creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Study on Binary Resistance Switch Array

for Neuromorphic Hardware

by

Guhyun Kim

February 2020

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Study on Binary Resistance Switch Array

for Neuromorphic Hardware

Adpvisor : Prof. Cheol Seong Hwang

by

Guhyun Kim

A thesis submitted to the Graduate Faculty
of Seoul National University in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Department of Materials Science and Engineering

December 2019

Approved

by

Chairman of Advisory Committee : Sang Bum Kim

Vice-chairman of Advisory Committee : Cheol Seong Hwang

Advisory Committee : Dongsuk Jeon

Advisory Committee : Doo Seok Jeong

Advisory Committee : Byung Joon Choi

Abstract

Resistance switch array is a strong contender for next-generation memory. A
resistance switch has low resistance state or high resistance state. Switching
between states are stimulated by electric signal such as application of voltage
or current. With crossbar array configuration, resistance switch array reaches to
high integration density of 4F*> where F means minimum feature size. Analog
resistance switches are also have been proposed, but most of them need very
precise control of conductance. Additionally, at least one of their potentiation
or depression is non-linear to pulse number (or pulse length).

Resistance switch array is also able to realize matrix-vector multiplication,
or parallel operation. In other words, the current response to an applied input
voltage vector naturally captures the conductance matrix-voltage vector
multiplication.

Simulating resistance switch array is an efficient method to analyze its
property. The most popular simulation uses Newton-Raphson methods for
resistance array simulation, but this method consumes large calculation costs.
As an alternative, an artificial neural network was applied for the resistance
switch simulation. An artificial neural network was utilized in the behavior
inference of a random crossbar array (10 x 9 or 28 x 27 in size) of nonvolatile
binary resistance-switches (in a high resistance state (HRS) or low resistance
state (LRS)) in response to a randomly applied voltage array. The employed
artificial neural network was a multilayer perceptron (MLP) with leaky rectified

linear units. This MLP was trained with 500,000 or 1,000,000 examples. For

each example, an input vector consisted of the distribution of resistance states
(HRS or LRS) over a crossbar array plus an applied voltage array. That is, for
a M x N array where voltages are applied to its M rows, the input vector was M
X (N+1) long. The calculated (correct) current array for each random crossbar
array was used as data labels for supervised learning. This attempt was
successful such that the correlation coefficient between inferred and correct
currents reached 0.9995 for the larger crossbar array. This result highlights MLP
that leverages its versatility to capture the quantitative linkage between input
and output across the highly nonlinear crossbar array. Additionally, MLP
accelerates simulation 8 times faster compared to Newton-Raphson method.

With its availability of parallel operation, resistance switch array is used in
various parts of neuromorphic hardware, which aims to synthesize hardware
mimicking neural networks. The typical application of resistance switch array
is an artificial synapse array. Because matrix-vector multiplication in resistance
switch array is similar to that in neural network, neuromorphic hardware can be
accelerated by implementation of a resistance switch array as an artificial
synapse array.

In this paper, a learning algorithm suitable for binary resistance switch array
is proposed. This algorithm is referred to as the Markov chain Hebbian learning
algorithm. The algorithm pursues efficient use in memory during training in
that: 1) the weight matrix has ternary elements (-1, 0, 1) and 2) each update
follows a Markov chain—the upcoming update does not need past weight
values. Additionally, the ternary synaptic units are easily realized by a pair of

resistance switches, so that the Markov chain Hebbian learning algorithm is

appropriate for training binary resistance switch array used as synapse array.
The algorithm was verified by two proof-of-concept tasks: image (MNIST and
CIFAR-10 datasets) recognition and multiplication table memorization.
Particularly, the latter bases multiplication arithmetic on memory, which may
be analogous to humans’ mental arithmetic. The memory-based multiplication
arithmetic feasibly offers the basis of factorization, supporting novel insight
into memory-based arithmetic.

Another application is using a resistance switch array as a content-
addressable memory (CAM) as lookup table (LUT) in topology block. The LUT
stores the entire connectivity among neurons. When a spike occurs from a
neuron, the topology block searches the LUT and finds the destination neurons
and synapses to update. Resistance switch-based CAM (RCAM) satisfies fast
search ability, high integration density and low static energy consumption, and
thus it is appropriate for LUT.

RCAM, however, has a low data density due to the use of a pair of resistance
switches for a single bit of contents (0.5 bit/switch) in comparison with resistive
random access memory (1 bit/switch). In this paper, we propose a new type of
RCAM referred to as combination-encoding CAM (CECAM). In N-CECAM,
a single unit consists of N high and N low resistance state switches whose
combination collectively represents binary contents, yielding a data density of
approximately 0.85 bit/switch when N = 10, for instance. The key to CECAM
is the encoding of an n-bit search key as a 2N-digit key and its decoding. To
this end, we propose a simple algorithm for encoding and decoding and its

implementation in digital circuitry.

Keywords: Neuromorphic engineering, resistance switch array, multilayer

perceptron, Markov chain, content-addressable memory

Student Number: 2015-20801
Guhyun Kim

Table of Contents

ADSEIACE ... i
Table of Contentscooiiiiiiiiiiii e v
List of Tables ... ix
List of FIGUIeScccoiiiiii e X
List of Abbreviationsccccci i xviii
1. INtroductioncccooiiiiiiiiiii 1

1.1. Resistance SWitCh arrayc.ccovveririiriieniisiiseese e 1

1.2. Resistance switch array application in neuromorphic

NATAWATEC ...t 4
1.3, Bibliography......cccoooiiiiiiiiiie e 7
2. Artificial neural network for response inference of a nonvolatile
resistance-switch array...............cccoccoi 10
2.1, INtrodUCHIONcoiiiiiiiii e 10
2.2. Description of model System...........cccoeviiiiiiiiiniciecncns 12
2.3. Description of artificial neural networkcccoviiniinnnnn 14
2.4. Training and test datasetsccovvereeriienieniie e 15
2.5, Training reSultS.......cocoviiiiieiiriciie e 16
2.6, CONCIUSIONS ...eviiiiiiiiiiiiie it 22
\Y

2.7, Bibliography.......cccooiiiiiiiiiiiciic 22

3. Markov chain hebbian learning algorithm with ternary synaptic

11013 1 PP PPRPOPPRR 25
3.1, INErOdUCHION ..vveiiiic e 25
3.2, Model deSCTiption.......cccvieiieieiiiieeiiie st 28

3.2.1. Network structure and €nergycccceeeeveeviveresieesinennens 28
3.2.2. Field application and update probabilityc.ccceen.. 33
3.3. Implementation of the MCHL algorithm on hardware 36
3.3.1. Field-programmable gate arrayccccceevvevivereeiesieennns 36
3.3.2. Resistance-based random access memory..........c.cceevennen. 36
3.4, APPLCALIONS .evvivrieiiiieiiii et 40
3.4.1. Image reCognItioNcccveveeieereiie e 40
34.1.1. Implementation on a general-purpose computer................ 40
3.4.1.2. MCHL acCelerator.......cccvevuveriieriiiieesieeesieesieesnieeesiee e 49

3.4.2. Multiplication table memorization and prime

FACTONIZALION ..o s 50
3.5, DISCUSSION utviiiiiieiiiie it stee et srre e nre e s 60
3.6, APPENAIX .ooiiiiiiiiiiiiiiie 64

3.6.1. Derivation of stochastic activity of a neuron.................... 64

3.6.2. Calculation of update probabilitycccccooviiiiininiinnnns 65

3.6.3. Properties of Markov chain in MCHL...........c.ccccocevvennnne 66

vi 2 ;

3.6.4. Effect of update probability and temperature parameter on

training 70
3.6.5. Handwritten digit recognition.............ccoocvvveviveneniiesieennens 72
3.6.6. MCHL accelerator in detailccoooveviiiniiiniieiies 75
3.6.7. Multiplication table memorizationcccccoevvnininnns 80
3.6.8. Prime factorizationcccccevvveveiiienenie e see s 83
3.6.9. Direct search factorization............ccccoeveeveriniiveresieeseenens 84
3.7. Bibliography........cccooiiiiiiiiiiiiic e 84
4. Combination-encoding content addressable memory.............. 89
4.1, INtrodUCHIONcviiiii it 89
4.2. Combination-encoding content addressable memory............. 91
4.2.1. Algorithm for combination encodingc.ccceevevvevnennen. 97
4.2.2. Implementation of encoding Circuit.............c.cccovevnennnne 100
4.3. Parallel search of N-CECAM domainsccceeveeiveeiiinnnnns 103

4.4. Algorithm for content decoding and circuit implementation 106

4.5, DISCUSSION ctevevrruenisseeeteteasteseseeeseeesstassseesteeesssnrrseesseresssnnnns 109
S 00411 1113 () o VPR 114
4.7, APPENAIX .oiiiiiiiiiiiiiii e 114
4.8, Bibliography.......cccooviiiiiiiiiiiiiiiee e 116
LT 01 1 U] L1 T 1) 1 120
Curriculumm VIAC it e e e e e e eees 122
Vil -.
A [

List of publications ...

Abstract (in Korean)

viii

List of Tables

Table 2.1. Parameters of model SWitCh..........ccoovviiiiiiiiiiince e 13
Table 3.1. SYMDOIS. ...cocviiiiiiie e 32
Table 3.2. MCHL algorithm for handwritten digit classification..................... 74
Table 3.3. MCHL algorithm for multiplication table memorization 82

Table 4.1. Truth table of encodings of 4-bit integers as resistor configurations

(V= 3 e 99
Table 4.2. Comparison to previous Workcccoceevernieinieeneenie e 113
IX 3."1 !

List of Figures

Figure 1.1.

Figure 1.2.

Figure 2.1.

Figure 2.2.

Schematic of resistance switch array. Each resistance switch is
placed at each crossing points between electrodes. The output
current from resistance switch array is same as multiplication
between conductance matrix and input voltage vector. 3
(a) Scheme of neuromorphic hardware. It consists of neuron block,
synapse block which realize artificial neurons and synapses,
respectively, and topology block. (b), (c) Topology block stores
neuronal connectivity. When a spike occurs, it searches LUT and
find the destination neurons and synapses to be updated. (d)
Scheme for CAM as LUT. CAM enables fast-searching for
tOPOlogY DIOCK. ..voviiiiiieii e 6
(a) Schematic of an M x N crossbar array. (b) Assumed /-V
characteristics of the model resistance-switches (Types A and B).
(c) Schematic of the MLP with M x (N + 1) input and N output
units, and O hidden layers. The rule for mapping resistance-
switches and input voltage arrays to an input vector is tabulated in
the TNSEL. ..veeiiii e 13
Inference-error reduction while training a network with the dataset
of a 10 x 9 crossbar array of (a) Type A and (b) Type B switches.
Their output results (inferred currents) for the entire 10,000 test
datasets after successful training (green lines) are plotted against
the desired currents in (e) and (f), respectively. The histogram of

X

Figure 2.3.

Figure 2.4.

Figure 3.1.

Figure 3.2.

Figure 3.3.

the error (the difference between inferred and desired currents) for
each case is shown in the inset. The red solid lines denote the
perfect match of inference with the desired (correct) results. The
results are shown for a 28 x 27 crossbar array of (¢) Type A and
(d) Type B switches, and their statistics in (g) and (h),

TESPECLIVELY. weovviiieiiiieiie st 19
(a) Training the network (2,500 units in each of two hidden layers)
with 500,000 and 1,000,000 examples for Type B switch. The
capability of response inference is shown for the network trained
with (b) 500,000 and (c) 1,000,000 examples. The insets address
the distribution of inference-error.ccvvvviriieninniiseseeee 21
Comparison of run time for the proposed method and Newton-
Raphson method.ccceiiiiiiiiii e 21
MCHL algorithm working principle. (a) Basic network of M input
and N output binary stochastic neurons (u; and u»: their activity
vectors). (b) Behavior of P(uy[i] = 1) with z[i] when b[i]=0. This
probability is identical to the deterministic activity a»[i] of the
L0101 TP PR 31
Network with hidden layers. /> and Fp.1 denote a field matrix for
W2 AT WD-11 ettt ettt ettt ne e 35
Memory-centric illustration of a neural network. (a) Graphical
description of the weight matrix w that determines the correlation
between the input activity u; and output activity u,. The grey

vertical and horizontal lines denote word and bit lines,

Xi

respectively. This weight matrix w evolves in accordance to given
pairs of an input #; and write vector v, ascertaining the statistical
correlation between u; and v. (b) A pair of memory resistors in
each synaptic unit. Three combinations of the two conductance
values represent the ternary weight (1, -1, 0). (c) Potentiation: a
weight component at the current step ¢ (w.[7, j/]) has a nonzero
probability to gain +1 (i.e. Aw{[i, j] = 1) only if ui[j] #0, v[i] =1,
and wi[i, j] # 1; for instance, given u; = (0, 1,0, ..., 0) and v = (1, -
1,-1, ..., -1), w1, 2] has a probability of positive update. (d)
Depression: all components wy[i, 2] (i # 1) are probabilistically
subject to negative update (gain -1) insofar as ui[2] # 1, v[i] = -1,
ANA W7, 2] 7 =Le e 38
Figure 3.4. Application to handwritten digit recognition. (a) Schematic of the
network architecture for handwritten digit recognition. A single
HL is included. The matrix w; first maps the input vector u; to the
hidden neurons. The array a- is taken as an input vector to w, that
maps the input vector to the output neurons. The write vector v;
has 10 (the number of labels) buckets, each of which has H;
elements, i.e. N = 10H,. Each thick arrow indicates an input vector
to a group of neurons (each neuron takes each element in the input
vector). (b) The increase of recognition accuracy (red curve) and
corresponding decrease of energy (grey curve) with training
epoch. The trained network is a single-layer network (H=100). (c)

Classification accuracy change in due course of training with

xii

Figure 3.5.

Figure 3.6.

Figure 3.7.

network depth (Hi1=100, H>=50, H3=30)....c..ccccevvverierinrirriinarnans 44
Bucket size dependence of recognition accuracy. Recognition
accuracy change with (a) H; in a network without a hidden layer,
(b) H» with a single hidden layer (w; was fully trained beforehand;
H,=100), and (c) H3 with two hidden layers (w; and w, were fully
trained beforehand; H1=100 and H>=100).ccceevvrrirriirinnnene 46
Memory usage and training time (for 105 epochs) for the MCHL
algorithm. The networks subject to the measurements varied in the
numbers of HLs (1, 2, and 3) and neurons (HD20, 30, and 50) in
each bucket. Each HL included the same number of neurons. The
data were compared with the memory usage and training time for
the MCHL accelerator and two feed-forward networks (MLP and
CNN) trained using a backpropagation algorithm (105 training
epochs). The clock speed of the FPGA board was set to 20

IMHZ. .o 47
Recognition accuracy of networks trained with the CIFAR-10
dataset. (a) Accuracy evolution with training epoch for a network
including three HLs, each of which embodies 500 nodes, reaching
approximately 43%. An MLP trained using backpropagation with
real-valued weights represents approximately 51%. (b)
Recognition accuracy upon the number of HLs. Each HL includes

500 NOUES v.vvvvverererererererererereresesesesesesresseerersseessesrrarerererrrrrrrere——. 48

Figure 3.8.Multiplication table memorization and aliquot part retrieval. (a)

Network architecture for multiplication table memorization. The

Xiii

numbers in the range 1 — M are described by one-hot vectors. Any
two of total M? numbers are combined to form an input vector u;
(ul € Z2M; wuli € 0, 1); for instance, when M =9, u; for one and
six is [100000000/000001000], where the first and last 9 bits
indicate one and six, respectively, as shown in the figure. The
correct answer serves as the label of chosen numbers; there are M?
labels in total. Each label (bucket) has H elements so that the write
vector v is a M*H long vector that is adjusted given the correct
label. Given entire pairs of numbers in the table and their
multiplication results, the matrix w (w € ZM2H X 2M) is
adjusted. P + 0, P — 0, b[i], and 7 were set to 1, 0, 3, and 0.001,
respectively (b) Network architecture of aliquot part retrieval
given the matrix w. The transpose of w (w") finds the entire aliquot
parts of a given number in a parallel manner in place. For instance,
for number ‘6°, an input vector u; (M?H long vector) has a single
nonzero bucket (6th bucket) that is filled with ones. The output
vector z is [111001000|111001000], indicating the sum of four
one-hot vectors (‘1”+ 2° + 3’ + ‘6’ —each of them is an aliquot
part of 6. For prime numbers, the output vector includes only two
1’s (1 and its own number) so that prime numbers can readily be
found; for instance, 7 results in [100000100{100000100] as shown
I the FIGUTE. ...vviiiiic e 55
Figure 3.9.Prime factorization. (a) Memory (WT € Z2M X M2H) based

iterative and parallel search for prime factors. Given an input

Xiv

vector u standing for a certain number 7, the matrix multiplication
wlu outputs vector z (z € Z2M; zi € 0, 1) that reveals one pair of
its factors—except 1 and itself—=z[1:M] and z[M~+1:2M] whose
product yields n. Operator 7> adds these two one-hot vectors,
resulting a,(at € ZM). The iteration terminates upon no further

change in a other than g[1]. Otherwise, operator 7; transforms a;

to u, and the next cycle continues. (b) Prime factorization of 840
23x3x5x7 with a matrix w' (M = 100, H = 30). The first iterative
step outputs a; in (c¢); the address of each element indicates a
factor, e.g. the 21st element, a[21], means a factor of 21, and the
element value its exponent. Only @1[21] and a1[40] in a; except
ai[1] are nonzero, indicating 21x40. The second iteration outputs
a> whose nonzero elements are a»[2], a2[3], a2[7], and a,[20] (= 1,
1, 1, and 1, respectively), implying 22x10x21. The third iteration
respectively sets as3[2], a3[3], a3[7], and a3[10] to 2, 1, 1, and 1, i.e.
22x3x7x10. The forth iteration sets a3[2], a3[3], a3[5], and a3[7] to
3,1, 1, and 1, i.e. 23x3x5x7 and an additional iteration does not
alter other elements than a[1] such that the prime factorization is
completed. (d) The number of factorization steps until prime
factors for the integers (1.62884x10'°—7.75541294x10'"). The
results are compared with the direct search factorization. 57

Figure 3.10.Prime factorization capacity. The number of integers factorizable
using the proposed algorithm with the size M of a trained

multiplication table and the memory for matrix w...........ccocevenee. 59

XV

Figure 3.11. Effect of multinary synaptic weight. Improvement of handwritten
digit recognition accuracy with multinary synaptic weight. The
trained network is a single-layer network (H = 100). A benchmark
is a single-layer perceptron with real-valued weight, which was
trained with a backpropagation algorithm.cccccovviiiiiiinnins 63

Figure 3.12. (a) State transition diagram for a weight element given three
different v[i] values. (b) NE change (for 100 weight elements
randomly sampled) monitored when training a network with the
MNIST dataset. (¢c) The 100 final NE values plotted with respect
to the frequency of non-zero input during the training phase. (d)
Probability distribution over w[i, j] = 1, 0, 1 with training epoch.69

Figure 3.13. Effect of (a) update probability and (b) temperature parameter on
ETAININE. +eeveeieie ittt ettt ettt ettt b et e sb et eenneene e 71

Figure 3.14. Block diagram of the MCHL accelerator.ccocoeovenervennne 79

Figure 4.1. Schematic of the conventional RCAM in (a) active and (b) passive
crossbar arrays. ML, SL, SL, and PL denote a match line, search
line, complementary search line, and plate line, respectively. A
timing diagram for active and passive arrays is illustrated in (c)
and (d), respectively. CLK, Vsi, VSL, and Vw denote a clock
cycle, search line voltage, complementary search line voltage, and
match line voltage, respectively. v in (d) means the current
through the match line. The red lines in (c) and (d) indicate Vsi,

VSL, and the CAM responses when mismatching.cc.cceeee 95

Figure 4.2. (a) Schematic of 3-CECAM (N = 3). A single unit consists of N

XVI

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Figure 4.8.

