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Abstract 

 

 
Unconstrained Sleep Monitoring and 

Modulation using Deep Neural Networks 

and Closed-Loop Stimulation 

 

 
Sang Ho Choi 

Interdisciplinary Program in Bioengineering 

The Graduate School 

Seoul National University 

 

Sleep is a natural state of our mind and body that plays an essential role in 

maintaining our health and enhancing our memory. An effective approach to monitor 

sleep and promote sleep quality would improve our health and well-being. Though 

previous studies proposed several methods to achieve this, they are obtrusive and 

impractical in the real world and are inadequate for long-term use; hence, a new 

approach is essential. This thesis proposes deep neural networks based sleep stage 

classification model utilizing an unconstrained ballistocardiography (BCG) 
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waveform. In addition, it suggests a novel unobtrusive sleep stimulation system and 

evaluates its effects on sleep and memory. 

Sleep stage scoring is the first step in sleep monitoring. Polysomnography (PSG) 

is the gold standard method for assessing sleep; however, it is obtrusive and difficult 

to use for long-term sleep monitoring. To overcome these limitations, a LSTM model, 

for automatic sleep stage scoring using BCG signals measured without constraints is 

proposed. The BCG signals of 60 participants were recorded using a polyvinylidene 

fluoride sensor during PSG. Of the 60 recordings, 30 were used for training, 10 for 

validation, and 20 for testing. Sixteen parameters including movement, respiration 

and heart rate variability (HRV) were extracted from the BCG signals and then 

normalized. From the LSTM architecture, four sleep stage classification 

performances were evaluated for a test dataset, and the results were compared with 

conventional machine learning results. An epoch-by-epoch (30 s) analysis of the four 

sleep stages showed an average accuracy of 0.74 and a Cohenôs kappa coefficient of 

0.55. When compared with other machine learning methods and previous studies, 

the proposed LSTM model achieved the highest classification performance. The use 

of LSTM networks with BCG signals has the potential to enable automatic sleep 

stage scoring and can be used for long-term sleep monitoring at home. 

To enhance sleep quality and promote health through sleep, a sleep modulation 

method that extends beyond passive sleep monitoring is required. Although various 

stimulation systems for enhancing sleep exist, they are constrained and impractical 

for long-term use. This thesis overcomes the limitations of other methods by 

suggesting a new stimulation method and examining the effects of stimulation on the 

heart rhythm and sleep. The effects of open-loop vibration stimulation during sleep 
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were assessed by the sleep macrostructure and HRV analysis. Although the sleep 

onset latency parameter decreased significantly during night sleep, had no effect on 

the autonomic nervous system (ANS) stabilization. To increase the interaction 

between the heart rhythm and the vibration stimulus, a novel closed-loop stimulation 

system was developed and confirmed its feasibility of application for sleep. Ten 

volunteers participated in the evaluation experiment, in which they took a nap for 

approximately 90 min. The experiment comprised one baseline and three stimulation 

conditions. From the HRV and heart rate density analysis, the closed-loop 

stimulation method influenced the heart rhythm and stabilized the ANS. A small 

detuning percent modulated the heart rhythm more effectively. When comparing the 

effects of sleep stimulation methods such as auditory, current, and vibration, the 

proposed closed-loop stimulation system was most effective in modulating the heart 

rhythm. In HRV analysis, only the closed-loop stimulation method stabilized the 

ANS. Therefore, this system could be an innovative method for applying external 

stimulation during sleep. 

To examine the effects of an external periodic stimulus on sleep and memory, 

closed-loop vibration stimulation was induced for the whole nightôs sleep. Twelve 

volunteers participated in the experiment and each underwent one adaptation night 

and two experimental conditions such as a stimulation condition (STIM) and a no 

stimulation condition (SHAM). The effect of the developed system on memory was 

assessed using a word pair associated learning task. The HRV analysis showed a 

significant increase in the parasympathetic activity, and the sympathovagal balance 

significantly decreased under the STIM condition during the N3 sleep stage. The 

synchronization ratio between the heartbeat and the stimulus significantly increased 



 

 iv 

under the STIM condition in the N3 stage. The electroencephalogram (EEG) spectral 

analysis showed an enhanced EEG spectral power of slow-wave activity and theta 

frequency bands, during the STIM condition in the N3 stage. Memory retention 

significantly increased under the STIM condition compared with the SHAM 

condition. These findings suggest that closed-loop stimulation improves the N3 

stageôs quality and memory retention. This method has a positive effect on the ANS 

and neural function during sleep. 

