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ABSTRACT 

 

Simulation studies using three-dimensional (3D) plant models have been 

widely used to study the interaction between plant structures and environments. 

However, the 3D scanned model is more precise than the rule-based model but 

there is a limit to generate only a static model. The objective of this study was 

to generate paprika leaves with various morphological traits by using deep 

generative models and 3D scanned plant models. Paprika (Capsicum annuum 

L.) leaves at 14, 21, 28, 58 days after transplanting were scanned, preprocessed, 

and then used to train the deep generative models such as variational 

autoencoder (VAE), generative adversarial network (GAN), and latent space 

GAN (L-GAN). The optimal number of latent variables in the model was 

selected via Jensen-Shannon divergence (JSD). The generated leaves were 

evaluated with JSD, coverage (COV), and minimum matching distance (MMD) 

to determine the best model for leaf generation: Chamfer distance (CD) and 
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Earth mover's distance (EMD) were applied to COV and MMD. The best 

performances were achieved when latent variables were 8, 16, and 8 for VAE, 

GAN, and L-GAN, respectively. Among the deep generative models, a 

modified GAN (L-WGAN-EMD) showed the highest performance with JSD = 

0.025, MMD-CD = 26.92, MMD-EMD = 14.79, COV-CD = 0.542, and COV-

EMD = 0.529. Paprika leaves with various shapes were generated from random 

latent variables following a normal distribution, and morphological traits of the 

leaves could be controlled through linear interpolation and simple arithmetic in 

latent space. The results of this study can be contributed to the applied studies 

of 3D plant models, such as estimating canopy light interception and 

photosynthesis, which require detailed but diverse plant structures for realism.  

 

Additional keywords: deep generative model, generative adversarial network, 

three-dimensional plant model, three-dimensional scanned model, three-

dimensional simulation, variational autoencoder 
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INTRODUCTION 

The growth, development and yield of crops in the same environment are 

somewhat different, because plants adapt to diverse environments by adjusting 

not only physiological functions but also their structures (Sultan, 2000; Zhu et 

al., 2015). Three-dimensional simulation studies have been developed and 

conducted to see how the environment affects plants through plant structures 

(Evers et al., 2011). Differences in light distribution and light interception as 

dependent on morphological plant traits and arrangement were examined 

(Kahlen et al., 2007; Burgess et al., 2015; Tang et al., 2019). Several lighting 

strategies in combination with a 3D model of tomato were evaluated (De Visser 

et al., 2014). The impact of plant architecture and canopy connectedness on the 

movement of predators was examined using virtual plants (Skirvin et al., 2004). 

As three-dimensional simulation studies have become more active and 

sophisticated, the necessity of detailed three-dimensional plant models has 

emerged.  

The 3D measurements of plant structures were possible with the use of 

high-performance computers and the availability of portable cameras and 

sensors (Paulus, 2019). Unlike rule-based approaches that generate model 

plants based on user-defined rules from knowledge of plant architectures 

(Lindenmayer, 1968; Boudon et al., 2012), reconstructed plant models from 3D 

measurements were constructed sophisticatedly enough to extract the 
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morphological information of the plants and individual organs like leaves or 

stems (Paulus et al., 2014b; Golbach et al., 2016; Zhang et al., 2016). Thus, 

simulations could be available with more detailed 3D shapes of plants by 

digitizing existing structures (Burgess et al., 2015; Retkute et al., 2018, 

Townsend et al., 2018).  

However, there were still challenges for the 3D digitized plant models to be 

widely used. Sensors and algorithms must overcome the problems of occlusion, 

plant movement by wind, and the combination of different sensors together 

(Gibbs et al., 2017; Paulus, 2019). As the plants grow and develop, their size 

and complexity increase, which leads to time-consuming task. With those 

reasons, large-scale plant reconstructions and simulations are difficult due to 

the need to reconstruct crowded scenes containing multiple plants and many 

leaves (White et al., 2012). Thus, in general, single-plant or few-plant 

reconstructions were duplicated and randomly rotated for the simulations 

(Burgess et al., 2015; Retkute et al., 2018; Townsend et al., 2018; Wen et al., 

2019), which reduced diversity and realism. Besides, the 3D digitized models 

are a fixed model at a moment in a particular situation and are difficult to be 

used for various purposes because they are difficult to transform into other 

forms. 

The deep generative model could be a solution to bring realism and 

diversity to simulations. The generative model learns data distribution to create 

new data points from fewer variables, and recently it has been a huge success 
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in just a few years using deep learning (Sajjadi et al., 2017; Cheng et al., 2019). 