HRS and N LRS switches. SA and PE mean a sense amplifier and
priority encoder, respectively. (b) Current responses to a given
encoded key upon a match and mismatches. Matching allows the
minimal current response (first TOW)........cooverereneenenieenenenneennes 96
Content density of N-CECAM with N in comparison with the
conventional RCAM and RRAM. The kinks arise from the floor
FUNCHON N (1) 1ovviiiiiee e 96
(a) Block diagram of an encoding circuit for 3-CECAM. (b)
Timing diagram for encoding a search key of 15 as a 6-digit key of
LOTT00.. .t 102
Encoding delay and number of entries in the LUT P with the bit
number of @ search Key (72)......c.ccevvreiiirinieiineeie e 102
Schematic of parallel searches of N,-CECAM partitions. NEXT in
the figure means NEXT block in the encoding circuit. The n-bit
search key is divided into n, chunks, and each chunk applies to the
NEXT block of each partition. All partitions share a single LUT

) TSSO O PP PP PRSPPI 105
(a) Block diagram of a decoding circuit for 3-CECAM. (b) Timing
diagram for decoding an encoded search key of 101100 as its
original search key (15)ccooeviiiiiiiiiic e 108
Schematic of CECAM with a voltage-reading scheme. The blue

arrow in the second row illustrates activated pull-down path..... 112

XVil

List of Abbreviations

LRS
HRS
RAM
SNN
IC
CMOS
LUT
CAM
MLP
CNN
MAC
GPU
MCMC
MCHL
CBA
HL
FPGA
2T2R

CECAM

Low resistance state

High resistance state

Random access memory
Spiking neural network
Integrated circuit
Complementary metal oxide semiconductor
Lookup table
Content-addressable memory
Multilayer perceptron
Convolutional neural network
Multiply-accumulation
Graphics processing unit
Markov chain Monte Carlo
Markov chain Hebbian learning
Crossbar array

Hidden layer

Feld programmable gate array
2 transistor-2 resistance switch

Combination-econding content-addressable memory

XViii

1. Introduction

1.1. Resistance switch array

Resistance switch is regarded as a promising candidates for next-generation
memory [1]. Resistance switch has two states called low resistance state (LRS)
and high resistance state (HRS). The states of resistance switch are non-volatile
so that it allows lower energy consumption compared to the conventional
memories such as dynamic random access memory (DRAM), which needs
refreshment. The switching between LRS and HRS is triggered by electrical
stimulation such as applying voltage or current to resistance switch. In the
resistance switch array, each resistance switch is placed at the crossing point
between each horizontal and vertical metal electrode lines (Fig. 1.1). Note that
these horizontal and vertical electrodes have roles of word and bit line.
Therefore, resistance switch array is regarded as a two-terminal memory. This
simple structure without transistor allows high integration density, the
minimum cell size of 4F?, where F means the minimum feature size [2].

Recently, several analog resistance switches have been proposed [3], [4].
These analog resistance switches enable high data density because a single
resistance switch express multi-bit data. Yet, analog resistance switches have
bottlenecks such as high non-linear write-pulse number dependency [4], and
they also need extremely dedicate control to reach desired resistance [5].

An important feature of resistance switch array is that it realizes matrix-

vector multiplication [6]-[8]. From the Kirchhoft’s law, the output current

response is derived as the multiplication between conductance matrix and input
voltage vector (Fig. 1.1). This parallel operation enables resistance switch array
to be applied to various field, such as analog computer, artificial synapse array,
content-addressable memory (CAM). Additionally, this parallel operation
enables exclusion of sneak current, which causes degradation of sensing margin
because all electrodes are connected to ground or Vaq. Therefore, sneak currents
problem is merely considered in the parallel operation of resistance-switch

array [6]-[8].

9

Output current

E

-

‘ ! i:HRS

Input Voltage

Figure 1.1. Schematic of resistance switch array. Each resistance switch is
placed at each crossing points between electrodes. The output current from

resistance switch array is same as multiplication between conductance matrix

and input voltage vector.

1.2. Resistance switch array application in neuromorphic

hardware

Neuromorphic engineering aims for implementing biologically plausible
spiking neural network (SNN) into hardware [9]. With SNN, neuromorphic
hardware is expected to be energy-efficient similar to human brain [10]. Also it
is suitable for temporal learning, including temporal difference learning [11]
and temporal sequence learning [12], and thus expected to be appropriate to
solve time-dependent problem.

A neuromorphic hardware consists of neurons that are interconnected
through synapses. Implementing neurons and synapses commonly uses analog
and/or digital integrated circuits (IC) based on standard complementary metal
oxide semiconductor (CMOS) technologies [13], [14]. Recently, emerging
devices such as phase change memory [15], [16], magnetic tunnel junctions
[17], [18], threshold switches [19], and floating-gate transistors [20] are
proposed to build artificial neurons and synapses.

Resistance switch array is also a strong candidate for artificial synapses [3],
[4]. In neural network, the activation of pre-synaptic neurons causes spikes and
these spikes are transmitted to post-synaptic neurons. Here, post-synaptic
neurons receive weighted sum of spikes from pre-synaptic neurons, not spikes.
The weighted sum of spikes is expressed as W X x, where W and x indicate a
synaptic weight matrix and activation of pre-synaptic neurons, respectively. It
is similar to matrix-vector multiplication in resistance switch array, mentioned

section 1.1 so that resistance switch array is usable as artificial synapse array.

Another application of resistance switch array in a neuromorphic hardware
is as a look-up table (LUT) in a topology block [21] (Fig. 1. 2). The entire
connections between neurons through synapses are tabulated in the LUT. When
a spike occurs from a neuron, the topology block searches all elements of the
LUT and find the post-synaptic neurons and synapses to update. Therefore, fast-
search ability is the most important factor of LUT. RAM is not a proper solution
for LUT because RAM search every address sequentially and it causes
significant delays. Unlike RAM, content-addressable memory (CAM) has
parallel search ability and thus it is proper to be used as LUT [22]. The
conventional CAMSs, however, have SRAM-based structure which needs
tremendous amount of transistors and have low-integration density.

Compared to SRAM-based CAM, resistance switch-based CAM (RCAM)
has much higher content density because they use much less transistors [23],
[24]. Also, RCAM has very low static energy consumption because of non-
volatility. Consequently, RCAM is appropriate for the LUT in topology block
of neuromorphic hardware.

From this features, this paper consists of three parts. At first, artificial neural
network is applied to accelerate simulation of resistance-switch array. In the
second part, a new learning algorithm called Markov Chain Hebbian Learning
is proposed as the appropriate learning algorithm for resistance switch array.
Lastly, a new type of RCAM, called combination-encoding CAM, is proposed

to improve content density.

(a)

S_UPD
UPD_SEL

POST_ADR

EXT_SPIKE

EXT ADR —a fan-out synapse for Neuron 2

~—® fan-in synapse for Neuron 2

() TOPOLOGY BLOCK (d) CAM based scheme

S_ADR =74 <= PRE_LADR POST_ADR CAM BUF

73
74 |
75
76
77

POST_ADR =3 <=

NOUV s WNREO

N_ADR=2 = :

S_UPD=1
Kornijcuk et al, Frontiers in neuroscience, vol. 10, p. 212, 2016.

Figure 1.2. (a) Scheme of neuromorphic hardware. It consists of neuron block,
synapse block which realize artificial neurons and synapses, respectively, and
topology block. (b), (c) Topology block stores neuronal connectivity. When a
spike occurs, it searches LUT and find the destination neurons and synapses to
be updated. (d) Scheme for CAM as LUT. CAM enables fast-searching for

topology block.

1.3. Bibliography

(1]

(2]

3]

[4]

5]

[6]

[7]

(8]

A. Beck, J. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Applied
Physics Letters, vol. 77, no. 1, pp. 139-141, 2000.

J. Y. Seok, S.J. Song, J. H. Yoon, K. J. Yoon, T. H. Park, D. E. Kwon,
H. Lim, G. H. Kim, D. S. Jeong, and C. S. Hwang, Advanced
Functional Materials, vol. 24, no. 34, pp. 5316-5339, 2014.

M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K.
Likharev, and D. B. Strukov, Nature, vol. 521, no. 7550, pp. 61-64,
2015.

G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang, |. Boybat, R.
S. Shenoy, P. Narayanan, K. Virwani, and E. U. Giacometti, IEEE
Transactions on Electron Devices, vol. 62, no. 11, pp. 3498-3507, 2015.
M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila,
H. Jiang, R. S. Williams, and J. J. Yang, Advanced Materials, vol. 30,
no. 9, p. 1705914, 2018.

D. S.Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang, Advanced
Electronic Materials, vol. 2, no. 9, p. 1600090, 2016, Art no. 1600090.
M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S.
Lam, N. Ge, J. J. Yang, and R. S. Williams, in Proceedings of the 53rd
annual design automation conference, 2016: ACM, p. 19.

L. Gao, P. Y. Chen, and S. Yu, IEEE Electron Device Letters, vol. 37,

no. 7, pp. 870-873, 2016.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

C. Mead, Proceedings of the IEEE, vol. 78, no. 10, pp. 1629-1636,
1990.

G. Cauwenberghs, Proceedings of the national academy of sciences, vol.
110, no. 39, pp. 15512-15513, 2013.

R.P.Raoand T. J. Sejnowski, Neural computation, vol. 13, no. 10, pp.
2221-2237, 2001.

F. Worgotter and B. Porr, Neural computation, vol. 17, no. 2, pp. 245-
319, 2005.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. Van Schaik, R.
Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hafliger, and
S. Renaud, Frontiers in neuroscience, vol. 5, p. 73, 2011.

M. R. Azghadi, N. lannella, S. F. Al-Sarawi, G. Indiveri, and D. Abbott,
Proceedings of the IEEE, vol. 102, no. 5, pp. 717-737, 2014.

T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, and E. Eleftheriou,
Nature nanotechnology, vol. 11, no. 8, p. 693, 2016.

S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. di
Nolfo, S. Sidler, M. Giordano, M. Bodini, and N. C. Farinha, Nature,
vol. 558, no. 7708, p. 60, 2018.

A. Sengupta, P. Panda, P. Wijesinghe, Y. Kim, and K. Roy, Scientific
reports, vol. 6, p. 30039, 2016.

A. Mizrahi, T. Hirtzlin, A. Fukushima, H. Kubota, S. Yuasa, J. Grollier,

and D. Querlioz, Nature communications, vol. 9, no. 1, p. 1533, 2018.

[19]

[20]

[21]

[22]

[23]

[24]

H. Lim, H.-W. Ahn, V. Kornijcuk, G. Kim, J. Y. Seok, I. Kim, C. S.
Hwang, and D. S. Jeong, Nanoscale, vol. 8, no. 18, pp. 9629-9640,
2016.

V. Kornijcuk, H. Lim, J. Y. Seok, G. Kim, S. K. Kim, I. Kim, B. J.
Choi, and D. S. Jeong, Frontiers in neuroscience, vol. 10, p. 212, 2016.
V. Kornijcuk, J. Park, G. Kim, D. Kim, I. Kim, J. Kim, J. Y. Kwak, and
D. S. Jeong, Advanced Materials Technologies, vol. 4, no. 1, p.
1800345, 2019.

K. Pagiamtzis and A. Sheikholeslami, IEEE Journal of Solid-State
Circuits, vol. 41, no. 3, pp. 712-727, 2006.

A. Grossi, E. Vianello, C. Zambelli, P. Royer, J.-P. Noel, B. Giraud, L.
Perniola, P. Olivo, and E. Nowak, IEEE Transactions on Very Large
Scale Integration Systems, no. 99, pp. 1-9, 2018.

R. Han, W. Shen, P. Huang, Z. Zhou, L. Liu, X. Liu, and J. Kang,

Japanese Journal of Applied Physics, vol. 57, no. 4S, p. 04FE02, 2018.

2. Artificial neural network for response
inference of a nonvolatile resistance-switch

array

2.1. Introduction

An artificial neural network (ANN) is a layered graph of nodes (activation units)
and edges (nonzero connection weights), offering an immensely versatile

hypothesis for various types of data description and different training methods

[1]. Among feed-forward neural networks, multilayer perceptrons (MLP) and

convolutional neural networks (CNN) are the most frequently applied types of
neural network [2]. MLP is a prototypical feed-forward architecture in which

every unit in a layer is fully wired to all units in the adjacent layers. In contrast,

CNN has interlayer connections that are sparse and localized in the network

topology [3,4]. A weight matrix in the CNN filters an input matrix fed into the

next layer, and this filter (also known as convolution kernel) skims over the

input layer. This is mathematically identical to convolving around the input

layer, thus this architecture is termed CNN. In fact, the CNN has been

successfully applied to a wide range of tasks including image recognition [1],

[3]-[5] and natural language processing [6].

The scope of tasks (other than conventional tasks mentioned above) within the

capability of ANN has been markedly expanding, including quantum

mechanical problems such as estimation of quantum mechanical ground state

given a two-dimensional potential distribution [7] and modelling a mechanical

10

system in presence of noise [8]. These examples highlight the neural network
as a versatile hypothesis and the capability of backpropagation for supervised
learning as a widely applicable training method.

Meanwhile, a crossbar array of nonvolatile resistance-switches, i.e., passive
resistive random access memory (RRAM), ideally meets the 4F2 design rule (F
is the minimum feature size), offering a solution to high-density nonvolatile
memory [9]-[11]. Additionally, its current response to an applied voltage array
naturally captures the multiply-accumulate (MAC) operation so that crossbar
arrays have often been used for physical implementation of the matrix—vector
product [12]-[14]. The benefit of this approach is obvious in comparison to the
digital MAC operation: high speed due to the fully parallel operation and
energy-efficiency due to no need for data transference during the operation.
Given that the MAC operation is at the heart of MLP for both training and
inference, the passive RRAM can substantially improve efficiency in MLP,
which is an important field of neuromorphic engineering [12], [14]-[19].

Considering the beneficial relationship between passive RRAM and MLP
(particularly, the aforementioned passive RRAM for MLP), it is of interest to
seek the reverse approach (MLP for passive RRAM). To this end, this work
exemplifies the feasible application of MLP to the response inference of passive
RRAM in which, once trained, the inference merely costs a few steps of matrix-
vector product (depending on the depth of the network). Our new method may
offer a new feasible means of crossbar circuit simulations as an alternative to

conventional circuit simulation methods.

11

2.2. Description of model system

Passive RRAM as a model system is a M x N matrix R loaded with Rurs and
Rirs that denote resistance in a high resistance state (HRS) and low resistance

state (LRS), respectively, i.e., RE {Rurs, Rirs}™ *N. This model system outputs

an N-long real-valued current vector (SR") in response to an M-long real-
valued input voltage vector V (€ {0,1}"). The model system is illustrated in
Fig. 2.1(a).

The model is a nonlinear system because the HRS features a highly nonlinear
current-voltage (/-V) relationship in contrast to the linear (or almost) /-V of the
LRS. In this regard, the HRS was provided with a nonlinear /-J characteristic
as follows: I = Ipe”, where Iy and a denote a pre-exponential factor and voltage
coefficient, respectively. The larger a, the higher nonlinearity is given to the /-
V behavior. Such nonlinearity in the HRS has been observed in an enormous
number of resistance-switches given the usual thermal activation of current
transport in the HRS [10, 20, 21]. In contrast, the LRS was given a linear /-V
characteristic, keeping fidelity to experimental systems that generally represent
linear or very weakly nonlinear /-V characteristics.

Two types of resistance-switch were addressed in this study: Type A and B,
whose detail is tabulated in Table 2.1. The /-V behavior for each switch is
plotted in Fig. 2.1(b). They differ in the Rurs/Rirs ratio (evaluated at 1 V); the
ratio for Type A is 100 times larger than Type B. For each type, two different
array sizes (10x9 and 28x27; M = 10 and N =9, and M = 28 and N = 27,

respectively) were considered.

12

11 12 —
@ 1R o

mHrs (B) =~ ___
ELRS 10° 4

Type A

2
cE
| |
®
\

Current
-
o
3

N 0.0 05 1.0
Voltage (V)

Transformation rule

State Input State Input
== -1 R . -1

Figure 2.1. (a) Schematic of an M x N crossbar array. (b) Assumed |-V
characteristics of the model resistance-switches (Types A and B). (c) Schematic
of the MLP with M x (N + 1) input and N output units, and O hidden layers.
The rule for mapping resistance-switches and input voltage arrays to an input

vector is tabulated in the inset.

Table 2.1. Parameters of model switch.

Heading Type A Type B
Rurs (Q) 108 x e 109 xe™”
Rirs () 10k 1k
Rurs/Rirs at 1 V 3679 36.79
13

2.3. Description of artificial neural network

The passive RRAM outputs a current vector / that is determined by the
configuration of switches over the whole array instead of their local
configuration. A fully connected feed-forward network is, therefore, suitable for
the model system instead of a CNN capturing patterns over local areas.
Additionally, given the aforementioned nonlinearity of the model system, a
hidden layer(s) needs to be incorporated in the network, rendering an MLP most
suitable. Thus, an MLP was chosen as an appropriate network for the crossbar
array. Fig. 2.1(c) illustrates the employed MLP with M x (N + 1) input units, N
output activation units, and O hidden layers, each of which is filled with Hi

activation units where i & {1, 2, ---, O}. The input into the MLP is the

resistance-state (+1 and —1 for the LRS and HRS, respectively) distribution
over the M*N array (R) plus an M-long vector for input voltage (+1 and—1 for
Vil = 1 and Vi] = 0, respectively) as sketched in Fig. 2.1(c). This matrix is
then vectorized to feed into the MLP. The output is the estimated output current
of the crossbar array at a given voltage. Note that successful training is crucial
to rescale the original physical input (resistance and voltage) and output
(current) in a heuristic manner such that the rescaled (scale-free) values stay in
an “acceptable” range. To this end, symbolic (+1 and—1), rather than physical,
values were given to the input components. Likewise, the desired (correct)
output values (currents) were rescaled such that L[i] = 10x/[{]*Rrs.

