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Abstract

Unconstrained Sleep Monitoring and
Modulation using Deep Neural Networks

and ClosedLoop Stimulation

Sang Ho Choi
Interdisciplinary Program in Bioengineering
The Graduate School

Seoul National University

Sleep is a natural state of our mind and body that plays an essential role in
maintaining our health and enhancing our memory. An effective approach to monitor
sleep and promote sleep quality would improve our health anebeigly. Though
previousstudiesproposé several methods to achieve this, they are obtrusive and
impractical in the real world and are inadequate for {@mmm use; hence, a new
approach is essential. This thesis proposes deep neural networks bassthgkeep

classification model utiiing a unconstrainedballistocardiogrphy (BCG)



waveform In addition, it suggests a novel unobtrusive sleep stimulation system and
evaluates its effects on sleep and memory.

Sleep stage scoring is the first step in sleep monitoring. Polysomnography (PSG)
is thegold standard methddr assessing sleep; however, it is obtrusive and difficult
to usefor long-term sleep monitoring. To overcome these limitationss &M model,
for autamatic sleep stage scoring usiB@G signals measured without constraints is
proposedThe BCG signals 080 participants were recorded using a polyvinylidene
fluoride sensor during PS@f the 60 recordings, 30 were used for training, 10 for
validation, and20 for testing. Sixteen parameters including movement, respiration
and heart rate variabilityHRV) were extacted from the BCG signals and then
normalized. From the LSTM architecture, four sleep stad@ssification
performances were evaluated for a tesasket, and the results were compared with
conventional machine learning results. An epbgtepoch (30 s) analysis of the four
sleep stages showed an average accuracydtOnir/d a Cohenbés kappa co
0.55. When compared with other machine leagninethods and previous studies,
the proposed LSTM model achieved the highest classification performance. The use
of LSTM networks with BCG signals has the potential to enable automatic sleep
stagescoring and can be used for letggm sleep monitoring aome.

To enhance sleep quality and promote health through sleep, a sleep modulation
method that extends beyond passive sleep monitoring is reciiieoigh various
stimulation systems for enhancing sleep exist, they are constrained and impractical
for long-term use.This thesis overcomes thHemitations of other methods by
suggesting new stimulation method and examining the effects of stimulation on the

heart rhythm and sleephe effects of operoop vibration stimulation during sleep



were assessed blig sleep macrostructure ahtiRV analysis.Although the sleep
onset latency parameter decreased significantly during night blagmo effect on

the autonomic nervous system (ANShabilization. To increase the interaction
between the heart rhythm and thieration stimulusa novel closedoop stimulation
system was developed and confirmed its feasibdityapplicationfor sleep.Ten
volunteers patrticipated in the evaluation experiment, in which they took a nap for
approximately 90 min. The experimenngorised one baseline and three stimulation
conditions. From the HRV and heart ratedensity analysis, the closéabp
stimulation method influenced the heart rhythm and stabilized the ANS. A small
detuning percennodulated the heart rhythmoreeffectively. When comparing the
effects of sleep stimulation methods such as auditory, current, and vibration, the
proposed closetbop stimulation system was most effective in modulating the heart
rhythm. In HRV analysis, only the closddop stimulationmethod stabilized the
ANS. Therefore, this system could be an innovative method for applying external
stimulation during sleep.

To examine the effects of an external periodic stimulus on sleep and memory,
closedloop vibration stimulation was induced fdore whol e ni ght 6s
volunteers participated in the experiment and each underwent one adaptation night
and two experimental conditions such as a stimulation condition (STIM) and a no
stimulation condition (SHAM)The effect of the developed syst®n memory was
assessed using a word pair associated learning TaskHRV analysis showed a
significant increase in the parasympathetic activity, and the sympathovagal balance
significantly decreased under the STIM condition during the N3 sleep stage. T

synchronization ratio between the heartbeat and the stimulus significantly increased

s |



under the STIM condition in the N3 stage. Hextroencephalogra (EEG) spectral
analysis showed an enhanced EEG spectral power ofvedws activity and theta
frequerty bands, during the STIM condition in the N3 stage. Memory retention
significantly increased under the STIM condition compared with the SHAM
condition. These findings suggest that cleksap stimulation improves the N3
stageds qual it yn Taismdethodehas@ pogitive effecton NS o
and neural function during sleep.