Variational autoencoders (VAEs) (Kingma and Welling, 2013) and generative 

adversarial networks (GANs) (Goodfellow et al., 2014) are the most popular 

and basic deep generative models. The GANs trained in the latent space (L-

GAN) are easier to train than general GAN and created 3D objects well 

(Achlioptas et al., 2017). The objective of this study was to produce paprika 

leaves with various morphological traits by using deep generative models and 

the 3D scanned plant models. 
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LITERATURE REVIEW 

3D plant phenotyping 

Measuring plants in 3D way has been introduced during the last three 

decades (Walklate, 1989; Omasa et al., 2007; Kjaer and Ottosen, 2015). 3D 

plant phenotyping allows researchers to gather morphological information of 

plants, which enables tracking the geometrical development of the plant 

(Paproki et al., 2012) and parameterizing of plant organs (Dornbusch et al., 

2007). It is crucial to understand the biological and physical processes of the 

plant growth, which is an important factor in increasing crop yield (Wang et al., 

2009). 3D measuring is nondestructive, allowing plants to be monitored over 

time (Paulus et al., 2014a). In addition, when new features are required later, 

they can be extracted from the same 3D models, which may not be possible in 

the 2D approach. In the 2D approach, the features required may not be visible, 

or the calibration information needed to make real-world measurements might 

not have been recorded. Therefore, 3D reconstructed models of plants can be 

used to continuously analyze a wider variety of phenotypes. 

Various 3D measurement methods have been used for plant phenotyping 

(Paulus, 2019). Laser triangulation (LT) uses laser distance measurement and a 

sensor movement. It has been primarily applied in laboratory environment due 

to its high resolution and high accuracy measurements (Dupuis and Kuhlmann, 

2014), but is currently expensive, time-consuming, and complex to implement 
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(Zhang et al., 2016). Structure from motion (SfM) uses a set of 2D images to 

reconstruct a 3D model. It needs a short time for acquiring the 2D images, but 

its resolution strongly depends on the number of images, the amount of 

different viewing angles, and camera resolution (Rose et al., 2015). Other 

techniques, including binocular stereovision (Klodt et al., 2015) and time-of-

flight (TOF) (Kloss et al., 2011) are used at various scales to meet the different 

requirements for plant phenotyping. 

The current challenges of 3D plant phenotyping are to scale up from single 

plant to field scale, to overcome the limitations of the problems of plant 

movement and occlusion, and to focus the definition of the 3D traits regarding 

the way traits are measured to enable a comparison of algorithms, plants and 

treatments among different research groups (Paulus, 2019). 

 

Deep learning in agriculture 

Deep learning is a class of machine learning methods based on artificial 

neural networks. Machine learning algorithms build a mathematical model 

based on given data, in order to solve problems without being explicitly 

programmed (Samuel, 1959). Deep learning uses multiple layers to extract 

features from the raw input with multiple levels of abstraction (LeCun et al., 

2015).  
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Deep learning has recently entered the domain of agriculture for image 

processing and data analysis. Especially, convolutional neural networks 

(ConvNet) appear in numerous studies for image process. Plant organs were 

identified and localized in the 2D images by ConvNet (Pound et al., 2017). 

Several crop types were also classified, and plant diseases could be detected 

(Kussul et al., 2017; Mohanty et al., 2016). Besides, environmental factors in 

greenhouse were interpolated by multilayer perceptron (Moon et al., 2019). it 

could complete the big data obtained from the greenhouse for further analysis. 

In addition, some recurrent neural network algorithms have been used for crop 

classification (Rußwurm and Körner, 2017) and mapping winter vegetation 

quality (Minh et al., 2018), but deep generative models were rarely used. 

 

Deep generative model 

Generative modelling, one of the machine learning areas, learns data 

distribution to generate new data points with some variations. Training 

generative models has been a problem for a long time. Classically, most models 

require strong assumptions about the structure of data, make severe 

approximations, or rely on computationally expensive inference procedures 

(Doersch, 2016). More recently, they have achieved great success in just few 

years by utilizing deep learning. Two of the most popular and efficient 

approaches are variational autoencoders (VAEs) (Kingma and Welling, 2013) 
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and generative adversarial networks (GANs) (Goodfellow et al., 2014). Deep 

generative models have been commonly used for images (Sajjadi et al., 2017; 

Dolhansky and Canton Ferrer, 2018) and studied for use in audio (Engel et al., 

2019) and 3D objects (Achlioptas et al., 2017; Cheng et al., 2019) 
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MATERIALS AND METHODS 

Workflow 

Fig. 1 shows the workflow of this study from model selection to the 

generation of various leaves in this study. The paprika leaves were constructed 

directly from 3D scanned data. After preprocessing and augmentation, paprika 

leaves were divided into training set, validation set, and test set. The deep 

generative models were trained on the training set. The optimal number of 

latent variables for the models were selected by evaluation of the validation set. 