The proposed unconstrained sleep stage classification method would contribute 

to monitoring sleep long-term. Furthermore, the proposed new stimulation method 

would enhance sleep quality and has the potential to enhance health through sleep 

modulation. The approaches are expected to open a new strategy for monitoring and 

enhancing sleep in a convenient and safe manner. 
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1 
Introduction  

 

 

 

1.1. Sleep Functions and Ar chitecture 

Humans sleep almost one-third of their lifetimes. Sleep plays an important role 

in our lives in terms of health and well-being. The primary role of sleep is to save 

energy, restore physical and cognitive performance, and improve mood [1]ï[6]. 

Sleep enhances creativity, including cognitive flexibility [7], [8], and plays a major 

role in promoting brain plasticity, synaptic reconstruction, and learning [3], [9]ï[11]. 

In contrast, sleep deprivation and sleep disorders negatively influence mood [12], 

cognitive performance, and motor function [13], [14] and increase the risk of 

cardiovascular diseases [15]ï[17] and obesity [18], [19]. In addition, a lack of sleep 

can interfere with work, family, and social life. Thus, monitoring sleep and 

enhancing its quality are significant for a healthy life.  

Wakefulness and sleep are associated with physiological states change. Normal 

human sleep stage scoring rules were first defined by Rechtschaffen & Kales (R&K) 

in 1968 [20] and adapted by the American Academy of Sleep Medicine (AASM) 

[21]. Sleep stages are scored by different characteristics of electroencephalogram 
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(EEG), electrooculogram (EOG), and electromyogram (EMG) and sleep comprises 

two states: rapid eye movement (REM) sleep and non-rapid eye movement (NREM) 

sleep. NREM and REM sleep alternate through the night at about 90-minutes 

(approximately 4-6 NREM-REM cycles during night sleep). According to the 

AASM manual, NREM sleep is further divided into N1, N2, and N3 sleep stages 

(Figure 1-1(a)). N1 sleep stage (2-5% of sleep time) is the lightest sleep stage and is 

a transition state from wakefulness to sleep. It is defined by attenuated EEG alpha 

rhythm (8ï13 Hz) and the appearance of low-amplitude mixed-frequency EEG 

activity. N2 sleep stage (45-55% of sleep time) is characterized by the appearance of 

sleep spindle and K-complex. Sleep spindle is a train of distinct sinusoidal waves 

with frequency 11ï16 Hz lasting at least 0.5 s. K-complex is a negative sharp wave 

followed by a positive wave lasting more than 0.5 s. N1 and N2 sleep stages are 

called as light sleep. N3 sleep stage (13-23% of sleep time) is the deepest sleep stage 

and is called deep sleep or slow wave sleep (SWS). It is defined by high amplitude 

slow wave activity (SWA, 0.5ï4 Hz) accounting for more than 20% of an epoch (30 

s). REM sleep stage (20-25% of sleep time) is associated with REM in the EOG, 

low-amplitude and mixed-frequency EEG, and low chin EMG tone. The distribution 

of each sleep stage across a sleep period is called as sleep architecture and it is 

visualized in the form of a hypnogram (Figure 1-1(b)). 
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Figure 1-1. (a) EEG, EOG, and EMG signals during wake and each sleep stage. a: Sleep 

spindle, b: K-complex, c: Slow oscillation, (b) Hypnogram with sleep stages (W: wakefulness, 

REM: REM sleep, N1-N3: NREM sleep stages). (Source: [22]) 
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1.2. Sleep Monitoring 

Polysomnography (PSG) is the gold standard method to determine sleep stages. 

PSG records multichannel biomedical signals such as EEG, EOG, EMG, 

electrocardiogram (ECG), and other signals. According to the manual of the AASM 

[21], sleep experts visually score sleep stages every 30 s into wake, NREM stages 

1ï3, and REM sleep. Although PSG has been used to assess sleep, there are many 

limitations: (1) As shown in Figure 1-2, numerous sensors are attached to the body 

and it is uncomfortable and thus, long-term monitoring is difficult. Further, the 

inconvenience caused by the sensors may disturb normal sleep. (2) A sleep expert 

who can conduct PSG based on AASM manual is necessary; in addition, conducting 

PSG and the sleep stage scoring process are labor-intensive and time-consuming 

tasks. (3) Because sleep experts score sleep stages visually, it is subjective and may 

have human errors. Several studies have reported that manual scoring of sleep stages 

by sleep experts exhibit inter-rater variability [23]ï[25].  

