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Abstract

Soie Kwon

Department of Clinical Medical Sciences, College of Medicine

The graduate school

Seoul National University

Diabetic kidney disease (DKD) is a leading cause of CKD 

and ESRD. Metabolomics has been increasingly applied to 

identify the cause of chronic kidney disease (CKD), as it can 

present epigenetics and suggest corresponding treatment 

options. Only a few metabolomics studies were conducted in 

DKD patients, and the results are inconclusive. I investigated 

the association between urine metabolites and renal disease 

progression in DKD, using 800 MHz NMR based targeted 

metabolomics profiling. 

Prospectively stored urine samples from consecutive 
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patients with DKD stage 1 to 5 (n=208) and their healthy 

controls (n=26) were analyzed. Cross-sectional associations 

were evaluated between eGFR or UPCR (urine protein 

creatinine ratio) and 26 urinary metabolites. Multivariable 

adjusted Cox models were conducted for the risk prediction of 

ESRD and mortality. The receiver-operating characteristic 

(ROC) analyses were used to assess the additive effect of 

each metabolite to predict progression to ESRD. 

ESRD occurred in 103 (44.0%) patients and 65 (27.8%) 

deaths occurred dring median 4.5 year (IQR, 2.06-6.58) 

follow-up period. The median fold change in 9 metabolites 

(glucose, mannose, myo-inositol, glycerol, lactate, fumarate, 

creatine, taurine and choline) in patient group revealed a trend 

corresponding to DKD stages. Linear regression showed that 

myo-inositol had a strongest association with eGFR. The 

relationship between the competitive metabolites and 

outcomes (ESRD and mortality) was investigated by 
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multivariate Cox models after adjusting for the baseline 

covariates. Of these, 4 metabolites (myo-inositol, glycerol, 

fumarate, oxoisocaproate) had predictive values for ESRD, 

and among them, only myo-inositol retained predictive 

significance in mortality (adjusted HR 1.004, 95% confidence 

interval 1.002–1.006, p-value <0.001). At ROC anaylsis, 

urinary myo-inositol had additive effect to serum creatinine 

concentration and UPCR in prediction for ESRD progression 

(NRI = 2.9%, P = 0.03; IDI = 35.1%, P = 0.02). 

My results suggest that myo-inositol can be a predictive 

biomarker for the risk of ESRD progression in DKD. Further 

mechanistic studies are needed to elucidate the 

pathophysiological roles of myo-inositol in DKD.

Keywords : DKD, Metabolomics, Myo-inositol, ESRD, All-

cause mortality

Student Number : 2018-28788
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Chapter 1. Introduction

The estimated glomerular filtration rate (eGFR) and urine 

proteinuria are the most concrete and frequently used predictive 

biomarker of chronic kidney disease (CKD) regardless of the cause 

(1). In clinical practice, GFR is usually calculated by serum 

creatinine or cystatin C concentration instead of an iothalamate or 

inulin clearance measurement based golden standard, because 

inconvenient (2). However, these methods have limitations, in that 

they are synthetized and influenced by the muscle in creatinine and 

the liver in cystatin C (3; 4).

As CKD is a collection of various kidney disease, its mechanisms 

are diverse depending on the cause. Kidney biopsy, an invasive 

procedure, is the only way to distinguish the cause because there 

are no confirmed noninvasive methods to differentiate CKD 

etiologies. The demand for safer and more precise methods for 

distinguish the pathophysiology and corresponding treatment is 

increasing. Metabolomics has been increasingly applied to 

identifying new biomarkers of diseased specific CKD (5-7). Urine 
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metabolomics, which includes metabolic breakdown products and 

reveals renal condition from the biological waste made by kidney, 

has received considerable attention (8; 9).

Currently, DKD is a most common cause of ESRD. Moreover, DKD 

continues to increase in the elderly population and among patients 

with diabetes (10). Considering the limited treatment choices, 

reduction in quality of life and increases in mortality among DKD 

and DM-ESRD patients, early detection of DKD and possible 

treatment choices for DKD is needed. Previous metabolomics 

studies were conducted based on this trend and reported changes in 

mitochondrial and fatty acid metabolites in DKD patients (11-15). 

However, the results are varying.

Previous well organized animal study did a serum and urinary 

analysis at early and late stages by untargeted metabolomics 

between db/m and db/db mice. Which demonstrated early phase 

increase of branched chain amino acid and homocysteine-

methionine metabolism and late phase increase of ketone and fatty 

acid metabolism (12). Base on this study, I investigated the 

association between urine metabolites and ESRD progression in 
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DKD cohort.
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Chapter 2. Materials and Methods

2.1 Study design and population 

From June 2011 to June 2018, the urine of DKD patients and 

healthy controls was prospectively collected at Seoul National 

University Boramae Medical Center. Consecutive patients with DKD 

stages 1-5 (n=208) and their healthy controls (n=26) with normal 

kidney function and no diabetes were enrolled from the prospective 

cohort. DKD stages were divided based on the CKD epidemiology 

collaboration equation (CKD-EPI) eGFR using serum 

creatinine(16). To be eligible for the study, a patient had to be 

older than 18 years and was not on dialysis at the time of 

enrollment. Urine samples were collected at the time of enrollment. 