The proposed unconstrained sleep stage classification method would contribute
to monitoring sleep longerm. Furthermore, the proposed new stimulation method
would enhance skp quality and has the potential to enhance health through sleep
modulation.The approaches are expected to open a new strategy for monitoring and

enhancing sleejm a convenient and safe manner.

Keyword : unconstrained sleep monitoring long short-term memory

networks, sleep modulation closedloop system sleep medicine

Student Number : 201421547
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1

Introduction

1.1. SleepFunctions andAr chitecture

Humans sleep almost ottieird of their lifetimes. Sleep plays an important role
in our lives in terms of health and wéking.The primary role of sleep is to save
energy, restore physical and cognitive performance, and improve [h{id€].
Sleep enhances creativity, including cognitilexibility [7], [8], and plays a major
role in promoting brain plasticity, synaptic reconstruction, and leaf8Jnfp]i [11].

In contrast, sleep deprivation and sleep disorders negatively influence[iri&jod
cognitive performance, and motor functi¢h3], [14] and increasehe risk of
cardiovascular diseasfib]i [17] and obesity18], [19]. In addition, a lack of sleep
can interfere with work, family, and social life. Thus, monitoring sleep and
enhancing its qualitgre significant for a healthy life.

Wakefulness and sleep are associated with physiological states ddangal
human sleegtage scoring rules were first definedRgchtschaffen & Kales (R&K)
in 1968[20] and adapted by th&merican Academy of Sleep Medicine (AASM)

[21]. Sleep stages are scored by different characteristieteofroencephalogram



(EEG), electrooculogranEQG), and electromyogram (EM@hd sleegcomprises
two states: rapid eye movement (REM) sleep andrapid eye movement (NREM)
sleep.NREM and REM sleep alternate through the nighalabut 90minutes
(approximately 46 NREM-REM cyclesduring night sleep According to the
AASM manual, NREM sleep iturther divided into N1, N2, and N3 sleep stages
(Figure 21(a)) N1 sleep stagf-5% ofsleep timejs the lightest sleep stage and is
atransition state from wakefulness to sleep. It is defined by attenB&&dalpha
rhythm (8 13 Hz) and the appearance of lamplitude mixedrequency EEG
activity. N2 sleep stag@t5-55% of sleep timeis characterized by the appearance of
sleep spindle and omplex. Sleep spindle is a train of distinct sinusoidal waves
with frequency 1116 Hz lasting at least 0.5Is-complex is a negative sharp wave
followed by a positive wave lasting more than 0.5&.and N2 sleep stages are
called as light slee\N3 sleep stage (223% of sleep time) is the deepest sleep stage
and b called deep sleep or slow wave sleep (SW$.defined by high amplitude
slow wave activity (SWA, 0154 Hz) accountindgor more than 20% of an epoch (30
s). REM sleep stage (2B5% of sleep timejs associated witlREM in the EOG,
low-amplitude and mxed-frequency EEG, and low chin EMG toriéhe distribution

of each sleep stage acrasssleep periods called as sleep architecture and it is

visualizedin the form of a hypnogrartigure 11(b)).
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Figure 1-1. (a) EEG, EOG, and EMG signals during wake aathsleepstage a Sleep
spindle, bK-complex, c: Slow oscillatigr{b) Hypnogram with sleep stages (W: wakefulness,
REM: REM sleep, NIN3: NREM sleep stageq)Source [22])



1.2.SleepMonitoring

Polysomnography (PSG) is the gold standard method to determine sleep stages.
PSG records multichannel biomedical signals such as EEG, EOG, EMG,
electrocardiogram (ECG), and other signals. According to the manual of the AASM
[21], sleep experts visually ae sleep stages every 30 s into wake, NREM stages
1i 3, and REM sleep. Although PSG has been used to assess sleep, there are many
limitations: (1)As shown in kgure 2, numeroussensors are attached to the body
and it is uncomfortable and thus, letegm monitoring is difficult. Further, the
inconvenience caused by the sensors may disturb normal sleep. (2) A sleep expert
who can conduct PSG based on AASM manual is necessary; in addition, conducting
PSG and the sleep stage scoring process are-ifgbasve and timeconsuming
tasks. (3) Because sleep experts score sleep stages visually, it is subjective and may
have human errors. Several studies have reported that manual scoring of sleep stages
by sleep experts exhibit inteater variability[23]i [25].