The leaky rectified linear unit (ReLU) was deployed as an activation unit: f{x)

= max(x, 0.1x). The leakage when x < 0 is required for the negative input

14

components. Otherwise, the negative input components are merely ignored as
for the simple ReLU, f(x) = max(x, 0). The ReLU is a workaround for the
notorious vanishing gradient problem, which is significant when the network is

deep.
2.4. Training and test datasets

The output 7 in response to an input V for a given R was evaluated by applying
the Kirchhoff’s circuit law to each switch. The obtained nonlinear equations
were solved using the Newton-Raphson method, which resulted in the output 1.
The calculation was elaborated in [22]. A training dataset was produced by
randomly sampling resistance state distribution over the array and input V. First,
p1 (0 <p1 <1) was randomly sampled from a uniform probability distribution
function (PDF) and used as the probability that V'[i] = 1. That is, if p; is 0.4, 40%
of all input lines are pulled high (1 V), and the rest lines (60%) are pulled down
(0 V). Another number p, (0 < p» < 1) was subsequently sampled for each input
line from a uniform PDF to randomly distribute 1 V signals over all input lines
at a probability of p: such that, when p, < p1, V[i] = 1, and 0 otherwise. This
process was repeated with different p»’s over M rows, resulting in an input V'
for this training example. A third number p3 (0 < p; < 1) was picked from a
uniform PDF and taken as the percentage of LRS switches in the entire array.
For each switch in the array, ps was compared with another random number, p4
(0 < p4 < 1) was sampled for each switch, and R[7, j] = Rirs when ps < ps3, and
R[ij] = Rurs otherwise. The label of this training example was the current
response for I given R and V. The complete dataset was acquired by repeating

this process. The test dataset was separately made for the fair evaluation of

15

inference accuracy. Two different crossbar array sizes (10x9 and 28%27) for
each type of switch were considered so that four different training and test
datasets were produced. Each training dataset included 500,000 training
examples (V, R, and I) unless otherwise specified. The network was examined
for every training epoch using 10,000 test examples. Backpropagation using the
mean-squared error loss function was employed with Adam optimizer that
leverages learning rate adaptation for each parameter to accelerate training [23].
The MLP was batch-trained with a batch size of 100 (100 examples were
randomly chosen for each training epoch). Both training and inference were
performed using TensorFlow [24]. Note that for successful training, the
network should vary on its hyper-parameters such as the number of ReLLU units
in each hidden layer (H;) and the network depth (O) depending on the input

array length.
2.5. Training results

Fig. 2.2 shows a reduction in the discrepancy between the output (inferred)
current lout and desired (correct) current /.r in due course, revealing successful
training for all four cases conditional on the network structure. For the small
crossbar array (10%9), a network including a single hidden layer (O = 1) loaded
with 100 ReLU units could successfully be trained with the 500,000 training
examples (Fig. 2.2(a), (b)). However, the use of fewer units (50 and 75) falls
short of the capability of learning the dataset so that a high error level is
maintained for both types of switch. This is a result of underfitting referring to
the use of an unsuitable network for capturing the input pattern. Here, the

network is too simple (insufficient number of units) to describe the complexity

16

of input data. The successfully trained network infers the output current of a
random 10x9 crossbar array R at a random V. The inferred currents for 10,000
test examples are plotted against the desired (correct) currents in Fig. 2.2(e), (f),
each of which includes 90,000 data points (10,000 test examples, each of which
produces 9 current values). The error histogram for each case is plotted in the
inset, indicating a root mean squared error (RMSE) of 0.313 uA and 17.8 pA,
respectively. The larger error for Type 2 switch arises from the higher current
in both HRS and LRS due to the lower RHRS and RLRS. The results for the
larger crossbar array (28 x 27) of Types A and B switches are shown in Fig.
2.2(c), (d), respectively. Given the larger input dimension (28x28 = 784), a
network needs more units in each hidden layer and/or more hidden layers for
success in training. The employed network varies on the number of units (1500
and 2500) in a hidden layer and the network depth (1 and 2). The three networks
among four are given the capability to estimate the response of a random 28 x
27 crossbar array R at a random V. As such, the network fully trained along the
green curve for Types A and B switches represents low inference-error (a
RMSE of 4.85 pA and 62.7 pA, respectively) as elucidated in Fig. 2.2(g), (h),
and their insets.

The correlation coefficient » for each case was also evaluated as another

measure of success of training, which is given by r = cov(l,, —

1.,,)/ ‘ﬁ/ar(lom)-var([w,), where cov and var denote a covariance and variance,
respectively. The correlation coefficient is asymptotic to 1 when the inference
error tends to zero, and thereby r = 1 implies zero error (perfect match). The

calculated » for each case is written in Fig. 2.2. The failure of training for the

17

network with 2,500 units in each of the two hidden layers is due to overfitting
(see orange curves in Fig. 2.2(¢c), (d)). Although the network is given sufficient
complexity (a large number of units and hidden layers) to learn the complex
input pattern, insufficient training examples lead to faulty training as shown in
the orange curves (Fig. 2.2(c), (d)). Overfitting could be avoided by training
with a larger training dataset (here 1,000,000 examples for Type B switch) as
shown in Fig. 2.3(a). The inference-error for the overfitting case is detailed in
Fig. 2.3(b) which represents a substantial discrepancy between the inferred and
desired outputs, the extent to which the RMSE reaches 438.2 pA (»=0.99571).
The error statistics are plotted in the inset. In contrast, a remarkable reduction
in inference-error is identified for the non-overfitting case (Fig. 2.3(c)) whose
RMSE is lowered down to 49.2 uA (r = 0.9995).

Finally, we compared the time-efficiency of the proposed method with the
conventional Newton-Raphson method [22]. The run time of a 10x9 resistance
array calculation was measured for both methods using the same computer. The
result shown in Fig. 2.4 ensures an acceleration in calculation by approximately
8 times, identifying a feasible benefit of fast calculation from the proposed

method.

18

Mean squared error
Output current (mA)
o
o
o
(&)}
=

_‘

(@]

1 "
Count (x10%
o =2 N

A

4 _Gg 0 (% //’
. rror (LA)~
S T = 0.9997
Vs
0o{ (f)

1 = v
0 2 4 6 8 10 0 5 10

Epoch (x10°) Desired current (mA)
e H_: 1500 44
——H,: 2500

1

1

——H,=H_: 1500 { =

1“2 52

= H,=H,: 2500 3 7

o] -~ (9)

Mean squared error
Output current (mA)

30
1O©Y200 0 200

10__ Error (nA) = 0.9995
0 (h)

0 2 4 6 8 10 0 5 10 15 20 25
Epoch (x10°) Desired current (mA)

Figure 2.2. Inference-error reduction while training a network with the dataset
of a 10 x 9 crossbar array of (a) Type A and (b) Type B switches. Their output
results (inferred currents) for the entire 10,000 test datasets after successful
training (green lines) are plotted against the desired currents in (e) and (f),
respectively. The histogram of the error (the difference between inferred and
desired currents) for each case is shown in the inset. The red solid lines denote

the perfect match of inference with the desired (correct) results. The results are

o s - i)

o

shown for a 28 x 27 crossbar array of (¢) Type A and (d) Type B switches, and

their statistics in (g) and (h), respectively.

20 *’H _CI:I ; 1_-_]

| &1

5x10° examples

304

4] .Y IEx
10 E — 10° examples - x4 %8
§103; 2 g E4
o € 50| 80 13
= 0960 0 200
B o €
1074 O 45 Error (uA
@ = T
= 3
@ 10" 4 + 101 d J
S = & r-099571
D, 0 =] 5 ¥ L
=10)
(@) ‘ (b) (©)
10-1 15 L T J T T 3 L T v T v _I ¥ T L] T —I T T T T 1
0 2 4 6 8 10 0 10 20 0 10 20

Epoch (x10°)

Desired current(mA)

Figure 2.3. (a) Training the network (2,500 units in each of two hidden layers)

with 500,000 and 1,000,000 examples for Type B switch. The capability of

response inference is shown for the network trained with (b) 500,000 and (c)

1,000,000 examples. The insets address the distribution of inference-error.

Normalized time _,

o

—_—
1

MLP

Newton-Raphson

Figure 2.4. Comparison of run time for the proposed method and Newton-

Raphson method.

21

o A

o

T
 S—

kT

2.6. Conclusions

A fully connected feed-forward network with different structures (depth and the
number of activation units) was successfully trained to infer the current
response of a random crossbar array to a randomly applied voltage array. This
work first verifies the capability of ANN to capture the highly nonlinear input-
output relationship of a crossbar array model system. Secondly, MLP for
supervised learning provides a means of real-valued array inference beyond the
classification of input patterns. Thirdly, this work offers a distinct view of
crossbar array evaluation — a numerical solution of a number of simultaneous
equations can be avoided at the expense of a few steps of matrix-vector product
for inference. However, training the network and preparing datasets can be
expensive, depending on the network hyper-parameters and model crossbar
array size. Thus, we leave this efficiency issue open for the moment.

2.7. Bibliography

[1] Y.LeCun,Y.Bengio, and G. Hinton, Nature, Insight vol. 521, no. 7553,
pp. 436-444, 2015.

[2] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, and A. Borchers, in 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture
(ISCA), 2017: IEEE, pp. 1-12.

[3] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Proceeding of IEEE,

vol. 86, no. 11, pp. 2278-2324, 1998.

22

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

Y. LeCun, K. Kavukcuoglu, and C. Farabet, in 2010 IEEE
International Symposium on Circuits and Systems (ISCAS), 2010, pp.
253-256.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Advances in Neural
Information Processing Systems, 2012, pp. 1097-1105.

R. Collobert, J. Weston, L. 0. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, Journal of Machine Learning Research, vol. 12, pp. 2493-
2537, 2011.

K. Mills, M. Spanner, and I. Tamblyn, arXiv:1702.01361, 2017.

M. Nentwig and P. Mercorelli, in 2008 7th IEEE International
Conference on Cybernetic Intelligent Systems, 2008: IEEE, pp. 1-6.

R. Waser, R. Dittmann, G. Staikov, and K. Szot, Advanced Materials,
vol. 21, pp. 2632-2663, 2009.

D. S. Jeong, R. Thomas, R. Katiyar, J. Scott, H. Kohlstedt, A. Petraru,
and C. S. Hwang, Reports on Progress in Physics, vol. 75, no. 7, p.
076502, 2012.

J. Y. Seok, S.J. Song, J. H. Yoon, K. J. Yoon, T. H. Park, D. E. Kwon,
H. Lim, G. H. Kim, D. S. Jeong, and C. S. Hwang, Advanced
Functional Materials, vol. 24, no. 34, pp. 5316-5339, 2014.

D. S.Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang, Advanced
Electronic Materials, vol. 2, no. 9, p. 1600090, 2016.

M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S.
Lam, N. Ge, J. J. Yang, and R. S. Williams, Proceedings of the 53nd

Annual Design Automation Conference, 2016, pp. 1-6.
23

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

L. Gao, P. Y. Chen, and S. Yu, IEEE Electron Device Letters, vol. 37,
no. 7, pp. 870-873, 2016.

D. S. Jeong, I. Kim, M. Ziegler, and H. Kohlstedt, RSC Advances, vol.
3, no. 10, pp. 3169-3183, 2013.

J. J. Yang, D. B. Strukov, and D. R. Stewart, Nature Nanotechnology,
vol. 8, no. 1, pp. 13-24, 2013.

P. Y. Chen, L. Gao, and S. Yu, IEEE Transactions on Multi-Scale
Computing Systems, vol. 2, no. 4, pp. 257-264, 2016.

P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, Nature
Nanotechnology, Article vol. advance online publication, 2017.

S. Choi, J. H. Shin, J. Lee, P. Sheridan, and W. D. Lu, Nano Letters,
vol. 17, no. 5, pp. 3113-3118, 2017.

D. S. Jeong, H. Schroeder, and R. Waser, Electrochemical Solid-State
Letters, vol. 10, p. G51, 2007.

D. S. Jeong, H. Schroeder, and R. Waser, Physical review B, vol. 79, p.
195317, 2009.

D. S. Jeong, H.-W. Ahn, S.-D. Kim, M. An, S. Lee, and B.-k. Cheong,
Electronic Materials Letters, vol. 8, no. 2, pp. 169-174, 2012.

D. P. Kingma and J. Ba, arXiv:1412.6980, 2014.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, and M. Devin, arXiv:1603.04467, 2016.

24

3. Markov chain hebbian learning algorithm with

ternary synaptic units

3.1. Introduction

Recent progress in machine learning (particularly, deep learning) endows
machines with high precision recognition and problem-solving capabilities
beyond the human level [1]-[3]. Computers on the von Neumann architecture
are the platform for the breakthroughs albeit frequently powered by hardware
accelerators, e.g., graphics processing unit (GPU) [4]. The main memory stores
intertwined fragmentary information, e.g., weight matrix, representation of
hidden neurons, input datasets, and so forth. However, essential to efficient
memory retrieval is memory organization such that the whole weight matrix
can readily be recalled when necessary. In this regard, a high-density crossbar
array (CBA) of two-terminal memory elements, e.g., oxide-based resistive
memory and phase change memory, is perhaps a promising solution to machine
learning acceleration [5]-[9].The connection weight between a pair of neurons
is stored in each memory element in the CBA as conductance, and the weight
is read out in place by monitoring current in response to a voltage [5]-[9].
Albeit promising, this approach should address the following challenges;
each weight should be calculated beforehand using a conventional error-
correcting technique, and the pre-calculated value needs to be programmed in
a single memory element. The former particularly hinders online learning. In

this study, an easy-to-implement algorithm based on a stochastic neural

25

network—termed the Markov chain Hebbian learning (MCHL) algorithm—is
proposed. The most notable difference between the MCHL and restricted
Boltzmann machine (RBM) [10]-[15] is that the MCHL is a discriminative
learning algorithm with the aid of “external field” that realizes supervised
learning. Also, each update uses only local (spatial and temporal) data rather
than global data such as energy of the entire network. The MCHL algorithm
also features as follows: (a) Each weight w[i, j] is a ternary number: w[i, j] €
{~1,0,1}

(b) Given (a), each update of weight follows a finite-state Markov chain, and
the update probability is in line with the Hebbian learning.

(c) A group of output neurons in a bucket (rather than a single neuron)
simultaneously represent a data class (label), which is comparable to concept
cells [16]-[18].

(d) When the network is deep, the network is trained in a greedy layer-wise
manner, and each layer is trained in a greedy edge-wise manner.

Provided with these features, the MCHL algorithm enables an ad hoc update
of the weight matrix (online learning) in a memory-saving fashion, so that it is
suitable for machine learning powered by CBA-based memory. No need for an
auxiliary function for error correction, e.g., backpropagation, particularly
alleviates computational complexity. Each synapse is given a ternary number
during the entire learning period—distinguishable from binarizing real-valued
weight at each update step [19] as well as the use of auxiliary real-valued
variables [20]. A Markov chain, specifically, in Markov chain Monte

Carlo(MCMC), is a common means of sampling from a complex distribution

26

of data to extract information in stochastic machine learning [21]. Especially, a
Markov decision process offers a solution to an optimal policy that maps a
current state of an agent to a certain action resulting in the maximum reward in
reinforcement learning [22], [23] Additionally, MCMC yields a posterior
probability distribution that is the key to Bayesian inference and learning [21]
Examples also include recent attempts to apply Markov chains to multi-instance
multi-label learning [24] that addresses objects embodying multiple instances
(features). In this case, Markov chains are used as probabilistic classifiers
mapping multiple instances to multiple labels [25].

Stochastic Hebbian learning algorithms are methods to probabilistically train
a binary synapse conditional on the pre and postsynaptic activities in line with
the MCHL algorithm [26], [27]. Interestingly, such algorithms can train
networks to a comparable degree with its deterministic counterpart [26], [27].
Yet, these algorithms barely support supervised learning for classification tasks.
Senn and Fusi proposed a single-layer perceptron with a stochastic learning
algorithm for supervised learning [28]. The algorithm requires global inhibition
that is applied to all output neurons so that the actual synaptic input in total
(input from binary excitatory synapses plus global inhibition) is not all or
nothing. Additionally, no explicit method to apply the algorithm to multilayer
perceptrons (MLPs) is proposed.

Note that, regarding the feature (d), the network depth indicates repeated
linear classifiers through the layers so that it differs from that of a multilayer
feed-forward network that features a nonlinear classifier. Nevertheless, we term

the additional layers between input and output layers as hidden layers(HLs)
27

given that they are literally hidden irrespective of their role in non-linear
classification. Additionally, a network with such HLs is referred to as a deep
network.

The MCHL algorithm was applied to two proof-of concept examples: image
recognition using the MNIST and CIFAR-10 datasets and multiplication table
memorization. The latter example relates the arithmetic to memory-based
perception in an analogous way to humans’ mental arithmetic. The weight
matrix trained with the multiplication table was then applied to more

complicated arithmetic such as aliquot part evaluation and prime factorization.

3.2. Model description

3.2.1. Network structure and energy

Analogous to the RBM, two layers of neurons without recurrent connection
form the basis for the MCHL algorithm. However, it differs from the RBM such
that the HL in the RBM is replaced by an output layer that does not feed input
into the input layer. Fig. 3.1(a) depicts a stochastic neural network of M input
features and N output neurons. u; and u, denote the input vector and activity

vector of the output layer, defined as

u €RY, O=ulil<l
u €2V, wplil = {0,1}

respectively. In the output layer, H neurons associatively represent each of total
L labels so that the output layer includes LH neurons (N=LH). A group of such
H neurons is referred to as a bucket. When the L labels are indexed from 1 to L,
w[(n — 1)H+1:nH] is a block of output activities for the nth label. Note that

x[a:b] denotes a block ranging from the ath to bth elements of vector x. A matrix

28

w (€ ZMM) defines the weight of feed-forward connection from the input to
output layer such that the input z[7] into the ith output neuron is given by
z[=X wli. jlui 7] (1)

Each element of w is given one of the ternary values (—1, 0, 1). According to
the bucket configuration of the vector u,, the matrix w can be partitioned such
that w[(n — 1)H+1:nH,-] is for the connection from the input vector to the output
neurons of the nth label. ‘-’ means all j=1, ..., M. Likewise, z(= wu)can also be
partitioned into L buckets.