To overcome these limitations, several smart devices have been commercialized 

to monitor sleep with the usual home environments [26]. Movement-based sleep 

monitoring, such as Actigraphy (ACT) [11], [27], mobile, and wearable devices 

[28]ï[30] has become the easiest and most used method. In addition, some methods 

involve the installation of devices in sleeping environments without attaching 

sensors to the user, for example, bed ACT [31], the use of polyvinylidence fluoride 

(PVDF) film sensors [32], Doppler radar [33], [34], and near-infrared videos [35], 

[36].  
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Figure 1-2. Sensors for standard polysomnography.  

(Source: National Heart Lung and Blood Institute) 

 

Furthermore, many studies have attempted to classify sleep stages 

automatically using the minimum number of signals [26]. In a previous study [37], 

[38], a single channel EEG measured during PSG was used to score sleep stages. 

Wrist activity was used to develop and evaluate automatic sleep scoring methods 

[27], [39]. The variation of autonomic nervous system (ANS) has been studied, and 

it was found that it is associated with sleep stages [40]ï[44]. With the progression of 

the sleep stage from N1 to N3, sympathetic activity decreases and parasympathetic 

activity increases. In contrast, during REM sleep, sympathetic activity is more 

dominant and becomes unstable like in wakefulness. From these characteristics, 

heart rate variability (HRV) parameters that represent ANS activity have been 

considered one of the most useful features for sleep staging. The HRV parameters 

derived from ECG signals were used for automatic sleep scoring [45]ï[48]. 
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Peripheral arterial tonometry (PAT) signal, which indicates peripheral 

vasoconstriction, was recorded with an ambulatory wrist-worn device and used to 

estimate sleep stages [49]ï[51]. Photoplethysmogram (PPG)-based sleep stage 

classification was also studied [52]. Although these studies developed an automatic 

sleep stage scoring method using the minimum number of signals, it is still 

inconvenient for the user to attach sensors during sleep, thereby decreasing their 

applicability for long-term monitoring. 

Recently, deep learning [53], a branch of machine learning methods that 

comprises multiple layers to learn and extract representation features from input data, 

has been used in object detection, speech recognition, visual recognition, and many 

other fields. Deep learning has brought breakthroughs in many fields, and it has also 

been applied to automatic sleep stage classification studies. Phan et al. [54] 

introduced a joint classification and prediction multi-task convolutional neural 

network (CNN) framework for automatic sleep stage classification using EEG, EOG, 

and EMG signals. Stephansen et al. [55] used a large dataset comprising 3,000 

normal and abnormal sleep recordings and proposed a CNN+Long Short-Term 

Memory (LSTM) model with EEG, EOG, and EMG signals for automatic sleep stage 

scoring. These studies achieved a high sleep stage classification performance; 

however, they required multiple signal modalities. To minimize the number of 

signals used, several studies have developed a deep learning-based sleep stage 

estimation model using only one channel EEG [37], [56], [57]. Although the sleep 

stage can be estimated by applying a deep learning method from a one-channel EEG 

signal, the sensor should be attached to the body to measure the EEG signal, which 

is inconvenient for the user and impractical for long-term sleep monitoring.  



 

 7 

1.3. Sleep Modulation 

Several smart technologies have been developed to monitor sleep in the typical 

home environment [26]. However, although such methods provide the user with 

sleep information, a method that extends beyond the passive monitoring of sleep is 

required to enhance sleep quality and promote health levels through sleep. To 

enhance sleep, soothing sounds or music and feet warming are commonly used 

among the general population [58], [59]. In addition, rocking movements appear to 

help people relax or fall asleep. Swinging a baby in a hammock or physical rocking 

movements can be helpful in inducing sleep and appear to be effective for adults as 

well [60]ï[63].  

Several methods have been developed to increase sleep efficacy by enhancing 

the SWA. SWA, which represents the EEG spectral power in the 0.5ï4 Hz band 

during NREM sleep, is an important contributor to memory consolidation and brain 

restoration [64]. Intermittent transcranial direct-current stimulation increases SWS 

and the <1 Hz slow oscillation during stimulation-free intervals [65]. Another study 

demonstrated that slow waves can be triggered in sleeping subjects with transcranial 

magnetic stimulation [9]. An auditory stimulation method has been shown to 

enhance slow oscillation [66]. Recently, many studies that use these methods to 

enhance brain oscillations and improve sleep and memory consolidation have been 

conducted [10], [67]ï[70]. However, although these methods affect sleep, their 

safety is questionable, and they are considered impractical for long-term use. Thus, 

other stimulation systems for enhancing sleep quality are needed.  