All the optimized models were evaluated using the test set and the best deep 

generative model was determined. The best models not only randomly created 

leaves but also created leaves with desired traits by manipulating the latent 

space. Linear interpolation of latent variables led to gradual changes in leaf 

shape and arithmetic operations in the latent space added or subtracted leaf 

traits to existing leaves. Diversely generated leaves, along with existing stem 

information, were used to synthesize whole plant model that could be used for 

various environmental simulations. 
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Fig. 1. Workflow from selection of deep generative models to generation of 

leaves. 
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Plant material and cultivation conditions 

Paprika (Capsicum annuum L. ‘Scirocco’) plants were cultivated in Venlo-

type greenhouses of the Protected Horticulture Research Institute, National 

Institute of Horticultural and Herbal Sciences (RDA), Haman, Korea (35.2oN, 

128.4oE). The plants were sown on a tray on February 8, 2018, transferred on 

cubes on March 5, 2018, and finally transplanted on the rock-wool slabs with a 

planting density of two plants∙m-2 on April 6, 2018. The plants were pruned to 

maintain two main stems, which were vertically trellised to a “V” canopy 

system (Jovicich et al., 2004). Electrical conductivity (EC) of the modified 

Yamazaki nutrient solutions was 0.8 dS·m-1, gradually increased by 0.2 dS·m-1 

every week, and finally maintained at 2.5 dS·m-1 at the seedling stage. After the 

transplanting, the nutrient solutions with EC 2.5 dS∙m-1 and pH 6.0 were 

supplied 14 times a day at 33 mL per plant by drip irrigation. 

 

3D Reconstruction of paprika leaves 

The plants were scanned to reconstruct 3D plant models using a high-

resolution portable 3D-scanner (GO!SCAN50TM, CREAFORM, Lévis, Quebec, 

Canada) at 14, 21, 28, and 56 days after transplanting (DAT) (Fig. 1). A total 

of eight plants were scanned, two for each DAT. To improve the accuracy of 

the scan, circular targets with a diameter of 10 mm were attached to the surface 

of plants. The resolution of scanner was set to 2 mm. After scanning, the point 
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clouds with three-dimensional Cartesian coordinate and RGB color were 

obtained. Using a 3D reverse engineering software (Geomagic Design X, 3D 

Systems, Rock Hill, SC, USA), data imperfections like holes, outliers, and 

overlaps of 3D plant models were corrected and 3D plant models were 

segmented into 247 leaves consisting of 226 to 7,291 points (Fig. 2).  
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Fig. 2. The scanned models of paprika (Capsicum annuum L. ‘Scirocco’) plants 

at 14, 21, 28, and 56 days after transplanting (DAT).   
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Data preprocessing 

Observing the segmented leaf point clouds (Fig. 2) and referring to the 

literature on the generation of three-dimensional objects (Achlioptas et al., 

2017), it was decided to keep 2,048 points per leaf to maintain as much 

information as possible while using as many leaves as possible. Therefore, 

2,025 leaf point clouds with 2,048 points per leaf were randomly extracted from 

segmented leaves, except 22 leaves with fewer than 2,048 points (Fig. 3). They 

were used for training (70%) and validation (30%) of the generative models. 

For evaluation of the generated models, 225 different leaves randomly 

extracted to 2,048 points were used. All leaves were aligned on the z axis 

through Meshlab (Cignoni et al., 2008). Only x, y, and z coordinates were used 

as features for model training, and the center coordinates of all the processed 

leaves were translated to the origin. Min-max normalization (Eq. 1) was used 

to scale the data between 0 and 1 for making training faster and reducing the 

chances of getting stuck in local optima. 

 

𝑥௡௢௠௔௟௜௭௘ௗ =  𝑥 − 𝑥௠௜௡ 𝑥௠௔௫ − 𝑥௠௜௡⁄             (1) 

 

where, 𝑥 is the raw data, 𝑥௠௜௡ is the minimum values of 𝑥, and 𝑥௠௔௫ is the 

maximum values of 𝑥. 
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Fig. 3. The histogram of 247 segmented paprika leaves consisting of 226 to 

7,291 points, with an average of 3,367. The red dashed line denotes 2,048 

points per leaf. 
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Fig. 4. The examples of the aligned paprika leaves before and after data 

preprocess. 3D reconstructed leaf models (A) were downsized to consist of 

2,048 points (B) for use in the deep generative models. 
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Deep generative models for leaf generation 

Variational autoencoder (VAE), generative adversarial network (GAN), 

and latent space GAN (L-GAN) were used as generative models. Autoencoder 

(AE), needed to encode input data for L-GAN, was also trained. VAE consists 

of two neural networks, an encoder (𝑞ఏ(𝑧|𝑥)) and a decoder (𝑝ఝ(𝑥|𝑧)). The 

encoder takes raw data (𝑥) as input and encode it as a distribution over latent 

space (𝑧), which size is much smaller than size of raw data. The decoder 

reconstructs input data (𝑥) given a point sampled from its latent space (𝑧). VAE 

training uses gradient descent to minimize the loss function (𝐿𝑜𝑠𝑠(𝜃, 𝜑); Eq. 2) 

with respect to the parameters of the weights of encoder (𝜃) and decoder (𝜑). 

 

𝐿𝑜𝑠𝑠(𝜃, 𝜑) =  −𝐸௭~௤ഇ൫𝑧ห𝑥௜൯ൣlog 𝑝ఝ(𝑥௜|𝑧)൧ + 𝐷௄௅(𝑞ఏ(𝑧|𝑥௜)||𝑝(𝑧))   (2) 

 

The first term is the reconstruction loss that enforces the decoder to learn to 

reconstruct the data. the second term is a regularizer that prevents overfitting 

and makes distribution close to a standard normal distribution ( 𝑝(𝑧) =

𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)). Kulback-Leibler divergence (𝐷௄௅) is a method of calculating 

distance between two probability distributions (Kullback and Leibler, 1951). 

