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Abstract 
 

Resistance switch array is a strong contender for next-generation memory. A 

resistance switch has low resistance state or high resistance state. Switching 

between states are stimulated by electric signal such as application of voltage 

or current. With crossbar array configuration, resistance switch array reaches to 

high integration density of 4F2 where F means minimum feature size. Analog 

resistance switches are also have been proposed, but most of them need very 

precise control of conductance. Additionally, at least one of their potentiation 

or depression is non-linear to pulse number (or pulse length). 

Resistance switch array is also able to realize matrix-vector multiplication, 

or parallel operation. In other words, the current response to an applied input 

voltage vector naturally captures the conductance matrix-voltage vector 

multiplication. 

Simulating resistance switch array is an efficient method to analyze its 

property. The most popular simulation uses Newton-Raphson methods for 

resistance array simulation, but this method consumes large calculation costs. 

As an alternative, an artificial neural network was applied for the resistance 

switch simulation. An artificial neural network was utilized in the behavior 

inference of a random crossbar array (10 × 9 or 28 × 27 in size) of nonvolatile 

binary resistance-switches (in a high resistance state (HRS) or low resistance 

state (LRS)) in response to a randomly applied voltage array. The employed 

artificial neural network was a multilayer perceptron (MLP) with leaky rectified 

linear units. This MLP was trained with 500,000 or 1,000,000 examples. For 
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each example, an input vector consisted of the distribution of resistance states 

(HRS or LRS) over a crossbar array plus an applied voltage array. That is, for 

a M × N array where voltages are applied to its M rows, the input vector was M 

× (N+1) long. The calculated (correct) current array for each random crossbar 

array was used as data labels for supervised learning. This attempt was 

successful such that the correlation coefficient between inferred and correct 

currents reached 0.9995 for the larger crossbar array. This result highlights MLP 

that leverages its versatility to capture the quantitative linkage between input 

and output across the highly nonlinear crossbar array. Additionally, MLP 

accelerates simulation 8 times faster compared to Newton-Raphson method. 

With its availability of parallel operation, resistance switch array is used in 

various parts of neuromorphic hardware, which aims to synthesize hardware 

mimicking neural networks. The typical application of resistance switch array 

is an artificial synapse array. Because matrix-vector multiplication in resistance 

switch array is similar to that in neural network, neuromorphic hardware can be 

accelerated by implementation of a resistance switch array as an artificial 

synapse array.  

In this paper, a learning algorithm suitable for binary resistance switch array 

is proposed. This algorithm is referred to as the Markov chain Hebbian learning 

algorithm. The algorithm pursues efficient use in memory during training in 

that: 1) the weight matrix has ternary elements (−1, 0, 1) and 2) each update 

follows a Markov chain—the upcoming update does not need past weight 

values. Additionally, the ternary synaptic units are easily realized by a pair of 

resistance switches, so that the Markov chain Hebbian learning algorithm is 
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appropriate for training binary resistance switch array used as synapse array. 

The algorithm was verified by two proof-of-concept tasks: image (MNIST and 

CIFAR-10 datasets) recognition and multiplication table memorization. 

Particularly, the latter bases multiplication arithmetic on memory, which may 

be analogous to humans’ mental arithmetic. The memory-based multiplication 

arithmetic feasibly offers the basis of factorization, supporting novel insight 

into memory-based arithmetic. 

Another application is using a resistance switch array as a content-

addressable memory (CAM) as lookup table (LUT) in topology block. The LUT 

stores the entire connectivity among neurons. When a spike occurs from a 

neuron, the topology block searches the LUT and finds the destination neurons 

and synapses to update. Resistance switch-based CAM (RCAM) satisfies fast 

search ability, high integration density and low static energy consumption, and 

thus it is appropriate for LUT. 

RCAM, however, has a low data density due to the use of a pair of resistance 

switches for a single bit of contents (0.5 bit/switch) in comparison with resistive 

random access memory (1 bit/switch). In this paper, we propose a new type of 

RCAM referred to as combination-encoding CAM (CECAM). In N-CECAM, 

a single unit consists of N high and N low resistance state switches whose 

combination collectively represents binary contents, yielding a data density of 

approximately 0.85 bit/switch when N = 10, for instance. The key to CECAM 

is the encoding of an n-bit search key as a 2N-digit key and its decoding. To 

this end, we propose a simple algorithm for encoding and decoding and its 

implementation in digital circuitry. 
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1. Introduction 

1.1. Resistance switch array 

Resistance switch is regarded as a promising candidates for next-generation 

memory [1]. Resistance switch has two states called low resistance state (LRS) 

and high resistance state (HRS). The states of resistance switch are non-volatile 

so that it allows lower energy consumption compared to the conventional 

memories such as dynamic random access memory (DRAM), which needs 

refreshment. The switching between LRS and HRS is triggered by electrical 

stimulation such as applying voltage or current to resistance switch. In the 

resistance switch array, each resistance switch is placed at the crossing point 

between each horizontal and vertical metal electrode lines (Fig. 1.1). Note that 

these horizontal and vertical electrodes have roles of word and bit line. 

Therefore, resistance switch array is regarded as a two-terminal memory. This 

simple structure without transistor allows high integration density, the 

minimum cell size of 4F2, where F means the minimum feature size [2]. 

Recently, several analog resistance switches have been proposed [3], [4]. 

These analog resistance switches enable high data density because a single 

resistance switch express multi-bit data. Yet, analog resistance switches have 

bottlenecks such as high non-linear write-pulse number dependency [4], and 

they also need extremely dedicate control to reach desired resistance [5].  

An important feature of resistance switch array is that it realizes matrix-

vector multiplication [6]-[8]. From the Kirchhoff’s law, the output current 
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response is derived as the multiplication between conductance matrix and input 

voltage vector (Fig. 1.1). This parallel operation enables resistance switch array 

to be applied to various field, such as analog computer, artificial synapse array, 

content-addressable memory (CAM). Additionally, this parallel operation 

enables exclusion of sneak current, which causes degradation of sensing margin, 

because all electrodes are connected to ground or Vdd. Therefore, sneak currents 

problem is merely considered in the parallel operation of resistance-switch 

array [6]-[8]. 
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Figure 1.1. Schematic of resistance switch array. Each resistance switch is 

placed at each crossing points between electrodes. The output current from 

resistance switch array is same as multiplication between conductance matrix 

and input voltage vector.  
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1.2. Resistance switch array application in neuromorphic 

hardware 

Neuromorphic engineering aims for implementing biologically plausible 

spiking neural network (SNN) into hardware [9]. With SNN, neuromorphic 

hardware is expected to be energy-efficient similar to human brain [10]. Also it 

is suitable for temporal learning, including temporal difference learning [11] 

and temporal sequence learning [12], and thus expected to be appropriate to 

solve time-dependent problem. 

A neuromorphic hardware consists of neurons that are interconnected 

through synapses. Implementing neurons and synapses commonly uses analog 

and/or digital integrated circuits (IC) based on standard complementary metal 

oxide semiconductor (CMOS) technologies [13], [14]. Recently, emerging 

devices such as phase change memory [15], [16], magnetic tunnel junctions 

[17], [18], threshold switches [19], and floating-gate transistors [20] are 

proposed to build artificial neurons and synapses.  

Resistance switch array is also a strong candidate for artificial synapses [3], 

[4]. In neural network, the activation of pre-synaptic neurons causes spikes and 

these spikes are transmitted to post-synaptic neurons. Here, post-synaptic 

neurons receive weighted sum of spikes from pre-synaptic neurons, not spikes. 

The weighted sum of spikes is expressed as W × x, where W and x indicate a 

synaptic weight matrix and activation of pre-synaptic neurons, respectively. It 

is similar to matrix-vector multiplication in resistance switch array, mentioned 

section 1.1 so that resistance switch array is usable as artificial synapse array. 
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Another application of resistance switch array in a neuromorphic hardware 

is as a look-up table (LUT) in a topology block [21] (Fig. 1. 2). The entire 

connections between neurons through synapses are tabulated in the LUT. When 

a spike occurs from a neuron, the topology block searches all elements of the 

LUT and find the post-synaptic neurons and synapses to update. Therefore, fast-

search ability is the most important factor of LUT. RAM is not a proper solution 

for LUT because RAM search every address sequentially and it causes 

significant delays. Unlike RAM, content-addressable memory (CAM) has 

parallel search ability and thus it is proper to be used as LUT [22]. The 

conventional CAMs, however, have SRAM-based structure which needs 

tremendous amount of transistors and have low-integration density. 

Compared to SRAM-based CAM, resistance switch-based CAM (RCAM) 

has much higher content density because they use much less transistors [23], 

[24]. Also, RCAM has very low static energy consumption because of non-

volatility. Consequently, RCAM is appropriate for the LUT in topology block 

of neuromorphic hardware. 

From this features, this paper consists of three parts. At first, artificial neural 

network is applied to accelerate simulation of resistance-switch array. In the 

second part, a new learning algorithm called Markov Chain Hebbian Learning 

is proposed as the appropriate learning algorithm for resistance switch array. 

Lastly, a new type of RCAM, called combination-encoding CAM, is proposed 

to improve content density. 
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Figure 1.2. (a) Scheme of neuromorphic hardware. It consists of neuron block, 

synapse block which realize artificial neurons and synapses, respectively, and 

topology block. (b), (c) Topology block stores neuronal connectivity. When a 

spike occurs, it searches LUT and find the destination neurons and synapses to 

be updated. (d) Scheme for CAM as LUT. CAM enables fast-searching for 

topology block. 
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2. Artificial neural network for response 

inference of a nonvolatile resistance-switch 

array 

2.1. Introduction 

An artificial neural network (ANN) is a layered graph of nodes (activation units) 

and edges (nonzero connection weights), offering an immensely versatile 

hypothesis for various types of data description and different training methods 

[1]. Among feed-forward neural networks, multilayer perceptrons (MLP) and 

convolutional neural networks (CNN) are the most frequently applied types of 

neural network [2]. MLP is a prototypical feed-forward architecture in which 

every unit in a layer is fully wired to all units in the adjacent layers. In contrast, 

CNN has interlayer connections that are sparse and localized in the network 

topology [3,4]. A weight matrix in the CNN filters an input matrix fed into the 

next layer, and this filter (also known as convolution kernel) skims over the 

input layer. This is mathematically identical to convolving around the input 

layer, thus this architecture is termed CNN. In fact, the CNN has been 

successfully applied to a wide range of tasks including image recognition [1], 

[3]-[5] and natural language processing [6]. 

The scope of tasks (other than conventional tasks mentioned above) within the 

capability of ANN has been markedly expanding, including quantum 

mechanical problems such as estimation of quantum mechanical ground state 

given a two-dimensional potential distribution [7] and modelling a mechanical 
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system in presence of noise [8]. These examples highlight the neural network 

as a versatile hypothesis and the capability of backpropagation for supervised 

learning as a widely applicable training method. 

Meanwhile, a crossbar array of nonvolatile resistance-switches, i.e., passive 

resistive random access memory (RRAM), ideally meets the 4F2 design rule (F 

is the minimum feature size), offering a solution to high-density nonvolatile 

memory [9]-[11]. Additionally, its current response to an applied voltage array 

naturally captures the multiply-accumulate (MAC) operation so that crossbar 

arrays have often been used for physical implementation of the matrix–vector 

product [12]-[14]. The benefit of this approach is obvious in comparison to the 

digital MAC operation: high speed due to the fully parallel operation and 

energy-efficiency due to no need for data transference during the operation. 

Given that the MAC operation is at the heart of MLP for both training and 

inference, the passive RRAM can substantially improve efficiency in MLP, 

which is an important field of neuromorphic engineering [12], [14]-[19].  

Considering the beneficial relationship between passive RRAM and MLP 

(particularly, the aforementioned passive RRAM for MLP), it is of interest to 

seek the reverse approach (MLP for passive RRAM). To this end, this work 

exemplifies the feasible application of MLP to the response inference of passive 

RRAM in which, once trained, the inference merely costs a few steps of matrix-

vector product (depending on the depth of the network). Our new method may 

offer a new feasible means of crossbar circuit simulations as an alternative to 

conventional circuit simulation methods. 
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2.2. Description of model system 

Passive RRAM as a model system is a M × N matrix R loaded with RHRS and 

RLRS that denote resistance in a high resistance state (HRS) and low resistance 

state (LRS), respectively, i.e., R∈{RHRS, RLRS}M × N. This model system outputs 

an N-long real-valued current vector (∈ℝN ) in response to an M-long real-

valued input voltage vector V (∈{0,1}M). The model system is illustrated in 

Fig. 2.1(a). 

The model is a nonlinear system because the HRS features a highly nonlinear 

current-voltage (I-V) relationship in contrast to the linear (or almost) I-V of the 

LRS. In this regard, the HRS was provided with a nonlinear I-V characteristic 

as follows: I = I0e
aV, where I0 and a denote a pre-exponential factor and voltage 

coefficient, respectively. The larger a, the higher nonlinearity is given to the I-

V behavior. Such nonlinearity in the HRS has been observed in an enormous 

number of resistance-switches given the usual thermal activation of current 

transport in the HRS [10, 20, 21]. In contrast, the LRS was given a linear I-V 

characteristic, keeping fidelity to experimental systems that generally represent 

linear or very weakly nonlinear I-V characteristics.  

Two types of resistance-switch were addressed in this study: Type A and B, 

whose detail is tabulated in Table 2.1. The I-V behavior for each switch is 

plotted in Fig. 2.1(b). They differ in the RHRS/RLRS ratio (evaluated at 1 V); the 

ratio for Type A is 100 times larger than Type B. For each type, two different 

array sizes (10×9 and 28×27; M = 10 and N = 9, and M = 28 and N = 27, 

respectively) were considered.  
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Figure 2.1. (a) Schematic of an M × N crossbar array. (b) Assumed I-V 

characteristics of the model resistance-switches (Types A and B). (c) Schematic 

of the MLP with M × (N + 1) input and N output units, and O hidden layers. 

The rule for mapping resistance-switches and input voltage arrays to an input 

vector is tabulated in the inset. 

 

Table 2.1. Parameters of model switch. 

Heading Type A Type B 

RHRS (Ω) 108 × e−V 105 × e−V 

RLRS (Ω) 10k 1k 

RHRS/RLRS at 1 V 3679 36.79 
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2.3. Description of artificial neural network 

The passive RRAM outputs a current vector I that is determined by the 

configuration of switches over the whole array instead of their local 

configuration. A fully connected feed-forward network is, therefore, suitable for 

the model system instead of a CNN capturing patterns over local areas. 

Additionally, given the aforementioned nonlinearity of the model system, a 

hidden layer(s) needs to be incorporated in the network, rendering an MLP most 

suitable. Thus, an MLP was chosen as an appropriate network for the crossbar 

array. Fig. 2.1(c) illustrates the employed MLP with M × (N + 1) input units, N 

output activation units, and O hidden layers, each of which is filled with Hi 

activation units where i ∈ {1, 2, ···, O}. The input into the MLP is the 

resistance-state (+1 and −1 for the LRS and HRS, respectively) distribution 

over the M×N array (R) plus an M-long vector for input voltage (+1 and−1 for 

V[i] = 1 and V[i] = 0, respectively) as sketched in Fig. 2.1(c). This matrix is 

then vectorized to feed into the MLP. The output is the estimated output current 

of the crossbar array at a given voltage. Note that successful training is crucial 

to rescale the original physical input (resistance and voltage) and output 

(current) in a heuristic manner such that the rescaled (scale-free) values stay in 

an “acceptable” range. To this end, symbolic (+1 and−1), rather than physical, 

values were given to the input components. Likewise, the desired (correct) 

output values (currents) were rescaled such that L[i] = 10×I[i]×RLRS.  