To overcome these limitationsgveral smartleviceshave beecommercialized
to monitor sleep with the usual home environmd26. Movementbased sleep
monitoring, such as Actigraph§ACT) [11], [27], mobile, and wearable devices
[28]i [30] has become the easiest and most used mdthaddition some methods
involve the installation of devices in sleeping environments without attaching
sensors to the user, fekample, bedCT [31], the use of polyvinylidence fluoride
(PVDF) film sensorg32], Doppler radai33], [34], and neainfrared videog35],

[36].
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Figure 1-2. Sensos forstandard polysomnography
(Source National Heart Lung and Blood Instit)te
Furthermore many studies have attempted to classify sleep stages
automatically using the minimum number of sigriai]. In a previous stud§37],
[38], a single channel EEG measured during PSG was used to score sleep stages.
Wrist activity was used to develop and evaluate automatic sleep scoring methods
[27], [39]. The variation of autonomic nervous system (ANS) haa bagalied, and
it was found that it is associated with sleep stdf@ls [44]. With the progression of
the sleep stage from N1 to N3, sympathetic activity decreases and parasympathetic
activity increases. In contrast, during REM sleep, sympathetic activity is more
dominant and becomes unstable like in wakefulness. Frose tblearacteristics,
heart rate variability (HRV) parameters that represent ANS activity have been
considered one of the most useful features for sleep staging. The HRV parameters

derived from ECG signals were used for automatic sleep scd4ibfj[48].



Peripheral arterial tonometry (PAT) signal, which indicates peripheral
vasoconstriction, was recorded with an ambulatory wnistn device and used to
estimate sleep stagdd49]i[51]. Photoplethgmogran (PPG}based sleep stage
classification was also studigsl]. Although these studies developedaamomatic

sleep sige scoring method using the minimum number of signals, it is still
inconvenient for the user to attach sensors during sleep, thereby decreasing their
applicability for longterm monitoring.

Recently, deep learningh3], a branch of machine learning methods that
comprises multiple layers to learn and extract representation features from input data,
has been used in object detection, speech recognition, visual recognition, and many
other fields. Deep learning hasought breakthroughs in many fields, and it has also
been applied to automatic sleep stage classification studies. éhah [54]
introduced a joint classification and predictiorultittask convolutional neural
network (CNN) framework for automatic sleep stage classification using EEG, EOG,
and EMG signals. Stephansen al [55] used a large dataset comprising 3,000
normal and abnormal estp recordings and proposed a CNN+Long Sti@tm
Memory LSTM) model with EEG, EOG, and EMG signals for automatic sleep stage
scoring. These studies achieved a high sleep stage classification performance;
however, they required multiple signal modaliti@®. minimize the number of
signals used, several studies have developed a deep lebasied sleep stage
estimation model using only one channel EB@], [56], [57] Although the sleep
stage can be estimated by applying a deep leamétlgod from a onehannel EEG
signal, the sensor should be attached to the body to measure the EEG signal, which

is inconvenient for the user and impractical for ldegn sleep monitoring.



1.3.SleepM odulation

Several smart technologies have been d@esldo monitor sleep in the typical
home environmenf26]. However, although such methods provide the user with
sleep informationa method that extersbeyond the passive monitoring of sldep
required to enhance sleep quality and promote health levels through sleep. To
enhance sleep, soothing sounds or music and feet warming are commonly used
among the general populatifs8], [59]. In addition, rockhg movements appear to
help people relax or fall asleep. Swinging a baby in a hammock or physical rocking
movements can be helpful in inducing sleep and appear to be effective for adults as
well [60]i [63].