The energy of this network is defined as
T T
E(uy, uy) = —(2uy — 1) -wuy +b'uy,)
where w is a weight matrix, Tisa N-long vector filled with ones. b denotes a

bias vector for the output layer. (2u2 - T) in (2) transforms u; such that a quiet
neuron (u2[i] = 0) is given an output of —1 rather than zero. This counts the cost
of a positive connection (w[i, j]=1) between a nonzero input (u:[j]#0) and
output neuron in an undesired label (u>[i]=0). This undesired connection raises
the energy by ui[/].
The following conditional probability that us[i]=1 given z[i] holds:

Pusli] = 1)2[i]) = [1 + e~ @elil-sD] ™", (3)

where 1T denotes a temperature parameter. (3) is plotted in Fig. 3.1(b). The

derivation of (3) is elaborated in Appendix A. We also define the deterministic

activity of neuron 7 in the jth layer as
a;[i] = [1+ e—(Zz[z]—b[z])/r] _ @

For instance, for the network in Fig. 3.1(a), a[i] denotes the activity of neuron

29

i in the second (output) layer. This deterministic activity is used for inference
as follows. The output from each label n (O[n]) is the sum of deterministic
activity over all output neurons in the label. The maximum component of O
designates the estimated label for a given input. (4) is also used when training
a deep network (Sec. IVA).

Note that, unless otherwise stated, the bias is set to zero, simplifying (2), (3),

and (4) to
Euy, uy) = —(2uy — 1) weu,)
PQusli] = 112[i]) = [1 + 72007 (6)

and
alil = [1 +e20e 7 (7)

respectively. The description of each mathematical symbol is addressed in

Table 3.1.

30

a

o

Label 1 <+« Label L 1.0
u, QOI[OOO] ‘? 0.8
= 0.6

N
w1,11| \Wi1.2] =
u, O - E:j: 0.2+
0.0

Z[i]
Figure 3.1. MCHL algorithm working principle. (a) Basic network of M input
and N output binary stochastic neurons (u; and uz: their activity vectors). (b)
Behavior of P(uz[i] = 1) with z[i] when b[i]=0. This probability is identical to

the deterministic activity a,[i] of the neuron.

31 *’H _CI:I ; 1_-_]

5 25 0 25 5

| &1

Table 3.1. Symbols.

Symbol Description
x[i] i =1) ith element in array x
x[i] (=) Block ranging from the ith to jth element in array x

Activity vector of the M input neurons
u; u1 € RM;

0<wylil<1

Activity vector of the N output neurons

U u, € ZV;
u,[i] € {0,1}
Weight matrix
w w € ZNXM.
wli,j] € {~1,0,1}
b Bias vector for the output neurons

Array of inputs into the output neurons

M
z . . .
20il =) wli,jlu]
=1
Deterministic activity of the N output neurons
a, € RN;
a
0<alil<1
L Number of total labels in a dataset
H, Number of neurons in a bucket in the ith layer
Write vector
v e 7LH,
v
v[il]e {-1,1} if H=1
v[i] € {—1,0,1} otherwise
T Temperature parameter
E Energy of the model
P, Probability of potentiation
P. Probability of depression
P? Maximum probability of potentiation
P Maximum probability depression

32

3.2.2. Field application and update probability
In the MCHL algorithm, write vector v designates the correct label of a given
input u;. Akin to u, v is an LH-long vector in which v[(n—1)H+1:nH] is
assigned to the nth label. The correct label (indexed N) is indicated by v such
that

1 ifi=(N—-1DH+nh

vlil={—1 ifi=(m—-1DH+h foralln (#N) , (®)
0 otherwise

where 1 < h < H, and 4 is chosen at random. That is, one of the elements for
label N is endowed with 1 while one of the elements for each undesired label is
given —1. Thus, only one element in v has 1, L—1 elements —1, and the others 0.
In conjunction with the corresponding input vector u;, a field matrix F is
defined as F = v-u? and F[i, j] = v[i]lu[j] element-wise. F[i, j] determines
the sign and probability of weight change of w[i, j] for a given input and its
correct label. F1i, j] (>0) causes potentiation (Aw][i, j/] = 1) at probability P; only
if uz[i] = 0 (condition (a)) and w[i, j] # 1 (condition (b)). In contrast, F[i, j] (<0)
causes depression (Aw[i, j] = —1) at probability P- only if u>[i] = 1 (condition
(a)) and w[i, j] #—1 (condition (b)). P+ and P- are

{p+ = PO Fli, j1=PSvli]u [/])

P. = =P Fli,j] = —=P°v[ilu [j]
where P} and P’ denote the maximum probability of potentiation and
depression, respectively. Stochastic update on weight given probability is
detailed in Appendix B.

This update rule is reminiscent of the Hebbian learning such that the larger

the input u[j], the more likely the update is successful since P+ and P- scale

33

with u;[j] as shown in (9). Condition (a) indicates that a quiet output neuron
(u2[i] = 0) supports potentiation, whereas an active one (u2[i] = 1) supports
depression. Condition (b) keeps w[i, jJ< {1, 0, 1} so that the update falls into
a finite state Markov chain. v is renewed for the subsequent update with another
input data and its label. 4 in (8) is also randomly renewed.

Specifically, the MCHL algorithm exploits inhomogeneous Markov chains
that alter the transition matrices every training epoch given the update
probability conditional on input and write vector according to (9). Several basic
properties of the inhomogeneous Markov chains in the MCHL algorithm are
addressed in Appendix C. Generally, a learning rate is of significant concern for

successful learning. A learning rate in the MCHL algorithm is dictated by P(l

and P° in place of an explicit rate term. For extreme cases such as P9 = 1

and P’ = 1, the matrix barely converges, but constantly fluctuates.

When including HLs (Fig. 3.2), the network is trained in a greedy layer-wise
manner as for deep belief networks [29]. That is, the matrix w; was first fully
trained with a field matrix F; of each input vector u; and the corresponding
write vector v. The matrix w, is subsequently trained with a field matrix F, for
a given u; and v, which reads F, = v-u3. Such layer-wise training continues

up to the topmost weight matrix wp- that is trained with Fp-; shown in Fig. 3.2.

34

loo...ol...[oo...ol

: Foi=vap,T
lOO"'Ol"'[OO;,OI
W,[LH,, 1] WlLH,,Hi] F,=va,’

Q ...loo...ol

wi[1,1]] \w4[1.2]

Figure 3.2. Network with hidden layers. F; and Fp.1 denote a field matrix for

w2 and Wp.1.

" A =gt

3.3. Implementation of the MCHL algorithm on

hardware

3.3.1. Field-programmable gate array

Implementing the MCHL algorithm on hardware boosts the advantage of the
algorithm with regard to its efficient use of memory and computational
simplicity in weight update. To identify the acceleration of training and
inference, a field programmable gate array (FPGA) is an easy-to-implement test
bed where weight matrices can be densely organized in static random access
memory (SRAM) arrays that are readily accessed when necessary. We will
highlight the significant acceleration of the MCHL algorithm by implementing
the MCHL algorithm on an FPGA board later in Sec. IVA.

3.3.2. Resistance-based random access memory

A CBA of resistance-based memories offers extremely time efficient multiply-
accumulate (MAC) operation and random accessibility to each bit [30], making
the MCHL come into its own. Fig. 3.3(a) illustrates a feed-forward connection
between ul and u2 for the topology in Fig. 3.1(a), where the weight matrix w
is mapped onto a RAM. Each ternary unit is placed at the cross point between
a word line (vertical grey line) and bit line (horizontal grey line). The input
vector ul is physically represented by a voltage array in that u[/] is applied to
the jth word line. w[i, j] is implemented by the conductance of the unit at the
cross point between the jth word and ith bit lines. High conductance and low
conductance correspond tol and 0, respectively. Likewise, a w[i, j] of —1

corresponds to negatively high conductance. This counterintuitive concept is

36

realized as illustrated in Fig. 3.3(b). Each unit consists of 2 bits (two resistors),
and each word line for u:[j] is paired with an additional line for negative u[/]
(Fig. 3.3(b)). Therefore, the total current through the parallel resistors I is
1= (Gli, jl = Gli, jDuy]

where G and G are the conductance of the left and right resistors in each unit,
respectively. The three combinations of G and G in Fig. 3.3(b) realize the
ternary weight. Note that (G, G) = (1,1) is not favorable because of high
power consumption, it can represent 0 though. Therefore, in this strategy, z
corresponds to an array of output currents; z[{] is the current through the ith bit
line, equivalent to (1). The random accessibility to each unit supports the
parallel programming (training) of the units with a programming voltage
applied to each bit line. An array of programming voltages corresponds to write
vector v (Figs. 3.3(a) and (c)). The sign of v[i]ui[/] dictates the weight change
of the unit placed between the ith bit line and jth word line. When positive, the
unit is given the non-zero probability that Aw[i, j] = 1 (potentiation) while
negative v[i]ui[j] gives the unit nonzero probability that Aw[i, j] = —1

(depression) as sketched in Figs. 3.3(c) and (d), respectively.

37

2 v w z u, ©
000 -0 i Rl Z
; Neurons 1 —(0} 0
o0 O —--—0 -1
S 000 -.-—9_|= Zz -1 .
Nig .00 . TR f N :
1 3 _1
00 0 +++—0 T X
i X i uT010 - 0
u, ui[1:M] 2 - ?1 Potentiation
M
v w V4
1
U1[I] U1[I] _» -1 —(9} 0
......... z4i] A1 —(8) 0
uill u1u+11@f wive/ —Hpe 2
Uil w1l 2] u," 010 --- 0
Depression

Figure 3.3. Memory-centric illustration of a neural network. (a) Graphical
description of the weight matrix w that determines the correlation between the
input activity u; and output activity u,. The grey vertical and horizontal lines
denote word and bit lines, respectively. This weight matrix w evolves in
accordance to given pairs of an input u; and write vector v, ascertaining the
statistical correlation between u; and v. (b) A pair of memory resistors in each
synaptic unit. Three combinations of the two conductance values represent the
ternary weight (1, -1, 0). (c) Potentiation: a weight component at the current
step t (wyi, j]) has a nonzero probability to gain +1 (i.e. Aw{i, j] = 1) only if
u:[j] #0, v[i] = 1, and wy[i, j] # 1; for instance, given uy = (0, 1, 0, ..., 0) and v

=(1,-1,-1,...,-1), w1, 2] has a probability of positive update. (d) Depression:

38

all components wi[i, 2] (i # 1) are probabilistically subject to negative update

(gain -1) insofar as ui[2] # 1, v[i] = -1, and w[i, 2] #-1.

39

3.4. Applications

3.4.1. Image recognition

The MCHL algorithm was applied to image recognition tasks with the MNIST
database (M = 28x28 and L = 10) and CIFAR-10 database (M =32x32%3 and L
=10). Fig. 3.4(a) shows a memory-centric schematic of the network for the
training, which includes one HL. The implementation was two-fold. First, the
MCHL algorithm was implemented on a general-purpose computer (CPU: Intel
15-4690 3.5GHz) without using a GPU. The code was written in Python. Second,
the algorithm was implemented on an FPGA board (Virtex-7 XC7VX485T) to
identify the acceleration of the algorithm. Hereafter, the FPGA board on which
the MCHL algorithm is implemented is referred to as an MCHL accelerator.
Regarding a tradeoff between recognition accuracy and training speed,
parameters P (= P)and twere set to 0.1 and 1, respectively, during training
with the MNIST dataset. The effect of the parameters on training behavior is
elaborated in Appendix D. Note that parameters Pﬂ (= P) and T were set to
0.01 and 1, respectively, during training with the CIFAR-10 dataset, with regard
to the tradeoft.

3.4.1.1. Implementation on a general-purpose computer

When training the network with the MNIST dataset, the repeated ad hoc
updates increase the recognition accuracy and decrease the network energy in
(5) as plotted in Fig. 3.4(b). The network depth substantially alters the
recognition accuracy as plotted in Fig. 3.4(c). Without HL the accuracy merely

reaches approximately 88% at H; = 100 while deploying one HL improves the

40

accuracy up to approximately 92% at H; =100 and H, =50. Note that A, and H>»
denote bucket size in the HL and output layer, respectively. Improvement on
accuracy continues onwards with more HLs (e.g., two HLs; blue curve in Fig.
3.4(c)), although its effect becomes smaller compared with the drastic
improvement by the first HL. The training and test in detail are addressed in
Appendix E. The weight matrix becomes larger with bucket size, so is the
memory allocated for the matrix. Nevertheless, the benefit of deploying buckets
at the expense of memory is two-fold. First, many input features (pixels) are
shared among labels such that several individual features do not exclusively
belong to a single particular label. The use of buckets allows such common
features to be connected with elements over different labels given the sparse
update on the weight matrix. For instance, without such buckets, every attempt
to direct the feature at (1,1) — belonging to both labels 1 and 2 — to label 1
probabilistically weakens its connection with label 2. Second, when shared, the
statistical correlation between the feature and each of the sharing labels is
captured by bucket, enabling comparison among the labels. As depicted in Fig.
3.4(a), the 10 sub-matrices in the matrix w, define 10 ensembles of H> output
neurons; the final output from each label O[n] is the sum of deterministic
activity a[i] over the neurons in the same label, i.e., the output range scales
with H> in the range 0 — H>.

A single training is hardly able to capture a statistical correlation between
input and write vectors. However, the larger the training numbers, the less likely
the statistical error (noise) is incorporated into the data, which is similar to the

error reduction in Monte Carlo simulation with an enormous number of random

41

numbers (RNs) [31]. The use of buckets enables the parallel acquisition of
effectively multiple w matrices as opposed to repeated training trials to acquire
a w matrix on average. Therefore, it is conceivable that a larger bucket size
tends to improve the recognition accuracy. In fact, the bucket size and
consequent memory allocation for matrix w significantly determine the
recognition accuracy (see Fig. 3.5). However, in Monte Carlo simulations, the
error reduction with sample number tends to be negligible when the number is
sufficiently large. The same holds for the MCHL algorithm as shown in Fig.
3.5. Additionally, the memory cost perhaps outweighs the negligible
improvement in the accuracy. Therefore, it is practically important to reconcile
the performance with the memory cost.

Considerable reductions in memory usage and training time (for 105 epochs)
for the MCHL algorithm were experimentally identified as plotted in Fig. 3.6.
The networks subject to the measurements varied in the numbers of HLs and
neurons in each layer. Benchmarking data were acquired from two feed-
forward networks: MLP and convolutional neural network (CNN). They were
trained using a backpropagation algorithm with real-valued weights. The MLP
consisted of 784 input neurons, one HL including 100 neurons, and 10 output
neurons. The CNN employed 3x3 kernels, 1x1 stride, and 2x2 max pooling
size. Its fully-connected network was of 2,048%x100x10. The MLP and CNN
can infer the labels of handwritten digits with high accuracy (98% and 99.5%,
respectively) at the cost of memory in use and complexity in computation (see
Fig. 3.6). On the other hand, the input complexity in the CIFAR-10 dataset

keeps there cognition accuracy of our network considerably low as for the MLP

42

trained using a backpropagation algorithm [32]. The network under training
varied in the number of HLs from zero to three with a bucket size of 500. P9,,

P° and t were set to 0.01, 0.01, and 1, respectively. The training results are
plotted in Fig.3. 7, identifying a maximum accuracy of approximately 43%
when incorporating three HLs. This maximum accuracy is approximately 8%
lower than the benchmark accuracy from an MLP with three HLs (each of
which has 500 nodes) trained using a backpropagation algorithm with real-

valued weights (see the red curve in Fig. 3.7(a)).

43

a P— | — — Output
Vi, W, Z, Vo, W, Z; neurons

1[0 0 @00 1[0 0 @ 0 © — O
5 5
H|ijge®eeeo ,lildeeosone ,4_/7,4@
0 0000 @ 0/fo 0o 0 0 @
O 0 @ 0 O 1«0 0 @ 00 —
= =
;S:.’ooooo:-;;gooooo:,‘_/-»@
5 5
N 0 20 00000 020 0006
1 20 o @ 0 © 1/co o @ 0 O —
. So @000 §o @ 000 »f»@
B £
0o fo o o0 e 0 fo o 0 0 @
______ x_______.________x_____
Uy ut] u[M] al] ... alM

——1HL: H,=100
H,=50

L o Hidden
/ neurons No HL: H1=100
C

o

0.0- 0.92
108]
o] 0.90 -
k=) 4106 &]
% -0.5 -] 8
= 3]
=) 10.4 g 0.86 2 HLs: H,=100
2 _)
c il H,=50
w_104 40.2 0.84 i H,=30
) - 0.82
r'|'|‘|'|'10-0 T T T T T T T 71
012345 02 46 810
Epoch(x10°) Epoch(x10°)

Figure 3.4. Application to handwritten digit recognition. (a) Schematic of the
network architecture for handwritten digit recognition. A single HL is included.
The matrix w; first maps the input vector u; to the hidden neurons. The array a,
is taken as an input vector to w, that maps the input vector to the output neurons.
The write vector v has 10 (the number of labels) buckets, each of which has H:
elements, i.e. N = 10H,. Each thick arrow indicates an input vector to a group
of neurons (each neuron takes each element in the input vector). (b) The
increase of recognition accuracy (red curve) and corresponding decrease of

44

energy (grey curve) with training epoch. The trained network is a single-layer
network (H=100). (c) Classification accuracy change in due course of training

with network depth (H1=100, H,=50, H3=30).

45

d b C
091 11 v
508 W
o
g — —H,=1
< —10 —10
0.74 _ 30 —30
H =100 et H,=100 o
—100 H,=100 ——100
0.6 ; ; ‘ ; ; ;
60 2 4 60 2 4 6
Epoch(x10°)

Figure 3.5. Bucket size dependence of recognition accuracy. Recognition
accuracy change with (a) Hi in a network without a hidden layer, (b) H, with a
single hidden layer (w1 was fully trained beforehand; H1=100), and (c) Hs with
two hidden layers (w: and w, were fully trained beforehand; H;=100 and

H2=100).