In many natural phenomena, oscillating objects with their own rhythm interact 

with the environment [71]; e.g., thousands of fireflies blinking on and off in unison. 
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Fireflies interact with other insects via light pulses, and each firefly is affected by 

the light created by the entire population [72]. A cricketôs chirps are influenced by 

the chirps of its neighbors. A cricket responds to the preceding chirp and achieves 

synchrony by either lengthening or shortening its chirp [73]. Moreover, interactions 

are also present in human physiological systems; there are interactions in human 

internal subsystems such as respiratory sinus arrhythmia (RSA), which refers to the 

periodic variation in the heart rate (HR) according to the respiratory cycle [74]. In 

addition, the cardiac system interacts with brain activity [75], [76] and locomotor 

rhythms [77], [78].  

Furthermore, the internal physiological system is influenced by environmental 

conditions and change. The circadian rhythm represents the behavior of humans by 

a 24 h cycle of sleep and wakefulness. This cycle is entrained by the daily cycle of 

light and dark [79], [80]. McClintock reported that social interaction influences some 

aspects of the menstrual cycle [81]. Van Leeuwen et al. [82] verified phase 

synchronization, which implies the existence of phase locking between two weakly 

interacting systems, such as between the fetal and the maternal HRs, even though 

they are ANS with separate blood circulation. They stated that maternal-fetal heart 

coupling is mediated by the acoustic stimulation of maternal heartbeat and vascular 

pulsations, which are recognized by the fetal auditory system. These stimuli can act 

on external forced rhythms to accompany the heartbeat of the fetus with that of the 

mother. Grimaldi et al. [83] were the first to prove that acoustic enhancement of 

SWA during sleep enhances parasympathetic activity. They stated that acoustic 

stimulation strengthened the coupling between cortical and cardiac oscillations, 

reflected in the concomitant changes in SWA and HRV. A study, which assessed the 
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interaction between an internal physiological system and external forces, showed 

that the HR can be entrained through a weak external noninvasive force in the form 

of visual and auditory stimuli [84]. Yoon et al. [85] found experimental evidence that 

couplesô cardiac rhythms influence each other during co-sleeping. This finding may 

be attributed to weak cardiac vibrations that are transmitted from one individual to 

another through a mechanical bed connection. These studies showed that the intrinsic 

physiological rhythm could be entrained and interact with the periodic rhythm of 

other systems in at least one neural, mechanical, or behavioral connection.  

 

1.4. Motivation and Objectives 

For long-term monitoring of sleep in a residential environment, it is essential 

that physiological signals are measured in an unconstrained and unobtrusive manner 

during sleep. Ballistocardiography (BCG) is an unobtrusive method measuring the 

recoil force of the body when subtle body movement generated by the heart ejects 

blood into the arteries [86]. Because BCG is a noninvasive method, it can be 

measured without disturbing human sleep for an extended period. Furthermore, 

LSTM networks that have advantages of being able to learn long-term dependencies 

were employed to automatically learn temporally sequential patterns. The sleep 

expert classifies the current sleep epoch from a sequence of previous epoch 

information, and therefore, the LSTM is a suitable deep learning model that it could 

automatically learn a conventional scoring strategy in sleep clinics. In this thesis, the 

sleep stages classification LSTM model was developed using unconstrainedly 

measured BCG signal during sleep, and the performance was compared with other 

machine learning methods and previous works. 



 

 10 

To enhance sleep quality and promote health levels through sleep, there needs 

a sleep modulation method that extends beyond passive sleep monitoring. Human 

intrinsic physiological rhythm could be entrained and interact with the periodic 

rhythm of other systems in at least one neural, mechanical, or behavioral connection. 

From this point of view, an external weak vibration stimulus could influence heart 

rhythm and stabilize the ANS during sleep. Furthermore, if detuning, which 

represents the frequency difference between an oscillator and an external force, is 

small, even a very small force can entrain the oscillator [71]. Thus, it was 

hypothesized that a smaller amount of detuning is appropriate for modulating heart 

rhythm. In this thesis, a novel closed-loop vibration stimulation system, which 

stimuli were induced by an unconstrained manner, was developed and investigated 

the effect of stimulation on heart rhythm during naps. In addition, effects on heart 

rhythm according to stimulation methods were compared. Then the developed 

stimulation system was applied during night sleep with the PSG test and analyzed 

sleep modulation effects. 