This study was conducted under the approval of the Research 

Ethics Committee of the Seoul National University Boramae Medical 

Center. All procedures were followed the accordance with the 

ethical standards of the institutional and/or national research 

committee and with the 2013 Declaration of Helsinki and tis later 

amendments or comparable ethical standards. Informed consent was 



21

obtained to human research participants for the use of urine. 

2.2 Clinical Data Collection

The baseline clinical parameters such as age, sex, body mass 

index (BMI), comorbidities and laboratory findings, including serum 

level of complete blood cell counts, aspartate aminotransferase 

(AST), alanine aminotransferase (ALT), albumin, creatinine, 

cholesterol, uric acid, HbA1c (Hemoglobin A1c) and urinary 

protein-to-creatinine ratio (UPCR), were collected from electronic 

medical records. The eGFR was measured using the CKD-EPI.

2.3 Definition of Study Outcomes 

The primary study outcome was the number of ESRD events 

(maintenance dialysis or kidney transplantation). Information 

regarding ESRD was obtained from the Korean Society of 

Nephrology database(17). All-cause mortality data were obtained 

from the National Database of Statistics Korea. Patients were 
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followed up until their death or August 2018. 

2.4 1H NMR Experiment

Frozen urine samples were sent to laboratory. Before nuclear 

magnetic resonance (NMR) experiment, urine samples were thawed 

at room temperature. Urine samples were filtered through Amicon®

Ultra centrifugal filters for 500 μL – 3K (Millipore, Billerica, MA, 

USA) at 12,000 rpm for 10 minutes at 4°C to remove protein. The 

resulting 300-μL supernatant from the urine sample was mixed 

with 300 μL of 0.2 M sodium phosphate buffer (pH 7.0) and 1 mM 

sodium azide in deuterium oxide (D2O). After adjusting the pH to 

7.0 ± 0.1, 540 μL of sample was mixed with 60 μL of 5 mM 3-

(trimethylsilyl) propionic 2,2,3,3-acid (TSP) in D2O, and the 600-

μL samples were placed in 5-mm Bruker SampleJet NMR tubes 

(Z112273, Bruker BioSpin AG, Fällanden, Switzerland).

One-dimensional (1D) 1H NMR spectra were acquired with an 

Ascend 800-MHz AVANCE III HD Bruker spectrometer (Bruker 

BioSpin AG) using a triple-resonance 5-mm CPTIC cryogenic 
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probe. To acquire 1D 1H spectra of the urine samples, Bruker 

standard 1D nuclear Overhauser enhancement spectroscopy 

(NOESY)-presat (noesypr1d) pulse sequences were used as 

follows: relaxation delay (RD) – 90° – short delay – 90° –

mixing – 90°– Acq, with RD = 4.0 s, short delay = 12.18 us, n = 

128, dummy scans = 16, acquisition time (Acq) = 2.0 s, and mixing 

time (mixing) = 10 ms. The water signal was suppressed at the 

water peak during the RD and mixing time. Fourier domain points 

were acquired at 65,536 data points with a spectral width of 20 ppm.

The NMR data were processed using TopSpin (ver. 3.1, Bruker 

BioSpin, Rheinstetten, Germany). All spectra were baseline-

corrected and phase-corrected manually. The processed NMR 

spectra were imported into Chenomx for identification and 

quantification, and the 800-MHz Chenomx library (ver. 7.1, 

Chenomx, Edmonton, AB, Canada) was used to identify individual 

compounds. The assignment of ambiguous peaks due to peak 

overlap was confirmed by spiking with standard compounds. Signal 

assignment for representative samples was facilitated by the 

acquisition of two-dimensional (2D) correlation spectroscopy 
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(COSY) and heteronuclear single quantum correlation (HSQC). The 

quantification of urinary metabolites was achieved using Chenomx, 

which used the concentration of TSP to determine the concentration 

of individual compounds. The urinary concentrations were 

normalized to the levels of creatinine (metabolite μM/creatinine

mM).

2.5 Statistical Analysis

Since metabolite concentration for each value were not normally 

distriuted, they were used for analysis after natural logarithmic 

transformation. The analysis was conducted in cross-sectional and 

longitudinal manners. Cross-sectional analysis was used to 

compare metabolic difference among healthy control and CKD 

groups. We expressed categorical variables as percentage in whole 

patients, continuous variables which follow the normal distribution 

curve as means ± standard deviations. The trend of baseline 

characteristics according to CKD stage was compared using the 

Jonckheere-Terpstra test for continuous variables and the linear 

by linear association for categorical variables. The Mann-Whitney 
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post hoc analysis was applied. All tests were two-tailed and P < 

0.05 was considered indicative of statistical significance. 

Correlation between metabolites and eGFR or UPCR was 

determined using Pearson correlation analysis.

Survival analysis was conducted in a longitudinal manner to 

investigate the relationship between urinary metabolites and hard 

outcomes (ESRD progression and all-cause mortality). The 

Kaplan-Meier survival analysis and the log-rank method were 

used to compare the outcomes among metabolic quantiles. 

Multivariate Cox regression adjusted for the effect of traditional 

risk factors was performed by backward conditional stepwise 

analysis. The contribution of several urinary metabolites levels to 

distinguish patients without ESRD who progressed to ESRD was 

examined by the area under the area under the receiver operating 

characteristic curve (AUROC) in simple and time dependent 

manners (18). 

