tracking performance of the developed system, a dual GPS 

INS composed of a Novatel OEM-617-D GPS receiver with dual antennas 

and an SBG Ellipse2-D inertial sensor, mounted on the top of the riding 

cultivator, was used to measure the tractor’s accurate location with a VRS-
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RTK connected to the GPS data link via the workstation (Fig.16). 

 

 

 

 

 

 

Fig. 16 Stereovision based ridge tracking system overview 
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2.5.2. Test Fields and Performance Evaluation 

 

The ridge tracking tests were run in two different places respectively in May 

2019 and in August 2019. The ridges were formed on a nearly flat field in the 

first place, then on a hilly field. The ridges had a width of 100 cm and height 

of 20 cm (Fig. 17). To compare the performance of the developed system to 

human driving, GPS data were collected while the vehicle was travelling over 

the same ridge path, operating in both auto-guided control and manual 

control. The collected GPS data output was in the UTM coordinate format 

(Han et al., 2013).  

Since the ridge was not formed perfectly straight and the paths of GPS data 

were collected at different times, a proper analysis method of the collected 

GPS data was required to evaluate the tracking performance of the 

developed system reasonably. The lateral deviation is the displacement of 

Fig. 17 Size of ridge 
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the vehicle relative to the target course in the normal direction. In the ridge 

tracking situation, the target course is the ridge lined pathway. Because it is 

difficult to calculate the normal vector of every point on the non-straight ridge 

line, the straight line between the start point (A) and the end point (B) of the 

manually driven path (Fig.18) was set as reference axis, thus the normal 

vector becomes uniform. Fig.19 shows the GPS data in latitude and longitude 

UTM coordinates Fig.20 shows the coordinate with AB line to x-axis, 

transforming through the translation and rotation. Shown in Fig.20, the GPS 

point data gap between the manually driven path and the auto-guided path 

exist. The gap is simply eliminated by filling out intermediate values of the 

GPS points of the manually driven path through the linear interpolation. As a 

result, the lateral deviation of every GPS point of auto-guidance paths is 

calculated corresponding to the manually driven paths  

Fig. 18 A and B points on the ridge 
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Fig. 19 A and B points in the UTM coordinate 

Fig. 20 GPS point data gap  
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Chapter 3. Results and Discussion 

 

3.1. Effect of Sunlight on Detection Performance 

 

Under daylight conditions, the developed algorithm successfully classifies 

the ridge and furrow in most daytime (Fig. 21). The standard deviation 

between the accuracy results by time is negligibly small and relatively steady 

for both cases (Table 1). However, at certain times, 11:05am, 13:14pm, and 

16:00pm, the accuracy in the plastic mulched ridge sharply decreased. 3D 

projected elevation maps shown in Fig. 22, displays well the cause of error 

at those specific times. At 11:05am, the region where the halation appears, 

disparity values collapsed. At 16:00am, the region where shadow is casted, 

disparity values also collapsed. At 13:14am, both halation and cast shadow 

Fig. 21 Feasibility test result under daylight condition  

Table 1 Result for the daylight feasibility test 

Type of 

ridge 

Average 

(%) 

Standard Deviation 

(%) 
Maximum (%) Minimum (%) 

Bare 94.482 0.636 95.936 93.263 

Mulched 92.892 0.742 93.930 90.941 
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appear at the same time and show minimum accuracy. At the textureless 

regions in RGB images, caused by lights reflected from smooth surface 

points, and shades near boundaries between ridge and furrow, the stereo 

camera is not able to measure reliable disparity values, since the stereo 

matching algorithm does not perform well (Chang et al., 2016). As the 

textureless regions in this experiment occupy relatively small areas and other 

center points at each segment redeem error points, the extracted guidance 

lines still resulted practically. 

 

 

 

 

 

Fig. 22 Errors caused by sunlight 
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3.2. Feasibility of Using Roll Angle Compensation 

Method for Uneven Surface Movement 

 

To verify the effectiveness of the rolling offset compensation method, the 

complete oscillation compensated algorithm was compared with the 

algorithm using only the ridge and furrow classification without the rolling 

offset compensation by the accuracy analysis employed on the same image 

data set. The accuracy results showed that the developed algorithm 

performed with the average of 93.5% and the standard deviation of 1.62%, 

while the algorithm without the rolling compensation resulted with a large 

variation with the average of 89.3% and the standard deviation of 6.68% (Fig. 

23 & Table 2). Without the rolling offset compensation, the boundary of either 

side becomes ambiguous and it would occur an unreliable result to extract a 

guidance line; an example of it is shown in Fig. 24. It proves the feasibility of 

the developed algorithm against dynamic movements in the uneven field 

environment.  
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(a) (b) 

Fig. 24 An example of erratic result of guidance line extraction (a) without rolling offset 

compensation (b) with rolling offset compensation 

Fig. 23 Feasibility test result under condition of vehicle moving on uneven surface  

Table 2 Result for the dynamic situation feasibility test 

Algorithm 
Average 

(%) 

Standard Deviation 

(%) 
Maximum (%) Minimum (%) 

With Rolling 

Compensation 
93.5 1.62 95.9 89.1 

Without 

Rolling 

compensation 

89.3 6.68 97.7 74.6 
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3.3. Field Test Result 

 

The RMS results of lateral deviation between the auto-guided path and the 

manually-driven path show that the developed system performs no different 

than the human task on flat field. Its values are 2.15cm, 2.27cm 2.63cm, and 

(a) 