 

1.5. Outline of the Thesis 

This thesis consists of following chapters. 

· Chapter 2 presents the deep neural networks approach for unconstrained 

sleep monitoring using BCG signals and discusses the potential 

applicability of the model compared with other methods. 

· Chapter 3 describes the effects of stimulation methods on heart rhythm 

during sleep. Specifically, this chapter presents the closed-loop stimulation 

system for unconstrained sleep modulation, assesses the effects on heart 
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rhythm during naps, and discusses its applicability to sleep. 

· Chapter 4 deals with the effects of the developed stimulation system on 

night sleep in macrostructure and microstructure perspective. In addition, 

the effects of stimulation on memory are assessed. 

· Chapter 5 summarizes the conclusions of the preceding chapters.  

 

This thesis is based on following scientific articles that have been published 

(chapter 3), submitted for publication (chapter 2), and is in the final preparation steps 

for manuscript submission (chapter 4):  

 

· Chapter 2 

S. H. Choi, et al., ñLong Short-Term Memory Networks for Unconstrained 

Sleep Stage Classification by Ballistocardiography,ò IEEE JBHI, under 

review. 

· Chapter 3 

S. H. Choi, et al., ñEffect of Closed-Loop Vibration Stimulation on Heart 

Rhythm during Naps,ò Sensors, 19(19), 4136, 2019. 

· Chapter 4 

S. H. Choi, et al., ñClosed-Loop Vibration Stimulation during Sleep 

Improves Declarative Memory,ò in preparation. 

 

The author of this thesis contributed to the above studies as follows: conception 

and design of the experiments; developed the device; data acquisition, analysis, and 

interpretations; and wrote and reviewed the manuscript.
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2 
Deep Neural Networks for 

Unconstrained Sleep Stage 

Classification by Ballistocardiography 
 

 

 

An unconstrained sleep monitoring method is investigated in this chapter. 

Based on unconstrainedly measured BCG signal, LSTM network model is proposed 

for classifying sleep stage automatically. An optimal LSTM architecture that 

produces the best performance is searched. Sleep stage classification performance of 

the LSTM model is compared with other machine learning methods. In addition, the 

classification performance is also evaluated with previous works and the application 

will be discussed.  

 

2.1. Methods 

2.1.1. PSG Data and BCG Acquisition 

The Institutional Review Board of Seoul National University Hospital approved 

the retrospective study (IRB No. C-1906-131-1042). The dataset consists of PSG 

recordings and BCG signals recorded from participants overnight at the Center for 
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Sleep and Chronobiology, Seoul National University Hospital. Participants who 

were 18ï60 years of age and had no symptoms related to sleep were included. The 

exclusion criteria for this study were as follows: people with (1) a history of severe 

physical or psychological illnesses, (2) unstable vital signs, (3) arrhythmia, (4) sleep 

disorders (e.g., periodic limb movement disorder, restless legs syndrome, 

sleepwalking, sleep terrors, obstructive sleep apnea, and REM sleep behavior 

disorders). Sixty PSG recordings that satisfied the inclusion and exclusion criteria 

were used in this study. Table 2-1 summarizes the sleep-related variables and 

demographics of the participants.  

Overnight PSG data were recorded using a standard PSG routine [21]: EEG 

electrodes at positions F3, F4, C3, C4, O1, and O2, and EMG from the chin and 

bilateral tibialis anterior muscles, ECG at lead , bilateral EOGs, oronasal airflow, 

nasal pressure, thoracic and abdominal respiration, and blood oxygen saturation. The 

sleep stages were scored by sleep technologists and verified by a sleep clinician 

according to the 2012 AASM manual [21]. The scored sleep stages were used as 

reference classes when training LSTM networks. 

A very thin and flexible PVDF was used as a sensor for measuring several 

physiological signals such as respiration [87], [88], HR [89], and BCG [90], [91]. 

The BCG signals were measured using the PVDF sensor at a 250-Hz sampling rate. 

To avoid direct contact with the body of the participant, the PVDF sensor was 

installed between the mattress and the mattress cover. Furthermore, the sensor was 

positioned near the heart of the participant when he/she was lying on the bed. The 

PVDF sensor was thin enough for the BCG signals to be measured from the 

participant in an unconstrained and unobtrusive manner. 
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Table 2-1. Summary of sleep-related variables and demographics 

Variables Mean ± S.D. 