AE consists of two neural networks, an encoder and decoder like VAE. 

However, AE has no regularizer in the loss function and does not encode input 

data as a distribution because it is an architecture that only learns to reproduce 
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its input. The encoder compresses raw data into its latent variables and then, 

the decoder produces a reconstruction of raw data, from its latent variables. 

GAN consists of two neural networks, generator (𝐺) and discriminator (𝐷). 

GAN samples noise (𝑧 ) using normal or uniform distribution and uses a 

generator to create data (𝐺(𝑧)). The discriminator distinguishes whether the 

input of discriminator is real (𝑥) or generated (𝐺(𝑧)). The generator tries to 

minimize the objective function (𝑉(𝐷,  𝐺); Eq. 3), while the discriminator tries 

to maximize it. 

 

min
ீ

max
஽

𝑉(𝐷,  𝐺) =  𝐸௫~௣೏ೌ೟ೌ
[log 𝐷(𝑥)] + 𝐸௭~௣೥

[log(1 − 𝐷൫𝐺(𝑧)൯)] (3) 

 

The formula derives from the cross-entropy between the real and generated 

distributions. 𝐷(𝑥)  and 𝐷(𝐺(𝑧))  are the discriminator's estimates of the 

probability where real data instance 𝑥 is real or generated instance 𝐺(𝑧) is 

real. 

L-GAN has the same basic structure and training method as GAN but uses 

latent variables from a pre-trained AE as input data instead of raw data. The 

generated results of L-GAN are needed to convert by using the AE’s decoder 

because L-GAN generates latent variables of the AE. 

 

Architectures of deep generative models 
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In this study, the encoder architecture of AE and VAE followed the design 

principle of Qi et al. (2017) (Figs. 4A, 4B). Every point was encoded through 

five 1-D convolutional layers with kernel size 1. Each convolutional layer was 

followed by a ReLU (Nair and Hinton, 2010) and a batch-normalization layer 

(Ioffe and Szegedy, 2015). A feature-wise maximum was placed after the 

convolutions to produce latent space (z-dimensional vector). The decoder 

transformed the latent variables using four fully-connected layers to produce 

point clouds. The first of three fully-connected layers had ReLUs and batch-

normalization layer. 

The CD and the EMD approximation were used as our reconstruction losses, 

which yielded two distinct AE models (AE-CD and AE-EMD), and two distinct 

VAE models (VAE-CD and VAE-EMD). For two equally sized point clouds 

𝑆ଵ, 𝑆ଶ ⊆  𝑅ଷ , Chamfer distance (CD; Eq. 4) and earth mover’s distance (EMD; 

Eq. 5, Rubner et al., 2000) are defined by  

 

𝑑஼஽(𝑆ଵ, 𝑆ଶ) =  ∑ min
௬∈ௌమ

ห|𝑥 − 𝑦|ห
ଶ

ଶ
௫∈ௌభ + ∑ min

௫∈ௌభ

ห|𝑥 − 𝑦|ห
ଶ

ଶ
௬∈ௌమ      (4) 

 

𝑑ாெ஽(𝑆ଵ, 𝑆ଶ) =  min
థ:ௌభ→ ௌమ

∑ ||𝑥 − 𝜙(𝑥)||ଶ௫∈ௌభ
           (5) 

 

where 𝜙: 𝑆ଵ → 𝑆ଶ is a bijection. 
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The discriminator architecture of GAN (Fig. 4C) had four 1-D 

convolutional layers with one kernel size and three fully-connected layers 

without any batch-normalization and with leaky ReLUs (Maas et al., 2013) 

instead or ReLUs. The output of the last fully-connected layer was fed into a 

sigmoid function. The generator took as input a Gaussian noise vector and 

mapped it to a point cloud via four fully-connected layers. The first of three 

fully-connected layers had leaky ReLUs or ReLUs. In the L-GAN, both the 

generator and the discriminator were operated on the bottleneck variables of 

the AE. Thus, no complicated architecture was necessary for L-GAN (Fig. 4D). 