The leaky rectified linear unit (ReLU) was deployed as an activation unit: f(x) 

= max(x, 0.1x). The leakage when x < 0 is required for the negative input 
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components. Otherwise, the negative input components are merely ignored as 

for the simple ReLU, f(x) = max(x, 0). The ReLU is a workaround for the 

notorious vanishing gradient problem, which is significant when the network is 

deep. 

2.4. Training and test datasets   

The output I in response to an input V for a given R was evaluated by applying 

the Kirchhoff’s circuit law to each switch. The obtained nonlinear equations 

were solved using the Newton-Raphson method, which resulted in the output I. 

The calculation was elaborated in [22]. A training dataset was produced by 

randomly sampling resistance state distribution over the array and input V. First, 

p1 (0 ≤ p1 ≤ 1) was randomly sampled from a uniform probability distribution 

function (PDF) and used as the probability that V[i] = 1. That is, if p1 is 0.4, 40% 

of all input lines are pulled high (1 V), and the rest lines (60%) are pulled down 

(0 V). Another number p2 (0 ≤ p2 ≤ 1) was subsequently sampled for each input 

line from a uniform PDF to randomly distribute 1 V signals over all input lines 

at a probability of p1 such that, when p2 ≤ p1, V[i] = 1, and 0 otherwise. This 

process was repeated with different p2’s over M rows, resulting in an input V 

for this training example. A third number p3 (0 ≤ p3 ≤ 1) was picked from a 

uniform PDF and taken as the percentage of LRS switches in the entire array. 

For each switch in the array, p3 was compared with another random number, p4 

(0 ≤ p4 ≤ 1) was sampled for each switch, and R[i, j] = RLRS when p4 ≤ p3, and 

R[i,j] = RHRS otherwise. The label of this training example was the current 

response for I given R and V. The complete dataset was acquired by repeating 

this process. The test dataset was separately made for the fair evaluation of 
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inference accuracy. Two different crossbar array sizes (10×9 and 28×27) for 

each type of switch were considered so that four different training and test 

datasets were produced. Each training dataset included 500,000 training 

examples (V, R, and I) unless otherwise specified. The network was examined 

for every training epoch using 10,000 test examples. Backpropagation using the 

mean-squared error loss function was employed with Adam optimizer that 

leverages learning rate adaptation for each parameter to accelerate training [23]. 

The MLP was batch-trained with a batch size of 100 (100 examples were 

randomly chosen for each training epoch). Both training and inference were 

performed using TensorFlow [24]. Note that for successful training, the 

network should vary on its hyper-parameters such as the number of ReLU units 

in each hidden layer (Hi) and the network depth (O) depending on the input 

array length. 

2.5. Training results 

Fig. 2.2 shows a reduction in the discrepancy between the output (inferred) 

current Iout and desired (correct) current Icor in due course, revealing successful 

training for all four cases conditional on the network structure. For the small 

crossbar array (10×9), a network including a single hidden layer (O = 1) loaded 

with 100 ReLU units could successfully be trained with the 500,000 training 

examples (Fig. 2.2(a), (b)). However, the use of fewer units (50 and 75) falls 

short of the capability of learning the dataset so that a high error level is 

maintained for both types of switch. This is a result of underfitting referring to 

the use of an unsuitable network for capturing the input pattern. Here, the 

network is too simple (insufficient number of units) to describe the complexity 
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of input data. The successfully trained network infers the output current of a 

random 10×9 crossbar array R at a random V. The inferred currents for 10,000 

test examples are plotted against the desired (correct) currents in Fig. 2.2(e), (f), 

each of which includes 90,000 data points (10,000 test examples, each of which 

produces 9 current values). The error histogram for each case is plotted in the 

inset, indicating a root mean squared error (RMSE) of 0.313 µA and 17.8 µA, 

respectively. The larger error for Type 2 switch arises from the higher current 

in both HRS and LRS due to the lower RHRS and RLRS. The results for the 

larger crossbar array (28 × 27) of Types A and B switches are shown in Fig. 

2.2(c), (d), respectively. Given the larger input dimension (28×28 = 784), a 

network needs more units in each hidden layer and/or more hidden layers for 

success in training. The employed network varies on the number of units (1500 

and 2500) in a hidden layer and the network depth (1 and 2). The three networks 

among four are given the capability to estimate the response of a random 28 × 

27 crossbar array R at a random V. As such, the network fully trained along the 

green curve for Types A and B switches represents low inference-error (a 

RMSE of 4.85 µA and 62.7 µA, respectively) as elucidated in Fig. 2.2(g), (h), 

and their insets. 

The correlation coefficient r for each case was also evaluated as another 

measure of success of training, which is given by r = cov(Iout −

Icor)/√var(Iout)·var(Icor), where cov and var denote a covariance and variance, 

respectively. The correlation coefficient is asymptotic to 1 when the inference 

error tends to zero, and thereby r = 1 implies zero error (perfect match). The 

calculated r for each case is written in Fig. 2.2. The failure of training for the 
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network with 2,500 units in each of the two hidden layers is due to overfitting 

(see orange curves in Fig. 2.2(c), (d)). Although the network is given sufficient 

complexity (a large number of units and hidden layers) to learn the complex 

input pattern, insufficient training examples lead to faulty training as shown in 

the orange curves (Fig. 2.2(c), (d)). Overfitting could be avoided by training 

with a larger training dataset (here 1,000,000 examples for Type B switch) as 

shown in Fig. 2.3(a). The inference-error for the overfitting case is detailed in 

Fig. 2.3(b) which represents a substantial discrepancy between the inferred and 

desired outputs, the extent to which the RMSE reaches 438.2 µA (r = 0.99571). 

The error statistics are plotted in the inset. In contrast, a remarkable reduction 

in inference-error is identified for the non-overfitting case (Fig. 2.3(c)) whose 

RMSE is lowered down to 49.2 µA (r = 0.9995). 

Finally, we compared the time-efficiency of the proposed method with the 

conventional Newton-Raphson method [22]. The run time of a 10×9 resistance 

array calculation was measured for both methods using the same computer. The 

result shown in Fig. 2.4 ensures an acceleration in calculation by approximately 

8 times, identifying a feasible benefit of fast calculation from the proposed 

method. 
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Figure 2.2. Inference-error reduction while training a network with the dataset 

of a 10 × 9 crossbar array of (a) Type A and (b) Type B switches. Their output 

results (inferred currents) for the entire 10,000 test datasets after successful 

training (green lines) are plotted against the desired currents in (e) and (f), 

respectively. The histogram of the error (the difference between inferred and 

desired currents) for each case is shown in the inset. The red solid lines denote 

the perfect match of inference with the desired (correct) results. The results are 
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shown for a 28 × 27 crossbar array of (c) Type A and (d) Type B switches, and 

their statistics in (g) and (h), respectively. 
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Figure 2.3. (a) Training the network (2,500 units in each of two hidden layers) 

with 500,000 and 1,000,000 examples for Type B switch. The capability of 

response inference is shown for the network trained with (b) 500,000 and (c) 

1,000,000 examples. The insets address the distribution of inference-error. 

 

 

Figure 2.4. Comparison of run time for the proposed method and Newton-

Raphson method.  
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2.6. Conclusions 

A fully connected feed-forward network with different structures (depth and the 

number of activation units) was successfully trained to infer the current 

response of a random crossbar array to a randomly applied voltage array. This 

work first verifies the capability of ANN to capture the highly nonlinear input-

output relationship of a crossbar array model system. Secondly, MLP for 

supervised learning provides a means of real-valued array inference beyond the 

classification of input patterns. Thirdly, this work offers a distinct view of 

crossbar array evaluation — a numerical solution of a number of simultaneous 

equations can be avoided at the expense of a few steps of matrix-vector product 

for inference. However, training the network and preparing datasets can be 

expensive, depending on the network hyper-parameters and model crossbar 

array size. Thus, we leave this efficiency issue open for the moment. 
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3. Markov chain hebbian learning algorithm with 

ternary synaptic units 

3.1. Introduction 

Recent progress in machine learning (particularly, deep learning) endows 

machines with high precision recognition and problem-solving capabilities 

beyond the human level [1]-[3]. Computers on the von Neumann architecture 

are the platform for the breakthroughs albeit frequently powered by hardware 

accelerators, e.g., graphics processing unit (GPU) [4]. The main memory stores 

intertwined fragmentary information, e.g., weight matrix, representation of 

hidden neurons, input datasets, and so forth. However, essential to efficient 

memory retrieval is memory organization such that the whole weight matrix 

can readily be recalled when necessary. In this regard, a high-density crossbar 

array (CBA) of two-terminal memory elements, e.g., oxide-based resistive 

memory and phase change memory, is perhaps a promising solution to machine 

learning acceleration [5]-[9].The connection weight between a pair of neurons 

is stored in each memory element in the CBA as conductance, and the weight 

is read out in place by monitoring current in response to a voltage [5]-[9]. 

Albeit promising, this approach should address the following challenges; 

each weight should be calculated beforehand using a conventional error-

correcting technique, and the pre-calculated value needs to be programmed in 

a single memory element. The former particularly hinders online learning. In 

this study, an easy-to-implement algorithm based on a stochastic neural 
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network—termed the Markov chain Hebbian learning (MCHL) algorithm—is 

proposed. The most notable difference between the MCHL and restricted 

Boltzmann machine (RBM) [10]-[15] is that the MCHL is a discriminative 

learning algorithm with the aid of ‘‘external field’’ that realizes supervised 

learning. Also, each update uses only local (spatial and temporal) data rather 

than global data such as energy of the entire network. The MCHL algorithm 

also features as follows: (a) Each weight w[i, j] is a ternary number: w[i, j] ∈ 

{−1,0,1} 

(b) Given (a), each update of weight follows a finite-state Markov chain, and 

the update probability is in line with the Hebbian learning.  

(c) A group of output neurons in a bucket (rather than a single neuron) 

simultaneously represent a data class (label), which is comparable to concept 

cells [16]-[18].  

(d) When the network is deep, the network is trained in a greedy layer-wise 

manner, and each layer is trained in a greedy edge-wise manner.  

Provided with these features, the MCHL algorithm enables an ad hoc update 

of the weight matrix (online learning) in a memory-saving fashion, so that it is 

suitable for machine learning powered by CBA-based memory. No need for an 

auxiliary function for error correction, e.g., backpropagation, particularly 

alleviates computational complexity. Each synapse is given a ternary number 

during the entire learning period—distinguishable from binarizing real-valued 

weight at each update step [19] as well as the use of auxiliary real-valued 

variables [20]. A Markov chain, specifically, in Markov chain Monte 

Carlo(MCMC), is a common means of sampling from a complex distribution 
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of data to extract information in stochastic machine learning [21]. Especially, a 

Markov decision process offers a solution to an optimal policy that maps a 

current state of an agent to a certain action resulting in the maximum reward in 

reinforcement learning [22], [23] Additionally, MCMC yields a posterior 

probability distribution that is the key to Bayesian inference and learning [21] 

Examples also include recent attempts to apply Markov chains to multi-instance 

multi-label learning [24] that addresses objects embodying multiple instances 

(features). In this case, Markov chains are used as probabilistic classifiers 

mapping multiple instances to multiple labels [25].  

Stochastic Hebbian learning algorithms are methods to probabilistically train 

a binary synapse conditional on the pre and postsynaptic activities in line with 

the MCHL algorithm [26], [27]. Interestingly, such algorithms can train 

networks to a comparable degree with its deterministic counterpart [26], [27]. 

Yet, these algorithms barely support supervised learning for classification tasks. 

Senn and Fusi proposed a single-layer perceptron with a stochastic learning 

algorithm for supervised learning [28]. The algorithm requires global inhibition 

that is applied to all output neurons so that the actual synaptic input in total 

(input from binary excitatory synapses plus global inhibition) is not all or 

nothing. Additionally, no explicit method to apply the algorithm to multilayer 

perceptrons (MLPs) is proposed.  

Note that, regarding the feature (d), the network depth indicates repeated 

linear classifiers through the layers so that it differs from that of a multilayer 

feed-forward network that features a nonlinear classifier. Nevertheless, we term 

the additional layers between input and output layers as hidden layers(HLs) 
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given that they are literally hidden irrespective of their role in non-linear 

classification. Additionally, a network with such HLs is referred to as a deep 

network. 

The MCHL algorithm was applied to two proof-of concept examples: image 

recognition using the MNIST and CIFAR-10 datasets and multiplication table 

memorization. The latter example relates the arithmetic to memory-based 

perception in an analogous way to humans’ mental arithmetic. The weight 

matrix trained with the multiplication table was then applied to more 

complicated arithmetic such as aliquot part evaluation and prime factorization. 

3.2. Model description 

3.2.1. Network structure and energy 

Analogous to the RBM, two layers of neurons without recurrent connection 

form the basis for the MCHL algorithm. However, it differs from the RBM such 

that the HL in the RBM is replaced by an output layer that does not feed input 

into the input layer. Fig. 3.1(a) depicts a stochastic neural network of M input 

features and N output neurons. u1 and u2 denote the input vector and activity 

vector of the output layer, defined as  

{
u1 ∈ ℝ

M,   

u2 ∈ ℤ
N,   

0 ≤ u1[i] ≤ 1

u2[i] ∈ {0,1}
 , 

respectively. In the output layer, H neurons associatively represent each of total 

L labels so that the output layer includes LH neurons (N=LH). A group of such 

H neurons is referred to as a bucket. When the L labels are indexed from 1 to L, 

u2[(n − 1)H+1:nH] is a block of output activities for the nth label. Note that 

x[a:b] denotes a block ranging from the ath to bth elements of vector x. A matrix 
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w (∈ ℤLH×M) defines the weight of feed-forward connection from the input to 

output layer such that the input z[i] into the ith output neuron is given by  

 z[i]=∑ w[i, j]u1[j]
M
j=1  (1) 

Each element of w is given one of the ternary values (−1, 0, 1). According to 

the bucket configuration of the vector u2, the matrix w can be partitioned such 

that w[(n − 1)H+1:nH,·] is for the connection from the input vector to the output 

neurons of the nth label. ‘·’ means all j=1, ..., M. Likewise, z(= wu1)can also be 

partitioned into L buckets.  

The energy of this network is defined as  

 E(u1, u2) = −(2u2 − 1⃗ )
T
∙w∙u1 + bT∙u2,                      (2) 

where w is a weight matrix, 1⃗  is a N-long vector filled with ones. b denotes a 

bias vector for the output layer. (2u2 − 1⃗ ) in (2) transforms u2 such that a quiet 

neuron (u2[i] = 0) is given an output of −1 rather than zero. This counts the cost 

of a positive connection (w[i, j]=1) between a nonzero input (u1[j]≠0) and 

output neuron in an undesired label (u2[i]=0). This undesired connection raises 

the energy by u1[j]. 

The following conditional probability that u2[i]=1 given z[i] holds: 

  P(u2[i] = 1|z[i]) = [1+ e−(2z[i]−b[i])/τ]
−1

,                  (3) 

where τ denotes a temperature parameter. (3) is plotted in Fig. 3.1(b). The 

derivation of (3) is elaborated in Appendix A. We also define the deterministic 

activity of neuron i in the jth layer as  

aj[i] = [1+ e−(2z[i]−b[i])/τ]
−1

.                      (4) 

For instance, for the network in Fig. 3.1(a), a2[i] denotes the activity of neuron 
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i in the second (output) layer. This deterministic activity is used for inference 

as follows. The output from each label n (O[n]) is the sum of deterministic 

activity over all output neurons in the label. The maximum component of O 

designates the estimated label for a given input. (4) is also used when training 

a deep network (Sec. IVA).  