* B kit

i * *
100MB L MLP CNN
: 20 P _

. L O H=28 2" 2 HLs o
(%) 1OMB 3 / 1 HL A |
3 o

2 F .. .0 3HLs/

> - ~_._MCHL _ _-
S 1MB R T T Ny, TS Rm i
E - \
s Eoi BN e '
[/ A 3HLs ,’
100kBy o _o©_ @ L7
8 “ _ -~ MCHL accelerator
AT (i TIPSR o W | M 7 A I N R R T Y N TTTrTIr T
1/
10™ 10° 10°

Training time (s)
Figure 3.6. Memory usage and training time (for 105 epochs) for the MCHL
algorithm. The networks subject to the measurements varied in the numbers of
HLs (1, 2, and 3) and neurons (HD20, 30, and 50) in each bucket. Each HL
included the same number of neurons. The data were compared with the
memory usage and training time for the MCHL accelerator and two feed-
forward networks (MLP and CNN) trained using a backpropagation algorithm

(205 training epochs). The clock speed of the FPGA board was set to 20 MHz.

47

o o
o8 ()]
1 I

Accuracy
o
w

0.2 4

.

1 |

w MCHL (3 HLs)
Backpropagation -
with real-valued
weight

0.1

T ¥ T ¥ T T T

2 4 6 8 10

Epoch (x1 05)

Figure 3.7. Recognition accuracy of networks trained with the CIFAR-10

dataset. (a) Accuracy evolution with training epoch for a network including

three HLs, each of which embodies 500 nodes, reaching approximately 43%.

An MLP trained using backpropagation with real-valued weights represents

approximately 51%. (b) Recognition accuracy upon the number of HLs. Each

HL includes 500 nodes

48

B kit

3.4.1.2. MCHL accelerator

The same type of network was built on an FPGA board and trained using the
MCHL algorithm that was modified to save the resource. The modification
includes representation of a;[i] in (4) and (7) using an 8-bit integer value. The
original input data (8 bits/pixel) was downsized to 2 bits/pixel to accelerate the
input data transfer from the computer to the FPGA board (bandwidth: 300 kb/s).
The MCHL accelerator is of bucket-wise parallel structure such that the
evaluation of neuronal activities in one bucket is performed in parallel with the
other buckets. Accordingly, the partitions of each weight matrix a real so
structured in parallel so that an update on weight in each partition can be
executed in parallel. The MCHL accelerator is elaborated in Appendix F.

A network with one HL (H,=20, H>=10) was trained with the downsized
MNIST dataset, resulting in are cognition accuracy of 88%. The reduction in
recognition accuracy for the FPGA implementation arises from the downsized
input data and the use of 8-bit numeric data type for a;[i].

The MCHL accelerator markedly accelerates training and minimizes a need
for memory (see Fig. 3.6). Evaluating the activity of each neuron in a bucket
using (1) and (7) merely needs one clock cycle Tk (=1/fck, where fex denotes
clock speed). Inferring a single handwritten digit needs to evaluate all neurons
in the network, (H,+H>)L in total. The evaluation for each bucket is executed
in parallel. Thus, each inference takes (H\+H>) T, i1.e., (Hi+H>)/fek. Setting fok
to20MHz, single inference is finished in 1.5 ps. Each update on w; needs the
evaluation of u, (performed in parallel with the update) given the current w;,

ui, and v to determine the update probability detailed in Sec. IIIB. This is done
49

in a single clock cycle (Tcx) with regard to the partition-wise parallel weight
update (see Appendix F). Therefore, each wi-training epoch takes 1/f, e.g., 50
ns at 20 MHz.

However, each update on w, needs the evaluation of a; given the fully trained
wi and input u; using (1) and (7) beforehand. As such, this step takes H;7ci,
i.e., Hi/fax. Akin to updating w1, an update on w; given the evaluated a», current
ws, v, and u;3 (also acquired in parallel with the update) merely takes one clock
cycle (7cx). The weight update time in total for each w,-training epoch is
therefore (Hi+1)/fax: 1.05 us at 20 MHz. The only memory in use was for the
weight matrices w; and w,. Given that 2-bit memory is allocated to each element,
wi and w, need memory capacities of 313.6kb (2x784x H; xL) and 40kb (2xH|
xL xH, xL), respectively, i.e., 353.6 kb (44.2 kB) in total.

3.4.2. Multiplication table memorization and prime factorization

The MCHL algorithm can also be applied to deterministic learning. Examples
include multiplication table memorization, where the MCHL algorithm
spontaneously finds correct-answer-addressing matrix w. This way recalls,

rather than computes, the correct answer. Matrix w
(WE ZV M wli, 110, 13, N=M2H) was trained with the M x M
multiplication table. Two integer factors in the range (1 — M) were chosen and

represented by two one-hot vectors, each of which had M elements. These two
vectors were merged into input vector u; (E Z°M; u, [i[1 €40, 1}); w[1:M] were
allocated for the first vector, and u;[M~+1:2M] for the second one. The product

(1 — M?) is taken as the desired label of the input. Therefore, M? labels in total

50

are available. Given bucket size H for each label, write vector v is M*H long.
Multiplication is deterministic so that no stochasticity intervenes in learning.
Consequently, P(J)r =1 and P2 =0 were given to (9), and all neurons were
frozen (t = 0.01). In this regard, write vector generation does not require
random sampling within the bucket in the desired label. Instead, an element in
the bucket is conferred on each pair of factors in training order. For instance,
2x8 addresses the nth element in label 16, and the multiplication addressing the
same label in the closest succession, e.g., 4x4, takes the (n+1)th element.
Therefore, the bucket includes a set of possible multiplications yielding the
same label. Notably, a prime number has only two factors, ‘1’ and itself, and
thus, the bucket includes only two multiplications. Note that bias is given to

each output neuron; b[i{] = 3 for all i’s. Therefore, (3) is expressed

as P(uy[i] = 1/z[i]) = [1 + e_(zz[i]_3)/T]_l. The bias allows u,[i] = 1 only if z[i]
> 2 so that a single factor cannot solely activate the output neuron.

The network structure is sketched in Fig. 3.8(a); no HL is required to achieve
the maximum accuracy. The training continued onwards until the entire pairs

of numbers in the table were memorized. M? training steps were thus required
to complete the memorization task. Indexing vector 4 (E ™ 2; Ali] = h) was

defined to count the possible multiplications (%) resulting in the same product.
For instance, when M > 6, A[6] = 4 because 1x6, 2x3, 3x2, and 6x1 result in 6
(see Fig. 3.8(a)).

Notably, A[{] is identical to the number of factors of i. The training procedure

is elaborated in Appendix G. Note that the prime numbers large than M cannot

51

be taken as a label. Notably, the bucket size H should not be smaller than the
maximum A[i] (i < M?), otherwise some buckets cannot host all multiplications.
To save memory, it is necessary to calculate the integer (< M?) that has the most
factors and accordingly allocate memory to each bucket.

The trained matrix w can readily be used to find the aliquot parts of number
n by transposing the matrix: w! €72V, N = M*H (see Fig. 3.8(b)). The
matrix multiplication z = w'u; with ul(E ZN; N = MzH) — all H elements in
the nth bucket are set to 1—yields a vector z whose upper M bits z[1:M] are the
sum of the entire aliquot parts, each of which is represented by a one-hot vector
(Fig. 3.8(b)). Given the commutative property of multiplication, z[1:M] = z[M
+1:2M]. For instance, when M = 9, input ‘6’ yields z[1:9] = [111001000],
indicating ‘1’ +’2°+ 3’ +’6’. A prime number ‘7’ yields z[1:9]=[100000100]
(‘1’+°7%); two 1’s in z indicates a prime number (£=2).

The matrix w trained with an M xM multiplication table also serves as the
basis for prime factorization (Fig. 3.9(a)). It is a modified version of the aliquot
part retrieval to avoid retrieving ‘1’ and itself if other factors exist. A remarkable
advantage consists in the parallel decomposition of many numbers; for input u
(the sum of one-hot vectors under decomposition, e.g., A=a x b and B=¢ x
d), the single matrix-vector multiplication z = w'u uncovers all a, b, ¢, and d. It
should be noted that u[i] for all i’s is no longer one of the binary numbers (0
and 1); instead it can be any nonnegative integer.

An M x M multiplication table that the matrix w is trained with beforehand
can be used to factorize any positive integers whose all factors are smaller than

or equal to M. That is, a priori knowledge of a number subject to prime

52

factorization can significantly reduce the size of a multiplication table in use.
Without such knowledge of integer N under prime factorization, a full N xN
multiplication table is needed to safely prime factorize the number. If N is a
priori known to be an even number, an (N/2) x (N/2) multiplication table is
sufficient for successful prime factorization.

Fig. 3.9(b) illustrates a factor tree of ‘840°; the first iteration with w (M = 50)
results in ‘40’ + ‘21’, the following iteration gives ‘2’ + 3’ + 7’ + ‘20, and the
third iteration 2 x ‘2°+ 3’ + “7°+ “10°, equivalent to a1, @», and a3 in Fig. 3.9(c).
To demonstrate the efficiency of this method, a randomly picked integer in a
multiplication table (M =300) was prime factorized, and the number of the
iteration steps was counted. The results for the integers (1.62884x1010—
7.75541294x1011) are plotted in Fig. 3.9(d) in comparison with benchmark
results (direct search factorization). The higher efficiency of the present method
over the benchmark can obviously be understood. The direct search
factorization is elaborated in Appendix H. The matrix w once trained with a
multiplication table can repeatedly be used to prime factorize numbers covered
by the table. Therefore, the factorization iteration steps in Fig. 3.9(d) do not
include the multiplication table memorization steps.

The capacity for prime factorization using the proposed algorithm is dictated
by the size of a trained M x M multiplication table. As such, the larger the size
M, the more the factorizable integers (Fig. 3.10). Note that the factorizable
integers should be addressed as a product in the M x M multiplication table so
that the number of factorizable integers is identical to that of products in the

table. There exist 36 different products in the 9x9 multiplication table; all of
53

them are prime-factorizable. Upon enlarging the table size up to M = 300, the
capacity reaches 24,047. Given the ternary weight in w (each element needs 2

bits), the required memory size for w (M =300) is 180 kbits (Fig. 3.10).

54 #;.-x_-l! _'L.‘I.'fl ; 1_-]

| &1

Multiplication

M
vV w z (o)
O 0000 ®©O0oO0
H -0 © 000 O0O0O ,4@_»_/-
00 00O©O0OO0OO®0
0O 00©00®©O0oO0
~nO © 0 0 0 0 0 0= 7-'»@—»_/—
N 0O 000O0O0OO0OO ®
100000000000001000 -
(1x86)
010000000001000000 il
(2x3) g S0 @6 0 0 0 0 0O 74@—»_/—
001000000010000000 0O 0O0O0®O®©O0OO0OF®
(Bx2) | v N S—) S
00000100?61 2010)00000 u, uy[1:M] Uy [M+1:2M]
Aliquot part retrieval
x|[1 2 3 6wl z
1 :Ak F'y ? 6 1 6 W
M © 000 0000 O
2 ¢ 6 S
Nl . 0 @00 @00 © 0 =
0 00 000000 N
0 000 0 00 0 O _
B 6 ©@ 000 0 00 0 0 s
0 0@©-0 0000 e o
= © 000001000 <
6’ — 111001000111001000 =
1,5:.3.6-1,2,3.6 @ 0 O0;®@ O O0,--'®@ O ©O N
‘7’ — 100000100100000100 — ———————~— W= i i i e
17 1.7 (l1 0 - 0 1 10 0
Figure 3.8. Multiplication table memorization and aliquot part retrieval. (a)

Network architecture for multiplication table memorization. The numbers in

the range 1 — M are described by one-hot vectors. Any two of total M? numbers

are combined to form an input vector ui (u,

€ Z?M; u,[i] € {0,1}); for

instance, when M =9, u; for one and six is [100000000|000001000], where the

first and last 9 bits indicate one and six, respectively, as shown in the figure.

55

- A 2ok

& -

The correct answer serves as the label of chosen numbers; there are M? labels
in total. Each label (bucket) has H elements so that the write vector v is a M?H
long vector that is adjusted given the correct label. Given entire pairs of

numbers in the table and their multiplication results, the matrix w (w €

ZM*H*2M)Y js adjusted. P2, PO, bli], and ¢ were set to 1, 0, 3, and 0.001,
respectively (b) Network architecture of aliquot part retrieval given the matrix
w. The transpose of w (w') finds the entire aliquot parts of a given number in a
parallel manner in place. For instance, for number ‘6°, an input vector u; (M?H
long vector) has a single nonzero bucket (6th bucket) that is filled with ones.
The output vector z is [111001000]|111001000], indicating the sum of four one-
hot vectors (‘1° + 2° + 3* + “6”)}—each of them is an aliquot part of 6. For
prime numbers, the output vector includes only two 1°s (1 and its own number)
so that prime numbers can readily be found; for instance, 7 results in

[100000100]100000100] as shown in the figure.

56

-
w 840
©0000000 il Vo
©ceo0oo0o0o0o00 P N
©eoo0eocoe L, /2(3
©0@©@00®00o0 10[Z] 2owaxsxr:

©@ 000000
AN l 03101010...
X
u a, =3 Output O
C No Yes
Ve
a:]o]o|o|o|1|o|o]o§$o|o|0]0|0I0|1|0|
21 40

D
N

7
. [o[4[1]o[e]o[*]o[o[o[0$y4 o] 0]o]
2 3 7 20

:IOI:JZIOLOIOMOIOM

10

w

a,: [0o]3]1]o[1]0]1]0]0]
23 5 7

10° !
2 10* '
9]
» 10°
S . —— Direct search factorization
210 —— This work
g 1
= 10

10° ; : : : ;

2.0x10" 4.0x10" 6.0x10"
Integers

Figure 3.9. Prime factorization. (2) Memory (w” € Z2M*M*H) hased iterative
and parallel search for prime factors. Given an input vector u standing for a
certain number n, the matrix multiplication w'u outputs vector z (z €
Z2M; z[i] € {0,1}) that reveals one pair of its factors—except 1 and itself—
z[1:M] and z[M+1:2M] whose product yields n. Operator T, adds these two one-
hot vectors, resulting a; (a; € ZM). The iteration terminates upon no further
change in a other than a[1]. Otherwise, operator T: transforms a; to u, and the

next cycle continues. (b) Prime factorization of 840 = 23x3x5x7 with a matrix

57

SRR

7 =
—

w

w' (M =100, H = 30). The first iterative step outputs a; in (c); the address of
each element indicates a factor, e.g. the 21st element, a[21], means a factor of
21, and the element value its exponent. Only ai[21] and a1[40] in a1 except ai[1]
are nonzero, indicating 21x40. The second iteration outputs a, whose nonzero
elements are a[2], az[3], a2[7], and a,[20] (= 1, 1, 1, and 1, respectively),
implying 22x10x21. The third iteration respectively sets as[2], as[3], as[7], and
as[10] to 2, 1, 1, and 1, i.e. 22x3x7x10. The forth iteration sets as[2], as[3],
as[5], and a3[7] t0 3, 1, 1, and 1, i.e. 22x3x5x7 and an additional iteration does
not alter other elements than a[1] such that the prime factorization is completed.
(d) The number of factorization steps until prime factors for the integers
(1.62884x10%° — 7.75541294x10™). The results are compared with the direct

search factorization.

58

Memory for w (bit)

100 1k 10k 100k
e]
g /
® 10%- o
E o o
@ /
e =
= 3 =
S 107 /
ks //
= A1.833
E 102_ //. 1
Il N
Z .

10 100

M

Figure 3.10. Prime factorization capacity. The number of integers
factorizable using the proposed algorithm with the size M of a trained

multiplication table and the memory for matrix w.

59

3.5. Discussion

The MCHL algorithm employs the population representation of output neurons;
the population is partitioned as a consequence of bucket allocation for each
label. This notion is reminiscent of ‘concept cells’ [16]-[18]. They fire only to
specific inputs that point to the same concept even with different stimulus
modalities [17]. Likewise, the 10 populations in Fig. 3.4(a) may be equivalent
to concept cells, each of which represents each digit. Additionally, deploying
buckets may support the integration of different stimulus modalities, each of
which is directed to the same concept cell throughout different path ways. This
bucket can include different neurons at the pinnacles of different pathways, e.g.,
in an auditory modality, so that these different stimulus modalities can
complementarily activate the bucket.

Given that each bucket represents a single concept, a one-hot vector
representation is most suitable for the mathematical description of concepts.
The proposed multiplication table memorization algorithm therefore lays the
foundation of arithmetic in association with perception via memory. All
integers (factors and products) in the table are represented by one-hot vectors
that are equivalent to concept cells. They may be addressed by not only
arithmetic but also external stimuli in different sensory modalities. Arithmetic
with the aid of memory may be akin to humans’ mental arithmetic, particularly,
of simple single-digit arithmetic [33]-[35]. Additionally, this memory-based
multiplication may combine arithmetic with sensory modalities, e.g., visual and
auditory stimuli. For instance, an agent—endowed with the handwritten digit

recognition and aforementioned arithmetic capabilities—can recognize

60

handwritten digits (through a visual modality) and multiply them.

The MCHL algorithm offers a solution to online learning given that the
algorithm enables ad hoc updates on a weight matrix accommodated by a
random access memory (RAM) without pre-calculating the weight matrix. This
approach, therefore, provides a workaround for the matrix calculation overhead
that is a challenge when addressing representations with enormous features.
Additionally, the ternary (=1, 0, 1) weight elements—each of which merely
needs 2 bits as shown in Fig. 3.3(b)—significantly improve the areal density of
the matrix mapped onto a RAM array in support of density- as well as the
energy-wise efficiency of training. A CBA of resistance-based memory is
perhaps most suitable for the MCHL algorithm, leveraging its capability of
efficient MAC operation [5], [9], [36]. Given the stochasticity in resistance
switching (particularly, on- and off-switching voltages [37], [38]) in nature, the
probabilistic weight transition may be achieved by controlling driving voltage
without RN generation [39]. Additionally, every update simply overwrites the
current memory contents in this training scheme in that the past weight matrix
no longer needs to be kept given the Markov chain nature, which also alleviates
large memory needs.

A rise in handwritten digit recognition accuracy by approximately 2% was
achieved by endowing each unit with 11 levels, w[i,j] € {-5,—4,...,4,5} as
plotted in Fig. 3.11. The network includes no HL. This implies that the ternary
weight limits the recognition accuracy below a benchmark accuracy of
approximately 92% acquired from an MLP (with real-valued weight and no HL)

trained using a backpropagation algorithm. Such 11 levels require five

61

conductance levels of each resistance-based memory. Fortunately, there are
several resistance-based memory systems that exhibit multilevel operations

[40]-[42].