A generator of a two fully-connected layer coupled with a discriminator of three 

fully-connected layers sufficed to produce measurably good and realistic results 

according to literature (Achlioptas et al., 2017). In addition to the general GAN 

objectives (rGAN, L-rGAN), a WGAN objective (Arjovsky et al., 2017) with 

gradient penalty (Gulrajani et al., 2017) was used to train GAN and L-GAN 

(WGAN, L-WGAN). 
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Fig. 5. Architectures of autoencoder and deep generative models. The 

autoencoder (AE) consists of an encoder (Enc.) and a decoder (Dec.) to 

compress and reproduce the leaves (A). The Decoder acts as a generator 

(Gen.) in the variational autoencoder (VAE), which inherits the structures 

of AE (B). The generative adversarial network (GAN) consists of a 

generator (Gen.) and a discriminator (Disc.) to generate leaves from random 

noise (C). Both the generator and the discriminator of the latent space GAN 

(L-GAN) operate on the latent variables of the AE (D). 
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Determination of the number of latent variables 

To determine an optimal size for the latent space of deep generative models 

and autoencoder, five architectures of AE, VAE, GAN, and L-GAN with latent 

vector sizes 𝑘 ∈ {8, 16, 32, 64, 128}, otherwise architecturally identical, were 

trained. The reconstruction loss was used to select the optimal number of latent 

variables of AE. In VAE, the number of latent variables can be determined by 

reconstruction loss and evaluation metrics. However, it is difficult to select 

models through loss comparison in GAN based model. This is because losses 

of GAN base model were not directly defined as specific functions, but two 

neural network structures were competitively trained to produce leaves. 

Therefore, the evaluations of the generated samples were used to select the 

optimal number of latent variables of VAE, GAN and L-GAN. To train the deep 

generative models, the AdamOptimizer (Kingma and Ba, 2014) was used and 

set to commonly used values. These generative models were trained for a 

maximum of 1000 epochs. TensorFlow (v. 1.13.1; Abadi et al., 2016) was used 

for the experiments.  

 

Evaluation metrics 

For the evaluation of deep generative models, there has been no consensus 

on which measure should be used for fair model comparison (Borji, 2019). 

Therefore, three methods applied to the three-dimensional object from the 
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literature (Achlioptas et al., 2017) were decided to be used: Jensen-Shannon 

divergence (JSD), Coverage (COV), and Minimum Matching Distance (MMD). 

JSD evaluates similarity between generated point clouds and reference point 

clouds. COV is a generative capability in terms of abundance of generated 

samples, which were measured as fraction of the matched reference point 

clouds to generated point clouds. Since COV only took the closest point clouds 

into account, MMD, the minimum distance of every reference point clouds to 

generated point clouds, was introduced. COV and MMD can be computed 

using either the CD (COV-CD, MMD-CD) or EMD (COV-EMD, MMD-EMD), 

respectively. The set of generated point clouds captured all modes of reference 

point clouds with good fidelity when MMD was small and coverage was large. 

JSD was correlated well with the MMD in the literature (Achlioptas et al., 2017), 

so the model was selected based on JSD as the priority in this study. Each 

generator produced a set of synthetic samples that was equal to the test set, and 

then, the evaluation was conducted between synthetic samples and test set. 
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RESULTS 

Optimal number of latent variables in deep generative models 

The deep generative models with the lowest JSD between the generated 

leaves and the validation set were selected, as training proceeded. VAE-CD and 

VAE-EMD, each with eight latent variables, showed the lowest JSD on the 

training set among all latent variables (Fig. 5). For GAN and L-GAN, 8, 16, 32, 

64, 8, and 8 latent variables were fixed for GAN, WGAN, L-rGAN-CD, L-

WGAN-CD, L-rGAN-EMD, and L-WGAN-EMD, respectively (Fig. 6, refer to 

Table 1 for each generative model). The loss and JSD of deep generative 

models tended to be somewhat similar, but they were not exactly the same and 

the number of latent variables with minimum values was different. 

 AE-CD and AE-EMD were also trained to get latent variables to be used 

as inputs to L-GAN (Fig. 7). The loss of the validation data not used for training 

was greater than or equal to the loss of the training data. Since this could be a 

result of overfitting to the training data, the model was selected using the 

reconstruction loss on the validation set during model training. Thus, 64 and 32 

latent variables were fixed on the structures of AE-CD and AE-EMD, 

respectively. 
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Fig. 6. Jensen-Shannon divergence (JSD) and reconstruction loss of the VAE-

CD (A) and VAE-EMD (B) according to the number of latent variables (𝑧). 

Refer to Table 1 for each generative model. 
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Fig. 7. Jensen-Shannon divergence (JSD) and generator loss according to the number of latent variables (𝑧) in rGAN (A), L-

rGAN-CD (B), L-rGAN-EMD (C), WGAN (D), L-WGAN-CD (E), and L-WGAN-EMD (F). Refer to Table 1 for each 

generative model.
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Fig. 8. Reconstruction losses of the AE-CD (A) and AE-EMD (B) according to 

the number of latent variables (𝑧). Refer to Table 1 for each generative 

model. 
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Evaluation of the deep generative models 

In Table 1, all types of generators were evaluated based on JSD, MMD, and 

COV using the test data, after the deep generative models were selected 

according to the number of latent variables. L-WGAN-EMD performed the best 

among all evaluation methods. In terms of performance by generator type, L-

GAN received the highest score, followed by VAE and then GAN. In most 

cases, performances of the generative models were higher with EMD loss as a 

reconstruction loss than CD loss, and with WGAN objective than general GAN 

objective.  