Note that, unless otherwise stated, the bias is set to zero, simplifying (2), (3), 

and (4) to  

 E(u1, u2) = −(2u2 − 1⃗ )
T
∙w∙u1,                   (5)  

 P(u2[i] = 1|z[i]) = [1+ e−2z[i]/τ]
−1

,                (6) 

and  

aj[i] = [1+ e−2z[i]/τ]
−1

,                     (7)  

respectively. The description of each mathematical symbol is addressed in 

Table 3.1. 
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Figure 3.1. MCHL algorithm working principle. (a) Basic network of M input 

and N output binary stochastic neurons (u1 and u2: their activity vectors). (b) 

Behavior of P(u2[i] = 1) with z[i] when b[i]=0. This probability is identical to 

the deterministic activity a2[i] of the neuron. 
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Table 3.1. Symbols. 

Symbol Description 

x[i] (i ≥1) ith element in array x 

x[i:j] (i ≥j) Block ranging from the ith to jth element in array x 

u1 

Activity vector of the M input neurons 

𝒖1 ∈ ℝ
𝑀; 

0 ≤ 𝑢1[𝑖] ≤ 1 

u2 

Activity vector of the N output neurons 

𝒖2 ∈ ℤ
𝑁; 

𝑢2[𝑖] ∈ {0,1} 

w 

Weight matrix 

𝒘 ∈ ℤ𝑁×𝑀; 

𝑤[𝑖, 𝑗] ∈ {−1,0,1} 

b Bias vector for the output neurons 

z 

Array of inputs into the output neurons 

𝑧[𝑖] =∑𝑤[𝑖, 𝑗]𝑢1[𝑗]

𝑀

𝑗=1

 

a2 

Deterministic activity of the N output neurons 

𝒂2 ∈ ℝ
𝑁; 

0 ≤ 𝑎2[𝑖] ≤ 1 

L Number of total labels in a dataset 

Hi Number of neurons in a bucket in the ith layer 

v 

Write vector 

𝒗 ∈ ℤ𝐿𝐻; 

𝑣[𝑖] ∈ {−1,1} if H = 1 

𝑣[𝑖] ∈ {−1,0,1} otherwise 

τ Temperature parameter 

E Energy of the model 

P+ Probability of potentiation  

P- Probability of depression 

𝑃+
0 Maximum probability of potentiation 

𝑃−
0 Maximum probability depression 
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3.2.2. Field application and update probability 

In the MCHL algorithm, write vector v designates the correct label of a given 

input u1. Akin to u2, v is an LH-long vector in which v[(n−1)H+1:nH] is 

assigned to the nth label. The correct label (indexed N) is indicated by v such 

that  

 v[i]= {
1

−1 

0

  
if i = (N − 1)H+ h                          

 if i = (n− 1)H+ h   for all n (≠ N)
otherwise                                             

 ,              (8) 

where 1 ≤ h ≤ H, and h is chosen at random. That is, one of the elements for 

label N is endowed with 1 while one of the elements for each undesired label is 

given −1. Thus, only one element in v has 1, L−1 elements −1, and the others 0. 

In conjunction with the corresponding input vector u1, a field matrix F is 

defined as F = v∙u1
T  and F[i, j] = v[i]u1[j] element-wise. F[i, j] determines 

the sign and probability of weight change of w[i, j] for a given input and its 

correct label. F[i, j] (>0) causes potentiation (Δw[i, j] = 1) at probability P+ only 

if u2[i] = 0 (condition (a)) and w[i, j] ≠ 1 (condition (b)). In contrast, F[i, j] (<0) 

causes depression (Δw[i, j] = −1) at probability P− only if u2[i] = 1 (condition 

(a)) and w[i, j] ≠ −1 (condition (b)). P+ and P− are  

{
P+ = P+

0 F[i, j]=P+
0 v[i]u1[j]    

P- = −P−
0 F[i, j] = −P−

0 v[i]u1[j]
 ,                      (9) 

where P+
0   and P−

0   denote the maximum probability of potentiation and 

depression, respectively. Stochastic update on weight given probability is 

detailed in Appendix B.  

This update rule is reminiscent of the Hebbian learning such that the larger 

the input u1[j], the more likely the update is successful since P+ and P− scale 
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with u1[j] as shown in (9). Condition (a) indicates that a quiet output neuron 

(u2[i] = 0) supports potentiation, whereas an active one (u2[i] = 1) supports 

depression. Condition (b) keeps w[i, j]∈{−1, 0, 1} so that the update falls into 

a finite state Markov chain. v is renewed for the subsequent update with another 

input data and its label. h in (8) is also randomly renewed.  

Specifically, the MCHL algorithm exploits inhomogeneous Markov chains 

that alter the transition matrices every training epoch given the update 

probability conditional on input and write vector according to (9). Several basic 

properties of the inhomogeneous Markov chains in the MCHL algorithm are 

addressed in Appendix C. Generally, a learning rate is of significant concern for 

successful learning. A learning rate in the MCHL algorithm is dictated by P+
0  

and P−
0  in place of an explicit rate term. For extreme cases such as P+

0 = 1 

and P−
0 = 1, the matrix barely converges, but constantly fluctuates.  

When including HLs (Fig. 3.2), the network is trained in a greedy layer-wise 

manner as for deep belief networks [29]. That is, the matrix w1 was first fully 

trained with a field matrix F1 of each input vector u1 and the corresponding 

write vector v. The matrix w2 is subsequently trained with a field matrix F2 for 

a given u1 and v, which reads 𝑭2 = v∙u2
T. Such layer-wise training continues 

up to the topmost weight matrix wD−1 that is trained with FD−1 shown in Fig. 3.2.   
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Figure 3.2. Network with hidden layers. F2 and FD-1 denote a field matrix for 

w2 and wD-1. 
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3.3. Implementation of the MCHL algorithm on 

hardware 

3.3.1. Field-programmable gate array 

Implementing the MCHL algorithm on hardware boosts the advantage of the 

algorithm with regard to its efficient use of memory and computational 

simplicity in weight update. To identify the acceleration of training and 

inference, a field programmable gate array (FPGA) is an easy-to-implement test 

bed where weight matrices can be densely organized in static random access 

memory (SRAM) arrays that are readily accessed when necessary. We will 

highlight the significant acceleration of the MCHL algorithm by implementing 

the MCHL algorithm on an FPGA board later in Sec. IVA. 

3.3.2. Resistance-based random access memory 

A CBA of resistance-based memories offers extremely time efficient multiply-

accumulate (MAC) operation and random accessibility to each bit [30], making 

the MCHL come into its own. Fig. 3.3(a) illustrates a feed-forward connection 

between u1 and u2 for the topology in Fig. 3.1(a), where the weight matrix w 

is mapped onto a RAM. Each ternary unit is placed at the cross point between 

a word line (vertical grey line) and bit line (horizontal grey line). The input 

vector u1 is physically represented by a voltage array in that u1[j] is applied to 

the jth word line. w[i, j] is implemented by the conductance of the unit at the 

cross point between the jth word and ith bit lines. High conductance and low 

conductance correspond to1 and 0, respectively. Likewise, a w[i, j] of −1 

corresponds to negatively high conductance. This counterintuitive concept is 
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realized as illustrated in Fig. 3.3(b). Each unit consists of 2 bits (two resistors), 

and each word line for u1[j] is paired with an additional line for negative u1[j] 

(Fig. 3.3(b)). Therefore, the total current through the parallel resistors I is 

 I = (G[i, j] − G̅[i, j])u1[j] 

where G and G̅ are the conductance of the left and right resistors in each unit, 

respectively. The three combinations of G and G̅  in Fig. 3.3(b) realize the 

ternary weight. Note that (G, G̅) = (1,1)  is not favorable because of high 

power consumption, it can represent 0 though. Therefore, in this strategy, z 

corresponds to an array of output currents; z[i] is the current through the ith bit 

line, equivalent to (1). The random accessibility to each unit supports the 

parallel programming (training) of the units with a programming voltage 

applied to each bit line. An array of programming voltages corresponds to write 

vector v (Figs. 3.3(a) and (c)). The sign of v[i]u1[j] dictates the weight change 

of the unit placed between the ith bit line and jth word line. When positive, the 

unit is given the non-zero probability that Δw[i, j] = 1 (potentiation) while 

negative v[i]u1[j] gives the unit nonzero probability that Δw[i, j] = −1 

(depression) as sketched in Figs. 3.3(c) and (d), respectively. 
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Figure 3.3. Memory-centric illustration of a neural network. (a) Graphical 

description of the weight matrix w that determines the correlation between the 

input activity u1 and output activity u2. The grey vertical and horizontal lines 

denote word and bit lines, respectively. This weight matrix w evolves in 

accordance to given pairs of an input u1 and write vector v, ascertaining the 

statistical correlation between u1 and v. (b) A pair of memory resistors in each 

synaptic unit. Three combinations of the two conductance values represent the 

ternary weight (1, -1, 0). (c) Potentiation: a weight component at the current 

step t (wt[i, j]) has a nonzero probability to gain +1 (i.e. Δwt[i, j] = 1) only if 

u1[j] ≠ 0, v[i] = 1, and wt[i, j] ≠ 1; for instance, given u1 = (0, 1, 0, …, 0) and v 

= (1, -1, -1, …, -1), wt[1, 2] has a probability of positive update. (d) Depression: 
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all components wt[i, 2] (i ≠ 1) are probabilistically subject to negative update 

(gain -1) insofar as u1[2] ≠ 1, v[i] = -1, and wt[i, 2] ≠ -1.  
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3.4. Applications 

3.4.1. Image recognition  

The MCHL algorithm was applied to image recognition tasks with the MNIST 

database (M = 28×28 and L = 10) and CIFAR-10 database (M =32×32×3 and L 

=10). Fig. 3.4(a) shows a memory-centric schematic of the network for the 

training, which includes one HL. The implementation was two-fold. First, the 

MCHL algorithm was implemented on a general-purpose computer (CPU: Intel 

i5-4690 3.5GHz) without using a GPU. The code was written in Python. Second, 

the algorithm was implemented on an FPGA board (Virtex-7 XC7VX485T) to 

identify the acceleration of the algorithm. Hereafter, the FPGA board on which 

the MCHL algorithm is implemented is referred to as an MCHL accelerator. 

Regarding a tradeoff between recognition accuracy and training speed, 

parameters P+
0  (= P−

0 ) and τ were set to 0.1 and 1, respectively, during training 

with the MNIST dataset. The effect of the parameters on training behavior is 

elaborated in Appendix D. Note that parameters P+
0  (= P−

0 ) and τ were set to 

0.01 and 1, respectively, during training with the CIFAR-10 dataset, with regard 

to the tradeoff. 

3.4.1.1. Implementation on a general-purpose computer  

When training the network with the MNIST dataset, the repeated ad hoc 

updates increase the recognition accuracy and decrease the network energy in 

(5) as plotted in Fig. 3.4(b). The network depth substantially alters the 

recognition accuracy as plotted in Fig. 3.4(c). Without HL the accuracy merely 

reaches approximately 88% at H1 = 100 while deploying one HL improves the 
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accuracy up to approximately 92% at H1 =100 and H2 =50. Note that H1 and H2 

denote bucket size in the HL and output layer, respectively. Improvement on 

accuracy continues onwards with more HLs (e.g., two HLs; blue curve in Fig. 

3.4(c)), although its effect becomes smaller compared with the drastic 

improvement by the first HL. The training and test in detail are addressed in 

Appendix E. The weight matrix becomes larger with bucket size, so is the 

memory allocated for the matrix. Nevertheless, the benefit of deploying buckets 

at the expense of memory is two-fold. First, many input features (pixels) are 

shared among labels such that several individual features do not exclusively 

belong to a single particular label. The use of buckets allows such common 

features to be connected with elements over different labels given the sparse 

update on the weight matrix. For instance, without such buckets, every attempt 

to direct the feature at (1,1) — belonging to both labels 1 and 2 — to label 1 

probabilistically weakens its connection with label 2. Second, when shared, the 

statistical correlation between the feature and each of the sharing labels is 

captured by bucket, enabling comparison among the labels. As depicted in Fig. 

3.4(a), the 10 sub-matrices in the matrix w2 define 10 ensembles of H2 output 

neurons; the final output from each label O[n] is the sum of deterministic 

activity a2[i] over the neurons in the same label, i.e., the output range scales 

with H2 in the range 0 – H2. 

A single training is hardly able to capture a statistical correlation between 

input and write vectors. However, the larger the training numbers, the less likely 

the statistical error (noise) is incorporated into the data, which is similar to the 

error reduction in Monte Carlo simulation with an enormous number of random 
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numbers (RNs) [31]. The use of buckets enables the parallel acquisition of 

effectively multiple w matrices as opposed to repeated training trials to acquire 

a w matrix on average. Therefore, it is conceivable that a larger bucket size 

tends to improve the recognition accuracy. In fact, the bucket size and 

consequent memory allocation for matrix w significantly determine the 

recognition accuracy (see Fig. 3.5). However, in Monte Carlo simulations, the 

error reduction with sample number tends to be negligible when the number is 

sufficiently large. The same holds for the MCHL algorithm as shown in Fig. 

3.5. Additionally, the memory cost perhaps outweighs the negligible 

improvement in the accuracy. Therefore, it is practically important to reconcile 

the performance with the memory cost.  

Considerable reductions in memory usage and training time (for 105 epochs) 

for the MCHL algorithm were experimentally identified as plotted in Fig. 3.6. 

The networks subject to the measurements varied in the numbers of HLs and 

neurons in each layer. Benchmarking data were acquired from two feed-

forward networks: MLP and convolutional neural network (CNN). They were 

trained using a backpropagation algorithm with real-valued weights. The MLP 

consisted of 784 input neurons, one HL including 100 neurons, and 10 output 

neurons. The CNN employed 3×3 kernels, 1×1 stride, and 2×2 max pooling 

size. Its fully-connected network was of 2,048×100×10. The MLP and CNN 

can infer the labels of handwritten digits with high accuracy (98% and 99.5%, 

respectively) at the cost of memory in use and complexity in computation (see 

Fig. 3.6). On the other hand, the input complexity in the CIFAR-10 dataset 

keeps there cognition accuracy of our network considerably low as for the MLP 
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trained using a backpropagation algorithm [32]. The network under training 

varied in the number of HLs from zero to three with a bucket size of 500. P+
0 , 

P−
0  and τ were set to 0.01, 0.01, and 1, respectively. The training results are 

plotted in Fig.3. 7, identifying a maximum accuracy of approximately 43% 

when incorporating three HLs. This maximum accuracy is approximately 8% 

lower than the benchmark accuracy from an MLP with three HLs (each of 

which has 500 nodes) trained using a backpropagation algorithm with real-

valued weights (see the red curve in Fig. 3.7(a)). 
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Figure 3.4. Application to handwritten digit recognition. (a) Schematic of the 

network architecture for handwritten digit recognition. A single HL is included. 

The matrix w1 first maps the input vector u1 to the hidden neurons. The array a2 

is taken as an input vector to w2 that maps the input vector to the output neurons. 

The write vector v1 has 10 (the number of labels) buckets, each of which has H1 

elements, i.e. N = 10H1. Each thick arrow indicates an input vector to a group 

of neurons (each neuron takes each element in the input vector). (b) The 

increase of recognition accuracy (red curve) and corresponding decrease of 
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energy (grey curve) with training epoch. The trained network is a single-layer 

network (H=100). (c) Classification accuracy change in due course of training 

with network depth (H1=100, H2=50, H3=30). 
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Figure 3.5. Bucket size dependence of recognition accuracy. Recognition 

accuracy change with (a) H1 in a network without a hidden layer, (b) H2 with a 

single hidden layer (w1 was fully trained beforehand; H1=100), and (c) H3 with 

two hidden layers (w1 and w2 were fully trained beforehand; H1=100 and 

H2=100). 
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Figure 3.6. Memory usage and training time (for 105 epochs) for the MCHL 

algorithm. The networks subject to the measurements varied in the numbers of 

HLs (1, 2, and 3) and neurons (HD20, 30, and 50) in each bucket. Each HL 

included the same number of neurons. The data were compared with the 

memory usage and training time for the MCHL accelerator and two feed-

forward networks (MLP and CNN) trained using a backpropagation algorithm 

(105 training epochs). The clock speed of the FPGA board was set to 20 MHz. 
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Figure 3.7. Recognition accuracy of networks trained with the CIFAR-10 

dataset. (a) Accuracy evolution with training epoch for a network including 

three HLs, each of which embodies 500 nodes, reaching approximately 43%. 