Several methods have been developed to increase sleep efficacy by enhancing
the SWA. SWA, which represents the EEG spectral power in thel 3 band
during NREM sleep, is an important contributor to memory consolidatidreain
restoration[64]. Intermittent transcranial direcurrent stimulation increases SWS
and the <1 Hz slow oscillation during stimulatifsee intervald65]. Another study
demonstrated that slow waves can be triggered in sleegdijertuwith transcranial
magnetic stimulation9]. An auditory stimulation method has been shown to
enhance slow oscillatiof66]. Recently, many studies that use these methods to
enhance brain oscillations and improve sleep and memory consolibatierbeen
conducted[10], [67]i [70]. However, although these methods affect sleep, their
safety is questionable, and they are considered impractical fotdomguse. Thus,
other stimulation systems for enhancing sleep quality are needed.

In many naturabhenomena, oscillating objects with their own rhythm interact

with the environmenff71]; e.g., thousands of firgés blinking on and off in unison.



Fireflies interact with other insects via light pulses, and each firefly is affected by
the light created by the entire populatig2]. A cr i cket d6s chirps ar
the chirps of its neighbors. A cricket responds to the preceding ahit@chieves
synchrony by either lengthening or shortening its chif). Moreover, interactions
are also present in human physiological systems; there are interactions in human
internal subsystems such as respiratory sinus arrhythmia (RSA), which refers to the
periodic variation in the heart rate (HR) according to the raspyr&ycle[74]. In
addition, the cardiac system interacts with brain actipMg], [76] and locomotor
rhythms[77], [78].

Furthermore, the internal physiological system is influenced by environmental
conditions and change. The circadian rhythm represents tlawibebf humans by
a 24 h cycle of sleep and wakefulness. This cycle is entrained by the daily cycle of
light and darK79], [80]. McClintock reported that social intetam influences some
aspects of the menstrual cyd@l]. Van Leeuwa et al [82] verified phase
synchronization, which implies the existence of phase locking between twoyweakl
interacting systems, such as between the fetal and the maternal HRs, even though
they are ANS with separate blood circulation. They stated that matetabheart
coupling is mediated by the acoustic stimulation of maternal heartbeat and vascular
pulsaions, which are recognized by the fetal auditory system. These stimuli can act
on external forced rhythms to accompany the heartbeat of the fetus with that of the
mother. Grimaldiet al [83] were the first to prove that acoustic enhancement of
SWA during sleep enhances parasympathetic activity. They stated that acoustic
stimulation strengtined the coupling between cortical and cardiac oscillations,

reflected in the concomitant changes in SWA BEIftY. A study, which assessed the



interaction between an internal physiological system and external forces, showed

that the HR can be entrained thgh a weak external noninvasive force in the form

of visual and auditory stimul84]. Yoonet al. [85] found experimental evidence that
couplesd cardiac r hyt h mseepingThisfindingenay each ot
be attributed to weak cardiac vibrations that are transmitted from one individual to

another through a mechanical bed connection. These studies showed that the intrinsic
physiological rhythm could be entrained and interact with the gieritnythm of

other systems in at least one neural, mechanical, or behavioral connection.

1.4.Motivation and Objectives

For longterm monitoring of sleep in a residential environment, it is essential
that physiological signals are measured in an unconstrained and unobtrusive manner
during sleepBallistocardiograhy (BCG) is an unobtrusive method measuring the
recoil forceof the body when subtle body movement generated by the heart ejects
blood into the arterie$86]. Because BCG is a noninvasive method, it can be
measured without disturbing humaleep for an extended peridéurthermore,

LSTM networks that have advantages of being able to learrtésngdependecies

were employed to automatically learn temporally sequential patterns. The sleep
expert classifies the current sleep epoch from a sequence of previous epoch
information, and therefore, the LSTM is a suitable deep learning model that it could
automaticlly learn a conventional scoring strategy in sleep clinitthis thesisthe

sleep stages classification LSTM modeas developedising unconstrainedly
measured BCG signal during sleep, and the performansecompareevith other

machine learning methsdand previous works.