L-GAN showed high quality results in random generation, regardless of the 

GAN objective or loss of AE (Figs. 8C, 8D, 8E, 8F), while the outputs of rGAN 

and WGAN were bad (not seen). VAE-CD and VAE-EMD showed poorer 

performance (not properly created or blurred) for random generation (Figs. 8A, 

8B) but showed good reconstruction performance (Figs. 9C, 9D). In addition to 

the deep generative models, the reconstruction capabilities of the AEs used in 

the L-GAN were also confirmed. The trained AE-CD and AE-EMD showed 

high performance with respect to the reconstruction from the data regardless 

that they were not used for training (Figs. 9A, 9B). All leaves were displayed 

from the same point of view. 
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Table 1. Evaluations of the eight generators (variational autoencoder; VAE, 

generative adversarial network; GAN, and latent space GAN; L-GAN) 

selected via Jensen-Shannon divergence (JSD) in the test sets.  

Generatorz JSD MMD-CD MMD-EMD COV-CD COV-EMD 

VAE-CD 0.234  31.186 27.993 0.520 0.244 

VAE-EMD 0.041  30.616 17.314 0.449 0.449 

rGAN 0.441 69.611 33.223 0.080 0.027 

WGAN 0.205 49.197 29.976 0.178 0.102 

L-rGAN-CD 0.050 31.969 18.688 0.471 0.333 

L-WGAN-CD 0.046 31.458 17.452 0.400 0.329 

L-rGAN-EMD 0.031 28.323 15.130 0.529 0.493 

L-WGAN-EMD 0.025 26.915 14.785 0.542 0.529 

zTwo losses of Chamfer distance (CD) and earth mover’s distance (EMD) were 
used for VAE (VAE-CD, and VAE-EMD). General GAN objective and 
Wasserstein GAN objective were used for GAN-based models (rGAN, WGAN, 
L-rGAN, and L-WGAN). Since L-GAN uses the latent variables of AE, the 
loss used by AE were described as L-rGAN-CD, L-WGAN-CD, L-rGAN-
EMD, and L-WGAN-EMD. 

yLower scores of JSD, MMD (minimum matching distance)-CD and MMD-
EMD, and higher scores of COV (coverage)-CD and COV-EMD are better. 
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Fig. 9. Synthetic paprika leaves generated by VAE-CD (A), VAE-EMD (B), L-

rGAN-CD (C), L-WGAN-CD (D), L-rGAN-EMD (E), and L-WGAN-

EMD (F). Refer to Table 1 for each generative model. 
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Fig. 10. The ground-truths of paprika leaves (A) and the reconstructed models 

by AE-CD (B), AE-EMD (C), VAE-CD (D), VAE-EMD (E). Refer to Table 

1 for each generative model. 
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Generation of the leaves and constructions of the whole plant 

The well-trained latent representations could generate good samples based 

on latent variables created by performing interpolation or simple arithmetic. 

Linear interpolations in the latent space produced smooth transition between 

different sizes, inclinations, and curvatures of leaves, and showed good results 

(Fig. 10). The semantic components were obtained from the difference in the 

latent space between the two leaves, which could be added to other latent 

variables of leaves to create leaves with new traits (Fig. 11). Leaves were 

enlarged, inclined, or curved down by simple arithmetic. 

Meshes was constructed from leaf point clouds using screened Poisson 

surface reconstruction (Kazhdan and Hoppe, 2013), and then, leaves with faces 

were created after few post-processing on the meshes. The whole paprika plant 

was synthesized by replacing the existing leaves with variously generated 

leaves in the existing plant stem structure (Fig. 12). Although there were some 

unnatural aspects of the connection between the leaf and the stem, overall 

realistic paprika was produced. 
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Fig. 11. Interpolations of size (A), inclination (B), and curvature (C) of 

randomly generated leaf point clouds between left and right-most of each 

row using latent space representation. 
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Fig. 12. Editing leaf point clouds by simple arithmetic in the latent space. 

Various traits could be imparted to generated leaves, such as size, 

inclination, and curvature. 

  



34 
 

 

Fig. 13. A paprika plant synthesized by applying the generated leaves to existing 

plant structures: front view (A) and top view (B).  
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DISCUSSION 

Optimal design of the deep generative models 

The optimal number of latent variables for deep generative models were 

determined through the evaluation (Figs. 5, 6). The well-trained deep 

generative models, except L-rGAN-CD (32 latent variables) and L-WGAN-CD 

(64 latent variables), showed the highest performance in very small number of 

latent variables (8 or 16 latent variables). In general, about 100 latent variables 

in a GAN-based model were preferred for generating output (Denton et al., 

2015; Radford et al., 2015; Achlioptas et al., 2017). This is because the existing 

models had a reasonable accuracy when using 100 latent variables, and the 

purpose of studies was to make it easier to compare with other models by fixing 

the latent variables rather than using the latent variables. In this study, various 

latent variables were tested for better performance and utilization of latent 

variables, and the better results were obtained from few variables, which 

facilitate the adjustment of latent variables. GAN generally cannot extract latent 

variables from the original, but L-GAN used latent variables of AE that were 

already compressed and characterized. Thus, the good results were generated 

from a small number of latent variables of L-GAN.  