An MLP trained using backpropagation with real-valued weights represents 

approximately 51%. (b) Recognition accuracy upon the number of HLs. Each 

HL includes 500 nodes 
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3.4.1.2. MCHL accelerator  

The same type of network was built on an FPGA board and trained using the 

MCHL algorithm that was modified to save the resource. The modification 

includes representation of aj[i] in (4) and (7) using an 8-bit integer value. The 

original input data (8 bits/pixel) was downsized to 2 bits/pixel to accelerate the 

input data transfer from the computer to the FPGA board (bandwidth: 300 kb/s). 

The MCHL accelerator is of bucket-wise parallel structure such that the 

evaluation of neuronal activities in one bucket is performed in parallel with the 

other buckets. Accordingly, the partitions of each weight matrix a real so 

structured in parallel so that an update on weight in each partition can be 

executed in parallel. The MCHL accelerator is elaborated in Appendix F.  

A network with one HL (H1=20, H2=10) was trained with the downsized 

MNIST dataset, resulting in are cognition accuracy of 88%. The reduction in 

recognition accuracy for the FPGA implementation arises from the downsized 

input data and the use of 8-bit numeric data type for aj[i].  

The MCHL accelerator markedly accelerates training and minimizes a need 

for memory (see Fig. 3.6). Evaluating the activity of each neuron in a bucket 

using (1) and (7) merely needs one clock cycle Tclk (=1/fclk, where fclk denotes 

clock speed). Inferring a single handwritten digit needs to evaluate all neurons 

in the network, (H1+H2)L in total. The evaluation for each bucket is executed 

in parallel. Thus, each inference takes (H1+H2)Tclk, i.e., (H1+H2)/fclk. Setting fclk 

to20MHz, single inference is finished in 1.5 µs. Each update on w1 needs the 

evaluation of u2 (performed in parallel with the update) given the current w1, 

u1, and v to determine the update probability detailed in Sec. IIIB. This is done 
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in a single clock cycle (Tclk) with regard to the partition-wise parallel weight 

update (see Appendix F). Therefore, each w1-training epoch takes 1/fclk, e.g., 50 

ns at 20 MHz.  

However, each update on w2 needs the evaluation of a2 given the fully trained 

w1 and input u1 using (1) and (7) beforehand. As such, this step takes H1Tclk, 

i.e., H1/fclk. Akin to updating w1, an update on w2 given the evaluated a2, current 

w2, v, and u3 (also acquired in parallel with the update) merely takes one clock 

cycle (Tclk). The weight update time in total for each w2-training epoch is 

therefore (H1+1)/fclk: 1.05 µs at 20 MHz. The only memory in use was for the 

weight matrices w1 and w2. Given that 2-bit memory is allocated to each element, 

w1 and w2 need memory capacities of 313.6kb (2×784× H1 ×L) and 40kb (2×H1 

×L ×H2 ×L), respectively, i.e., 353.6 kb (44.2 kB) in total. 

3.4.2. Multiplication table memorization and prime factorization  

The MCHL algorithm can also be applied to deterministic learning. Examples 

include multiplication table memorization, where the MCHL algorithm 

spontaneously finds correct-answer-addressing matrix w. This way recalls, 

rather than computes, the correct answer. Matrix w 

(w∈ℤN×2M; w[i, j]∈{0, 1}, N=M2H)  was trained with the M × M 

multiplication table. Two integer factors in the range (1 – M) were chosen and 

represented by two one-hot vectors, each of which had M elements. These two 

vectors were merged into input vector u1 (∈ℤ2M; u1[i]∈{0, 1}); u1[1:M] were 

allocated for the first vector, and u1[M+1:2M] for the second one. The product 

(1 – M2) is taken as the desired label of the input. Therefore, M2 labels in total 
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are available. Given bucket size H for each label, write vector v is M2H long. 

Multiplication is deterministic so that no stochasticity intervenes in learning. 

Consequently, P+
0 = 1 and P−

0 = 0 were given to (9), and all neurons were 

frozen (τ = 0.01). In this regard, write vector generation does not require 

random sampling within the bucket in the desired label. Instead, an element in 

the bucket is conferred on each pair of factors in training order. For instance, 

2×8 addresses the nth element in label 16, and the multiplication addressing the 

same label in the closest succession, e.g., 4×4, takes the (n+1)th element. 

Therefore, the bucket includes a set of possible multiplications yielding the 

same label. Notably, a prime number has only two factors, ‘1’ and itself, and 

thus, the bucket includes only two multiplications. Note that bias is given to 

each output neuron; b[i] = 3 for all i’s. Therefore, (3) is expressed 

as P(u2[i] = 1|z[i]) = [1+ e−(2z[i]−3)/τ]
−1

. The bias allows u2[i] = 1 only if z[i] 

> 2 so that a single factor cannot solely activate the output neuron.  

The network structure is sketched in Fig. 3.8(a); no HL is required to achieve 

the maximum accuracy. The training continued onwards until the entire pairs 

of numbers in the table were memorized. M2 training steps were thus required 

to complete the memorization task. Indexing vector A (∈ℤ𝑀
2
; A[i] = h) was 

defined to count the possible multiplications (h) resulting in the same product. 

For instance, when M ≥ 6, A[6] = 4 because 1×6, 2×3, 3×2, and 6×1 result in 6 

(see Fig. 3.8(a)).  

Notably, A[i] is identical to the number of factors of i. The training procedure 

is elaborated in Appendix G. Note that the prime numbers large than M cannot 
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be taken as a label. Notably, the bucket size H should not be smaller than the 

maximum A[i] (i ≤ M2), otherwise some buckets cannot host all multiplications. 

To save memory, it is necessary to calculate the integer (≤ M2) that has the most 

factors and accordingly allocate memory to each bucket.  

The trained matrix w can readily be used to find the aliquot parts of number 

n by transposing the matrix: wT∈ℤ2M×N; N = M2H  (see Fig. 3.8(b)). The 

matrix multiplication z = wTu1 with u1(∈ℤN; N = M2H) — all H elements in 

the nth bucket are set to 1—yields a vector z whose upper M bits z[1:M] are the 

sum of the entire aliquot parts, each of which is represented by a one-hot vector 

(Fig. 3.8(b)). Given the commutative property of multiplication, z[1:M] = z[M 

+1:2M]. For instance, when M = 9, input ‘6’ yields z[1:9] = [111001000], 

indicating ‘1’ + ’2’ + ’3’ + ’6’. A prime number ‘7’ yields z[1:9]=[100000100] 

(‘1’+‘7’); two 1’s in z indicates a prime number (h=2).  

The matrix w trained with an M ×M multiplication table also serves as the 

basis for prime factorization (Fig. 3.9(a)). It is a modified version of the aliquot 

part retrieval to avoid retrieving ‘1’ and itself if other factors exist. A remarkable 

advantage consists in the parallel decomposition of many numbers; for input u 

(the sum of one-hot vectors under decomposition, e.g., A = a × b and B = c × 

d), the single matrix-vector multiplication z = wTu uncovers all a, b, c, and d. It 

should be noted that u[i] for all i’s is no longer one of the binary numbers (0 

and 1); instead it can be any nonnegative integer.  

An M × M multiplication table that the matrix w is trained with beforehand 

can be used to factorize any positive integers whose all factors are smaller than 

or equal to M. That is, a priori knowledge of a number subject to prime 
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factorization can significantly reduce the size of a multiplication table in use. 

Without such knowledge of integer N under prime factorization, a full N ×N 

multiplication table is needed to safely prime factorize the number. If N is a 

priori known to be an even number, an (N/2) × (N/2) multiplication table is 

sufficient for successful prime factorization. 

Fig. 3.9(b) illustrates a factor tree of ‘840’; the first iteration with w (M = 50) 

results in ‘40’ + ‘21’, the following iteration gives ‘2’ + ‘3’ + ‘7’ + ‘20’, and the 

third iteration 2 × ‘2’ + ‘3’ + ‘7’ + ‘10’, equivalent to a1, a2, and a3 in Fig. 3.9(c). 

To demonstrate the efficiency of this method, a randomly picked integer in a 

multiplication table (M =300) was prime factorized, and the number of the 

iteration steps was counted. The results for the integers (1.62884×1010– 

7.75541294×1011) are plotted in Fig. 3.9(d) in comparison with benchmark 

results (direct search factorization). The higher efficiency of the present method 

over the benchmark can obviously be understood. The direct search 

factorization is elaborated in Appendix H. The matrix w once trained with a 

multiplication table can repeatedly be used to prime factorize numbers covered 

by the table. Therefore, the factorization iteration steps in Fig. 3.9(d) do not 

include the multiplication table memorization steps.  

The capacity for prime factorization using the proposed algorithm is dictated 

by the size of a trained M × M multiplication table. As such, the larger the size 

M, the more the factorizable integers (Fig. 3.10). Note that the factorizable 

integers should be addressed as a product in the M × M multiplication table so 

that the number of factorizable integers is identical to that of products in the 

table. There exist 36 different products in the 9×9 multiplication table; all of 
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them are prime-factorizable. Upon enlarging the table size up to M = 300, the 

capacity reaches 24,047. Given the ternary weight in w (each element needs 2 

bits), the required memory size for w (M =300) is 180 kbits (Fig. 3.10).  
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Figure 3.8. Multiplication table memorization and aliquot part retrieval. (a) 

Network architecture for multiplication table memorization. The numbers in 

the range 1 – M are described by one-hot vectors. Any two of total M2 numbers 

are combined to form an input vector u1 (𝑢1 ∈ ℤ
2𝑀;  𝑢1[𝑖] ∈ {0, 1} ); for 

instance, when M = 9, u1 for one and six is [100000000|000001000], where the 

first and last 9 bits indicate one and six, respectively, as shown in the figure. 
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The correct answer serves as the label of chosen numbers; there are M2 labels 

in total. Each label (bucket) has H elements so that the write vector v is a M2H 

long vector that is adjusted given the correct label. Given entire pairs of 

numbers in the table and their multiplication results, the matrix w (𝑤 ∈

ℤ𝑀
2𝐻×2𝑀 ) is adjusted. 𝑃+

0 , 𝑃−
0 , b[i], and τ were set to 1, 0, 3, and 0.001, 

respectively (b) Network architecture of aliquot part retrieval given the matrix 

w. The transpose of w (wT) finds the entire aliquot parts of a given number in a 

parallel manner in place. For instance, for number ‘6’, an input vector u1 (M2H 

long vector) has a single nonzero bucket (6th bucket) that is filled with ones. 

The output vector z is [111001000|111001000], indicating the sum of four one-

hot vectors (‘1’ + ‘2’ + ‘3’ + ‘6’)each of them is an aliquot part of 6. For 

prime numbers, the output vector includes only two 1’s (1 and its own number) 

so that prime numbers can readily be found; for instance, 7 results in 

[100000100|100000100] as shown in the figure. 
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Figure 3.9. Prime factorization. (a) Memory (𝑤𝑇 ∈ ℤ2𝑀×𝑀
2𝐻) based iterative 

and parallel search for prime factors. Given an input vector u standing for a 

certain number n, the matrix multiplication wTu outputs vector z ( 𝑧 ∈

ℤ2𝑀;  𝑧[𝑖] ∈ {0, 1}) that reveals one pair of its factors—except 1 and itself—

z[1:M] and z[M+1:2M] whose product yields n. Operator T2 adds these two one-

hot vectors, resulting at
 (𝑎𝑡 ∈ ℤ

𝑀). The iteration terminates upon no further 

change in a other than a[1]. Otherwise, operator T1 transforms at to u, and the 

next cycle continues. (b) Prime factorization of 840 = 23×3×5×7 with a matrix 
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wT (M = 100, H = 30). The first iterative step outputs a1 in (c); the address of 

each element indicates a factor, e.g. the 21st element, a[21], means a factor of 

21, and the element value its exponent. Only a1[21] and a1[40] in a1 except a1[1] 

are nonzero, indicating 21×40. The second iteration outputs a2 whose nonzero 

elements are a2[2], a2[3], a2[7], and a2[20] (= 1, 1, 1, and 1, respectively), 

implying 22×10×21. The third iteration respectively sets a3[2], a3[3], a3[7], and 

a3[10] to 2, 1, 1, and 1, i.e. 22×3×7×10. The forth iteration sets a3[2], a3[3], 

a3[5], and a3[7] to 3, 1, 1, and 1, i.e. 23×3×5×7 and an additional iteration does 

not alter other elements than a[1] such that the prime factorization is completed. 

(d) The number of factorization steps until prime factors for the integers 

(1.62884×1010 – 7.75541294×1011). The results are compared with the direct 

search factorization. 
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Figure 3.10. Prime factorization capacity. The number of integers 

factorizable using the proposed algorithm with the size M of a trained 

multiplication table and the memory for matrix w. 
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3.5. Discussion  

The MCHL algorithm employs the population representation of output neurons; 

the population is partitioned as a consequence of bucket allocation for each 

label. This notion is reminiscent of ‘concept cells’ [16]-[18]. They fire only to 

specific inputs that point to the same concept even with different stimulus 

modalities [17]. Likewise, the 10 populations in Fig. 3.4(a) may be equivalent 

to concept cells, each of which represents each digit. Additionally, deploying 

buckets may support the integration of different stimulus modalities, each of 

which is directed to the same concept cell throughout different path ways. This 

bucket can include different neurons at the pinnacles of different pathways, e.g., 

in an auditory modality, so that these different stimulus modalities can 

complementarily activate the bucket.  

Given that each bucket represents a single concept, a one-hot vector 

representation is most suitable for the mathematical description of concepts. 

The proposed multiplication table memorization algorithm therefore lays the 

foundation of arithmetic in association with perception via memory. All 

integers (factors and products) in the table are represented by one-hot vectors 

that are equivalent to concept cells. They may be addressed by not only 

arithmetic but also external stimuli in different sensory modalities. Arithmetic 

with the aid of memory may be akin to humans’ mental arithmetic, particularly, 

of simple single-digit arithmetic [33]-[35]. Additionally, this memory-based 

multiplication may combine arithmetic with sensory modalities, e.g., visual and 

auditory stimuli. For instance, an agent—endowed with the handwritten digit 

recognition and aforementioned arithmetic capabilities—can recognize 
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handwritten digits (through a visual modality) and multiply them.  

The MCHL algorithm offers a solution to online learning given that the 

algorithm enables ad hoc updates on a weight matrix accommodated by a 

random access memory (RAM) without pre-calculating the weight matrix. This 

approach, therefore, provides a workaround for the matrix calculation overhead 

that is a challenge when addressing representations with enormous features. 

Additionally, the ternary (−1, 0, 1) weight elements—each of which merely 

needs 2 bits as shown in Fig. 3.3(b)—significantly improve the areal density of 

the matrix mapped onto a RAM array in support of density- as well as the 

energy-wise efficiency of training. A CBA of resistance-based memory is 

perhaps most suitable for the MCHL algorithm, leveraging its capability of 

efficient MAC operation [5], [9], [36]. Given the stochasticity in resistance 

switching (particularly, on- and off-switching voltages [37], [38]) in nature, the 

probabilistic weight transition may be achieved by controlling driving voltage 

without RN generation [39]. Additionally, every update simply overwrites the 

current memory contents in this training scheme in that the past weight matrix 

no longer needs to be kept given the Markov chain nature, which also alleviates 

large memory needs. 