Statistical analyses were performed using SPSS version 25.0 (IBM 

Corp., Armonk, NY, USA) and R version 3.5.1 (The Comprehensive 

R Archive Network: http://cran.r-project.org). 
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Results

3.1 Evaluation of Baseline Characteristics according 

to DKD Stages

DKD patients are older than healthy controls and have lower BMI 

(Table 1). A prevalence of hypertension is higher in advanced DKD 

groups. Serum creatinine and eGFR were significantly associated 

with DKD stages and UPCR distinguish DKD stage 1 patients from 

their healthy controls. Among DKD patients, there were no 

statistically significant differences in glycemic control, which can be 

estimated by serum glucose and HbA1c concertation.

3.2 Evaluation of the Correlation with Urinary 

Metabolites Trends and CKD Stages

In Table 2 and Figure 1, we show the median fold change in each 

urine metabolite in the patient group compared with those in the 

control group. A total of 19 metabolites showed a significant trend 
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across DKD stages, and 9 metabolites (glucose, mannose, myo-

inositol, glycerol, lactate, fumarate, creatine, taurine, choline) 

maintained significance in the post-hoc analysis (Table 2). Myo-

inositol (R2= 0.442, p-value < 0.001), choline (R2= 0.293, p-value

<0.001) and citrate (R2= 0.175, p-value <0.001) were correlated 

with eGFR and choline (R2= 0.281, p-value < 0.001), mannose 

(R2= 0.260, p-value <0.001) and myo-inositol (R2= 0.236, p-

2value <0.001) were correlated with UPCR. The metabolites were 

more strongly correlated with eGFR (Figure 2) than with the UPCR 

(Figure 3).

Figure 4 is a metabolic pathway of which significantly changed 

according to CKD progression based on urinary metabolites of 

present study. Urinary monosaccharide concentration and TCA 

intermediates tend to increase as kidney function worsen (more 

advanced CKD stages, decrement of eGFR and increment of 

albuminuria). Other pathways do not present constant correlation. 
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Table 1. Baseline characteristics of DKD patients and healthy controls. Categorical variables were 

presented as n (%), and continuous variables were shown as mean ± standard deviations. 

Total Control DKD1 DKD2 DKD3 DKD4 DKD5 P for trend

Patient number N= 234 N= 26 N= 11 N= 22 N= 54 N= 63 N= 58

Age (years) 58.5 ± 16.3 35.8 ± 15.2 39.0 ± 19.8 55.4 ± 14.5 63.7 ± 11.3 65.7 ± 11.9 60.9 ± 13.1 <0.001

Sex, male (n, [%]) 147 (62.8%) 15 (57.7%) 8 (72.7%) 14 (63.6%) 38 (70.4%) 37 (58.7%) 35 (60.3%) 0.744

BMI (kg/m
2
) 23.6 ± 3.8 24.0 ± 3.4 27.6 ± 4.2 24.9 ± 3.2 23.5 ± 3.9 23.6 ± 3.4 22.8 ± 4.3 0.002

HTN, (%) 150 (64.1%) 4 (15.4%) 4 (36.4%) 13 (59.1%) 39 (72.2%) 46 (73.0%) 44 (75.9%) <0.001

Laboratory findings

Creatinine (mg/dl) 2.8 ± 2.2 0.8 ± 0.1 0.8 ± 0.1 1.0 ± 0.2 1.7 ± 0.3 2.8 ± 0.9 5.8 ± 2.1 <0.001

eGFR (ml/min/1.73m2) 42.9 ± 36.7 112.5 ± 11.8 110.3 ± 17.1 79.9 ± 11.9 41.1 ± 7.5 21.6 ± 5.1 9.6 ± 2.7 <0.001

Hemoglobin (g/dl) 11.5 ± 2.3 14.4 ± 1.8 13.9 ± 1.6 12.6 ± 2.8 11.9 ± 1.8 10.9 ± 2.0 9.8 ± 1.2 <0.001

Calcium (mg/dl) 8.7 ± 2.1 9.0 ± 0.9 9.1 ± 0.6 8.9 ± 0.7 8.8 ± 0.5 9.2 ± 3.9 7.9 ± 0.9 <0.001

Phosphorus (mg/dl) 4.0 ± 0.9 3.5 ± 0.6 3.7 ± 0.6 3.7 ± 0.6 3.8 ± 0.6 3.9 ± 0.8 4.8 ± 0.9 <0.001

Albumin (g/dl) 3.8 ± 0.6 4.3 ± 0.4 4.2 ± 0.5 3.8 ± 0.6 3.9 ± 0.4 3.8 ± 0.7 3.5 ± 0.4 <0.001

AST 21.5 ± 10.4 25.1 ± 14.9 20.3 ± 5.1 25.3 ± 11.9 22.6 ± 11.6 20.3 ± 7.3 18.8 ± 8.9 <0.001

ALT 19.9 ± 14.7 28.9 ± 30.5 17.8 ± 9.3 26.7 ± 14.2 19.5 ± 11.5 17.0 ± 9.0 16.8 ± 8.5 0.007

Glucose 132.4 ± 53.4 109.5 ± 19.4 118.2 ± 25.0 132.4 ± 33.0 136.2 ± 54.3 135.6 ± 48.6 139.1 ± 72.6 0.281