Gender (male/female) 34/26 

Age (years) 29.2 ± 9.7 

BMI (kg/m2) 22.0 ± 3.6 

AHI (events/h) 2.2 ± 3.6 

Total recording time (min) 450.3 ± 39.0 

Total sleep time (min) 408.4 ± 47.9 

Sleep efficiency (%) 90.7 ± 6.9 

Stage wake (%) 9.3 ± 6.9 

Stage N1 & N2 (%) 62.6 ± 9.4 

Stage N3 (%) 9.0 ± 7.0 

Stage REM (%) 19.1 ± 5.9 

S.D., standard deviation; BMI, body mass index; N, non-rapid eye movement; REM, rapid 

eye movement; AHI, apnea hypopnea index. 

 

2.1.2. Parameter Extraction 

Many studies [40]ï[43] have confirmed that there is a high correlation between 

sleep stage variation and ANS activation. As sleep deepens from wakefulness to deep 

sleep stage, heart rate and sympathetic tone are significantly decreased and 

parasympathetic tone is significantly increased. While under REM sleep, these 

values return to levels similar to that of the wake stage. Owing to the ANS effect, 

respiratory rhythm is characterized by a slower and more regular rhythm as the sleep 

becomes deeper during NREM sleep. Wakefulness and REM sleep are also 

characterized with disturbed respiratory dynamics. Furthermore, physical movement 

is one of the dominant parameters to separate wakefulness and sleep. 

Based on above physiological characteristics during wakefulness and sleep, 

sixteen parameters were extracted from the BCG signal. The descriptions of the 

extracted parameters are listed in Table 2-2. A movement parameter (mov) was 

obtained by processing the BCG signals with high-pass (2 Hz) and low-pass (15 Hz) 

fifth -order IIR Butterworth filters. Then, the square root of the average of the squared 

data from the absolute value of the filtered signal is extracted every 30 s. To extract 



 

 16 

respiration related parameters, the RSA signal was extracted by filtering the BCG 

signal with a high-pass (0.15 Hz) and low-pass (0.4 Hz) fifth-order IIR Butterworth 

filter. Then, the respiration frequency (fRSA) parameter was obtained from the RSA 

signal using an autocorrelation method [92] at intervals of 30 s.  

J-peak was detected as follows. First, the BCG signal was filtered within a range 

of 2ï15 Hz (5th-order Butterworth filter, IIR) to extract clear heartbeat derived 

signals. Subsequently, the absolute values of the filtered signals were acquired to 

obtain positive peaks. Then, a moving average filter was applied to smooth out the 

peaks and a 0.5 Hz high-pass filter was applied to remove baseline drift. Finally, J-

peak was detected using the findpeaks function of MATLAB, which finds the values 

and locations of local maxima in signal data. After detecting J-peak, post-processing 

was conducted to remove artifacts. When the position of the peak in the 

autocorrelation was in the predetermined range of 0.5ï1.7 s lag for HR, this position 

was considered normal. If there was no peak in the range, it was determined to 

comprise artifacts. The J-peak positions in the artifacts and movement sections were 

considered as errors and canceled. The mean heart rate (mHR) was calculated every 

30 s from the BCG consecutive J-peak intervals (JJI), and the frequency-domain 

HRV parameters were calculated every 5 min. The JJI were interpolated with a 

shape-preserving precise cubic method. Then, the spectral power of JJI in the low-

frequency range (0.04ï0.15 Hz) and high-frequency range (0.15ï0.4 Hz) were 

extracted using a fast Fourier transform (FFT) method. The standard deviation of 

fRSA (tfRSA) and mHR (tmHR) were calculated every 10 epochs with a sliding 

window of 1 epoch. To attenuate the noise and reflect a long-term trend, a Savitzkyï

Golay finite impulse response (FIR) smoothing filter [93] was applied with a 
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polynomial order of 2 and window size of 31 epochs; then smoothed parameters 

were extracted as listed in Table 2-2. After extracting 16 parameters, each parameter 

was normalized using the z-score method which subtracts their average and divides 

it by their standard deviation (SD) to reduce inter-participant variability. 
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2.1.3. LSTM Networks Architecture  

Recurrent neural networks (RNNs) are networks with loop-chained structure, 

which consider temporal series data. RNNs have demonstrated better performance 

than other machine learning methods for processing sequential inputs such as speech, 

language, and time series bio-signals [53]. In particular, most successful RNNs are 

LSTM networks that use a special hidden unit, which is the so-called memory cell. 