To enhance sleep quality and promote health levels through sleep, there needs
a sleep modulation method that extends beyond passive sleep monituingn
intrinsic physiological rhythm could be entrained and interact with the period
rhythm of other systems in at least one neural, mechanical, or behavioral connection.
From this point of viewan external weak vibration stimulus could influence heart
rhythm and stabilize the ANS during sleep. Furthermore, if detuning, which
represert the frequency difference between an oscillator and an external force, is
small, even a very small force can entrain the oscill§fdq. Thus, it was
hypothesized that a smaller amount of detuning is appropriate for modulating heart
rhythm. In this thesis, a novel closdédop vibration stimulation system, which
stimuli were induced by an unconstrained manner, deagloped and investigated
the effect of stimulation on heart rhythm during ndpsaddition, effects on heart
rhythm according to stimulation methods were compafiédten the developed
stimulation system was applied during night sleep with the PSG wsiratyzed

sleep modulation effest

1.5.0utline of the Thesis

This thesis consists of following chapters.
Chapter Zpresentdhe deep neural networks approach for unconstrained
sleep monitoring using BCG signals and discusses the potential
applicability of the model compared with other methods.
Chapter 3describeghe effects of stimulation methods on heart rhythm
during sleep. Specifically, this chapter presémesclosedoop stimulation

systemfor unconstrained sleep modulatjcessesses the effeds heart
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rhythm during naps, and discusses its applicability to sleep.

Chapter 4deals withthe effects of the developed stilation system on
night sleep in macrostructure and microstructure perspective. In addition,
the effects of stimulation on memorgeaassessed.

Chapter ssummarizeshe conclusions of the preceding chapters

This thesis is based on followirsgientific articles that have been published
(chapter 3), submitted for publication (chapter 2), and is in the final preparation steps

for manuscript submission (chapter 4):

Chapter2
S. H. Choigetal Londg ShortTerm Memory Networks for Unconstrained

Sleep Stage Classificatidny Ballistocardiography ¢EEE JBHL under

review

Chapter 3

S. H. Choiet al |Effeét of Closeedloop Vibration Stimulation on Heart
Rhythm during Naps 8ensors19(19), 4136, 2019.

Chapterd

S. H. Choi,et al ,ClogedLoop Vibration Stimulation during Sleep

Improves Declarative Memoyryin preparation

The author of this thestontributed to the above stud&sfollows: onception
and design of the experiments; developedindce; data acquisition, analysis, and

interpretations; and wte and reviewed the manuscript.
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2

DeepNeural Networks for
Unconstrained SleefStage
Classification by Ballistocardiography

An unconstrained sleemonitoring method is investigated in this chapter.
Based orunconstrainelg measured BCG signal, LSTM network model is proposed
for classifying sleep stage automaticalfmn optimal LSTM architecture that
produces the best performance is searcBlegp stage clagwiation performance of
the LSTM model is compared with other machine learning metthodsldition, the
classification performance is also evaluatgth previous worksnd the application

will be discussed.

2.1.Methods

2.1.1. PSGData and BCGAcquisition
Thelnstitutional Review Board of Seoul National University Hosfgbroved
the retrospectivestudy (IRB No. G-1906131-1042). The dataset consists of PSG

recordings and BCG signals recorded from participants overnight at the Center for

13



Sleepand Chronobiology, Seoul National University Hospifhrticipantswho

were 1860 years of age and had no symptoms related to gleepincludedThe
exclusion criteria for this study were as follows: people with (1) a history of severe
physical or psyleological ilinesses, (2) unstable vital signs, (3) arrhythmia, (4) sleep
disorders (e.g., periodic limb movement disorder, restless legs syndrome,
sleepwalking, sleep terrors, obstructive sleep apnea, and REM sleep behavior
disorders) Sixty PSG recordingshat satisfied the inclusion and exclusion criteria
were used in this study. Tablel2summarizes the sleeplated variables and
demographics of the participants.

Overnight PSG data were recordesing a standard PSG routifi#l]: EEG
electrales at positions F3, F4, C3, C4, 01, and 02, and EMG from the chin and
bilateral tibialis anterior muscles, ECGlai a, dilateral EOGs, oronasal airflow,
nasal pressure, thaiia and abdominal respiration, and blood oxygen saturation. The
sleep stages ave scored by sleep technologists and verified by a sleep clinician
accoding to the 2012 AASM manud®1]. The scored sleep stages were used as
reference classes when training LSTM networks.

A very thin and flexible PVDF was used as a sensor for measseveral
physiological signals such as respirat[8i], [88], HR [89], and BCG[90], [91].

The BCG signals were measured using the PVDF sensor attdz2&mpling rate.