Hemoglobin A1c 7.0 ± 1.3 6.0 ± 0.4 6.3 ± 0.9 7.7 ± 1.3 7.3 ± 1.2 6.8 ± 1.4 6.8 ± 1.4 0.057

Uric acid (mg/dl) 7.1 ± 2.3 5.0 ± 1.6 6.3 ± 1.2 5.9 ± 2.1 7.0 ± 2.3 8.0 ± 2.6 7.8 ± 1.6 <0.001
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Total Control DKD1 DKD2 DKD3 DKD4 DKD5 P for trend

Patient number N= 234 N= 26 N= 11 N= 22 N= 54 N= 63 N= 58

Total cholesterol (mg/dl) 161.9 ± 44.6 171.3 ± 35.3 162.8 ± 35.9 169.6 ± 45.4 158.5 ± 42.0 157.1 ± 44.3 162.4 ± 52.5 0.068

Triglyceride (mg/dl) 149.8 ± 81.7 155.7 ± 56.9 192.4 ± 132.9 127.2 ± 52.9 149.9 ± 75.6 139.1 ± 69.8 161.6 ± 100.3 0.799

HDL (mg/dl) 46.2 ± 35.0 50.1 ± 13.7 87.1 ± 129.3 46.7 ± 12.5 43.5 ± 11.5 50.8 ± 32.5 34.8 ± 10.7 <0.001

LDL (mg/dl) 91.3 ± 40.4 100.9 ± 30.2 72.4 ± 43.3 87.7 ± 30.8 88.8 ± 33.8 82.6 ± 34.0 103.7 ± 52.7 0.594

Urine PCR (mg/mg) 3.8 ± 4.6 0.1 ± 0.1 3.4 ± 3.3 2.9 ± 4.4 3.7 ± 5.4 2.9 ± 3.6 6.2 ± 4.5 <0.001

Abbreviation: CKD, chronic kidney disease; BMI, body mass index; HTN, hypertension; eGFR, estimated glomerular filtration rated (by CKD-EPI creatinine 

equation); AST, aspartate transaminase; ALT, alanine transaminase; HDL, high density lipoprotein; LDL, low density lipoprotein; PCR, protein-to-creatinine ratio
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Table 2. Median fold change of urine metabolites according 

to DKD stage, compared with control group.

Ln(Metabolites/Cr) DKD1/Control DKD2/Control DKD3/Control DKD4/Control DKD5/Control J-T test

Glucose 0.496* 1.504
‡

1.362
‡

1.562* 3.256
‡

<0.001

Mannose 0.597* 0.886
‡

0.901
‡

1.059
‡

2.143
‡

<0.001

Xylose 0.292 0.190 -0.158 -0.447† -0.504‡ <0.001

Myo-inositol 0.119 1.004
‡

1.705
‡

2.254
‡

2.966
‡

<0.001

Glycerol -0.109 0.427 0.607
†

0.594* 0.718
‡

0.002

Lactate 0.222 0.415† 0.583† 0.789‡ 1.460‡ <0.001

Pyruvate -0.070 0.193 -0.269 -0.301 -0.091 0.66

Citrate -0.392 0.190 -0.602† -1.623‡ -1.262‡ <0.001

2-Oxoglutarate 0.194 0.637 -0.101 -0.066 0.353 0.992

Succinate 0.638* 0.613‡ 1.159‡ 0.694† 0.789‡ 0.032

Fumarate 1.005 1.207‡ 1.133‡ 1.146‡ 1.731‡ <0.001

Pyroglutamate 0.068 0.191 0.179 0.220* 0.506‡ <0.001

Acetone -0.386 0.336* 0.313 0.413 0.424* 0.012

O-Acetylcarnitine -0.747 -0.735 -0.336 -0.504 -0.317 0.505

Isoleucine -0.171 0.147 -0.056 -0.292 0.735‡ 0.007

Leucine -0.111 0.122 -0.029 -0.083 0.662‡ <0.001

Valine 0.013 0.236 -0.035 -0.139 0.763‡ <0.001

Creatine -0.737* -0.701 -1.096‡ -1.283‡ -1.195‡ <0.001

Taurine -0.568‡ -0.075 -0.296* -0.315* -0.606‡ 0.003

Threonine -0.016 0.067 -0.212 -0.224 0.549 0.088

Carnitine -0.681 -0.565 -0.238 -0.495 -0.536 0.291

2-Oxoisocaproate -0.176 0.088 -0.200 0.015 0.085 0.068

Choline 0.232 0.661
†

0.872
‡

1.550
‡

2.405
‡

<0.001

DMG 0.560 0.412* 0.144 -0.063 -0.175 <0.001

TMAO -0.433 0.341 0.188 0.420 0.882† <0.001

Betaine 0.164 0.887
‡

0.921
‡

0.862
‡

0.679
‡

0.126

Post-hoc analysis with Mann-Whitney test *P <0.05; †P <0.01; ‡P <0.001 (compared each DKD 

groups with Control).
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Figure 1. The relative intensity of urine metabolite/creatinine 

across all five CKD stages and controls, presented by dot plot
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Figure 2. Correlation matrix for urine metabolites concentration 

with eGFR
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Figure 3. Correlation matrix for urine metabolites concentration 

with albumin creatinine ratio 
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Figure 4. Metabolic pathways of which significantly changed 

according to CKD progression based on urinary metabolites of 

the present study. 