LSTM networks are designed to prevent the vanishing gradient problem that make 

RNNs difficult to learn to connect information as the length of dependency increases. 

The core idea behind an LSTM is that the cell state removes or adds information 

through a forget gate (Ὢ), an input gate (Ὥ), and an output gate (έ) (see Figure 2-

1(a)). The following equations represent each process where „ȟὡȟὼȟὦȟὅȟὬ are the 

sigmoid, weight matrices, input, bias, cell state, and hidden state, respectively. 

 

Ὢ  „ὡ ϽὬ ȟὼ  ὦ                 (2-1) 

Ὥ  „ὡ ϽὬ ȟὼ  ὦ                  (2-2) 

έ  „ὡ ϽὬ ȟὼ  ὦ                 (2-3) 

ὅ  ὸὥὲὬὡ ϽὬ ȟὼ  ὦ              (2-4) 

ὅ  Ὢ ὅz  Ὥ ὅz                    (2-5) 

Ὤ  ÔÁÎÈ ὅ έz                       (2-6) 

 

Figure 2(b) represents the sleep stage classification process and the selected 

LSTM architecture comprising two bi-directional LSTM layers, and one fully 

connected (FC) layer. The LSTM layer comprised 512 units per layer, 16 input 

dimensions, and 9 sequence lengths that imply 16 extracted parameters and 9 epochs 
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(270 s) used as an input data segment. From the LSTM layer, 512 output units are 

connected to a FC layer which classifies the four outputs (WAKE, LIGHT SLEEP: 

N1+N2, DEEP SLEEP: N3, and REM SLEEP).  

Several LSTM structures were trained and validated to optimize 

hyperparameters in predetermined ranges. An optimal combination of 

hyperparmeters that produced the best performance in the validation dataset was 

searched where the candidate of the hyperparameters were as follows: number of 

LSTM layers {1, 2, 3}; number of LSTM units {16, 32, 64, 128, 256, 512}; lengths 

of input sequence {1ï15}; and type of LSTM structure {unidirectional, 

bidirectional}. To prevent the model from overfitting, a dropout [94] which is 

considered an efficient regularization method was used. The value of the dropout 

was set to 0.25, which means 25% of the units are randomly dropped during each 

training epoch. Tanh and softmax were used as an activation function for LSTM and 

the dense layer, respectively. The recurrent activation function of the LSTM was a 

sigmoid function. The model was trained by using the Adam optimizer [95], and 

categorical cross-entropy as a loss function. The batch size, learning rate, and the 

number of training epochs were set to 32, 0.0001, and 50, respectively. The number 

of training epochs defines the number times that the learning algorithm will work 

through the entire training dataset. 

The structure of LSTM networks was encoded in the name 

l<ln>_u<un>_s<sn>_<uni/bi>: <ln>, <un>, and <sn> represents the number of 

LSTM layer, the number of LSTM units, and lengths of input sequence, respectively. 

<uni/bi> specifies the type of LSTM structure representing ñunidirectionalò and 

ñbidirectional,ò respectively. For example, l2_u512_s9_bi means 2 LSTM layers, 
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512 units in each layer, an input sequence length of 9 epochs, and a bidirectional 

LSTM structure. 

 

 

 

Figure 2-1. (a) Unit structure of LSTM (b) LSTM-based sleep stages classification process. 

LSTM, long short-term memory; Bi-LSTM, bidirectional-LSTM; FC layer, fully connected 

layer. 
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2.1.4. Training, Validation, and Testing 

LSTM networks were trained and validated using a hold-out method for 

developing a generalized model. In addition, the number of input segments was 

sufficient for model training. Of the 60 BCG recordings, 30 recordings were used as 

a training dataset, 10 recordings were used as a validation dataset, and the remaining 

20 recordings were used for a testing dataset. Each dataset consisted of randomly 

selecting BCG recordings. When training the LSTM model, there was a class 

imbalance problem. For example, the total segments number of the training dataset 

was 27672 in the selected model, and the numbers of each class segment were 3053, 

17135, 2521, and 4963 for wake, light sleep, deep sleep, and REM sleep, respectively. 