A rise in handwritten digit recognition accuracy by approximately 2% was 

achieved by endowing each unit with 11 levels, w[i,j] ∈ {−5, −4,. .., 4, 5} as 

plotted in Fig. 3.11. The network includes no HL. This implies that the ternary 

weight limits the recognition accuracy below a benchmark accuracy of 

approximately 92% acquired from an MLP (with real-valued weight and no HL) 

trained using a backpropagation algorithm. Such 11 levels require five 
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conductance levels of each resistance-based memory. Fortunately, there are 

several resistance-based memory systems that exhibit multilevel operations 

[40]-[42]. 
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Figure 3.11.  Effect of multinary synaptic weight. Improvement of 

handwritten digit recognition accuracy with multinary synaptic weight. The 

trained network is a single-layer network (H = 100). A benchmark is a single-

layer perceptron with real-valued weight, which was trained with a 

backpropagation algorithm. 
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3.6. Appendix 

3.6.1. Derivation of stochastic activity of a neuron  

Given the network energy in (2), the joint probability distribution of the state 

u1 and u2 is described distribution of the state u1 and u2 is described as P(u1, 

u2) = e−E(u1, u2)/τ/Z , where Z is the partition function of the network, Z =

∑ ∑ e−E(u1[j], u2[i])/τN
i=1

M
j=1 . Consequently, the conditional probability distribution 

of u2 given u1 is  

 P(u2|u1)

=
e
∑ (−a[i]u2[i]−∑ w[i, j]u1[j]

M
j=1 +2∑ u2[i]w[i, j]u1[j]

M
j=1 )/τN

i=1

∏ ∑ e
(−a[i]u2[i]−∑ w[i, j]u1[j]

M
j=1 +2∑ u2[i]w[i, j]u1[j]

M
j=1 )/τ

u2[i]∈{0, 1}
N
i=1

 

= ∏
e
(−a[i]u2[i]+2∑ u2[i]w[i, j]u1[j]

M
j=1 )/τ

1+e
(−a[i]+2∑ w[i, j]u1[j]

M
j=1 )/τ

N
i=1 .            (10) 

 P(u2|u1) = ∏ P(u2[i]|u1)
N
i=1  such that u2[i]’s are independent of each other 

owing to the lack of recurrent connection. Therefore, the following equation 

holds:  

 P(u2[i] = 1|u1) =
e
(−a[i]+2∑ w[i, j]u1[j]

M
j=1 )/τ

1+e
(−a[i]+2∑ w[i, j]u1[j]

M
j=1 )/τ

.         (11) 

Introducing z[i] (= ∑ w[i, j]u1[j]
M
j=1 ) simplifies (11) to  

 P(u2[i] = 1|z[i]) =
e(−a[i]+2z[i])/τ

1+e(−a[i]+2z[i])/τ
=

1

1+e(a[i]−2z[i])/τ
, (12) 

which is equal to the directed graphical model in Fig. 3.1(a). 
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3.6.2. Calculation of update probability  

The update conditions and corresponding probability P can readily be 

incorporated into the following equation (when v[i] ≠ 0):  

 P(∆w[i, j] = v[i]|wt[i, j], u1[j], v[i], u2[i]) 

=  
u1[j]v[i][P+

0 (1−u2[i])(v[i]+1)+P−
0 u2[i](v[i]−1)]

2[1+ek(wt[i, j]v[i]−w0)]
,              (13) 

where P+
0  and P−

0  are expressed 

as  P(∆w[i, j] = 1|wt[i, j] ≠ 1, u1[j] = 1, v[i] = 1, u2[i] = 0)  and 

 P(∆w[i, j] = −1|wt[i, j] ≠ −1, u1[j] = 1, v[i] = −1, u2[i] = 1) , respectively. 

k and w0 dictate the exponential function in the denominator, which are set to 

100 and 0.5 through the entire simulation. Note that when v[i] = 0 no update on 

w[i, j] is allowed, i.e.  P(∆w[i, j] = 0| v[i] = 0) = 1.  

In practical computation, the stochastic variable u2[i] with the probability in 

(3) is acquired with the aid of a single RN before applying (13) to the w[i, j] 

update that needs another RN. Fortunately, u2[i] can be ruled out among the 

conditions in (13) as follows:  

 P(∆w[i, j] = v[i]|wt[i, j], u1[j], v[i]) 

= P(∆w[i, j] = v[i]|wt[i, j], u1[j], v[i], u2[i] = 1) × P (u2[i] = 1) 

+P(∆w[i, j] = v[i]|wt[i, j], u1[j], v[i], u2[i] = 0) × P (u2[i] = 0) 

=  
u1[j]v[i][P+

0 (v[i]+1)+P−
0 (v[i]−1)]

2[1+ek(wt[i, j]v[i]−w0)][1+e−(2z[i]−a[i])/τ]
 .                (14) 

Each update of w[i, j], therefore, needs a single RN, rendering the computation 

more efficient. 
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3.6.3. Properties of Markov chain in MCHL  

As shown in (9), the transition probability varies over the elements of w every 

training epoch so that the MCHL algorithm is of non-homogeneous Markov 

chains. The transition matrix for w[i, j] at the nth epoch is given by 

Tn
i,j = [

p
n
−1,−1 p

n
−1,0 p

n
−1,1

p
n
0,−1 p

n
0,0 p

n
0,1

p
n
1,−1 p

n
1,0 p

n
1,1

] 

where the superscript of p
n
x, y denotes the transition of w[i, j] from x to y. As 

such, the transition matrix Tn
i,j differs for epochs with different v[i] as follows:  

{
 
 
 
 

 
 
 
 [

1 0 0

P− 1− P− 0

0 P− 1− P−
]  when v[i] = −1

[
1 0 0

0 1 0

0 0 1

]  when v[i] = −0                       

[
1 − P+ P+ 0

0 1 − P+ P+

0 0 1

]  when v[i] = 1  

              (16) 

where P− = P−
0 u1[j]u2

[i] , and P+ = P+
0 u1[j]u2

[i]. State transition diagrams 

of these three cases are depicted in Fig. 3.12(a). Although all individual chains 

notably lack ergodicity, the inhomogeneous Markov chain alternating a 

transition matrix among these three matrices for each epoch may meet 

ergodicity. Therefore, ergodicity as an important property of the Markov chain 

is worth checking.  

To this end, matrix Hn,m is defined as Hn,m = ∏ Tk
i,jn+m

k=n+1 . Thus, Hn,m is a 

single transition matrix equivalent to m successive transitions from the (n+1)th 

to the (n+m)th epoch. Inhomogeneous Markov chains are known to be ergodic 

if |Hn,m[x, y] −Hn,m[x', y]| → 0 as m → 0 for any n, x, x’, and y [43]. That is, 
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an ergodic inhomogeneous Markov chain has identical elements in each column 

of Hn,m. For the MCHL algorithm, Hn,m is a 3×3 matrix. During the whole 

training phase, a training image for each epoch appears at random so that one 

of the three transition matrices is chosen at random. An ergodic Markov chain 

thus meets the aforementioned condition irrespective of n. Here n is set to 

zero—ergodicity is evaluated from the first epoch. We define non-ergodicity 

factor NE as 

 NE = ∑ |Hn,m[x, y] −Hn,m[x', y]|x,  x', y ,                 (17) 

which decreases to zero with an increase in m if ergodic. The maximum NE is 

6. We identified NE for randomly sampled 100 elements of w in due course 

during training with the MNIST dataset (see Fig. 3.12(b)). The figure explains 

a wide range of non-ergodicity in that several trajectories ensure ergodicity, 

several ones decay at low rates, and the rest remain in the initial state. Such 

non-ergodicity is of the elements that were barely updated because u1[j] = 0 

throughout the entire training phase—background pixels. This is identified by 

Fig. 3.12(c) displaying the 100 final NE values (after 2×106 epochs) with the 

frequency of non-zero u1[j] during the training phase. Notably, the elements of 

low frequencies are given high NE values. This is because such elements mostly 

receive zero input, i.e., u1[j] = 0, and thus their transition matrices in (16) are 

mostly identity matrices irrespective of v[i]. The identity matrix as a transition 

matrix results in a non-ergodic Markov chain as illustrated in the middle panel 

of Fig. 3.12(a). Stationary distribution is also of concern of the inhomogeneous 

Markov chain. To this end, we monitored the numberof elements w[i, j] filled 

with each of −1, 0, and 1 every MNIST dataset training epoch as plotted in Fig. 
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3.12(d). The data show asymptotic convergence toward the stationary 

probability distribution over w[i, j] = −1, 0, and 1. 
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Figure 3.12. (a) State transition diagram for a weight element given three 

different v[i] values. (b) NE change (for 100 weight elements randomly sampled) 

monitored when training a network with the MNIST dataset. (c) The 100 final 

NE values plotted with respect to the frequency of non-zero input during the 

training phase. (d) Probability distribution over w[i, j] = 1, 0, 1 with training 

epoch. 
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3.6.4. Effect of update probability and temperature parameter on 

training  

Parameters P+
0 , P−

0 , and τ considerably affect training speed and recognition 

accuracy. To identify the effect, a network without HL was trained with three 

different P+
0   (=P−

0  ) values (0.01, 0.1, and 1) and τ fixed to 1. The MNIST 

dataset was used in the training. The results are plotted in Fig. 3.13(a), ensuring 

their considerable effect on training speed in that the larger P+
0   (=P−

0  ) the 

sooner the recognition accuracy is saturated. Additionally, a P+
0  of 1 keeps the 

accuracy fairly lower than the other values. The effect of temperature parameter 

τ on training was also identified by varying τ (0.1, 1, and 10) with P+
0  (=P−

0 ) 

fixed to 0.1. Fig. 3.13(b) notably indicates the lower accuracy achieved with a 

τ of 10 than the others. We chose the parameter values with regard to a tradeoff 

between learning speed and accuracy. When training with the MNIST dataset, 

P+
0  (=P−

0 ) and τ were set to 0.1 and 1, respectively, regarding the tradeoff. The 

same tendency holds for the CIFAR-10 dataset. Yet, the tradeoff in detail 

slightly differs so that we set P+
0  (=P−

0 ) to 0.01 while setting τ to the same 

value (1). 
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Figure 3.13. Effect of (a) update probability and (b) temperature parameter on 

training. 
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3.6.5. Handwritten digit recognition  

For the entire datasets, each feature value was rescaled to the range 0 – 1. A 

chosen input dataset (28 × 28 pixels each of which has an 8-bit value) was 

converted to an input vector u1 (∈ ℝ784; 0 ≤ u1[i] ≤ 1) . A write vector v 

(∈ ℤLH;  v[i] ∈ {−1, 0, 1}) was then generated with regard to the desired label 

of the chosen digit and RN r (1 ≤ r ≤ H). L and H are the number of total labels 

(here 10) and bucket size, respectively. A bucket of H elements is assigned to 

each label in the v vector so that v is a 10H-long vector as illustrated in Fig. 

3.4(a). Accordingly, the matrix w is partitioned into 10 sub-matrices. One of the 

H elements (rth element) in the bucket of the correct label is chosen at random 

and set to 1, the rth elements in the other buckets (9 in total) to -1, and the rest 

elements [10(H - 1) in total] to 0. Therefore, in the matrix w, the elements in 

only one row (rth row in the partition for the correct label) are potentially 

subject to potentiation, those in the 9 rows to depression (rth rows in the 

partitions for the incorrect labels), and the rest are invariant. The update is 

therefore sparse. 

The weight matrices were initially filled with zeros. The update direction and 

probability were determined by (14). Each ad hoc update needs total 784LH 

RNs (one for each w[i, j]). The protocol was repeated for the next epoch with a 

randomly chosen digit. For accuracy evaluation, a vector z (= wu1) was 

calculated after every ad hoc update and fed into the output neurons that are 

also partitioned according to the bucket configuration in the write vector and 

weight matrix. Note that this accuracy evaluation no longer needs stochastic 

neurons since their probabilistic behaviour rather limits the accuracy. Thus, 
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they are switched to sigmoid deterministic neurons only for accuracy evaluation, 

which follows u2[i] = [1+ e−2z[i]/τ]
−1

. Finally, the output from each label n 

(O[n]) is evaluated. The maximum component of the output vector designates 

the estimated label for a given input. The recognition accuracy was evaluated 

with regard to agreement between the desired and estimated labels. The 

sequence of the MCHL algorithm application is elaborated in Table 3.2. 

A network with a hidden layer is trained in a greedy layer-wise manner as for 

deep belief networks [25]. w1 in Fig. 3.4(a) was first fully trained following the 

protocol above. Subsequently, w2 was subject to training with input vector u2 

(∈ ℤLH1;  u2[i] ∈ {0, 1}) that is the output from the LH1 hidden deterministic 

neurons taking z1 as input. The write vector v2 was chosen applying the same 

protocol as w1 training. Accuracy evaluation was conducted with deterministic 

sigmoid output neurons in line with the network without HL. 
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Table 3.2. MCHL algorithm for handwritten digit classification 

Pre-arrangement of memory: Load the bucket of each label in write vector v 

with H elements. Matrix w partitioned accordingly 

Update: update the matrix w given each input u1 and write vector v 

   1. Write vector v generation: 𝒗 ∈ ℤ𝑁; N = LH. L is the number of total 

labels 

   For a given input u and its label l, generate an RN r (1 ≤ r ≤ H) 

   v[i] = 1 for i = l·H + r 

        -1 for  i = j·H + r; j ≠ l 

         0 otherwise 

   2. Evaluation of z: z = wu1 given w and u1 

   3. Update of each component: updating w[i, j] at P in (4) 

Repeat 
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3.6.6. MCHL accelerator in detail  

A block diagram of the MCHL accelerator (Virtex-7 XC7VX485T) is depicted 

in Fig. 3.14. The accelerator employs parallel structure such that L partitions, 

e.g. one indexed Partition 1 in Fig. 3.14, are deployed and operate in parallel. 

A sub-matrix w1[(n-1)H1+1:nH1,·] for the nth label is accommodated in an 

SRAM array in Partition n, e.g. w1[1:H1,·] in Partition 1 as in Fig. 3.14. The 

entire M entries in each row of the SRAM array are simultaneously accessed at 

a time (one clock cycle). 

For each training epoch (TRAIN=1 in Fig. 3.14), a random number generator 

RNG_1 produces a pseudo-random number r (1 ≤ r ≤ H1), and accordingly the 

row subject to update in the sub-matrix in Partition n is chosen (see Appendix 

C). Note that such a pseudo-random number is generated using a linear 

feedback shift register.  

The accessed row w1[(n-1)H1+r,·] is then multiplied by the input vector u1 to 

produce z[(n-1)H1+r] according to (1) (see the red-shaded box in Fig. 3.14 for 

n=1). Subsequently, the activation function module computes the deterministic 

neuron activity a2[(n-1)H1+r] in the range 0-255 from z[(n-1)H1+r] using (7). 

For simplicity, this module approximates the sigmoid function in (7) to a linear 

function with a particular slope (matching that of (7) at z = 0) within a certain 

z window and zero otherwise. u2[(n-1)H1+r] is then evaluated by comparing 

a2[(n-1)H1+r] with a random number (0 – 255) from RNG_2. The w1[(n-

1)H1+r,·], u1, u2[(n-1)H1+r], and v[(n-1)H1+r] (generated for each partition 

using (8)) are then passed to the “Δw module” (blue-shaded box in Fig. 3.14 for 

n=1) that determines a Δw for each entry of w1[(n-1)H1+r,·] using the update 
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probability in (9) in parallel. This process is executed in a single clock cycle. 