(The red color indicates up-regulated metabolites, and the blue color 

indicates down-regulated metabolites)
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3.3 Metabolites associated with ESRD Progression 

The median fallow up period was 4.5 years (IQR, 2.06–6.58), 

during which 103 participants (44.0%) progressed to ESRD and 65 

patients (27.8%) died. The composite outcome was achieved in 135 

participants (57.7%) and no participant in the control group 

achieved thecomposite outcome. In Kaplan-Meier analysis, 17 

metabolites were associated with ESRD progression (Figure 5) and 

14 metabolites were associated with all-cause mortality (Figure 6). 

All of the outcomes showed high correlations with monosaccharides 

and low correlations with the ketogenic pathway in Kaplan-Meier 

analysis. After multivariate Cox analysis, 12 metabolites were still 

associated with ESRD progression (Table 3) and 11 metabolites 

were associated with all-cause mortality (Table 4). ESRD 

progression was more closely related to urine monosaccharide 

concentration and TCA cycle metabolite concentration.
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Figure 5. Kaplan-Meier survival curves of targeted metabolites 

for ESRD progression. 

Patients with first(solid), second(dashed), third(dotted) and forth (dot dash) quantile of each level of 

Ln(metabolites/Cr) were subjected to these analyses.
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Figure 6. Kaplan-Meier survival curves of targeted metabolites 

for all-cause mortality. 

Patients with first(solid), second(dashed), third(dotted) and forth (dot dash) quantile of each level of 

Ln(metabolites/Cr) were subjected to these analyses.
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Table 3. Association of urine metabolites/creatinine with renal outcome, using backward stepwise 

multivariate Cox model. 

Ln(Metabolites/Cr)

Unadjusted Model 1 Model 2 Model 3

HR CI P value HR CI P value HR CI P value HR CI P value 

Glucose 1.345 1.22–1.483 <0.001 1.227 1.111–1.355 <0.001 1.299 1.155–1.460 <0.001 1.223 1.081–1.383 0.001 

Mannose 1.692 1.454–1.968 <0.001 1.445 1.225–1.705 <0.001 1.437 1.194–1.729 <0.001 1.338 1.088–1.645 0.006 

Xylose 0.501 0.366–0.686 <0.001

Myoinositol 2.129 1.711–2.648 <0.001 1.453 1.121–1.883 0.005 1.542 1.163–2.046 0.003 1.441 1.063–1.954 0.019 

Glycerol 1.489 1.188–1.866 0.001 1.524 1.193–1.948 0.001 1.445 1.117–1.868 0.005 1.519 1.124–2.053 0.007 

Lactate 1.406 1.201–1.647 <0.001 1.433 1.168–1.758 0.001 1.454 1.186–1.783 <0.001 1.326 1.070–1.642 0.010 

Pyruvate 1.15 0.954–1.387 0.142 1.520 1.232–1.876 <0.001 1.544 1.232–1.936 <0.001 1.338 1.073–1.669 0.010 

Citrate 0.668 0.575–0.776 <0.001

Oxoglutarate 1.039 0.849–1.272 0.708 1.332 1.067–1.664 0.011 1.507 1.187–1.914 0.001 1.326 1.047–1.678 0.019 

Succinate 1.062 0.87–1.295 0.556

Fumarate 1.396 1.166–1.672 <0.001 1.373 1.098–1.717 0.005 1.449 1.145–1.833 0.002 1.413 1.119–1.784 0.004 

Pyroglutamate 3.981 2.519–6.29 <0.001 2.817 1.723–4.604 <0.001 3.847 2.262–6.544 <0.001 3.229 1.707–6.107 <0.001

Acetone 1.13 0.918–1.391 0.249

Acetylcarnitine 1.083 0.88–1.334 0.452 1.364 1.075–1.731 0.010 1.368 1.039–1.801 0.026 

Isoleucine 1.888 1.553–2.295 <0.001 1.489 1.225–1.810 <0.001 1.474 1.191–1.824 <0.001 1.226 0.985–1.526 0.068 

Leucine 2.232 1.766–2.821 <0.001 1.631 1.297–2.050 <0.001 1.616 1.262–2.069 <0.001 1.427 1.091–1.865 0.009 

Valine 1.775 1.449–2.174 <0.001 1.419 1.171–1.719 <0.001 1.566 1.294–1.894 <0.001 1.276 1.021–1.595 0.032 

Creatine 0.791 0.628–0.997 0.047 1.322 0.999–1.750 0.051 
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Ln(Metabolites/Cr)

Unadjusted Model 1 Model 2 Model 3

HR CI P value HR CI P value HR CI P value HR CI P value 

Taurine 0.741 0.611–0.899 0.002

Threonine 1.379 1.15–1.653 0.001 1.241 1.038–1.483 0.018 1.241 1.001–1.539 0.049 

Carnitine 1.034 0.868–1.231 0.711 1.237 1.011–1.514 0.039 

Oxoisocaproate 1.599 1.131–2.261 0.008 2.668 1.795–3.965 <0.001 2.634 1.732–4.006 <0.001 2.063 1.337–3.184 0.001 

Choline 1.776 1.529–2.063 <0.001 1.330 1.097–1.612 0.004 1.235 0.999–1.526 0.051 1.211 0.982–1.495 0.074 

DMG 0.599 0.445–0.806 0.001

TMNO 1.318 1.098–1.581 0.003 1.207 1.009–1.444 0.039 1.276 1.044–1.558 0.017 

Betaine 0.945 0.737–1.213 0.659

Abbreviations: HR, hazard ratio; CI, confidence interval

Model 1: adjusted for age, sex, hypertension and eGFR.