To avoid direct contact with the body of the participant, the PVDF sensor was
installed between the mattress and the mattress caugneFmore, the sensor was
positioned near the heart of the participant when he/she was lying on the bed. The
PVDF sensor was thin enough for the BCG signals to be measured from the

participant in an unconstrained and unobtrusive manner.
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Table 2-1. Summaryof sleeprelatedvariables andlemographics

Variables Mean + S.D.
Gender (male/female) 34/26
Age (years) 29.2+ 9.7
BMI (kg/m?) 22.0+ 3.6
AHI (events/h) 2.2+ 3.6
Total recording time (min) 450.3+ 39.0
Total sleep time (min) 408.4+ 47.9
Sleepefficiency (%) 90.7+ 6.9
Stage wake (%) 9.3+ 6.9
Stage N1 & N2 (%) 62.6+ 9.4
Stage N3 (%) 9.0+ 7.0
Stage REM (%) 19.1+ 5.9

S.D., standard deviation; BMI, body mass index; N,-rapid eye movement; REM, rapid
eye movement; AHI, apnea hypopriedex.
2.1.2. Parameter Extraction

Many studie$40]i [43] have confirmed that there is a high correlation betwee
sleep stage variation and ANS activatids.sleep deepens from wakefulness to deep
sleep stage, heart rate and sympathetic tone are significantly decreased and
parasympathetic tone is significantly increased. While under REM sleep, these
values returnd levels similar to that of the wake stage. Owing to the ANS effect,
respiratory rhythm is characterized by a slower and more regular rhythm as the sleep
becomes deeper during NREM sleep. Wakefulness and REM sleep are also
characterized with disturbed résory dynamics. Furthermore, physical movement
is one of the dominant parameters to separate wakefulness and sleep.

Based on above physiological characteristics during wakefulness and sleep,
sixteenparametersvere extractedrom the BCG signal. Theescriptions of the
extracted prameters are listed in Table22 A movement parameter (mov) was
obtained by processing the BCG signals with kpalss (2 Hz) and lowpass (15 Hz)
fifth-order IR Butterworth filters. Then, the square root of the averate ajuared

data from the absolute value of the filtered signal is extracted every 30 s. To extract
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respiration related parameters, fRREA signal was extracted by filtering the BCG
signal with a higkpass (0.15 Hz) and leyass (0.4 Hz) fiftrorder IR Buterworth
filter. Then, the respiration frequency (fRSA) parameter was obtained from the RSA
signal using an autocorrelation meti8d] atintervals 0f30 s.

Jpeak was detected as follows. First, the BSighalwas filtered within a range
of 2i 15 Hz (5thorder Butterworth filter, 1IR) to extract clear heartbeat derived
signals. Subsequently, the ahsgel values of the filtered signals were acquired to
obtain positive peaks. Then, a moving average filter was applied to smooth out the
peaks and a 0.5 Hz higiass filter was applied to remove baseline drift. Finally, J
peak was detected using the findpealnction of MATLAB, which finds the values
and locations of local maxima in signal data. After detectipgak, posprocessing
was conducted to remove artifacts. When the position of the peak in the
autocorrelation was in the predetermined range 6fl075s lag for HR, this position
was considered normal. If there was no peak in the range, it was determined to
comprise artifacts. The@eak positions in the artifacts and movement sections were
considered as errors and canceldtk mean heart rate (mhiRRas calculated every
30 s from the BCG consecutivepdak intervals (JJI), and the frequeftiymain
HRV parameters were calculated every 5 niihe JJI were interpolated with a
shapepreserving precise cubic methdden, he spectral power of JJI in thaw-
frequency range (0.09.15 Hz) and higlirequency range (0.18.4 Hz) were
extracted using a fast Fourier transform (FFT) method. The standard deviation of
fRSA (tfRSA) and mHR (tmHR) were calculated every 10 epochs with a sliding
window of 1 epoch. @ attenuate the noise and refladongterm trenda Savitzky

Golay finite impulse response (FIR) smoothing fil{88] was appliedwith a
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polynomial order of 2 md window size of 31 epochs; themoothed parameters

were extracted as listed in Tabl@2After extracting 16 parameters, each parameter

was normalized using thescore method wbh subtracts their average and divides

it by their standardeliation(SD) to reduce inteparticipantvariability.
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2.1.3.LSTM Networks Architecture