A balance between the number of class segments is necessary to prevent the LSTM 

model from overfitting to the majority class of Light sleep. There are several 

methods to balance the number of class segments such as oversampling, 

undersampling, and assigning different weights. In this study, the previous study 

method was applied [96], which assigns different weight to each class. In this way, 

all classes contributed equally to the loss function, just as all classes have the same 

number of segments when training the model. The weight of class A was computed 

using the following equation:  

 

#ÌÁÓÓ ! ×ÅÉÇÈÔ  
   

       
     (2-7) 

 

Using this method, all classes contributed equally to the loss function when 

training the LSTM model and had the effect of preventing overfitting for the majority 

of classes. In addition, an early stopping method was used to stop the training process 
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when the validation loss did not improve. During the 50 training epochs, if the 

validation loss did not decrease for 5 epochs, the training was stopped, and the model 

weights were reverted to the value that showed the lowest validation loss.  

For model implementation, Python 2.7 and the Keras library [97] with 

Tensorflow as the backend [98] were used. The training and testing were conducted 

on a workstation with a 3.4 GHz Intel i7-6700 CPU and a GTX1080 8 GB GPU. 

 

 

 

 

Figure 2-2. Confusion matrix for computing four sleep stage classification performance. TP, 

true positive; E, error; W, wake; L, light sleep; D, deep sleep; R, rem sleep. 
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2.1.5. Performance Evaluation 

To evaluate the sleep stage classification performance, the accuracy and 

Cohenôs kappa coefficient value (KAPPA) [99] were computed, which is used to 

measure the inter-rater agreement. The equations of the evaluation measures are 

expressed as follow and ὖ is the hypothetical probability of chance agreement: 

 

+!00!  
ὖ  ὖ

ρ ὖ
 (2-8) 

ὖ ÁÃÃÕÒÁÃÙ 
40 40 40 40

4ÏÔÁÌ
 (2-9) 

ὖ
40 &0

4ÏÔÁÌ

40 &.

4ÏÔÁÌ
ȟ   ȟ   ȟ  

 (2-10) 

 

The four sleep stages classification performance was computed using Equations 

(2-8)ï(2-10). During the performance calculation for each sleep stage, the confusion 

matrix (Figure 2-2) and class of the equation were reduced to 2×2 and two classes, 

respectively. The LSTM model that showed the highest kappa value in the validation 

dataset was selected. When the performance of one hyperparameter combination is 

the same as the other, a low complexity model was selected. Then, the performance 

of the selected model in the test dataset was evaluated. To obtain objective results, 

the LSTM model was compared with seven machine learning classifiers, including 

k-nearest neighbor (kNN) [100], support vector machine (SVM) [101] using linear 

and rbf kernel, discriminant analysis (DA) [102] using linear and quadratic kernel, 

decision trees (DT) [103], and random forests (RF) [104]. Regularization and gamma 

hyperparameters were optimized in SVM models. In addition, max depth of DT and 

RF models was optimized. The performance of each sleep stage and total sleep stage 
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classification according to the classifier methods was compared. All classifiers used 

the same parameters and were implemented using the Scikit-learn library [105]. 

 

2.2. Results 

2.2.1. LSTM Networks Performance 

To select the optimal combination of hyperparmeters, the performance of the 

LSTM model was compared in the validation dataset that consisted of 10 recordings. 

Figure 2-3 presents the sleep stage classification performances in the validation set 

as changing LSTM model hyperparmeters. Regardless of the LSTM structure 

(unidirectional and bidirectional) or the number of layers, the classification 

performance showed an increasing trend as the number of units or sequence length 

increased. Then each LSTM model was selected that showed the highest 

performance in the number of layers and structure; Figure 2-4 displays the learning 

curve of these models on the training and validation datasets. The best performance 

model that produces the highest KAPPA value in the validation dataset was selected, 

and the l2_u512_t9_bi LSTM model showed the highest performance. 
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Figure 2-3. Performance of (a) the unidirectional-LSTM model and (b) the bidirectional-

LSTM model with the number of layers, input sequence lengths, and units. Accuracy and 

KAPPA value computed on the validation data. LSTM, long short-term memory; KAPPA, 

Cohenôs kappa coefficient. 
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Figure 2-4. Learning curves of the LSTM networks. The networks were trained for 50 epochs 

and an early stopping method was applied. The structure of the model was encoded in the 

name (see Section 2.1.3). Left, loss and accuracy computed on the training dataset, right: on 

the validation dataset. LSTM, long short-term memory. 

 

 

 

 

 

 




























































































































