The partition-wise parallel structure of the MCHL accelerator enables an update 

on w1[(n-1)H1+r,·] for all relevant partitions in parallel in a single clock cycle. 

The same holds for an update on w2 except that the deterministic activity 

vector a2 given the fully trained w1 matrix should be acquired beforehand. The 

a2 vector is distributed over partitions such that a2[(n-1)H1+1:nH1] is stored in 

the serial-in-parallel-out (SIPO) buffer of Partition n (see Fig. 3.14 for n=1). 

Given the partition-wise parallel structure, the evaluation of a2 in response to 

each input data u1 simultaneously takes place over the n partitions so that it 

takes H1/fclk. Therefore, each w2-training epoch takes (H1+1)/fclk. 

Likewise, when training a neural network with two HLs, each w3-training 

epoch consumes (H2+1)/fclk. For a neural network including n (≥1) HLs, and 

thus n+1 weight matrices (w1, …, wn+1), the total (intrinsic) training runtime is 

given by ∑ (Hi−1 + 1)Ei/f
clk

n+1
i=2 + E1/f

clk
, where Ei denotes the total number of 

epochs for training the matrix wi.  

Inference needs to evaluate the deterministic activity for all (H1+H2)L 

neurons (a2 and a3) in the network using (1) and (7). For a given input digit (u1), 

a2 is first evaluated as follows. Each row of a sub-matrix w1[(n-1)H1+r,·] is 

sequentially addressed using an address counter (TRAIN = 0 in Fig. 3.14) in 

descending order and multiplied by u1, resulting in a2[(n-1)H1+1:nH1] through 

the red-shaded and activation function modules in Fig. 3.14. The array is The 

finally evaluated a2 vector for this partition, i.e. a2[(n-1)H+1:nH] where n = 0, 

is stored in a serial-in-parallel-out (SIPO) buffer (see Fig. 3.14). Given the 

partition-wise parallel structure, this process simultaneously takes place for the 
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other partitions so that it takes H1/fclk to evaluate the deterministic activities a2 

of the hidden neurons in response to input data u1.  

 The same process holds for the a3 evaluation following the a2 evaluation. 

Thus, the time-consumption is H2/fclk. The only difference is that a2 in the SIPO 

buffers distributed over the partitions is taken as the input.  

All elements of a3[(n-1)H2+1:nH2] in Partition n (label n) are added up in the 

accumulator module (see Fig. 3.14 for n = 1), resulting in O[n] for Partition n 

(label n). The comparator module in Fig 3.11 compares the O’s and 

consequently provides the index of the highest O value, which corresponds to 

the inferred label. This comparison is performed in a sequential manner, i.e. 

O[0] is first compared with O[1], the winner is then compared with O[2], and 

so forth. The priority encoder finally encodes the address of the “final” winner. 

Note that the comparison is performed in parallel with the a3 evaluation process 

so that it does not consume additional time. Consequently, inference for each 

input digit consumes (H1+H2)/fclk in total.  

Therefore, inference (intrinsic) runtime for each input through a network 

with n (≥1) HLs (n+1 weight matrices) is ∑ 𝐻𝑖/𝑓𝑐𝑙𝑘
𝑛+1
𝑖=1 .  

Practically, both inference and training rates are dominantly dictated by the 

rate of input data transfer from the computer to the MCHL accelerator. Each 

handwritten digit image was 2 bits/pixel (downsized from 8 bits/pixel in the 

original MNIST dataset), and thus 1,568 bits (2×28×28) per image. The MCHL 

accelerator was interfaced with the computer through 16 general-purpose input-

output (GPIO) lines, yielding a data transfer bandwidth of ca. 300 kb/s. 

Therefore, transferring one image to the accelerator consumes approximately 
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5.2 ms, outweighing the intrinsic training and inference runtimes. We did not 

count this delay in data transfer as training and inference runtimes because the 

delay is not an intrinsic characteristic of the MCHL algorithm.  
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Figure 3.14. Block diagram of the MCHL accelerator.  
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3.6.7. Multiplication table memorization 

Training was fully deterministic in that the output neurons were frozen and the 

update no longer required RNs. Integers (≤ M) were expressed as one-hot 

vectors of M elements; a pair of factors (≤ M) were put together to give an input 

vector u1 (∈ ℤ2M; u1[i] ∈ {0, 1}). The product of the factors serves as a label 

among M2 labels, each of which has a bucket of H elements. Therefore, a write 

vector v has M2H elements in total (v ∈ ℤM2H;  v[i] ∈ {0, 1}). For factors of a 

and b (a×b = c), the hth element in the cth label, i.e. v[(c-1), H+h], is set to the 

only one in the write vector. h is determined in the order of training; the first 

pair of factors resulting in a particular label during training takes h = 1 in the 

corresponding bucket. Thus, allocating h for each multiplication depends on the 

entire training sequence over the M×M multiplication table. The weight matrix 

w (∈ ℤM2H×2M;  w[i, j] ∈ {0, 1}) was trained in an ascending order of n in the 

n-times table (n × ) from 1 to M, and within the n-times table (n × m), m was 

also taken in ascending order: 1 × 1, 1 × 2, …, 1 × M, 2 × 1, 2 × 2, …, 2 × M, 

… M × 1, M × 2, … M × M. Upon training completion, final h (≤ H) for label i 

(i.e. hi) is acquired, which defines vector A (∈ ℤM2

;  A[i] = hi). In fact, A[i] 

reveals the number of multiplications producing label i, for instance, A[6] = 4 

given that 1 × 6, 2 × 3, 3 × 2, and 6 × 1 result in 6 (see Fig. 3.8(a)). Notably, 

this number is identical to the number of factors for a given label: 1, 2, 3, and 

6 for 6. The sequence of the MCHL algorithm application is tabulated in Table 

3.3.  

z[i] in z (=wu1) was integrated over elements in the bucket of each label, 
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which was subsequently fed into an output sigmoid neuron, resulting in output 

vector O as illustrated in Fig. 3.8(a). 
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Table 3.3. MCHL algorithm for multiplication table memorization 

Pre-arrangement of memory: Load the bucket of each label in write vector v 

with H elements. Matrix w partitioned accordingly. A[l] = 1 for all l's (1 ≤ l ≤ 

L). L is the number of total labels (products). 

Update: update matrix w given each input u (a pair of one-hot vectors) and 

write vector v 

   1. Write vector v generation: 𝒗 ∈ ℤ𝑁; N = LH. 

   For a given input u1 and its label l,  

   v[i] = 1 for i = (l - 1)·H + A[l] 

        0 otherwise 

   2. Update of each component: updating w[i, j] at P in (4) 

   3. A[l] = A[l] + 1 

Repeat 
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3.6.8. Prime factorization 

As such, the aliquot parts of number n are in parallel retrieved using the 

transpose of w [wT ∈ ℤ2M×M2H]  memorizing the M×M multiplication table 

and input vector u (∈ ℤM2H;  u[i] ∈ {0, 1}) whose nth bucket is filled with H 

1’s—insofar as n’s largest aliquot part is not larger than M. However, for prime 

factorization of n, aliquot parts other than 1 and itself (if they exist) are of 

concern, so that it is desirable to avoid retrieving 1 × n and n × 1. With the aid 

of vector A, a pair of proper factors can be chosen selectively. As shown in Fig. 

3.8(a), for 6 (M ≥ 6), h = 1, 2, 3, and 4 indicate 1×6, 2×3, 3×2, and 6×1, 

respectively. For a prime number, e.g. 7, h=1 and 2 indicate 1×7 and 7×1, 

respectively. Only the kth multiplication is retrieved, k = max(A[i] – 1, 1) for 

each label i, e.g. for i = 6 (M ≥ 6), 3 × 2, and for i = prime number (M ≥ n), 1 × 

n. Thus, operator T1 is a M2H×M matrix:  

T1[i, j] = {
1   if i = (n− 1)H+ k and j = n for n = 1,…, M2

0   otherwise                                                               
. 

For instance, n = 840 (M = 50) is initially represented by vector a0 whose 840th 

element is the only one while the rest are zero. u (=T1a0) is subsequently fed 

into wT, resulting in z (=wTu) in which z[40] = 1 and z[50 + 21] = 1—denoting 

40 and 21, respectively. These two vectors are merged through operator T2 into 

a1 (∈ ℤM;a1 = z[1:M] + z[M+ 1:2M]). T2 is, therefore, an M×2M matrix: 

T2[i, j] = {
1    if j = i for i = 1,…, M        

1    if j = i +M for i = 1,…, M

0    otherwise                             

. 

This operation confers 1 on a1[21] and a1[40] in a1. The address of each element 

represents a factor, and the element values its exponent so that the result of the 
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first factorization is 211 × 401. Insofar as a1 differs from a0, the same cycle is 

repeated. Note that a1[1] (exponent of 1) is set to zero because a factor of 1 is 

redundant in factorization. The following cycle factorizes 21 and 40 in parallel, 

providing a2 in which a2[2] = 1, a2[3] = 1, a2[7] = 1, and a2[20] = 1, i.e. 21 × 31 × 

71 × 201. 

3.6.9. Direct search factorization 

Integer n is repeatedly divided by a series of divisors (decreasing by one) until 

zero remainders. The first divisor is ⌊√n⌋. If the remainder is nonzero, ⌊√n⌋ − 1 

is taken as the next divisor. With zero remainder, two factors (divisor and quotient) 

are obtained, and each factor is separately subject to the same factorization as 

above. 
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4. Combination-encoding content addressable 

memory 

4.1. Introduction 

Content-addressable memory (CAM) is a type of memory accessed based on 

contents instead of memory addresses as opposed to random access memory 

(RAM) [1]. Upon receiving an input data word to search (search key), CAM 

simultaneously searches all memory entries for search-key-relevant contents in 

one clock cycle and returns the addresses of the contents. Therefore, CAM has a 

significant advantage over RAM in searching speed. Its main application 

domains include lookup tables (LUTs) in network routers [2]-[7]. The network 

router decides the forwarding direction of a data packet between networks. The 

LUT in the network router including the hierarchical addresses is searched for 

the best route or port for the data packet to be forwarded. Additionally, the CAM 

storing the LUT is a critical component for digital communications among 

neurons in neuromorphic hardware [8]. The LUT including the topology of a 

neural network is searched for the postsynaptic neuron addresses upon the 

occurrence of an event from a presynaptic neuron. A fast search of the CAM 

significantly accelerates event routing processes, enabling real-time inference 

and learning. It also applies to vector-quantization [9], decomposing an input 

image to a set of vectors, and information retrieval [10], finding the information 

relevant to the desired information from big data. 
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CAM is categorized as binary CAM (BCAM) and ternary CAM (TCAM). As the 

names indicate, each unit cell in BCAM represents either ‘0’ or ‘1’ whereas that 

in TCAM has an additional ‘don’t care’ (or ‘X’) state [1]. For instance, ‘1X1’ in 

TCAM is matched to search keys ‘101’ and ‘111’ because ‘X’ matches both ‘0’ 

and ‘1’. This high flexibility of TCAM is the key to packet forwarding tasks [2]-

[7]. 

Static RAM (SRAM)-based CAM is the most popular form of CAM [1], [11]. 

The SRAM-based CAM leverages fast searching speed and high compatibility 

with well-established complementary metal-oxide-semiconductor (CMOS) 

technologies. Nevertheless, significant disadvantages are its low areal density 

due to the use of many transistors (≥8) to represent a single bit and high static 

power consumption due to the leakage current of SRAM [12]-[14]. As 

alternatives to the SRAM-based CAM, CAMs based on emerging non-volatile 

memories (NVMs) such as phase-change memory [14-16], magnetic tunnel 

junction [14], [17]-[19], ferroelectric memory [20], and resistance switch [21-25] 

have been proposed to date. Such NVM-based CAMs highlight their high data 

density and zero-static energy consumption due to the non-volatility. They also 

offer solutions to TCAM by appropriately configuring the non-volatile memory 

elements [14]-[25]. 

Among the candidates, resistance switch-based CAM (RCAM) is a front 

runner; two-transistor two-resistor (2T2R)-based RCAM has been prototyped 

using a 4 kb resistive RAM (RRAM) [25]. Additionally, RCAM may be realized 

in a passive crossbar array that highlights its ideal 8F2 cell size [21], [23]. 

Nevertheless, RCAM has a lower content density than RRAM because it uses a 
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pair of resistance switches as a single bit of content, i.e., 0.5 bit/switch. A further 

increase in data density needs a new content-encoding framework. To this end, 

we propose a new type of resistance switch-based CAM, named combination-

encoding CAM (CECAM). 

Section II outlines the working principle of the CECAM including a search 

key-encoding algorithm (Section II.A) and its implementation in a digital circuit 

(Section II.B). Section III explains parallel searches of multiple CECAM 

domains to realize TCAM with coarse granularity. Reading contents from the 

CECAM needs to decode them using an appropriate decoding algorithm because 

the contents in the CECAM are encoded, which is addressed in Section IV. 

Finally, Section V highlights the general application of the CECAM scheme to 

various CAM designs. 

4.2. Combination-encoding content addressable memory 

Fig. 4.1 illustrates a schematic of unit cells of active and passive RCAMs 

(voltage- and current-reading schemes, respectively). RCAM takes a pair of 

resistance switches as a single unit of single-bit capacity. Each switch is set to 

one of the binary states: high resistance state (HRS) and low resistance state 

(LRS). Specifically, the two switches are complementary; they are in different 

resistance states. This yields two distinguishable configurations, HRS-LRS (HL) 

and LRS-HRS (LH), representing one bit of content. For both schemes in Fig. 

4.1, LH corresponds to ‘0’ and HL to ‘1’. Each bit of a search key is represented 

by voltage signals on complementary search lines (SL and SL) such that ‘0’ pulls 

SL low and SL high while ‘1’ pulls SL high and SL low. When a search bit of 
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‘0’ is applied to a stored content of ‘0’ (LH), the RCAM units in Figs. 4.1(a) and 

4.1(b) notify matching signals on the match lines (black VML and IML in Figs. 1c 

and 1d, respectively). These signals are contrasted with a mismatching case, 

where a search bit of ‘1’ is applied to the same content ‘0’, resulting in mismatch 

signals on the match lines indicated by the red VML and IML in Figs. 4.1(c) and 

4.1(d), respectively. Thus, searching N-bit keys commonly needs 2N switches per 

match line, i.e., 0.5 bit/switch per match line.  

In contrast, N-CECAM (N = 1, 2, 3, …) uses a chunk of 2N switches per match 

line as a single unit of multi-bit capacity, boosting the memory capacity per 

switch far beyond a content density of 0.5 bit/switch. Its key difference from 

RCAM is that the N-CECAM harnesses the large number of possible 

combinations of 2N switches to boost the content density in contrast to RCAM 

using complementary pairs of switches and search lines to store and search a 

single bit of contents. We regard a passive array of nonvolatile resistance 

switches with current reading as a model system of the CECAM. This model 

system leverages its high memory density and fast content reading. Nevertheless, 

the sneak current disturbing current read-out processes is a critical downside. 

However, the CECAM concept is fully compatible with other types of CAM 

including active arrays of resistance switches freer from the sneak current issue, 

which will be addressed in Section V. 

The N-CECAM consists of a resistance switch array and a search key encoder 

as illustrated in Fig. 4.2(a). In the array, 2N resistance switches are placed at the 

crossing points between each match (horizontal) line and 2N search (vertical) 

lines. The search key encoder converts an n-bit search key to a 2N-digit binary 
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key, and each digit is applied to each of the 2N search lines such that ‘1’ and ‘0’ 

pull the search line high and low, respectively. Assuming m switches are in the 

HRS and the other (2N-m) switches in the LRS, the minimum current response 

to a single 2N-digit binary key exists only if the key includes m 1’s and (2N-m) 

0’s, and each of the m 1’s in the key is matched to each of the m HRS switches. 