Model 2: adjusted for model 1 variables, plus hemoglobin, albumin, AST, ALT, cholesterol and uric acid.

Model 3: adjusted for model 2 variables, plus spot urine protein-albumin ratio and hemoglobin A1c
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Table 4. Association of urine metabolites/creatinine with all-cause mortality, using backward 

stepwise multivariate Cox model. 

Ln(Metabolites/Cr)

Unadjusted Model 1 Model 2 Model 3

HR CI P value HR CI P value HR CI P value HR CI P value 

Glucose 1.256 1.110–1.422 <0.001 1.249 1.101–1.416 0.001 1.265 1.111–1.439 <0.001 1.248 1.090–1.429 0.001 

Mannose 1.502 1.232–1.831 <0.001 1.467 1.178–1.828 0.001 1.548 1.254–1.910 <0.001 1.510 1.214–1.879 <0.001

Xylose 1.086 0.776–1.52 0.631

Myo-inositol 1.730 1.315–2.276 <0.001 1.529 1.106–2.114 0.010 1.675 1.256–2.234 <0.001 1.573 1.164–2.126 0.003 

Glycerol 1.584 1.170–2.145 0.003 1.474 1.064–2.040 0.020 1.368 0.980–1.909 0.066 1.392 0.975–1.986 0.069 

Lactate 1.527 1.251–1.864 <0.001 1.433 1.154–1.780 0.001 1.343 1.073–1.682 0.010 1.348 1.068–1.701 0.012 

Pyruvate 1.144 0.904–1.448 0.262 1.246 0.994–1.562 0.057 

Citrate 0.886 0.728–1.080 0.231 1.277 0.992–1.643 0.058 1.256 0.972–1.623 0.081 

Oxoglutarate 1.068 0.830–1.375 0.609 1.277 0.993–1.642 0.057 1.361 1.053–1.758 0.019 1.245 0.966–1.605 0.091 

Succinate 1.125 0.889–1.424 0.327

Fumarate 1.294 1.028–1.629 0.028 1.282 1.009–1.629 0.042 1.303 1.020–1.666 0.034 1.239 0.966–1.591 0.092 

Pyroglutamate 2.705 1.558–4.696 <0.001 1.800 0.976–3.319 0.060 2.072 1.110–3.870 0.022 2.105 1.061–4.176 0.033 

Acetone 1.225 0.938–1.599 0.136

Acetylcarnitine 1.186 0.914–1.538 0.2

Isoleucine 1.387 1.096–1.754 0.006 1.480 1.162–1.886 0.001 1.441 1.135–1.829 0.003 1.395 1.085–1.793 0.009 

Leucine 1.567 1.195–2.057 0.001 1.626 1.220–2.166 0.001 1.710 1.305–2.241 <0.001 1.567 1.160–2.117 0.003 

Valine 1.520 1.190–1.940 0.001 1.560 1.225–1.987 <0.001 1.533 1.220–1.925 <0.001 1.496 1.167–1.919 0.001 

Creatine 0.819 0.606–1.106 0.193

Taurine 1.125 0.836–1.513 0.437
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Ln(Metabolites/Cr)

Unadjusted Model 1 Model 2 Model 3

HR CI P value HR CI P value HR CI P value HR CI P value 

Threonine 1.483 1.188–1.852 0.001 1.483 1.195–1.841 <0.001 1.445 1.164–1.794 0.001 1.405 1.123–1.757 0.003 

Carnitine 1.079 0.868–1.342 0.491

Oxoisocaproate 1.743 1.117–2.720 0.014 1.696 1.050–2.738 0.031

Choline 1.637 1.335–2.007 <0.001 1.629 1.304–2.035 <0.001 1.638 1.317–2.037 <0.001 1.624 1.279–2.061 <0.001

DMG 1.244 0.861–1.796 0.244 1.566 1.043–2.350 0.031 1.494 0.977–2.283 0.064 1.578 1.008–2.470 0.046 

TMNO 1.189 0.944–1.497 0.141

Betaine 1.387 0.989–1.944 0.058 1.428 0.978–2.084 0.065 

Abbreviations: HR, hazard ratio; CI, confidence interval

Model 1: adjusted for age, sex, hypertension and eGFR.

Model 2: adjusted for model 1 variables, plus hemoglobin, albumin, AST, ALT, cholesterol and uric acid.

Model 3: adjusted for model 2 variables, plus spot urine protein-albumin ratio and hemoglobin A1c
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3.4 ROC Analysis

I compared the serum creatinine concentration and UPCR 

with each urinary metabolite by receiver-operating 

characteristic (ROC) analysis to determine predictability for 

progression to ESRD. Choline, myo-inositol and citrate were 

the most predictive urine metabolites, although they were not 

superior to serum creatinine and UPCR alone (Table 5). To 

assess additive effect of each urinary metabolite to serum 

creatinine concentration and UPCR in prediction for ESRD 

progression, the net reclassification improvement (NRI) and 

integrated discrimination improvement (IDI) was used (Table 

6). Only myo-inositol improved prediction (NRI = 2.9%, P = 

0.03; IDI = 35.1%, P = 0.02).