The optimal VAE was selected the by evaluating the generated leaves, 

even though a loss function for VAE was defined explicitly. Because, when 

selected through reconstruction loss, VAE-EMD showed similar results as 
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selected through evaluation, but VAE-CD showed very low results. In the 

training of VAE-CD, the scale of CD loss differs not only from the scale of 

regularizer, but also the convergence rate of the reconstructions loss differs 

from that of the KL divergence used as a regularizer. As a result, regularization 

of latent space is poor, resulting in high reconstruction performance but 

relatively low random generation performance when VAE-CD was selected by 

loss function.  

In this study, the optimized structure was selected by adjusting only the 

number of latent variables, while the rest of the structure was the same. It might 

be needed to use different hyperparameters of the architectures like the number 

of neurons and layers for improving the performance of deep generative models. 

In order to do that, many experiments must be repeated to find the optimal 

hyperparameters for deep learning models. Finding the optimal model structure 

and searching for hyperparameter is called automated machine learning 

(AutoML). Recently, many researches have been conducted to solve this 

process by deep learning. NAS (Neural Architecture Search; Zoph and Le, 2016) 

and NASNet (Zoph et al., 2018) searched the neural network structure using 

reinforcement learning. However, since most AutoMLs have been mainly used 

for image classification or recurrent cell, they were currently a bit difficult to 

apply them directly to the generative model. Thus, the model was determined 

by modifying only the latent variables that make up the latent representations. 
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Performance of the deep generative models 

The L-WGAN-EMD (eight latent variables) highly rated in all evaluation 

methods could generate good-looking paprika leaves (Fig. 8F). Other L-GANs 

were slightly lower in rating than L-WGAN (EMD) but showed visually high 

performance (Figs. 8C, 8D, 8E). L-GANs operate on latent variables of the AE, 

not directly using raw point cloud, which is directly related to AE performance. 

If the performance of the AE is good, the faster training speed and higher 

performance would be achieved because L-GAN learns the extracted feature 

data of smaller size. In this study, both AE-CD and AE-EMD had high 

performance (Fig.9), so the L-GANs were able to output good results.  

End-to-end GANs are generally difficult to train as this study showed 

((Figs. 6A, 6D; Table 1). In general, GAN-based models typically suffer from 

training disorders like non-convergence, model collapse, and diminished 

gradient (Mao et al., 2017; Arjovsky et al., 2017). This was well observed when 

the general GAN (rGAN) objective was used (Figs. 6A, 6B, 6C). To solve this 

problem, many subsequent studies emerged to find an objective function with 

smoother and non-vanishing gradients (Mao et al., 2017; Arjovsky et al., 2017; 

Gulrajani et al., 2017; Berthelot et al., 2017). The WGAN, one of the solutions, 

showed good results and there was no collapse in model training in this study 

(Fig. 6, Table 1). There was no absolutely superior function over the others (Qin 
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et al., 2018), so even if other functions were used, overwhelmingly better 

performances would not be seen. 

Unlike good performance in reconstruction, the lower performance of 

VAE than L-GAN in generating leaves was observed and VAE-CD performed 

worse than VAE-EMD (Table 1, Fig. 8). In VAE, one noise was drawn from 

the zero-mean Gaussian and calculated with the mean and variance from 

encoder to form a sampled latent vector 𝑧, which is called a reparameterization 

trick (Kingma and Welling, 2013). Because of the reparameterization trick, 𝑧 

may be different even if the input data is the same, so the final output was not 

clear and blurry (Figs. 8A, 8B).  

In this study, two distance metrics (CD and EMD) were used as 

reconstruction losses. CD made it difficult to penalize the point clouds that were 

over-populated in locations (Achlioptas et al., 2017). If such a trend occurs 

during model training, the generative model may be poorly trained. In the study, 

no such phenomenon was observed visually in the generated samples of the 

selected models, except that the overpopulation of points was found in the result 

from the VAE-CD (Figs. 8A, 9D). EMD that effectively solved an assignment 

problem was differentiable almost everywhere and showed good result when 

used as reconstruction loss (Fan et al., 2017; Achlioptas et al., 2017). In practice, 

computation of EMD is too expensive for deep learning, even on graphics 

hardware. Since the computational cost of CD metrics is less than that of EMD 
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metrics, L-GANs-CD may be a good choice for simple plant simulations that 

do not require high accuracy and seek high efficiency. 

 

Availability of the generated leaf models 

Currently, the resolution of scanners is sufficient to present paprika plants, 

but due to the movement of plants by wind and the nature of laser scan, the 

edges of plant parts are poorly scanned and require further processing (Klapa 

and Mitka, 2017). In particular, petioles were not properly scanned so that the 

leaf data without petiole quite existed in this experimental data (Fig. 3). Despite 

the increase in diversity of leaves due to the incompleteness of the data, L-

GAN-EMD showed high performance with or without petiole (Table 1, Fig. 9). 

This indicates that the deep generative model can show high performance even 

when the entire leaf shape is expressed through the development of 3D 

measurements on the plant.  