To maximize the number of possible configurations of 2N switches (
2N

m
), m is 

set to N. Thus, the search key encoder maps an n-bit search key to a 2N-digit key 

with N 1’s and N 0’s in a bijective manner. When matching N 1’s in the encoded 

key to the N HRS switches, the current response through the match line is 

minimal as shown in Fig. 4.2(b). Otherwise, some 1’s in the encoded key are 

inevitably associated with LRS switches, and thus the current response through 

the match line becomes high, indicating a mismatch. Note that the current 

response scales with the degree of mismatch, i.e., the number of mismatched bits 

in the encoded key. The worst mismatch regarding a sensing margin is due to two 

mismatched bits as depicted in Fig. 4.2(b). 

The total number of 2N-digit encoded keys is (
2N

N
), and so is the number of 

2N switch configurations per match line. Given the use of n-bit search keys, 2n 

of (
2N

N
)  configurations are associated with the total n-bit keys, satisfying 

2n≤ (
2N

N
) < 2n+1. This inequality yields 

 n = ⌊log
2
(
2N

N
)⌋                  (1) 

where ⌊∙⌋ denotes a floor function. Therefore, the content density (content bit 

per switch) is given as ⌊log
2
(
2N

N
)⌋ /2N, which is plotted in Fig. 4.3. Notably, 
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for N’s (>2), the content density exceeds the density of the conventional RCAM 

designs (0.5 bit/switch) and approaches the density of RRAM (1 bit/switch) 

asymptotically. 
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Figure 4.1. Schematic of the conventional RCAM in (a) active and (b) passive 

crossbar arrays. ML, SL, SL̅̅̅̅ , and PL denote a match line, search line, 

complementary search line, and plate line, respectively. A timing diagram for 

active and passive arrays is illustrated in (c) and (d), respectively. CLK, VSL, 

VSL̅̅̅̅ , and VML denote a clock cycle, search line voltage, complementary search 

line voltage, and match line voltage, respectively. IML in (d) means the current 

through the match line. The red lines in (c) and (d) indicate VSL, VSL̅̅̅̅ , and the 

CAM responses when mismatching. 
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Figure 4.2. (a) Schematic of 3-CECAM (N = 3). A single unit consists of N 

HRS and N LRS switches. SA and PE mean a sense amplifier and priority 

encoder, respectively. (b) Current responses to a given encoded key upon a 

match and mismatches. Matching allows the minimal current response (first 

row).  

 

Figure 4.3. Content density of N-CECAM with N in comparison with the 

conventional RCAM and RRAM. The kinks arise from the floor function in (1). 
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4.2.1. Algorithm for combination encoding 

The key to the N-CECAM is the bijective mapping of the total n-bit search keys 

to 2n 2N-digit keys (2n≤ (
2N

N
)≤ 2n+1) using an appropriate encoding function. 

We propose the encoding function EN for an n-bit search key a as follows: 

function EN(a) 

   set b to 2N-digit binary number 0 

   for i = 0 to N-1 do 

      if there is c satisfying (
c

N-i
)≤ a < (

c+1

N-i
) then 

         set the (c+1)th digit of b to 1 

         set a to a- (
c

N-i
) 

      end if 

   end for 

   return b 

end function. 

Note that EN is bijective when At= {0, 1, …, (
2N

N
) -1} and Bt = {b│b: 2N-

digit binary numbers with of N 1’s and N 0’s} are taken as the domain and 

codomain of EN, respectively (Theorem 1 in Appendix). Therefore, EN is also 

a bijective function for domain  A={0, 1, …, 2n-1}  (⊂At)  and codomain 

B={EN(0), EN(1), …, EN(2n-1)} (⊂Bt). 

Table 4.1 shows the encodings of 4-bit search keys as 16 distinguishable 6-

digit binary numbers with three 1’s and three 0’s using the encoding function 

E3 (N = 3). The encoded data are subsequently programmed in 2N switches such 
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that a ‘1’ and ‘0’ in the encoded data are written as ‘H’ and ‘L’, respectively. ‘H’ 

and ‘L’ denote HRS and LRS, respectively. The last configuration ‘HHHHHH’ 

indicates ‘don’t care’ for TCAM. 
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Table 4.1. Truth table of encodings of 4-bit integers as resistor configurations 

(N = 3) 

 

  

Integer Configuration 
Search 

key 
Integer Configuration 

Search 

key 

0 LLLHHH 000111 9 LHHHLL 011100 

1 LLHLHH 001011 10 HLLLHH 100011 

2 LLHHLH 001101 11 HLLHLH 100101 

3 LLHHHL 001110 12 HLLHHL 100110 

4 LHLLHH 010011 13 HLHLLH 101001 

5 LHLHLH 010101 14 HLHLHL 101010 

6 LHLHHL 010110 15 HLHHLL 101100 

7 LHHLLH 011001 0 – 15 HHHHHH 000000 

8 LHHLHL 011010    
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4.2.2. Implementation of encoding circuit 

A search key is encoded as a 2N-digit key iteratively, which needs to be 

implemented in circuitry in a way to reduce a delay in decoding at the cost of 

memory usage. To this end, the LUT P of (
c

N-i
) for 0 ≤ c ≤ 2N and 0 ≤ i < N 

is stored in a memory, which is referred to as a combination table. The LUT P 

is an N×(2N+1) matrix whose element P[i, c] is (
c

N-i
). A main advantage of 

employing the combination table is that the comparison (
c

N-i
)≤ a < (

c+1

N-i
) in 

the encoding function EN can be accelerated considerably by retrieving (
c

N-i
) 

and (
c+1

N-i
) from the LUT P rather than evaluating them for every comparison. 

A block diagram of the encoding circuit including the LUT P is shown in Fig. 

4.4(a). When RESET is 1, the encoding circuit receives search key a that is 

encoded (a0). Simultaneously, a 2N-long array b is initialized as b0[k] = 0 for 0 

≤ k < 2N, where b0[k] denotes the (k+1)th digit of b0. We note that RESET is 

synchronized with clock signals (CLK) to avoid a metastability problem as 

shown in Fig. 4.4(b). The circuit first addresses the first row of the LUT P, i.e., 

P[0, :]. The NEXT block finds c in P[0, :], satisfying P[0, c] ≤ a0< P[0, c+1], 

using parallel comparators, resulting in c0. a1 is consequently evaluated as 

a1=a0- P[0, 𝑐0]. b1 is identical to b0 except its (c0+1)th digit that is set to one, 

b1[c0] = 1. c1 is subsequently evaluated for the next row of the LUT P, i.e., 

P[1, :], as for the first row. This evaluation is repeated for all remaining rows, 

eventually resulting in a 2N-digit encoded key b (=bN). Therefore, the delay in 

encoding is caused by iteratively addressing each row of the LUT P, which 
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scales with N (Fig. 4.4(b)). Given the relationship in (1), the encoding delay is 

associated with the bit number of a search key (n) as plotted in Fig. 4.5 (blue 

line); the delay tends to increase with the bit number. To address the memory 

overhead for the LUT P, the number of its entries was also evaluated with the 

bit number of a search key and co-plotted in Fig. 4.5 (red line). 
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Figure 4.4. (a) Block diagram of an encoding circuit for 3-CECAM. (b) 

Timing diagram for encoding a search key of 15 as a 6-digit key of 101100. 

 

Figure 4.5. Encoding delay and number of entries in the LUT P with the bit 

number of a search key (n). 
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4.3. Parallel search of N-CECAM domains 

A search of a single N-CECAM domain can be extended to parallel searches of 

multiple N-CECAM domains (partitions). Such parallel searches are useful, 

particularly, when a search key is so lengthy that N becomes large according to 

(1). To this end, np partitions are given to each match line, where each partition 

is a single Np-CECAM domain loaded with 2Np resistance switches in total. All 

partitions can share a single LUT P whose component P[i, c] is (
c

Np-i) for 0 ≤ 

c ≤ 2Np and 0 ≤ i < Np as in Fig. 4.6. Therefore, each match line holds n bits 

expressed as 

 n = ⌊log
2
(
2Np

Np
)⌋ ∙np.                   (2) 

Each of np partitions is responsible for each n/np bit chunk of the total n-bit 

search key. Notably, this method reduces content-memory density. For instance, 

for a 60-bit search key, np = 1, 4, 10, 15, and 60 (respectively corresponding to 

Np = 32, 9, 4, 3, and 1) yields approximately 0.94, 0.83, 0.75, 0.67, and 0.5 

bit/switch, respectively. Np = 32 and 1 indicate the single domain CECAM and 

the conventional 2R-based RCAM, respectively. Despite the reduction in 

content density, the advantage of the partitioning is threefold: reductions in the 

encoding delay and memory usage for the LUT P, and granularity of ‘don’t care’ 

bits. Regarding the first advantage, the encoding delay is proportional to Np as 

considered in Section II.B. Therefore, reducing Np results in a reduction in the 

encoding delay. Regarding the second advantage, the LUT P is an Np×(2Np+1) 

matrix where the largest component is (
2Np

Np
) which reaches 1.83×1018 for Np 
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= 1, requiring 61-bit memory. Thus, reducing Np (i.e., introducing partitions) 

reduces memory usage for the LUT P considerably. 

For TCAM application, a configuration of All 2Np resistance switches in the 

HRS represents ‘don’t care’ bits in an Np-CECAM domain. Therefore, the 

granularity of ‘don’t care’ bits in the Np-CECAM equals n/np bits. As shown in 

Table 4.1, 3-CECAM offers a ‘don’t care’ granularity of 4 bits; when all six 

resistance switches in a domain are set to the HRS, the switch configuration is 

matched to any of 4-bit search keys between 0 and 15. Setting Np = 32 for 60-

bit search keys yields the coarsest granularity (60 bits), unsuitable for TCAM 

applications whereas Np = 1, equivalent to the conventional RCAM, yields the 

finest granularity (1 bit). Therefore, introducing partitions is a viable method to 

decrease data granularity. Nevertheless, because this comes at the cost of a 

reduction in content density, the granularity should be reconciled with content 

density. 
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Figure 4.6. Schematic of parallel searches of Np-CECAM partitions. NEXT in 

the figure means NEXT block in the encoding circuit. The n-bit search key is 

divided into np chunks, and each chunk applies to the NEXT block of each 

partition. All partitions share a single LUT P. 
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4.4. Algorithm for content decoding and circuit 

implementation 

Contents in the state-of-the-art 2T2R-RCAM illustrated in Fig. 4.1(a) are read 

bitwise such that each bit (a pair of resistance switches) is iteratively examined 

for matching with the same key applied to the complementary search lines (SL 

and SL)[14]. Therefore, a delay in reading is proportional to the bit number of 

contents. An advantage of a passive array of resistance switches shown in Fig. 

4.1(b) over the active array is that the total contents per match line can 

simultaneously be read by pulling the match line high and simultaneously 

measuring the current response on all search lines. Either design employing the 

CECAM should be able to decode the 2N-digit contents as the original n-bit 

contents by an appropriate decoding function. The decoding function DN is the 

reverse of the encoding function EN, which is implemented as follows: 

function DN(b) 

   set a, i, c to 0 

   while i < N do 

      if [the (c+1)th digit of b] = 1 then 

         set i to i+1 

         set a to a+ (
c

i
) 

      end if 

      set c to c+1 

   end while 

   return a 
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end function. 

A 2N-digit content in the CECAM is decoded as an n-bit key iteratively. 

The decoding function DN is implemented in a digital circuit as shown in Fig. 

4.7(a). The circuit first initializes an n-long array a0 to 0. Upon receiving a 2N-

digit content b that is decoded (b = b0), the ADR block in Fig. 4.7(a) searches for 

the address of the right-most ‘1’ in b0 and returns it, which  corresponds to c0 

(b0[c0] = 1). P[N-1, 𝑐0] = (
𝑐0
1
) is subsequently retrieved from the LUT P, and 

a1 is evaluated as a1 = a0 + P[N-1, c0]. b1 is identical to b0 other than its right-most 

‘1’ switched to ‘0’. Subsequently, c1 is evaluated as the address of the right-most 

1 in b1, and then a2 and b2 are evaluated as a2 = a1 + P[N-2, c1] and b2 = b1 except 

that b2[c1] = 0, respectively. This evaluation is repeated N times, resulting in an 

n-bit decoded content a. Similar to encoding, a delay in decoding is caused by 

iteratively addressing each row of the LUT P. Therefore, the delay also scales 

with N (Fig. 4.7(b)). 
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Figure 4.7. (a) Block diagram of a decoding circuit for 3-CECAM. (b) Timing 

diagram for decoding an encoded search key of 101100 as its original search key 

(15)  
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4.5. Discussion 

The CECAM scheme was applied to a passive array of resistance switches as a 

model system. This model system allows the ultimate integration density, i.e., 

when used as RAM, 4F2 cell size per bit. In this case, a current-sensing scheme 

is suitable for bitwise reading. However, the reading process is significantly 

prone to error because of the notorious sneak current issue due to the lack of 

bit-selection devices[26]. Employing transistors as active selectors 

significantly keeps the sneak current sufficiently low for reliable reading as for 

the 2T2R-based RCAM design[27]. The CECAM scheme applies to an active 

array of resistance switches with a voltage-sensing scheme as shown in Fig. 4.8. 

In the array, a single unit consists of 2N transistors and 2N resistance switches. 

A one-transistor and one-resistor (1T1R) unit is placed at a crossing point 

between each match (horizontal) line and each of the 2N search (vertical) lines. 

Specifically, the gates of 2N transistors are wired to the 2N search lines, and 

thus the encoded 2N-digit key determines the channel conductance of the 2N 

transistors during a searching period. For all transistors, the source is connected 

to a common plate line which is grounded during searching. 

When searching, the match lines are pre-charged simultaneously. Then, a 2N-

digit encoded key is applied to the search lines such that 1’s and 0’s pull the 

search lines up and down, respectively. When matching N 1’s in the encoded 

key to the transistors paired with the N HRS switches, the voltage on the match 

line remains high because none of the pull-down paths are activated. Otherwise, 

some 1’s in the encoded key are inevitably associated with transistors paired 

with LRS switches, indicating the activation of pull-down paths (Fig. 4.8). 
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Therefore, the voltage on the pre-charged match line decays rapidly, which is 

noticed by a sense amplifier as a mismatch. This search process is identical to 

the 2T2R-based conventional RCAM.[25] 

Regarding the sense amplifier design for the CECAM, a current- and a 

voltage-sensing amplifier are suitable for a passive and active array of switches, 

respectively, as for RCAM. Compared with RCAM, the CECAM does not 

impose additional requirements on its sense amplifiers, so that previously 

developed sensing technologies[16, 28, 29] are compatible with the CECAM. 

In this regard, the CECAM can make full use of previous RCAM technologies 

given a subtle difference between the CECAM and RCAM. The subtle 

difference lies in content- and search key-encoding, which is the key of our 

present study. Nevertheless, the subtle difference remarkably enhances the 

content density.     

The application domain of the proposed CECAM fully covers other 

resistance-based NVMs with two-terminal switches, e.g., phase-change 

memory[14, 15] and magnetic tunnel junction[14, 17], in both active and 

passive arrays. Moreover, the CECAM concept is compatible with three-

terminal NVMs, for instance, ferroelectric transistors[20] and NOR Flash 

memory.  