The time-dependent ROC curve analyses for censored ESRD 

progression data were additionally applicate to three most 

predictive urine metabolites. In time-dependent ROC analysis, 

serum creatinine was the best predictive biomarker in the
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shorter follow-up period, and UPCR was the best predictive 

biomarker in longer follow-up period. Choline and myo-

inositol were more predictive than UPCR in the 12month 

ESRD progression prediction (Table 7, Figure 7). 
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Table 5. The area under the curve(AUC) of each urine 

metabolites/creatinine compared with serum creatinine and 

urine protein creatinine ratio

Ln(Metabolite/Cr) AUC (95% CI)

Serum creatinine 0.88 (0.836-0.923)

Urine protein creatine ratio 0.842 (0.786-0.897)

Choline 0.77 (0.708-0.832)

Myo-inositol 0.758 (0.697-0.818)

Citrate 0.732 (0.668-0.796)

Mannose 0.712 (0.645-0.779)

Leucine 0.697 (0.628-0.766)

Glucose 0.693 (0.624-0.762)

Xylose 0.683 (0.612-0.753)

Isoleucine 0.659 (0.586-0.732)

Lactate 0.655 (0.585-0.725)

Pyroglutamate 0.655 (0.585-0.725)

Valine 0.647 (0.573-0.721)

Taurine 0.634 (0.562-0.706)

Fumarate 0.632 (0.561-0.703)

TMNO 0.626 (0.554-0.698)

Creatine 0.62 (0.548-0.692)

Glycerol 0.616 (0.543-0.688)

DMG 0.616 (0.544-0.689)

Oxoisocaproate 0.594 (0.521-0.667)

Threonine 0.577 (0.501-0.653)
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Ln(Metabolite/Cr) AUC (95% CI)

Betaine 0.527 (0.453-0.601)

Acetone 0.523 (0.448-0.597)

Carnitine 0.504 (0.43-0.579)

Acetylcarnitine 0.499 (0.424-0.574)

Oxoglutarate 0.498 (0.423-0.573)

Succinate 0.485 (0.409-0.56)

Pyruvate 0.472 (0.397-0.546)



47

Table 6. Additive effect of urinary metabolites to predict ESRD progression, analyzed by net 

reclassification improvement (NRI) and integrated discrimination improvement (IDI)

DeLong test NRI IDI

AUC ( 95% CI ) P value 95% CI P value 95% CI

Creatinine + UPCR 0.905 (0.865-0.945) Reference Reference Reference

Creatinine + UPCR + Choline 0.904 (0.864-0.945) 0.437 0.318 1.2% (-1.6%, 4.7%) 0.229 24.6% (-67.8%, 54.7%)

Creatinine + UPCR + Myoinositol 0.904 (0.864-0.945) 0.430 0.03 2.9% (0.1%, 8.8%) 0.02 35.1% (5.0%, 51.2%)

Creatinine + UPCR + Citrate 0.911 (0.873-0.949) 0.436 0.627 0.1% (-1.3%, 2.7%) 0.159 10.0% (-11.3%, 25.2%)

Creatinine +UPCR+ 3 metabolite 

(Choline + Myoinositol + Citrate)

0.888 (0.847-9.300) 0.264 0.03 3.6% (0.0%, 9.2%) 0.02 25.2% (3.4%, 44.1%)
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Table 7. Time dependent receiver operating characteristics results of most predictive urinary metabolites 

on simple receiver operating characteristics

AUC (95% CI) Serum creatinine urine PCR Choline Myo-inositol Citrate

12 month 0.939 (0.901-0.978) 0.821 (0.759-0.883) 0.834 (0.774-0.894) 0.831 (0.77-0.893) 0.667 (0.589-0.746)

24 month 0.924 (0.884-0.964) 0.839 (0.777-0.901) 0.775 (0.701-0.849) 0.798 (0.727-0.868) 0.657 (0.577-0.737)

48 month 0.867 (0.808-0.927) 0.87 (0.808-0.932) 0.741 (0.66-0.823) 0.727 (0.648-0.807) 0.719 (0.637-0.800)

Total 0.812 (0.697-0.928) 0.934 (0.875-0.993) 0.736 (0.613-0.859) 0.638 (0.451-0.824) 0.748 (0.550-0.946)
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Figure 7. Time-dependent ROC curve of most predictive urinary metabolites compared with serum 

creatinine concentration and UPCR 
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Discussion

Given the innovative development, omics technologies are 

now widely used to identify biomarkers and mechanisms of 

disease (19). The metabolomics and proteomics approaches 

has been actively used in CKD and have recently been studied 

in accordance with the cause as the underlying mechanism 

differ (5; 20). This study, which involved a large prospective 

DKD cohort in the Korean population, suggests the predictive 

value of urinary myo-inositol concentration in ESRD 

progression by a targeted NMR-based metabolomics

As DKD is a leading cause of ESRD, some previous human 

and animal studies have been conducted and reported that 

mitochondrial function is dysregulated and bioenergy 

metabolism is reduced in DKD (5; 13; 21-24). However, the 

significant metabolites reported in each study were different, 

and there were no specific biomarkers identified. To identify 
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them, I conducted targeted metabolomics based on previous 

studies. By including all stages of DKD patients and controls, 

it was able to investigate the trends of each metabolite 

according to ESRD progression. I also analyzed the 

association between each metabolites and long term outcome 

(ESRD progression, all-cause mortality and composite 

outcome). Based on the multidisciplinary analysis, myo-

inositol was found to be the most important metabolite.