The manipulation in the latent space allows the model possible to express 

diverse shape of the leaves, suggesting that it could be used to simulate realistic 

three-dimensional growth and morphological changes of leaves. Growth 

estimation of leaves is crucial to analysis of plant growth and yield, 

transpiration and photosynthesis (Rajcan and Tollenaar, 1999; Rawson and 

Hindmarsh, 1983). Most plants display strong morphological changes during 

their diurnal and seasonal development, which depend on the availability of 
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resources and on the fluctuation of abiotic factors (Long et al., 2006). Since the 

entire plant was generated through replacing the existing leaves with generate 

leaves in the existing structure, the direction of the leaves and the stem structure 

were not changed (Fig. 12). Thus, no matter how well the model has trained the 

distribution of the original leaf data, the distribution expressed at the plant level 

were limited. At this time, it is expected to resolve these problems by using the 

rule-based model for the structure and shape of the stem or to apply the 

generative model to generate various stems. Parametric L-system rules were 

used to construct branch system for 3D tree models (Tang et al., 2019). Also, 

more natural plants could be possible through supervised learning that provides 

the model with information about the shape according to the leaf position. If 

generative model can be trained to generate whole plant models, it will yield 

more realistic results. However, it currently seems to be challenging due to 

technical and data issues. 

The trained L-GAN-EMD could create various leaves of paprika randomly 

as shown by the high coverage in the evaluation (Table 1, Fig. 9), and create 

some desired leaves by modifying latent variables (Figs. 10, 11). However, 

several latent variables act on certain trait and each of the latent vector has 

normally no special meaning, so time-consuming task is required to get the 

desired leaves. InfoGAN that gives meaning to each latent variable could 

reduce task for finding the desired result, thus providing convenience for 

interpretation of latent space (Chen et al., 2016). However, in this study, since 
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the leaves are represented by sufficiently small latent variables, the 

characteristics of the leaves are not difficult to manipulate. 
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CONCLUSION 

In this study, realistic paprika leaves were created by using deep 

generative models. Among the deep generative models, the modified GAN (L-

WGAN-EMD) had the highest performance. The trained model could generate 

leaves from eight latent variables that were much smaller than the leaf data size. 

Arithmetic operations and gradual changes on the latent space could lead to 

modification of morphological leaf traits. A paprika plant was synthesized by 

applying the generated leaves to existing plant structures. The results of this 

study can be contributed to the applied studies of 3D plant models, such as 

estimating canopy light interception and photosynthesis, which require detailed 

but diverse plant structures for realism. For more complete representations, 

deep generative models for randomly generating stem structure and leaves of 

plants.  
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3 차원 식물모델을 활용한 시뮬레이션은 식물 구조와 환경과의 상호 

작용을 연구하기 위해서 광범위하게 사용되고 있다. 그러나 3 차원 

스캔된 식물 모델은 규칙 기반의 모델에 비하여 정밀하지만, 정적 

모델만을 생성할 수 있는 한계가 있었다. 본 연구의 목적은 3 차원 

스캔 식물모델과 심층 생성 모델을 활용하여 다양한 형태적 특징을 

가진 파프리카 (Capsicum annuum L.) 잎을 생성하는 것이다. 정식 후 

14, 21, 28, 58 일의 잎을 3 차원 스캐너로 스캔 후 전 처리하여 생성 

모델(variational autoencoder, VAE; generative adversarial network, GAN; 

latent space GAN, L-GAN)의 학습데이터로 사용하였다. 모델의 최적 

잠재 변수 수는 Jensen-Shannon divergence (JSD)를 이용하여 

결정하였다. 각 모델이 생성한 잎에 대해 JSD 와 Chamfer distance(CD) 

및 Earth mover’s distance(EMD)를 적용한 coverage(COV) 및 minimum 

matching distance(MMD)를 평가하여 최적의 심층 생성 모델을 

결정하였다. 잠재변수의 수는 VAE 8 개, GAN 16 개, L-GAN 8 개에서 

가장 최적의 성능을 보였다. 여러 심층 생성 모델 중 L-WGAN-

EMD 가 가장 높은 성능(JSD=0.025, MMD-CD=26.92, MMD-

EMD=14.79, COV-CD=0.542, COV-EMD=0.529)을 보였다. 학습된 심층 
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생성 모델은 정규 분포를 따르는 무작위 잠재변수로부터 다양한 

형태를 가지는 잎을 생성하였고, 잠재 공간 내 선형 보간 및 간단한 

산술 연산을 통해서 잎의 형태적 특징을 조절할 수 있었다. 본 연구 

결과는 추후 군락의 수광 분포 및 광합성속도 추정 등 

정확하면서도 다양한 형태의 식물구조가 필요한 3 차원 식물 모델의 

응용 연구에 기여할 것으로 사료된다.  

 

추가 주요어: 3 차원 스캔 모델, 3 차원 시뮬레이션, 3 차원 식물모델, 

변분적 오토인코더 (VAE), 생성적 적대 신경망 (GAN), 심층 생성 

모델  
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