Recurrent neural networks (RNNs) are networks with ddogined structure,
which consider temporal series data. RNNs have demonstrated better performance
than other machine learning methods for processing sequential inpuéssjdech,
language, and time series fsignals[53]. In particular, most successful RNNs are
LSTM networks that use a special hidden unit, which is theaied memory cell.
LSTM networks are designed togwent the vanishing gradient problem that make
RNNs difficult to learn to connect information as the length of dependency increases.
The core idea behind an LSTM is that the cell state removes or adds information
through a forget gaté(, an input gat€’Q), and an output gateé () (see kgure 2-
1(a)). The following equations represent each process whebdvfod HQ are the

sigmoid, weight matrices, input, bias, cell state, and hidden state, respectively.

N , 000 @ (2-1)
N o, ®00 M @ (2-2)
¢ , o000 m o (2-3)
6 00w 20 M @ (2-4)
6 Q26 JOL (2-5)
" OAIl8Ez¢ (2-6)

Figure 2(b) represents the sleep stage classification process and the selected
LSTM architecture comprising two directional LSTM layers, and one fully
connected (FC) layer. The LSTM layer comprised 512 units per layanpl®

dimensions, and 9 sequence lengths that imply 16 extracted parameters and 9 epochs
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(270 s) used as an input data segment. From the LSTM layer, 512 output units are
connected to &C layer which classifies the four outputs (WAKE, LIGHT SLEEP:
N1+N2, DEEP SLEEP: N3, and REM SLEEP).

Several LSTM structureswere trained and validatedo optimize
hyperparameters in predetermined ranges. An optimal combination of
hyperparmeters that produced the best performance in the validation dataset was
searched wherthe candidate of the hyperparameters were as follows: number of
LSTM layes{1, 2, 3}; number of LSTM units {16, 32, 64, 128, 256, 512}; lengths
of input sequence {115}, and type of LSTM structure {unidirectional,
bidirectional}. To prevent thenodel from overfitting, a dropou{94] which is
considered an efficient gelarization methodvas usedThe value of the dropout
was set to 0.25, which means 25% of the units are randomly dropped during each
trainingepoch Tanh and softmax were used as an activation function for LSTM and
the dense layer, respectively. The reent activation function of the LSTM was a
sigmoid function.The modelwas trained byusing the Adanoptimizer[95], and
categorical crosentropy as a loss function. The batch size, learning ratethand
number of traimg epocls were set to 32, 0.0001, and 50, respectiviig number
of training epochslefinesthe number times thahe learning algorithm will work
through the entiréraining dataset.

The structure of LSTM networks was encoded in the name
I<In>_u<un>_s<g>_<uni/bi>: <In>, <un>, and <sh> represents the number of
LSTM layer, the number of LSTM units, and lengths of input sequence, respectively.
<uni/ bi> specifies the type of LSTM str uc

Abidirecti onalexample £suple c9 bi meahsy2.LSTMdayers,
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512 units in each layer, an input sequence length of 9 epochs, and a bidirectional

LSTM structure.
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Figure 2-1. (a) Unit structure of LSTM (b) LSTMbased sleep stages classification process.
LSTM, long shorterm memory; BILSTM, bidirectionalLSTM; FC layer, fully connected

layer.
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2.1.4. Training, Validation, and Testing

LSTM networkswere trained and validatedsing a holdout method for
developing a generalized model. In addition, the number of input segments was
sufficient for model training. Of th@0 BCG recordings, 30 recordings were used as
a training dataset, 10 recordings were used as a validatioetjatad the remaining
20 recordings were used for a testing dataset. Each dataset consisted of randomly
selecting BCG recordings. Whenmaining the LSTM model, there was a class
imbalance problem. For example, the total segments number of the trainisgtdata
was 27672 in the selected model, and the numbers of each class segment were 3053,
17135, 2521, and 4963 for wake, light sleep, deep sleep, and REM sleep, respectively.
A balance between the number of class segments is necessary to prevent the LSTM
modd from overfitting to the majority class of Light sleep. There are several
methods to balance the number of class segments such as oversampling,
undersampling, and assigning different weights. In shigly the previous study
method was applief®6], which assigns different weight to each class. In this way,
all classes contributed equally to the loss function, just as all classes have the same
number of segments when training thedwmlo The weight of clas& was computed

using the following equation:

#1 AGAECED 2-7)

Using this method, all ctses contributed equally to the loss function when
training the LSTM model and had the effect of preventing overfitting for the majority

of classes. In addition, an early stopping method was used to stop the training process
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when the validation loss did hamprove. During the 50 trainingpochs if the
validation loss did not decrease fogfochsthe training was stopped, and the model
weights were reverted to the value that showed the lowest validation loss.

For model implementation, Python 2.7 and tKeras library [97] with
Tensorflow as the backdif98] were usedThe training and testing were conducted

on a workstation with a 3.4 GHz Intel&700 CPU and a GTX1080 8 GB GPU.

W TPw EwL Ewp Ewr
£ L ELw TPL ELp ELr
©
o
S
= D Eow EpL TPp Epr

R Erw ErL Erp TPRr

W L D R

Predicted class

Figure 2-2. Confusion matrix for computing four sleep stage classification performance. TP,
true positive; E, error; W, wake; light sleep; D, deep sleeR; rem sleep.
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2.15. Performance Evaluation

To evaluate the sleep stage classification performance, theaagcand
Cohends kappa c oef[89 weieaomputeswdithuiseusefl tOA P P A)
measure the intemater agreement. The equations of the evaluation measures are

expressed as follow and is the hypothetical bability of chance agreement:

60
+1 00! - (2-8)
P V]
e e s 4.0. 40 40 40
’ AU — 2-9
VU AAAOOA 27 OA] ( )
. 40 &0 40 &.
v 4T OA] 27 OA1 (2-10

The four sleep stages classification performance was computed using Equations
(2-8)i (2-10). During the performance calculation for each sleep stage, the confusion
matrix (Figure 22) and class of the equation were reduced to 2x2 and two classes,
respectivelyThe LSTM model that showed the highest kappa value in the validation
datasetvas selectedVhen the performance of one hyperparameter combination is
the same as thather, a low complexity model was select&ten, the performance
of the selected model in the test datasa$ evaluatedTo obtain objective results,
the LSTM modelwas comparevith seven machine learning classifiers, including
k-nearest neighbor (kNNYLOO], support vector machine (SVNQ01] using linear
and rbf kernel, discriminant analysis (D)02] using linear and quadratic kernel,
decision trees (DTL03], and random forests (RE)04]. Regularization and gamma
hyperparametersere optimized in SVM model$n addition, max depth of DT and

RF models was optimized he performance of each sleep stage and total sleep stage
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classification according to the classifier methods was compared. All classifiers used

the same parameters and were implemented using the-IBaititlibrary[105].

2.2.Results

2.2.1. LSTM Networks Performance

To select the optimal combination of hyperparmeters, the performance of the
LSTM modelwascomparedn the validation dataset thadnsisted of 10 recordings.
Figure 2-3 presents the sleep stage classification performances in the validation set
as changing LSTM model hyperparmeters. Regardless of the LSTM structure
(unidirectional and bidirectional) or the number of layers, the classification
performance showed ancreasing trend as the number of units or sequence length
increased.Then each LSTM modelwas selectedthat showed the highest
performance in the nureb of layers and structure; Figuzed displays the learning
curve of these models on the training antidedion datasets. The best performance
model that produces the highest KAPPA value in the validation dataset was selected,

and the 12_u512_t9 bi LSTM model showed the highest performance.
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Figure 2-3. Performance of (a) the unidirectiodz6TM model and (b) the bidirectional
LSTM model with the number of layers, input sequence lengths, and units. Accuracy and
KAPPA value computed on the validation data. LSTM, long stesrh memory; KAPPA,

C o h e n dascoeffideptp

25



Figure 2-4. Learning curves of the LSTM networks. The networks were trained fep&ths

and an early stopping method was applied. The structure of the model was encoded in the
name (see Sectidhl.3. Left, loss and accuracgpmputed on the training dataset, right: on

the validation dataset. LSTM, long shtetm memory.
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