Myo-inositol, the most stable and dominant mesocompound 

of inositol, is defined as sugar alcohol and was previously 

designated as vitamin B8. In the form of inositol derivatives, 

inositol triphosphates (IP3), phosphatidylinositol phosphate 

lipids (PIP2/PIP3) and inositol glycan, inositol composes the 

eukaryotic cell membrane and works as a secondary 

messenger in the insulin signaling cascade and insulin 

resistance (25-27). Furthermore, myo-inositol is associated 

with the kidney. 80% of myo-inositol is synthesized in the 
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kidney, and the kidney is the sole organ for myo-inositol 

catabolism by myo-inositol oxygenase (MIOX) which is a 

renal tubular specific enzyme (27; 28). Some studies reported 

intracellular depletion of myo-inositol in DM patients and 

excessive urinary myo-inositol excretion in human and animal 

studies (29-31). A cell study suggested an association of 

MIOX overexpression with renal tubular injury.

As the myo-inositol thought to have insulin-sensitizing 

effect, myo-inositol supplementation is considered to be 

putative treatment for PCOS (32; 33). Because of the 

limitation choice of oral hypoglycemic, many studies 

investigate the dietary supplementation with myo-inositol in 

gestational diabetes mellitus (GDM)(34; 35). Furthermore, an 

in vitro and an in vivo study showed a benefit of myo-inositol 

supplementation on nephropathy (36; 37). In accordance with 

the results of this study, myo-inositol may have effects of 

glycemic control and renoprotection in DKD patients.
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Although this results are informative, this study has some 

limitations. First, even though potential precedent mechanisms 

are discussed above, we need more detailed mechanical and 

experimental study. Second, since I obtained only one test per 

patient, demonstrating the differences between individuals 

over time may be difficult. In conclusion, urinary myo-inositol 

concentration can predict ESRD progression in DKD.
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요약 (국문초록)

당뇨성 신장 질환은 만성 신장 질환과 말기 신장 질환의 주요 원인이

다. 대사체학은 세포 대사를 분석하는 학문으로써, 세포 대사의 변화를

토대로 새로운 치료법을 제시할 수 있을 것이란 기대로 만성 신장 질환

환자를 대상으로 한 연구가 증가하고 있다. 당뇨성 신장 질환 환자에서

대사체학적 분석이 과거 수차례 시도되었으나 아직 명확한 결론이 나지

않았다. 이에 당뇨성 신병증 환자의 소변에서 800 HMz NMR 기법의 표

적 대사체학을 시행, 표적 대사체와 당뇨성 말기 신장 질환 진행 간의

연관성을 분석하였다.

당뇨성 신장 질환 제1기부터 5기까지 총 208명의 환자와 신장 질환

이 없는 건강한 대조군 26명 소변으로 전향적으로 모아 분석하였다. 우

선, 소변에서 과거 연구를 통해 알려진 26개의 대사체를 측정하여 각

대사체의 측정값과 대사체 측정 시기에 시행한 사구체 여과율 그리고 소

변 단백 크레아티닌 비의 연관성을 평가하였다. 각 대사체의 측정값과

말기 신장 질환 이행 및 사망과의 연관성을 분석하기 위해 콕스 모델을

사용하였다. 또한, 대사체를 추가로 고려하였을 때 말기 신장 질환 이행

예측력이 개선되는지 평가하기 위해 C 통계량을 이용하였다. 
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전체 환자에서 총 103명(44.0%)이 말기 신장 질환으로 진행하였으며

65명(27.8%)이 사망하였다. 대조군과 비교하였을 때 당뇨성 신병증 환

자에서 9개의 대사체 (포도당, 만노오스, 마이오-이노지톨, 글리세롤, 

락테이트, 푸마레이트, 크레이틴, 타우린 및 콜린)의 중간값이 신장 질환

의 정도에 따른 경향성을 보였다. 선형 회귀 분석에서 마이오-이노지톨

이 말기 신장 질환 진행 예측의 주요 인자인 사구체 여과율과 관련성이

가장 높았다. 

소변 대사체와 말기 신장 질환 이행 및 사망 간의 연관성을 기본 공변

량을 보정하여 콕스 비례 위험 모델로 분석하였다. 4가지 대사체 (마이

오-이노지톨, 글라이세롤, 푸마레이트, 옥소 이소 카프로에이트)가 말기

신장 질환 이행 예측력이 있었으며, 이중 마이오-이노지톨만이 유의하

게 사망을 예측하였다. C 통계에서도 마이오-이노지톨만이 말기 신장

질환 예측력을 높였다. (NRI = 2.9%, P = 0.03; IDI = 35.1%, p=0.02).

이 연구는 과거 비타민 B8으로 알려진 마이오-이노지톨이 당뇨성 환

자에서 말기 신장 질환으로 진행할 위험을 예측하는 데 도움이 될 수 있

음을 제시한다. 이를 기반으로 인슐린의 세포 내 이차 전달 물질인 마이

오-이노지톨이 당뇨성 신질환과 기전적 연관성이 있을지 추가 기전 연

구가 필요하다. 
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