Table 4.2 compares the CECAM with previous CAM designs. The 4-

CECAM was considered with reference to the 4 kb 1T1R RRAM prototype[25] 

and simulation results of a 2R-TCAM[23]. The 128 bit word width in [25] 

allows 16 × (4-CECAM domain), i.e., Np = 4 and np = 16. According to (2), 

each match line holds 96 bit contents; instead, the conventional RCAM allows 
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64 bit contents per match line only. Therefore, the cell area per content bit is 

approximately 0.67 times that of the conventional RCAM as shown in Table 

4.2. The same holds for the 2R-TCAM with 64 bit word width in [23]. 

Regretfully, the actual size of the 1T1R RRAM prototype[25] is unavailable so 

that the cell area per bit for the CECAM is expressed as its area relative to that 

of the RCAM (0.67). The additional delay in searching due to the encoding of 

a search key is Np/fclk, where is fclk clock speed. The cell area per bit and search 

delay aside, the CECAM is identical to the RCAM.   
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Figure 4.8. Schematic of CECAM with a voltage-reading scheme. The blue 

arrow in the second row illustrates activated pull-down path. 
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Table 4.2. Comparison to previous work 

 

16T-

TCA

M 

[11] 

6T2R

-

TCA

M 

[18] 

11T3

R-

TCA

M 

[19] 

2T2R

-

TCA

M 

[16] 

2T2R

-

TCA

M 

[25] 

2R-

TCA

M 

[23] 

4-

CECA

M 

referenc

ed to 

[25] 

4-

CECA

M 

referenc

ed to 

[23] 

Memory 

type 

SRA

M 
MTJ MTJ PCM RS RS RS RS 

Reading 

scheme 

Volta

ge 

Volta

ge 

Volta

ge 

Volta

ge 

Volta

ge 

Curre

nt 
Current Current 

Technolog

y (nm) 
65 90 180 90 130 90 130 90 

Word 

width (bit) 
72 32 144 64 128 64 128 64 

Cell area 

(μm2/bit) 
1.69 10.35 42 0.41 

NA 

(1×)a 

NA 

(1×)b 

NA 

(0.66×)a 

NA 

(0.66×)b 

Supply 

voltage 

(V) 

1 1.2 1 1.2 0.9 0.2 0.9V 0.2 

Search 

delay 
1.9ns 

0.29n

s 
8ns 1.9ns 2ns 0.5ps 0.5ps 0.5ps 

Search 

energy 

(fJ/bit/sear

ch) 

1.98 1.04 7.4 NA 
NA 

(1×)a 
0.23 

NA 

(0.66×)a 
0.15 

*RS denotes resistance switch 

*a,b denotes markers comparing normalized values between previous work and 

CECAM 
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4.6. Conclusion 

A new type of CAM, referred to as CECAM, was proposed to improve the 

content density in a memory array. The N-CECAM employs a group of 2N 

resistance switches as a single memory unit with multi-bit (n-bit) capacity, 

which enhances its content density far beyond that of the conventional RCAM 

(0.5 bit/switch). For instance, 10-CECAM (N = 10; 20 resistance switches) has 

17-bit content capacity (n = 17) in contrast to the conventional RCAM that 

needs 34 resistance switches for 17-bit content capacity. The key to the 

CECAM is an algorithm for n-to-2N encoding and its decoding. The proposed 

encoding and decoding algorithms were proven to match n-bit search keys to 

2N-digit keys bijectively. Additionally, the algorithms are readily implemented 

in digital circuits with a combination table, which results in an encoding 

(decoding) delay of N clock cycles for the N-CECAM. The proposed CECAM 

concept is compatible with various NVM-based CAM designs including active 

and passive RCAM, other two-terminal resistance switch-based CAM, e.g., 

phase-change memory and magnetic memory, and NVM transistors, e.g., 

ferroelectric transistor and NOR Flash memory. 

4.7. Appendix 

Theorem 1. EN: At → Bt is a bijective function for At= {0, 1, …, (
2N

N
) -1} and 

Bt = {b│b: 2N-bit binary numbers, each with N 1’s and N 0’s}. 

Proof. Nonnegative integer ai is defined as  

ai+1 = ai - (
ci

N-i
) for 0 ≤ i < N-1,           (3) 

and a0 = a (≥ 0). ci satisfies the following inequality: 
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(
ci

N-i
)≤ a i< (

ci+1

N-i
) for 0 ≤ i < N.            (4) 

Define the number of elements in set X as n(X). 

Lemma 1:  n(At) = n(Bt) = (
2N

N
). 

Lemma 2: ci > ci+1 for 0 ≤ i < N-1. 

Proof. For ai = 0, the only ci satisfying the inequality in (4) is ci = N-i-1 that 

yields ai+1 = 0 according to (1). From (4), ci+1 = N-i-2. Therefore, ci > ci+1. For 

ai > 0, using (3) and the fact that a i< (
ci+1

N-i
) in (4), the following inequality is 

acquired: 

0 ≤ ai+1 < (
ci+1

N-i
) - (

ci

N-i
)= (

ci

N-(i+1)).             (5) 

Equation (4) for ai+1 is (
ci+1

N-(i+1))≤ ai+1 < (
ci+1+1

N-(i+1)
) . ai+1 should 

simultaneously satisfy this equation and (3), which is true if 

(
ci

N-(i+1))> (
ci+1

N-(i+1)). Therefore, ci > ci+1. Consequently, ci > ci+1 holds for 

nonnegative ai. 

For given a, vector c(a) is defined as  c(a)=[c0, c1, …, cN-1]  where the 

components are sorted in descending order according to Lemma 2. Associating 

b with c(a) such that ‘1’ is placed on each (ci+1)th digit of b, and ‘0’s on the 

other digits, it is proven that c(a) is bijectively mapped to b. If a is also 

bijectively mapped to c(a), a is eventually proven to be mapped to b in a 

bijective manner. Also, using Lemma 1 and bijective mapping of c(a) to b, the 

following equation is acquired: 

 n(At) = n(Bt) = n(C) = (
2N

N
),           (6) 
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where C = {c│c = c(a)}. 

Lemma 3: if x ≠ y, then c(x) ≠ c(y). 

Proof. If Lemma 3 is true, its contraposition (if c(x) = c(y), then x = y) is also 

true. Given (1), a (= a0) is expressed as  

 a = aN-1+∑ (
ci

N-i
)N-2

i=0 .         (7)  

Equation (4) for i = N-1 yields (
cN-1

1
)≤ aN-1 < (

cN-1+1

1
), i.e., cN-1 ≤ aN-1 < 

cN-1+1. Thus, aN-1 = cN-1= (
cN-1

1
). Therefore, (7) is rewritten by a =∑ (

ci

N-i
)N-1

i=0 . 

This equation indicates a unique a for a given vector c(a), so that if c(x) = c(y), 

then x = y. Lemma 3 therefore holds true, identifying injective mapping of a to 

c. 

Equation (6) and Lemma 3 identify bijective mapping of a to c. Given the 

bijective mapping of a to c and c to b, the encoding function EN is a bijective 

function. 
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5. Conclusion 

As mentioned above, binary resistance switch array can be applied as synapse 

array in synapse block or lookup-table in topology block. Therefore, we have 

studied on three subjects, which are a new simulation method for binary 

resistance switch array, a new learning algorithm with ternary synaptic weight, 

and a new type of resistance switch-based content addressable memory with 

high content density. 

In the first part, multi-layer perceptrons with different structures (depth and 

the number of perceptrons in each layer) was successfully trained to infer the 

current response of a random crossbar array to a randomly applied voltage 

vector. The trained network predicted exact current response with appropriate 

network structure and sufficient training examples. Additionally, this neural 

network is 8 times faster than Newton-Raphson method for 10×9 resistance 

switch array. 

Secondly, a new learning algorithm, reffered to as Markov Chain Hebbian 

Learning, was proposed. MCHL uses ternary synaptic weight. Therefore, 

MCHL is appropriate to use when using binary resistance switch array as 

synapse array. Another distinct feature of MCHL is that it does not use 

backpropagation and synaptic units are stochastically updated. This feature is 

similar to restricted Boltzmann machine, but MCHL is discriminative with 

write vector. The potentiation or depression of synaptic units are governed by 

write vector v and exact update probability was controlled by activation of input 

and output neuron. MCHL was applied to hand-written digit recognition and it 
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have shown 92% accuracy. This accuracy is much lower than that of 

conventional backpropagation algorithm, 98%. MCHL, however, uses much 

less memory and is faster than backpropagation algorithm. This aspect stands 

out when MCHL is implemented in FPGA board. MCHL was also applied to 

prime factorization and it needs much less steps than direct search factorization. 

At last, a new type of CAM, referred to as CECAM, was proposed to improve 

the content density in a memory array. The N-CECAM uses a group of N HRS 

resistance switches and N LRS resistance switches as a single memory unit. As 

a result, CECAM’s content density is far beyond that of the conventional 

RCAM (0.5 bit/switch). For instance, 10-CECAM (N = 10; 20 resistance 

switches) has 17-bit content capacity (n = 17) in contrast to the conventional 

RCAM that needs 34 resistance switches for 17-bit content capacity. The 

encoding and decoding algorithm for CECAM were also proposed. They have 

been proven to convert a n-bit search keys to 2N-digit keys with N 1’s and N 

0’s bijectively. Additionally, the algorithms are readily realized in digital 

circuits with a combination table. The combination table is implemented to 

minimize calculation costs from binomial factor. It results in an encoding 

(decoding) delay of N clock cycles for the N-CECAM. The proposed CECAM 

concept is compatible with various NVM-based CAM designs including active 

and passive RCAM, other two-terminal non-volatile memory-based CAM, e.g., 

phase-change memory and magnetic memory, and NVM transistors, e.g., 

ferroelectric transistor and NOR Flash memory. 
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Abstract (in Korean) 

 

저항 변화 소자는 차세대 메모리의 선두주자 중 하나이다. 저항 

변화 소자는 높은 저항 상태와 낮은 저항 상태를 가지고 있으며, 

상태의 변화는 전압 혹은 전류를 가해주는 전기적인 자극에 의해서 

발생한다. 크로스바 어레이 구조를 통해, 저항 변화 소자 어레이는 

4F2 (F: minimum feature size)의 매우 높은 집적도를 나타낸다. 

아날로그 저항 변화 소자 또한 개발되고 있으나, 대부분은 매우 

정밀한 저항 컨트롤이 필요하고 저항 변화가 가해주는 펄스 수에 

비 선형적이라는 단점이 있다. 

저항 변화 소자 어레이의 가장 큰 특징은 행렬-벡터 곱을 구현할 

수 있다는 점이다. 즉, 저항 변화 소자 어레이의 출력 전류는 

전도도 행렬과 입력 전압 벡터의 곱으로 표현된다. 

저항 변화 소자 어레이를 시뮬레이션 하는 것은 저항 변화 소자 

어레이의 성질을 분석하는데 매우 유용하다. 가장 대중적인 

시뮬레이션 방법은 Newton-Raphson 방법을 사용하는 것이다. 

하지만 이 방법은 계산을 위해 많은 리소스가 필요하다. 이에 대한 

대안으로, 본 논문에서는 인공신경망을 활용하였다. 본 논문에서는 

(10 × 9 또는 28 × 27의 크기를 가지는) 임의의 이진 저항 변화 

소자 어레이와 임의의 입력 전압 벡터에 의한 출력 전류를 

유추하는 인공신경망을 구성하였다. 인공 신경망은 leaky rectified 
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linear units을 사용하는 multilayer perceptron (MLP)를 

활용하였다. 이 인공신경망은 500,000개 혹은 1,000,000개의 

예제를 통해 학습되었다. 각각의 예제마다, 인공신경망의 입력 

벡터는 저항 변화 소자 어레이의 전도도 행렬과 입력 전압 벡터의 

합으로 구성되었다. 즉, M개의 행에 전압이 가해지는 M × N 

어레이에 대하여, 입력 벡터의 크기는 M × (N+1)을 가진다. 

각각의 예제에 대해 Newton-Raphson 방법을 사용해 계산한 출력 

전류가 지도 학습의 데이터 레이블로 활용되었다. 이 시도는 정확한 

출력 전류를 예측하였으며, 28 × 27 어레이의 경우 상관계수값이 

0.9995에 이르렀다. 또한 이 방법은 기존의 Newton-Raphson 

방법에 비해 약 8배 빠른 계산속도를 나타내었다.  

저항 변화 소자 어레이의 병렬 작동에 기반하여, 저항 변화 소자 

어레이는 뉴로모픽 하드웨어의 다양한 부분에 활용될 수 있다. 가장 

널리 알려진 것은 저항 변화 소자 어레이로 인공 시냅스 어레이를 

구성하는 것이다. 저항 변화 소자 어레이의 행렬-벡터 곱은 

인공신경망 내부의 행렬-벡터 곱과 유사하기 때문에, 저항 변화 

소자 어레이를 인공 시냅스 어레이로 활용하는 것은 뉴로모픽 

하드웨어의 작동을 가속화할 수 있다. 

따라서 본 논문에서는, Markov chain Hebbian learning이라고 

불리는 이진 저항 변화 소자 어레이에 적합한 학습 알고리즘을 

개발하였다. 이 학습 알고리즘은 메모리 측면에서 효율성을 
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나타내는데 이는 1) 시냅스 가중치가  -1, 0, 1의 ternary 값을 

가지고 2) 시냅스 가중치의 업데이트가 마코프 체인—현 시점의 

업데이트는 이전 시점의 가중치 값이 필요 없다—을 따르기 

때문이다. 또한 -1, 0, 1의 ternary 값은 한 쌍의 저항 변화 소자를 

쉽게 구현할 수 있기 때문에, 이진 저항 변화 소자 어레이에도 

적합한 알고리즘이라고 볼 수 있다. 이 알고리즘은 이미지 인식과 

곱셈표 암기 두가지 분야로 검증되었다. 특히 후자의 경우 사람의 

암산과 같은 메모리 기반 곱셈에 기반하였다. 또한 메모리 기반 

곱셈에 기반한 방식이기에 인수 분해에도 활용할 수 있음을 

증명하였다. 

저항 변화 소자 어레이의 또다른 응용 분야는 topology block의 

lookup table로 사용될 수 있는 내용 주소화 기억장치 (content-

addressable memory, CAM)이다. 이 lookup table은 뉴런 사이의 

모든 연결 정보를 저장하고 있어, 스파이크가 발생하였을 시 

스파이크가 전달될 뉴런들과 업데이트 해야 할 시냅스들을 

검색하는 역할을 하고 있다. 저항 소자 기반 CAM은 빠른 검색 

능력과 높은 집적도, 낮은 정적 에너지 소모량을 가지고 있기 

때문에 lookup table로 활용하기 적합하다고 볼 수 있다. 

그러나 RCAM은 한 쌍의 저항 변화 소자로 하나의 bit를 

표현하기 때문에 (0.5bit/switch) resistive random access 

memory (1bit/ switch)에 비해 낮은 컨텐츠 밀도를 가지고 있다. 
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본 논문에서는 combination-encoding CAM (CECAM)이라 불리는 

새로운 종류의 RCAM을 제시하였다. N-CECAM은 N개의 높은 

저항 상태를 가지는 소자와 N개의 낮은 저항 상태를 가지는 소자를 

하나의 유닛으로 구성하고. 이 소자들의 조합을 통해 높은 컨텐츠 

밀도를 달성할 수 있었다. (N=10일 경우 0.85 bit/switch). 

CECAM의 핵심은 n-bit의 search key를 2N 자리의 이진 key로 

인코딩하는 알고리즘과 반대로 디코딩 알고리즘을 구성하는 것이다. 

본 논문에서는 CECAM에 적합한 인코딩 알고리즘과 디코딩 

알고리즘 및 이 알고리즘들에 대한 회로 역시 구성하였다. 

  

주요어: 뉴로모픽 엔지니어링, 저항 변화 소자 어레이, 다층 

퍼셉트론, 마코프 체인, 내용 주소화 기억장치 
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