62

0.92-
0.90-
0.88] f
086
0.84]

Accuracy

0.821

0.80+

= wli,j]={-1,0,1}

—_— $2:1,0,1,2}
— {-5-4,...4,5)}
—— {-10,-9,...,9,10}

Backpropagation
with real-valued wiij]

0o 5

Figure 3.11. Effect of mu

10 15 20
Epoch(x10°)

Itinary synaptic weight. Improvement of

handwritten digit recognition accuracy with multinary synaptic weight. The

trained network is a single-layer

network (H = 100). A benchmark is a single-

layer perceptron with real-valued weight, which was trained with a

backpropagation algorithm.

. A& 8]

n’

3.6. Appendix

3.6.1. Derivation of stochastic activity of a neuron
Given the network energy in (2), the joint probability distribution of the state
u; and u; is described distribution of the state u; and u» is described as P(u,,
u,) = e Elur)/ '/Z, where Z is the partition function of the network, Z =
j]‘il YN e B Ul w2liD/* | Consequently, the conditional probability distribution
of u, given u; is
Auylu,)

i sN | (—aliluy li1— Z = wli g /1425 M s liwli, jluy[f])/<

N
[i= Zuz[i]E{O, 1}e

(—a[z’]uz[z]—zj=1 wli, jluq []']+2Zj]‘i1 uy [iIwli, jluy []])/‘r

o(malilua [+2 5L s il jluy 1) /=
lte (a[l]+22 1w1]]u1[])/‘r

— TN

(10)

P(uy|u,) = [T, P(uy[i]|u;) such that uy[i]’s are independent of each other
owing to the lack of recurrent connection. Therefore, the following equation

holds:

(a[z]+22 lwzjul[/)/r

P(Z/l2[l] = llul) = (11)

L4e ([]+2Z lwzjul[])/‘c

Introducing z[i (Z] Vwli, flug [f]) simplifies (11) to

(—a[i]+22[i])/‘c 1
Puwlil = 121l = T —mmmr = emamre 12

which is equal to the directed graphical model in Fig. 3.1(a).

64

3.6.2. Calculation of update probability
The update conditions and corresponding probability P can readily be

incorporated into the following equation (when v[i] # 0):

PAw[i, j1 = vlillwli, j1, w [, vId], ua[i)
_wlia[Aga- u2[1>(v[]+1)+P° uli (o] 1)]
B 2[14K 0lh M=) | ’ (13)
where P and P are expressed
as P(Awli, j] = 1w, i, j1 # 1, u [j] = 1, v[i] = 1, wy[i] = 0) and

P(Aw[i, j] = = 1w, i, j]1 # =1, u;[j] = 1, v[i] = —1, uy[i] = 1), respectively.
k and wy dictate the exponential function in the denominator, which are set to
100 and 0.5 through the entire simulation. Note that when v[i] = 0 no update on
w[i, j] is allowed, i.e. P(Aw[i,j] = 0| v[i] = 0) = 1.

In practical computation, the stochastic variable u,[i] with the probability in
(3) is acquired with the aid of a single RN before applying (13) to the w[i, j]
update that needs another RN. Fortunately, u>[i] can be ruled out among the
conditions in (13) as follows:

P(Aw[i, jl = vlillw i, /1, w71, v
= PQAwl[i, j1 = vlillw,li, j1, w U1, vIi], wali] = 1) X P (up[i] = 1)
+P(Awl[i, jT = v[i]wi[i, /1, ui], vIi], up[i] = 0) X P (u[i] = 0)

ug [V [P+(v 1+ 1)+P2 (v[] 1)]
2 1+eklnli D=0 |14~ Qalil—aliD/x] *

(14)

Each update of w[i, j], therefore, needs a single RN, rendering the computation

more efficient.

65

3.6.3. Properties of Markov chain in MCHL
As shown in (9), the transition probability varies over the elements of w every
training epoch so that the MCHL algorithm is of non-homogeneous Markov

chains. The transition matrix for w[i, j] at the nth epoch is given by

-1,-1 -10 -1l

P, p; pr
T = p2 -toph pYt
pmt ptt pld

where the superscript of p;- 7 denotes the transition of w[i, j] from x to y. As

such, the transition matrix 7% differs for epochs with different v[i] as follows:

1 0 0
P 1-P 0 when v[i] = —1
0 P 1—-P
1 0 0
3 [0 1 0| whenv[i]=-0 (16)
0 0 1
1-pP* P° 0
0 1—pt pt| whenv[i] =1
\ 0 0 1
where P~ = Plu, [lu,[i] , and Pt = Pgul[] . State transition diagrams

of these three cases are depicted in Fig. 3.12(a). Although all individual chains
notably lack ergodicity, the inhomogeneous Markov chain alternating a
transition matrix among these three matrices for each epoch may meet
ergodicity. Therefore, ergodicity as an important property of the Markov chain
is worth checking.

To this end, matrix H,,, is defined as H,,, = [T{Z0,, T’,;’j . Thus, Hn,m is a
single transition matrix equivalent to m successive transitions from the (n+1)th
to the (n+m)th epoch. Inhomogeneous Markov chains are known to be ergodic

if |H | [x,y] — H, ,,[x', y]| — 0 as m = 0 foranyn,x,x’,and y [43]. That is,
66

an ergodic inhomogeneous Markov chain has identical elements in each column

of H,,. For the MCHL algorithm, H, , is a 3x3 matrix. During the whole

m
training phase, a training image for each epoch appears at random so that one
of the three transition matrices is chosen at random. An ergodic Markov chain
thus meets the aforementioned condition irrespective of n. Here n is set to

zero—ergodicity is evaluated from the first epoch. We define non-ergodicity

factor NE as

NE =%, ¢ \Hynlx Y] = Hyn 3 1], (17)
which decreases to zero with an increase in m if ergodic. The maximum NE is
6. We identified NE for randomly sampled 100 elements of w in due course
during training with the MNIST dataset (see Fig. 3.12(b)). The figure explains
a wide range of non-ergodicity in that several trajectories ensure ergodicity,
several ones decay at low rates, and the rest remain in the initial state. Such
non-ergodicity is of the elements that were barely updated because ui[j] = 0
throughout the entire training phase—background pixels. This is identified by
Fig. 3.12(c) displaying the 100 final NE values (after 2x106 epochs) with the
frequency of non-zero u:[j] during the training phase. Notably, the elements of
low frequencies are given high NE values. This is because such elements mostly
receive zero input, i.e., u1[j] = 0, and thus their transition matrices in (16) are
mostly identity matrices irrespective of v[i]. The identity matrix as a transition
matrix results in a non-ergodic Markov chain as illustrated in the middle panel
of Fig. 3.12(a). Stationary distribution is also of concern of the inhomogeneous
Markov chain. To this end, we monitored the numberof elements w[i, j] filled

with each of —1, 0, and 1 every MNIST dataset training epoch as plotted in Fig.
67

3.12(d). The data show asymptotic convergence toward the stationary

probability distribution over w[i, j] =—1, 0, and 1.

68

Vil = -1 1-P"

10 15 20
Epoch (x10°)

00 04 08 12
d Frequency (x10)

{ — W=t — wWij=0
~ — WijJ=-1

5 10 15 20
Epoch(x10°)

Figure 3.12. (a) State transition diagram for a weight element given three

different v[i] values. (b) NE change (for 100 weight elements randomly sampled)

monitored when training a network with the MNIST dataset. (c) The 100 final

NE values plotted with respect to the frequency of non-zero input during the

training phase. (d) Probability distribution over wli, j] = 1, 0, 1 with training

epoch.

69

3.6.4. Effect of update probability and temperature parameter on
training

Parameters P}, P°, and t considerably affect training speed and recognition
accuracy. To identify the effect, a network without HL was trained with three
different P} (=P%) values (0.01, 0.1, and 1) and r fixed to 1. The MNIST
dataset was used in the training. The results are plotted in Fig. 3.13(a), ensuring
their considerable effect on training speed in that the larger Pg (:Pg) the
sooner the recognition accuracy is saturated. Additionally,a P of 1 keeps the
accuracy fairly lower than the other values. The effect of temperature parameter
7 on training was also identified by varying 7 (0.1, 1, and 10) with P% (=P%)
fixed to 0.1. Fig. 3.13(b) notably indicates the lower accuracy achieved with a
7 of 10 than the others. We chose the parameter values with regard to a tradeoff
between learning speed and accuracy. When training with the MNIST dataset,
P% (=P") and r were set to 0.1 and 1, respectively, regarding the tradeoff. The
same tendency holds for the CIFAR-10 dataset. Yet, the tradeoff in detail
slightly differs so that we set P% (=P") to 0.01 while setting 7 to the same

value (1).

70

0.9+ J

5.0.8—
(0]
5 — =0.1
Q
2 — 1

0z w10

r=1 | | Pi=Pl=01
06 LI | | 1 rTI5.TTr5r &5~ Ir>

0 5 10 15'2|0012345
Epoch (x10°)

Figure 3.13. Effect of (a) update probability and (b) temperature parameter on

training.

71

3.6.5. Handwritten digit recognition

For the entire datasets, each feature value was rescaled to the range 0 — 1. A
chosen input dataset (28 x 28 pixels each of which has an 8-bit value) was
converted to an input vector u; (E R78%0 < uy[i] < 1). A write vector v

(e ZH; y[i] € {1, 0, 1}) was then generated with regard to the desired label
of the chosen digit and RN 7 (1 <7 < H). L and H are the number of total labels
(here 10) and bucket size, respectively. A bucket of H elements is assigned to
each label in the v vector so that v is a 10H-long vector as illustrated in Fig.
3.4(a). Accordingly, the matrix w is partitioned into 10 sub-matrices. One of the
H elements (rth element) in the bucket of the correct label is chosen at random
and set to 1, the rth elements in the other buckets (9 in total) to -1, and the rest
elements [10(H - 1) in total] to 0. Therefore, in the matrix w, the elements in
only one row (rth row in the partition for the correct label) are potentially
subject to potentiation, those in the 9 rows to depression (rth rows in the
partitions for the incorrect labels), and the rest are invariant. The update is
therefore sparse.

The weight matrices were initially filled with zeros. The update direction and
probability were determined by (14). Each ad hoc update needs total 784LH
RN (one for each w[i, j]). The protocol was repeated for the next epoch with a
randomly chosen digit. For accuracy evaluation, a vector z (= wu;) was
calculated after every ad hoc update and fed into the output neurons that are
also partitioned according to the bucket configuration in the write vector and
weight matrix. Note that this accuracy evaluation no longer needs stochastic

neurons since their probabilistic behaviour rather limits the accuracy. Thus,

72

they are switched to sigmoid deterministic neurons only for accuracy evaluation,

which follows u,[i] = [1 + e~ 2/ T]_1. Finally, the output from each label n
(O[n)) is evaluated. The maximum component of the output vector designates
the estimated label for a given input. The recognition accuracy was evaluated
with regard to agreement between the desired and estimated labels. The
sequence of the MCHL algorithm application is elaborated in Table 3.2.

A network with a hidden layer is trained in a greedy layer-wise manner as for
deep belief networks [25]. wy in Fig. 3.4(a) was first fully trained following the
protocol above. Subsequently, w, was subject to training with input vector u.
(e ZM; w,[i] € {0, 1}) that is the output from the LH; hidden deterministic
neurons taking z; as input. The write vector v, was chosen applying the same
protocol as wi training. Accuracy evaluation was conducted with deterministic

sigmoid output neurons in line with the network without HL.

73

Table 3.2. MCHL algorithm for handwritten digit classification

Pre-arrangement of memory: Load the bucket of each label in write vector v

with H elements. Matrix w partitioned accordingly

Update: update the matrix w given each input u#; and write vector v

1. Write vector v generation: v € ZV; N = LH. L is the number of total

labels

For a given input # and its label /, generate an RN (1 <r < H)

v[i]=1fori=I-H+r
lfor i=jH+rj#l

0 otherwise

2. Evaluation of z: z =wu, given w and u;

3. Update of each component: updating w[i, j] at P in (4)

Repeat

74

3.6.6. MCHL accelerator in detail

A block diagram of the MCHL accelerator (Virtex-7 XC7VX485T) is depicted
in Fig. 3.14. The accelerator employs parallel structure such that L partitions,
e.g. one indexed Partition 1 in Fig. 3.14, are deployed and operate in parallel.
A sub-matrix wi[(rn-1)Hi+1:nH1,] for the nth label is accommodated in an
SRAM array in Partition n, e.g. wi[1:H1,-] in Partition 1 as in Fig. 3.14. The
entire M entries in each row of the SRAM array are simultaneously accessed at
a time (one clock cycle).

For each training epoch (TRAIN=1 in Fig. 3.14), a random number generator
RNG 1 produces a pseudo-random number » (1 < r < H,), and accordingly the
row subject to update in the sub-matrix in Partition # is chosen (see Appendix
C). Note that such a pseudo-random number is generated using a linear
feedback shift register.

The accessed row wi[(n-1)H +r,-] is then multiplied by the input vector u; to
produce z[(n-1)H+r] according to (1) (see the red-shaded box in Fig. 3.14 for
n=1). Subsequently, the activation function module computes the deterministic
neuron activity a.[(n-1)H;+r] in the range 0-255 from z[(n-1)H,+r] using (7).
For simplicity, this module approximates the sigmoid function in (7) to a linear
function with a particular slope (matching that of (7) at z = 0) within a certain
z window and zero otherwise. u[(n-1)H +r] is then evaluated by comparing
a[(n-1)H+r] with a random number (0 — 255) from RNG 2. The wi[(n-
DHi+r,], wi, uz[(n-1)H,+r], and v[(n-1)H,+r] (generated for each partition
using (8)) are then passed to the “Aw module” (blue-shaded box in Fig. 3.14 for

n=1) that determines a Aw for each entry of wi[(n-1)H:+r,] using the update
75

probability in (9) in parallel. This process is executed in a single clock cycle.
The partition-wise parallel structure of the MCHL accelerator enables an update
on wi[(n-1)H+r,] for all relevant partitions in parallel in a single clock cycle.

The same holds for an update on w, except that the deterministic activity
vector a; given the fully trained w; matrix should be acquired beforehand. The
a, vector is distributed over partitions such that a,[(n-1)H:+1:nH,] is stored in
the serial-in-parallel-out (SIPO) buffer of Partition » (see Fig. 3.14 for n=1).
Given the partition-wise parallel structure, the evaluation of a, in response to
each input data u; simultaneously takes place over the n partitions so that it
takes Hi/fux. Therefore, each w,-training epoch takes (Hi+1)/fei.

Likewise, when training a neural network with two HLs, each ws-training
epoch consumes (H>+1)/fak. For a neural network including » (>1) HLs, and
thus n+1 weight matrices (w1, ..., wu+1), the total (intrinsic) training runtime is
given by Zf:zl (H_, + DE;/ fow E1lfy» where E; denotes the total number of
epochs for training the matrix w;.

Inference needs to evaluate the deterministic activity for all (Hi+H>)L
neurons (@; and a3) in the network using (1) and (7). For a given input digit (u,),
a, is first evaluated as follows. Each row of a sub-matrix wi[(n-1)H,+7,] is
sequentially addressed using an address counter (TRAIN = 0 in Fig. 3.14) in
descending order and multiplied by u;, resulting in a[(rn-1)H+1:nH;] through
the red-shaded and activation function modules in Fig. 3.14. The array is The
finally evaluated a» vector for this partition, i.e. ax[(n-1)H+1:nH] where n =0,
is stored in a serial-in-parallel-out (SIPO) buffer (see Fig. 3.14). Given the

partition-wise parallel structure, this process simultaneously takes place for the

76

other partitions so that it takes H;/fcx to evaluate the deterministic activities a
of the hidden neurons in response to input data u;.

The same process holds for the a3 evaluation following the a» evaluation.
Thus, the time-consumption is H>/fck. The only difference is that a, in the SIPO
buffers distributed over the partitions is taken as the input.

All elements of a3[(n-1)H>+1:1nH>] in Partition n (label) are added up in the
accumulator module (see Fig. 3.14 for n = 1), resulting in O[n] for Partition n
(label n). The comparator module in Fig 3.11 compares the O’s and
consequently provides the index of the highest O value, which corresponds to
the inferred label. This comparison is performed in a sequential manner, i.e.
0|[0] is first compared with O[1], the winner is then compared with O[2], and
so forth. The priority encoder finally encodes the address of the “final” winner.
Note that the comparison is performed in parallel with the a3 evaluation process
so that it does not consume additional time. Consequently, inference for each
input digit consumes (Hi+H>)/fux in total.

Therefore, inference (intrinsic) runtime for each input through a network
with 7 (>1) HLs (n+1 weight matrices) is Y™ H; /fok-

Practically, both inference and training rates are dominantly dictated by the
rate of input data transfer from the computer to the MCHL accelerator. Each
handwritten digit image was 2 bits/pixel (downsized from 8 bits/pixel in the
original MNIST dataset), and thus 1,568 bits (2x28x%28) per image. The MCHL
accelerator was interfaced with the computer through 16 general-purpose input-
output (GPIO) lines, yielding a data transfer bandwidth of ca. 300 kb/s.

Therefore, transferring one image to the accelerator consumes approximately

77

5.2 ms, outweighing the intrinsic training and inference runtimes. We did not
count this delay in data transfer as training and inference runtimes because the

delay is not an intrinsic characteristic of the MCHL algorithm.

78 .

111

a;lr

wy[1:H,,]

i

25
=
g

i

:

B Ee

Figure 3.14. Block diagram of the MCHL accelerator.

79 o
2% A&l st

F L

3.6.7. Multiplication table memorization

Training was fully deterministic in that the output neurons were frozen and the
update no longer required RNs. Integers (< M) were expressed as one-hot
vectors of M elements; a pair of factors (< M) were put together to give an input
vector u; (E Z°M; [€ {0, 1}). The product of the factors serves as a label

among M? labels, each of which has a bucket of H elements. Therefore, a write
vector v has M*H elements in total (v e 7MH ; v[i] € {0, 1}). For factors of a

and b (axb = ¢), the hth element in the cth label, i.e. v[(c-1), H+h], is set to the
only one in the write vector. 4 is determined in the order of training; the first
pair of factors resulting in a particular label during training takes 2 = 1 in the
corresponding bucket. Thus, allocating /4 for each multiplication depends on the

entire training sequence over the MxM multiplication table. The weight matrix
2 L . .
w (E ZM M.yl 5] € {0, 1}) was trained in an ascending order of 7 in the

n-times table (n x) from 1 to M, and within the n-times table (n x m), m was
also taken in ascending order: 1 x 1, 1 x2, .., I XM, 2 x 1,2x2, ...,2x M,
o MX 1T, M2, ... M x M. Upon training completion, final / (< H) for label
(i.e. h) is acquired, which defines vector A (E ™ ; Alil = hl-). In fact, A[i]
reveals the number of multiplications producing label i, for instance, A[6] = 4
given that 1 X 6,2 x 3,3 x 2, and 6 x 1 result in 6 (see Fig. 3.8(a)). Notably,
this number is identical to the number of factors for a given label: 1, 2, 3, and
6 for 6. The sequence of the MCHL algorithm application is tabulated in Table
3.3.

z[i] in z (=wu1) was integrated over elements in the bucket of each label,

80

which was subsequently fed into an output sigmoid neuron, resulting in output

vector O as illustrated in Fig. 3.8(a).