(b) 

Fig. 25 Lateral devotion between auto-guided path and manually-driven path on (a) 

flat field (b) hilly field 
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2.78cm for each of the four trials respectively (Fig. 25a). On the hilly field, the 

RMS results are larger than the one on the flat field. For all of the three trials, 

the values are 8.67cm, 3.61cm and 6.22cm (Fig. 25b). This is can be 

explained by the trajectories of the paths. Also, the auto-guided trajectory on 

the hilly field have similar pattern with the manually-driven one but move 

away downhill from it (Fig. 26b). Fig. 27 shows the steering angle command 

calculated from the developed algorithm. Unlike the flat field case (Fig. 27a), 

the steering angle command for the hilly field is biased and the direction of it 

is the clockwise which is opposite to downhill (Fig. 27b). This means the 

steering angles calculated by the developed algorithm have commanded the 

(b) 

(a) 

Fig. 26 Trajectory plot (a) flat field (b) hilly field 
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vehicle to move to the direction of uphill, but the vehicle could not conduct 

the command. To improve the tracking performance, the modified tracking 

algorithm is required to respond to the side slip at low velocity (Han et al, 

2019 & Bell, 1999). The speed of vehicle for the riding cultivator during the 

tests is evenly about 0.25m/s. Even though there are the small location 

biases for hilly field tests, overall results show the developed system has 

been able to robustly trace the inter-row path of ridge and furrow.  

(a) (b) 
Fig. 27 Steering angle command (a) flat field (b) hilly field  

Table 3 RMSE of the ridge tracking result 

Type of 

field 
Trial Velocity (m/s) 

RMSE of Lateral 

deviation (cm) 

Mean of steering 

angle command 

(degree) 

Flat 

1 0.25 2.15 -0.28 

2 0.25 2.27 -0.16 

3 0.25 2.63 -0.30 

4 0.25 2.78 -0.37 

Hilly 

1 0.25 8.67 1.20 

2 0.25 3.61 1.05 

3 0.25 6.22 1.22 
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Chapter 4. Conclusions 

 

Stereovision-based guidance extraction algorithm for ridge and furrow field 

is developed using v-disparity representation, Otsu’s thresholding, roll angle 

compensation, and row-wise sliding window approach. The feasibility tests 

under daylight condition and the dynamic situation were performed using 

classification accuracy assessment. In ridge and furrow environment, 

unreliable disparity data collected by the stereo camera was occurring at the 

white regions by the halation, and at the black regions by the cast shadow in 

the image. The errors caused by the sunlight appear partly in the image. 

Using the other reliable data, the guidance line could be extracted robustly. 

The proposed rolling compensation method has also worked well under the 

rough surface condition in the harsh testing environment set up by the cart. 

Overall, the developed algorithm has been proven to handle the rough 

outdoor conditions and extract the guidance line to trace the inter-row path 

of ridge and furrow. The field tests are meaningful to verify that the developed 

algorithm operates satisfactorily within the automatic steering system in real 

time. The ridge tracking system has successfully traced the straight interrow 

paths of ridge and furrow, even though it had biased tracking performance 

on hilly field. For further studies, it would be required to figure out the effect 

of the slip caused by the side slope on the auto-guided tracking system to 

improve the path tracking model.  
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자율파종을 위한 두둑검출 및 추종시스템 

 

윤 창 호 

 

국 문 초 록 

 

자율주행 자동차의 차선 감지 기술 및 자율주행 방제기의 작물열 감지 

기술과 같이 차량에서 사용되는 비전 방식의 자율주행은 사람의 눈을 대

신하여 차량의 경로를 판단한다. 두둑은 고랑 관개에서 나타나는 밭의 

지형적 특성이며 작물열과 같이 평행한 형태로 나지만 작물열과는 다르

게 색의 특성이 분명하게 나타나지 않지만 두둑과 고랑의 높낮이 차이를 

이용하여 농지내 주행 경로를 판단 할 수 있다. 본 연구에서는 스테레오 

카메라를 통해 얻은 3차원 정보를 이용하여 두둑의 높낮이 특성으로 두

둑과 고랑을 구분하고 자율주행 트랙터의 주행 기준선을 추출하는 알고

리즘을 개발하고자 하였다. 개발 알고리즘의 원리는 스테레오 카메라를 

통해 얻어진 두둑 표면의 깊이 이미지가 밭의 거친 표면과 트랙터의 거

동에 의해 나타나는 카메라와 지면의 상대적인 변화값을 Blurring 기법

과 Contour 라인의 기울기 정보를 통해 예측하고, 이를 얻어진 깊이 데

이터에 반영한다. 보정된 깊이 이미지는 v-disparity 방법과 Otsu’s 

Thresholding을 통해 최종적으로 두둑과 고랑을 구분하고 각 
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Segmentation에 대한 두둑의 중앙값들에 대한 선형 회귀 분석을 통해 

최종적인 주행 기준선을 추출한다. 개발된 알고리즘을 검증하기 위하여 

실제 두둑 환경에서 취득한 영상 데이터를 토대로 이미지 검출률 분석과 

횡변위 오차 분석을 수행 하였다. 개발된 알고리즘의 두둑 검출율 분석 

결과 평균 94.2%의 정확도를 보였으며 실제 자율주행 플랫폼에 적용 결

과 4.05cm의 추종 오차 성능을 보였다. 
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