81

Table 3.3. MCHL algorithm for multiplication table memorization

Pre-arrangement of memory: Load the bucket of each label in write vector v
with H elements. Matrix w partitioned accordingly. A[/] =1 forall I's (1 </ <

L). L is the number of total labels (products).

Update: update matrix w given each input u (a pair of one-hot vectors) and

write vector v

1. Write vector v generation: v € ZN: N=LH.

For a given input u; and its label /,

Wil =1fori= (- 1)-H+A[l]

0 otherwise

2. Update of each component: updating w[i, j] at P in (4)

3 Al =A[l] + 1

Repeat

82 :

3.6.8. Prime factorization

As such, the aliquot parts of number n are in parallel retrieved using the

2 . S
transpose of w [wT € 7H*M H] memorizing the MxM multiplication table

and input vector u (e ZMH: i € {0, 1}) whose nth bucket is filled with H

1’s—insofar as n’s largest aliquot part is not larger than M. However, for prime
factorization of n, aliquot parts other than 1 and itself (if they exist) are of
concern, so that it is desirable to avoid retrieving 1 X n and n x 1. With the aid
of vector A, a pair of proper factors can be chosen selectively. As shown in Fig.
3.8(a), for 6 (M > 6), h = 1, 2, 3, and 4 indicate 1x6, 2x3, 3x2, and 6x%1,
respectively. For a prime number, e.g. 7, #=1 and 2 indicate 1x7 and 7x1,
respectively. Only the Ath multiplication is retrieved, k = max(A4[i] — 1, 1) for
each label i, e.g. for i = 6 (M > 6), 3 x 2, and for i = prime number (M > n), 1 x
n. Thus, operator T is a M2HxM matrix:

T[ij]={1 ifi=(m—1)H+kandj=nforn=1,..., M
e 0 otherwise .

For instance, n = 840 (M = 50) is initially represented by vector ap whose 840th
element is the only one while the rest are zero. u (=Thao) is subsequently fed
into w", resulting in z (=w'u) in which z[40] = 1 and z[50 + 21] = 1—denoting
40 and 21, respectively. These two vectors are merged through operator 7> into
ar (€ ZM;a, = z[1:M] + z[M + 1:2M]). T is, therefore, an M>2M matrix:

1 ifj=ifori=1,..,. M

Lli,jl=41 ifj=i+Mfori=1,... M.
0 otherwise

This operation confers 1 on a;[21] and ai1[40] in a:. The address of each element

represents a factor, and the element values its exponent so that the result of the
83

first factorization is 21 x 40, Insofar as a; differs from ao, the same cycle is
repeated. Note that ai[1] (exponent of 1) is set to zero because a factor of 1 is
redundant in factorization. The following cycle factorizes 21 and 40 in parallel,

providing a; in which a;[2] = 1, a;[3] = 1, a2[7] = 1, and a2[20] = 1, i.e. 2% x 3* x

7t x 20%,

3.6.9. Direct search factorization

Integer n is repeatedly divided by a series of divisors (decreasing by one) until

zero remainders. The first divisor is |/n|. If the remainder is nonzero, [va| — 1

is taken as the next divisor. With zero remainder, two factors (divisor and quotient)
are obtained, and each factor is separately subject to the same factorization as

above.
3.7. Bibliography

[1] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, in IEEE Conference
on Computer Vision and Pattern Recognition, Columbus, OH, 2014,
pp. 1701-1708.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C.
Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,
and D. Hassabis, Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, 1. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K.
Kavukcuoglu, T. Graepel, and D. Hassabis, Nature, Article vol. 529, no.

7587, pp. 484-489, 2016.
84

[4]

5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

R. Raina, A. Madhavan, and A. Y. Ng, in 26th Annual International
Conference on Machine Learning, 2009, pp. 873-880.

D. S.Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang, Advanced
Electronic Materials, vol. 2, no. 9, p. 1600090, 2016.

J. Y. Seok, S. J. Song, J. H. Yoon, K. J. Yoon, T. H. Park, D. E. Kwon, H.
Lim, G. H. Kim, D. S. Jeong, and C. S. Hwang, Advanced Functional
Materials, vol. 24, no. 34, pp. 5316-5339, 2014.

M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K.
Likharev, and D. B. Strukov, Nature, Letter vol. 521, no. 7550, pp. 61-
64, 2015.

G. W. Burr, P. Narayanan, R. M. Shelby, S. Sidler, I. Boybat, C. di Nolfo, and
Y. Leblebici, in International Electron Devices Meeting, 2015, pp.
441-44.4.

L. Gao, P. Y. Chen, and S. Yu, IEEE Electron Device Letters, vol. 37,
no. 7, pp. 870-873, 2016.

P. Smolensky, in Parallel distributed processing: explorations in the
microstructure of cognition, vol. 1, E. R. David, L. M. James, and C. P.
R. Group Eds., 1 ed.: MIT Press, 1986, sec. 104290, pp. 194-281.

Y. Freund and D. Haussler, in Advances in Neural Information
Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann
Eds.: Morgan-Kaufmann, 1992, pp. 912-919.

G. E. Hinton, Neural Computation, vol. 14, no. 8, pp. 1771-1800, 2002.
G. E. Hinton, in Neural Networks: Tricks of the Trade: Second Edition,

2012, pp. 599-6109.
85

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

S. Nagpal, M. Singh, R. Singh, and M. Vatsa, IEEE Access, vol. 3, pp.
3010-3018, 2015.

K. Zhang and X.-W. Chen, IEEE Access, vol. 2, pp. 395-403, 2014.
R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried, Nature,
vol. 435, no. 7045, pp. 1102-1107, 2005.

R. Quian Quiroga, A. Kraskov, C. Koch, and I. Fried, Current Biology,
vol. 19, no. 15, pp. 1308-1313, 2009.

R. Q. Quiroga, Nature Reviews Neuroscience, vol. 13, no. 8, pp. 587-
597, 2012.

M. Courbariaux, Y. Bengio, and J.-P. David, Advances in neural
information processing systems, 2015.

C. Baldassi, A. Braunstein, N. Brunel, and R. Zecchina, Proceedings
of the National Academy of Sciences, vol. 104, no. 26, pp. 11079-11084,
2007.

C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, Machine
learning, vol. 50, no. 1-2, pp. 5-43, 2003.

R. Bellman, Journal of mathematics and mechanics, pp. 679-684, 1957.
S. Thrun, in Advances in neural information processing systems, 2000,
pp. 1064-1070.

Z.-H. Zhou and M.-L. Zhang, in Proceedings of the 19th International
Conference on Neural Information Processing Systems, 2006: MIT
Press, pp. 1609-1616.

Q. Wu, M. K. Ng, and Y. Ye, Knowledge and information systems, vol.

37, no. 1, pp. 83-104, 2013.
86

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

N. Brunel, F. Carusi, and S. Fusi, Network: Computation in Neural
Systems, vol. 9, no. 1, pp. 123-152, 1998.

G. L. Barrows, in IEEE International Joint Conference on Neural
Networks, Anchorage, AK, 1998, pp. 525-530.

W. Senn and S. Fusi, Physical Review E, vol. 71, no. 6, p. 061907, 2005.
G. E. Hinton, S. Osindero, and Y.-W. Teh, Neural Computation, vol.
18, no. 7, pp. 1527-1554, 2006.

T. Gokmen and Y. Vlasov, Frontiers in Neuroscience, vol. 10, no. 333,
2016.

K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical
Physics: an introduction, Third ed. Springer Berlin Heidelberg, 1997.
Z. Lin, R. Memisevic, and K. Konda, arXiv:1511.02580, 2015.

S. A. Hecht, Memory & Cognition, vol. 27, no. 6, pp. 1097-1107, 1999.
J. 1. D. Campbell and Q. Xue, Journal of Experimental Psychology:
General, vol. 130, pp. 299-315, 2001.

D. DeStefano and J. A. LeFevre, European Journal of Cognitive
Psychology, vol. 16, no. 3, pp. 353-386, 2004.

M. A. Zidan, Y. Jeong, J. H. Shin, C. Du, Z. Zhang, and W. D. Lu,
IEEE Transactions on Multi-Scale Computing Systems, vol. 4, no. 4,
pp. 698-710, 2017.

S.Long, X. Lian, T. Ye, C. Cagli, L. Perniola, E. Miranda, M. Liu, and J. Sufié,

IEEE Electron Device Letters, vol. 34, no. 5, pp. 623-625, 2013.

87

[38]

[39]

[40]

[41]

[42]

[43]

J. H. Yoon, S. J. Song, I. H. Yoo, J. Y. Seok, K. J. Yoon, D. E. Kwon, T. H.
Park, and C. S. Hwang, Advanced Functional Materials, vol. 24, no. 32,
pp. 5086-5095, 2014.

H. Lim, H.-W. Ahn, V. Kornijcuk, G. Kim, J. Y. Seok, I. Kim, C. S. Hwang,
and D. S. Jeong, Nanoscale, vol. 8, no. 18, pp. 9629-9640, 2016.

S.Yu, Y. Wu, and H.-S. P. Wong, Applied Physics Letters, vol. 98, no.
10, p. 103514, 2011.

D. lelmini, IEEE Transactions on Electron Devices, vol. 58, pp. 4309-
4317, 2011.

M. Suri, O. Bichler, D. Querlioz, B. Traore, O. Cueto, L. Perniola, V. Sousa,
D. Vuillaume, C. Gamrat, and B. DeSalvo, Journal of Applied Physics, vol.
112, no. 5, pp. 054904-10, 2012.

J. Hajnal and M. Bartlett, in Mathematical Proceedings of the
Cambridge Philosophical Society, 1958, vol. 54, no. 2: Cambridge

University Press, pp. 233-246.

88

4. Combination-encoding content addressable

memory

4.1. Introduction

Content-addressable memory (CAM) is a type of memory accessed based on
contents instead of memory addresses as opposed to random access memory
(RAM) [1]. Upon receiving an input data word to search (search key), CAM
simultaneously searches all memory entries for search-key-relevant contents in
one clock cycle and returns the addresses of the contents. Therefore, CAM has a
significant advantage over RAM in searching speed. Its main application
domains include lookup tables (LUTS) in network routers [2]-[7]. The network
router decides the forwarding direction of a data packet between networks. The
LUT in the network router including the hierarchical addresses is searched for
the best route or port for the data packet to be forwarded. Additionally, the CAM
storing the LUT is a critical component for digital communications among
neurons in neuromorphic hardware [8]. The LUT including the topology of a
neural network is searched for the postsynaptic neuron addresses upon the
occurrence of an event from a presynaptic neuron. A fast search of the CAM
significantly accelerates event routing processes, enabling real-time inference
and learning. It also applies to vector-quantization [9], decomposing an input
image to a set of vectors, and information retrieval [10], finding the information

relevant to the desired information from big data.

89

CAM is categorized as binary CAM (BCAM) and ternary CAM (TCAM). As the
names indicate, each unit cell in BCAM represents either ‘0° or ‘1’ whereas that
in TCAM has an additional ‘don’t care’ (or ‘X’) state [1]. For instance, ‘1X1” in
TCAM is matched to search keys ‘101° and ‘111’ because ‘X’ matches both 0’
and ‘1°. This high flexibility of TCAM is the key to packet forwarding tasks [2]-
[7]1.

Static RAM (SRAM)-based CAM is the most popular form of CAM [1], [11].
The SRAM-based CAM leverages fast searching speed and high compatibility
with well-established complementary metal-oxide-semiconductor (CMOS)
technologies. Nevertheless, significant disadvantages are its low areal density
due to the use of many transistors (>8) to represent a single bit and high static
power consumption due to the leakage current of SRAM [12]-[14]. As
alternatives to the SRAM-based CAM, CAMs based on emerging non-volatile
memories (NVMSs) such as phase-change memory [14-16], magnetic tunnel
junction [14], [17]-[19], ferroelectric memory [20], and resistance switch [21-25]
have been proposed to date. Such NVM-based CAMs highlight their high data
density and zero-static energy consumption due to the non-volatility. They also
offer solutions to TCAM by appropriately configuring the non-volatile memory
elements [14]-[25].

Among the candidates, resistance switch-based CAM (RCAM) is a front
runner; two-transistor two-resistor (2T2R)-based RCAM has been prototyped
using a 4 kb resistive RAM (RRAM) [25]. Additionally, RCAM may be realized
in a passive crosshar array that highlights its ideal 8F2 cell size [21], [23].

Nevertheless, RCAM has a lower content density than RRAM because it uses a

90

pair of resistance switches as a single bit of content, i.e., 0.5 bit/switch. A further
increase in data density needs a new content-encoding framework. To this end,
we propose a new type of resistance switch-based CAM, named combination-
encoding CAM (CECAM).

Section Il outlines the working principle of the CECAM including a search
key-encoding algorithm (Section 11.A) and its implementation in a digital circuit
(Section 11.B). Section Ill explains parallel searches of multiple CECAM
domains to realize TCAM with coarse granularity. Reading contents from the
CECAM needs to decode them using an appropriate decoding algorithm because
the contents in the CECAM are encoded, which is addressed in Section V.
Finally, Section V highlights the general application of the CECAM scheme to

various CAM designs.
4.2. Combination-encoding content addressable memory

Fig. 4.1 illustrates a schematic of unit cells of active and passive RCAMs
(voltage- and current-reading schemes, respectively). RCAM takes a pair of
resistance switches as a single unit of single-bit capacity. Each switch is set to
one of the binary states: high resistance state (HRS) and low resistance state
(LRS). Specifically, the two switches are complementary; they are in different
resistance states. This yields two distinguishable configurations, HRS-LRS (HL)
and LRS-HRS (LH), representing one bit of content. For both schemes in Fig.
4.1, LH corresponds to ‘0’ and HL to ‘1°. Each bit of a search key is represented

by voltage signals on complementary search lines (SL and SL) such that ‘0’ pulls

SL lowand SL high while 1” pulls SL high and SL low. When a search bit of

91

‘0’ is applied to a stored content of ‘0’ (LH), the RCAM units in Figs. 4.1(a) and
4.1(b) notify matching signals on the match lines (black Vmi and Iw in Figs. 1c
and 1d, respectively). These signals are contrasted with a mismatching case,
where a search bit of ‘1’ is applied to the same content ‘0’, resulting in mismatch
signals on the match lines indicated by the red Viu. and Im in Figs. 4.1(c) and
4.1(d), respectively. Thus, searching N-bit keys commonly needs 2N switches per
match line, i.e., 0.5 bit/switch per match line.

In contrast, N-CECAM (N=1, 2, 3, ...) uses a chunk of 2N switches per match
line as a single unit of multi-bit capacity, boosting the memory capacity per
switch far beyond a content density of 0.5 bit/switch. Its key difference from
RCAM is that the N-CECAM harnesses the large number of possible
combinations of 2N switches to boost the content density in contrast to RCAM
using complementary pairs of switches and search lines to store and search a
single bit of contents. We regard a passive array of nonvolatile resistance
switches with current reading as a model system of the CECAM. This model
system leverages its high memory density and fast content reading. Nevertheless,
the sneak current disturbing current read-out processes is a critical downside.
However, the CECAM concept is fully compatible with other types of CAM
including active arrays of resistance switches freer from the sneak current issue,
which will be addressed in Section V.

The N-CECAM consists of a resistance switch array and a search key encoder
as illustrated in Fig. 4.2(a). In the array, 2N resistance switches are placed at the
crossing points between each match (horizontal) line and 2N search (vertical)

lines. The search key encoder converts an n-bit search key to a 2N-digit binary

92

key, and each digit is applied to each of the 2N search lines such that ‘1’ and ‘0’
pull the search line high and low, respectively. Assuming m switches are in the
HRS and the other (2N-m) switches in the LRS, the minimum current response
to a single 2N-digit binary key exists only if the key includes m 1’s and (2N-m)

0’s, and each of the m 1’s in the key is matched to each of the m HRS switches.
- 2N .
To maximize the number of possible configurations of 2N switches (m) m is

set to N. Thus, the search key encoder maps an n-bit search key to a 2N-digit key
with N 1’s and N 0’s in a bijective manner. When matching N 1’s in the encoded
key to the N HRS switches, the current response through the match line is
minimal as shown in Fig. 4.2(b). Otherwise, some 1’s in the encoded key are
inevitably associated with LRS switches, and thus the current response through
the match line becomes high, indicating a mismatch. Note that the current
response scales with the degree of mismatch, i.e., the number of mismatched bits
in the encoded key. The worst mismatch regarding a sensing margin is due to two

mismatched bits as depicted in Fig. 4.2(b).
. . (2N .
The total number of 2N-digit encoded keys is (N), and so is the number of
2N switch configurations per match line. Given the use of n-bit search keys, 2"

of (2]3[) configurations are associated with the total n-bit keys, satisfying

2"'< (2]3[) < 2™ This inequality yields

n=|log, (zzf/v)J (1)

where |-] denotes a floor function. Therefore, the content density (content bit

per switch) is given as llog2 (2]57\])] /2N, which is plotted in Fig. 4.3. Notably,
93

b . 1|
4 21l

i

for N’s (>2), the content density exceeds the density of the conventional RCAM
designs (0.5 bit/switch) and approaches the density of RRAM (1 bit/switch)

asymptotically.

94

(@) sL

SL

ML

"

(b) s

SL

ML

)

L

Figure 4.1. Schematic of the conventional RCAM in (a) active and (b) passive
crossbar arrays. ML, SL, SL, and PL denote a match line, search line,
complementary search line, and plate line, respectively. A timing diagram for
active and passive arrays is illustrated in (c) and (d), respectively. CLK, Vs,
Vs, and Ve denote a clock cycle, search line voltage, complementary search
line voltage, and match line voltage, respectively. Im. in (d) means the current

through the match line. The red lines in (c) and (d) indicate Vs, Vs, and the

CAM responses when mismatching.

95

NN HEEg

@) [Search key

Encoded key

I

| Encoder

] [000111]’,

— — — Match

JLILIC

JEICIL

ML @
G
L

' e e
‘= e e
(

ou]

L 1L B—
Ejﬁjjjﬁ ~JL . Mismatch
LLIOLL

T
SLs

Figure 4.2. (a) Schematic of 3-CECAM (N = 3). A single unit consists of N

HRS and N LRS switches. SA and PE mean a sense amplifier and priority

encoder, respectively.

(b) Current responses to a given encoded key upon a

match and mismatches. Matching allows the minimal current response (first

row).

© 1.0 pevmimarrimnsisnssvnisssinssvomiisvs

S] RRAM

20.9-

z

= 08 P

= .)

(2] Nl

S 0.7 - ./

©

= 06! /

(O] 1 .

S O - Gonyentianal RCAM

O v J | LIS |
1 10 100

Figure 4.3. Content density of N-CECAM with N in comparison with the

conventional RCAM and RRAM. The kinks arise from the floor function in (1).

96

4.2.1. Algorithm for combination encoding

The key to the N-CECAM is the bijective mapping of the total n-bit search keys
n . s n 2N n+l1
to 2" 2N-digit keys (2"< (N) <2""") using an appropriate encoding function.

We propose the encoding function Ey for an n-bit search key «a as follows:
function Ex(a)
set b to 2N-digit binary number 0

fori=0to N-1 do
if there is c¢ satisfying (1\;1) <a< (?\J;:) then

set the (c+1)th digit of b to 1

set a to a- (1\;1)
end if
end for

return b

end function.

2N

Note that Ey is bijective when A4,= {0, 1, ""(N) -1} and B, = {b | b: 2N-

digit binary numbers with of N 1’s and N 0’s} are taken as the domain and

codomain of Ey, respectively (Theorem 1 in Appendix). Therefore, Ey is also
a bijective function for domain 4={0, 1, ...,2"-1} (CAt) and codomain
B={EN(0), Ex(1), ..., ExQ2"-1)} (CB,).

Table 4.1 shows the encodings of 4-bit search keys as 16 distinguishable 6-
digit binary numbers with three 1’s and three 0’s using the encoding function

E3 (N=3). The encoded data are subsequently programmed in 2N switches such

97

thata ‘1”and ‘0’ in the encoded data are written as ‘H’ and ‘L’, respectively. ‘H’
and ‘L’ denote HRS and LRS, respectively. The last configuration ‘HHHHHH’

indicates ‘don’t care’ for TCAM.

98

Table 4.1. Truth table of encodings of 4-bit integers as resistor configurations

Integer | Configuration Siaer;h Integer | Configuration siir;h
0 LLLHHH 000111 9 LHHHLL 011100
1 LLHLHH 001011 10 HLLLHH 100011
2 LLHHLH 001101 11 HLLHLH 100101
3 LLHHHL 001110 12 HLLHHL 100110
4 LHLLHH 010011 13 HLHLLH 101001
5 LHLHLH 010101 14 HLHLHL 101010
6 LHLHHL 010110 15 HLHHLL 101100
7 LHHLLH 011001 0-15 HHHHHH 000000
8 LHHLHL 011010

(N=3)

99

4.2.2. Implementation of encoding circuit
A search key is encoded as a 2N-digit key iteratively, which needs to be

implemented in circuitry in a way to reduce a delay in decoding at the cost of
: c ,

memory usage. To this end, the LUT P of (N—i) for0<c<2Nand0<i<N

is stored in a memory, which is referred to as a combination table. The LUT P

is an Nx(2N+1) matrix whose element P[i, c] is (1\;:_1) A main advantage of

employing the combination table is that the comparison (Nc-z) <a< (?:;_}) in

the encoding function Ex can be accelerated considerably by retrieving (]\?_ i)

ct+1

and (N

) from the LUT P rather than evaluating them for every comparison.

A block diagram of the encoding circuit including the LUT P is shown in Fig.
4.4(a). When RESET is 1, the encoding circuit receives search key a that is
encoded (ao). Simultaneously, a 2N-long array b is initialized as bo[k] = O for O
< k < 2N, where bo[k] denotes the (k+1)th digit of by. We note that RESET is
synchronized with clock signals (CLK) to avoid a metastability problem as
shown in Fig. 4.4(b). The circuit first addresses the first row of the LUT P, i.e.,
P[0, :]. The NEXT block finds ¢ in P[0, :], satisfying P[0, c¢] < ag< P[0, c¢t1],
using parallel comparators, resulting in co. ai is consequently evaluated as
ar1=ag- P[0, cy]. b is identical to by except its (cot1)th digit that is set to one,
bi[co] = 1. ¢i is subsequently evaluated for the next row of the LUT P, i.e.,
P[1, :], as for the first row. This evaluation is repeated for all remaining rows,
eventually resulting in a 2/N-digit encoded key b (=by). Therefore, the delay in

encoding is caused by iteratively addressing each row of the LUT P, which

100

scales with N (Fig. 4.4(b)). Given the relationship in (1), the encoding delay is
associated with the bit number of a search key (n) as plotted in Fig. 4.5 (blue
line); the delay tends to increase with the bit number. To address the memory
overhead for the LUT P, the number of its entries was also evaluated with the

bit number of a search key and co-plotted in Fig. 4.5 (red line).

101

(@ R

i+1

Search
key
a

1
RESET

ESET
4

RST [I;
1, CLk—lc ™ o

CLK—

CLK—|

LUT P (b)
SITEERET PeLE
01 2 3 4 5 6
e ML
RESET ¢ \
c e .
o L NEXT ! X 0 X 1 X 2
N, ou, (& a {15 Y 5 | 2
RESET IN, ouT. L1
o){ N, OUT Encoded Da1 Y 2100000 { 6101000 { b101100
g alf: key
b

=

Figure 4.4. (a) Block diagram of an encoding circuit for 3-CECAM. (b)

Timing diagram for encoding a search key of 15 as a 6-digit key of 101100.

Encoding delay (clock cycles)

20

15

10+

54

N

_

0=
0

T T T T T T O
5 10 15 20 25 30 35

Bit number of a search key

800

600

400

200

Entry number of LUT P

Figure 4.5. Encoding delay and number of entries in the LUT P with the bit

number of a search key (n).

102

4.3. Parallel search of N-CECAM domains

A search of a single N-CECAM domain can be extended to parallel searches of
multiple N-CECAM domains (partitions). Such parallel searches are useful,
particularly, when a search key is so lengthy that N becomes large according to
(1). To this end, n, partitions are given to each match line, where each partition

is a single N,-CECAM domain loaded with 2N, resistance switches in total. All

c

partitions can share a single LUT P whose component P[i, c] is (Np—i) for 0 <
¢ <2N,and 0 <i < N, as in Fig. 4.6. Therefore, each match line holds # bits

expressed as

n= [logz (2]?,?)] Ty)

Each of n, partitions is responsible for each n/n, bit chunk of the total n-bit
search key. Notably, this method reduces content-memory density. For instance,
for a 60-bit search key, n, = 1, 4, 10, 15, and 60 (respectively corresponding to
N, =32,9,4, 3, and 1) yields approximately 0.94, 0.83, 0.75, 0.67, and 0.5
bit/switch, respectively. N, = 32 and 1 indicate the single domain CECAM and
the conventional 2R-based RCAM, respectively. Despite the reduction in
content density, the advantage of the partitioning is threefold: reductions in the
encoding delay and memory usage for the LUT P, and granularity of ‘don’t care’
bits. Regarding the first advantage, the encoding delay is proportional to N, as
considered in Section II.B. Therefore, reducing N, results in a reduction in the

encoding delay. Regarding the second advantage, the LUT P is an Nyx(2N,+1)

2N,
matrix where the largest component is (P) which reaches 1.83x10'® for N,

Ny

103

= 1, requiring 61-bit memory. Thus, reducing N, (i.e., introducing partitions)
reduces memory usage for the LUT P considerably.

For TCAM application, a configuration of All 2N, resistance switches in the
HRS represents ‘don’t care’ bits in an N,-CECAM domain. Therefore, the
granularity of ‘don’t care’ bits in the N,-CECAM equals n/n, bits. As shown in
Table 4.1, 3-CECAM offers a ‘don’t care’ granularity of 4 bits; when all six
resistance switches in a domain are set to the HRS, the switch configuration is
matched to any of 4-bit search keys between 0 and 15. Setting N, = 32 for 60-
bit search keys yields the coarsest granularity (60 bits), unsuitable for TCAM
applications whereas N, = 1, equivalent to the conventional RCAM, yields the
finest granularity (1 bit). Therefore, introducing partitions is a viable method to
decrease data granularity. Nevertheless, because this comes at the cost of a
reduction in content density, the granularity should be reconciled with content

density.

104

{ n-bit Search keyj

I\ J [
T T I

e S —— l
Gpsses segns (spusEeD
§5(666 oeo8s - 660
G pEE 66 BEEREE Ga88d

Partition 0 Partition 1 Partition n,-1
Figure 4.6. Schematic of parallel searches of Np-CECAM partitions. NEXT in

the figure means NEXT block in the encoding circuit. The n-bit search key is
divided into n, chunks, and each chunk applies to the NEXT block of each

partition. All partitions share a single LUT P.

105

4.4. Algorithm for content decoding and circuit

implementation

Contents in the state-of-the-art 2T2R-RCAM illustrated in Fig. 4.1(a) are read
bitwise such that each bit (a pair of resistance switches) is iteratively examined

for matching with the same key applied to the complementary search lines (SL

and SL)[14]. Therefore, a delay in reading is proportional to the bit number of
contents. An advantage of a passive array of resistance switches shown in Fig.
4.1(b) over the active array is that the total contents per match line can
simultaneously be read by pulling the match line high and simultaneously
measuring the current response on all search lines. Either design employing the
CECAM should be able to decode the 2/N-digit contents as the original n-bit
contents by an appropriate decoding function. The decoding function Dy is the
reverse of the encoding function Ex, which is implemented as follows:
function Dy(b)

seta,i,cto0

while i <N do

if [the (c+1)th digit of 5] = 1 then

set i to i+1
set a to a+ (f)
end if
set ¢ to c+1
end while
return a

106

end function.
A 2N-digit content in the CECAM is decoded as an n-bit key iteratively.

The decoding function Dy is implemented in a digital circuit as shown in Fig.
4.7(a). The circuit first initializes an n-long array ao to 0. Upon receiving a 2N-
digit content b that is decoded (b = by), the ADR block in Fig. 4.7(a) searches for

the address of the right-most 1’ in b and returns it, which corresponds to co

(bo[Co] = 1). P[N-1,¢cq] = (Clo) is subsequently retrieved from the LUT P, and

ay is evaluated as a; = ap + P[N-1, co]. by is identical to by other than its right-most
‘1’ switched to ‘0. Subsequently, ¢: is evaluated as the address of the right-most
1in by, and then az and b, are evaluated as a2 = a; + P[N-2, ¢1] and b, = b; except
that bo[c1] = O, respectively. This evaluation is repeated N times, resulting in an
n-bit decoded content a. Similar to encoding, a delay in decoding is caused by
iteratively addressing each row of the LUT P. Therefore, the delay also scales

with N (Fig. 4.7(b)).

107

RESET

i
Content CLK—(C b; o
b D Q IN - ouT,d CLK—|C
OUTZ&1
rf

PIN-(+1). <]

(b)
ok (/L

RESET/
i 0 1 2
Decoded X X X
content ©i {10110 {b101000) 100000
a 8y Y 215 {15

Figure 4.7. (a) Block diagram of a decoding circuit for 3-CECAM. (b) Timing

diagram for decoding an encoded search key of 101100 as its original search key

(15)

108

¥

4.5. Discussion

The CECAM scheme was applied to a passive array of resistance switches as a
model system. This model system allows the ultimate integration density, i.e.,
when used as RAM, 4F? cell size per bit. In this case, a current-sensing scheme
is suitable for bitwise reading. However, the reading process is significantly
prone to error because of the notorious sneak current issue due to the lack of
bit-selection devices[26]. Employing transistors as active selectors
significantly keeps the sneak current sufficiently low for reliable reading as for
the 2T2R-based RCAM design[27]. The CECAM scheme applies to an active
array of resistance switches with a voltage-sensing scheme as shown in Fig. 4.8.
In the array, a single unit consists of 2V transistors and 2 resistance switches.
A one-transistor and one-resistor (ITIR) unit is placed at a crossing point
between each match (horizontal) line and each of the 2V search (vertical) lines.
Specifically, the gates of 2N transistors are wired to the 2N search lines, and
thus the encoded 2N-digit key determines the channel conductance of the 2N
transistors during a searching period. For all transistors, the source is connected
to a common plate line which is grounded during searching.

When searching, the match lines are pre-charged simultaneously. Then, a 2 V-
digit encoded key is applied to the search lines such that 1’s and 0’s pull the
search lines up and down, respectively. When matching N 1’s in the encoded
key to the transistors paired with the N HRS switches, the voltage on the match
line remains high because none of the pull-down paths are activated. Otherwise,
some 1’s in the encoded key are inevitably associated with transistors paired

with LRS switches, indicating the activation of pull-down paths (Fig. 4.8).
109

Therefore, the voltage on the pre-charged match line decays rapidly, which is
noticed by a sense amplifier as a mismatch. This search process is identical to
the 2T2R-based conventional RCAM.[25]

Regarding the sense amplifier design for the CECAM, a current- and a
voltage-sensing amplifier are suitable for a passive and active array of switches,
respectively, as for RCAM. Compared with RCAM, the CECAM does not
impose additional requirements on its sense amplifiers, so that previously
developed sensing technologies[16, 28, 29] are compatible with the CECAM.
In this regard, the CECAM can make full use of previous RCAM technologies
given a subtle difference between the CECAM and RCAM. The subtle
difference lies in content- and search key-encoding, which is the key of our
present study. Nevertheless, the subtle difference remarkably enhances the
content density.

The application domain of the proposed CECAM fully covers other
resistance-based NVMs with two-terminal switches, e.g., phase-change
memory[14, 15] and magnetic tunnel junction[14, 17], in both active and
passive arrays. Moreover, the CECAM concept is compatible with three-
terminal NVMs, for instance, ferroelectric transistors[20] and NOR Flash
memory.

Table 4.2 compares the CECAM with previous CAM designs. The 4-
CECAM was considered with reference to the 4 kb 1T1R RRAM prototype[25]
and simulation results of a 2R-TCAM][23]. The 128 bit word width in [25]
allows 16 x (4-CECAM domain), i.e., N, = 4 and n, = 16. According to (2),

each match line holds 96 bit contents; instead, the conventional RCAM allows

110

64 bit contents per match line only. Therefore, the cell area per content bit is
approximately 0.67 times that of the conventional RCAM as shown in Table
4.2. The same holds for the 2R-TCAM with 64 bit word width in [23].
Regretfully, the actual size of the 1T1IR RRAM prototype[25] is unavailable so
that the cell area per bit for the CECAM is expressed as its area relative to that
of the RCAM (0.67). The additional delay in searching due to the encoding of
a search key is Ny/fei, where is fex clock speed. The cell area per bit and search

delay aside, the CECAM is identical to the RCAM.

111

Encoded key
o o o 1 1 1

ML, = g : T Match
-
(L H t H H
PLO “.
ML,] T Mismatch
L
| L 1 H H 1
PL1 “.

T
SLs
Figure 4.8. Schematic of CECAM with a voltage-reading scheme. The blue

arrow in the second row illustrates activated pull-down path.

112

A& st

Table 4.2. Comparison to previous work

4- 4-
16T- 6T_2R 11R-|-3 2T_2R ZT_ZR 2R- CECA CECA
TCA TCA | TCA | TCA | TCA TCA M M
M M referenc | referenc
[11] [2"8] [m] [m] ['2\2] 23] | edto | edto
[25] [23]
Memory | SRA | vty | MTs [PcM | RS | Rs RS RS
type M
Reading Volta | Volta | Volta | Volta | Volta | Curre
Current | Current
scheme ge ge ge ge ge nt
Technolog | oo 90 | 180 | 90 | 130 | 90 130 90
y (nm)
Word
width (bit) 72 32 144 64 128 64 128 64
Cell area NA NA NA NA
(um2/bit) 1.69 | 10.35 42 0.41 (1) | (1x)° | (0.66%)" | (0.66x)"
Supply
voltage 1 1.2 1 1.2 0.9 0.2 0.9v 0.2
V)
Sdearch 1.9ns 0.29n 8ns 1.9ns 2ns 0.5ps 0.5ps 0.5ps
elay S
Search
energy NA NA
(fbit/sear 1.98 1.04 1.4 NA (1%)? 0.23 (0.66%) 0.15
ch)

*RS denotes resistance switch
*ab denotes markers comparing normalized values between previous work and
CECAM

113

4.6. Conclusion

A new type of CAM, referred to as CECAM, was proposed to improve the
content density in a memory array. The N-CECAM employs a group of 2N
resistance switches as a single memory unit with multi-bit (n-bit) capacity,
which enhances its content density far beyond that of the conventional RCAM
(0.5 bit/switch). For instance, 10-CECAM (N = 10; 20 resistance switches) has
17-bit content capacity (n = 17) in contrast to the conventional RCAM that
needs 34 resistance switches for 17-bit content capacity. The key to the
CECAM is an algorithm for n-to-2N encoding and its decoding. The proposed
encoding and decoding algorithms were proven to match n-bit search keys to
2N-digit keys bijectively. Additionally, the algorithms are readily implemented
in digital circuits with a combination table, which results in an encoding
(decoding) delay of N clock cycles for the N-CECAM. The proposed CECAM
concept is compatible with various NVM-based CAM designs including active
and passive RCAM, other two-terminal resistance switch-based CAM, e.g.,
phase-change memory and magnetic memory, and NVM transistors, e.g.,

ferroelectric transistor and NOR Flash memory.

4.7. Appendix

Theorem 1. Ey: A; — B;is a bijective function for 4,= {O, 1, ..., (Zlifv) -1} and

B.={b | b: 2N-bit binary numbers, each with N 1’s and N 0’s}.

Proof. Nonnegative integer «; is defined as

&

gy =a;-() for 0<i<N-1, 3)

and ao = a (= 0). ¢; satisfies the following inequality:

114

(]\iii)ia,-<(c]"\;iil) for 0 <i<N. 4)

Define the number of elements in set X as n(X).

Lemma 1: n(A4,) =n(B,) = (2N).

N

Lemma 2: ¢; > ¢ for 0<i<N-1.

Proof. For a;= 0, the only c¢; satisfying the inequality in (4) is ¢; = N-i-1 that
yields a;+1= 0 according to (1). From (4), ¢i+1 = N-i-2. Therefore, c; > ¢;1. For

Ci+_1) in (4), the following inequality is

a; > 0, using (3) and the fact that a ;< (N

acquired:
0<a; < (C;\;tll) - (]\C[zz) - (N—((;irl))' ®

C; 1+
Equation (4) for a1 is _(l;il))ia,~+1<(]\(;f8 +1))' ai+1 should

simultaneously satisfy this equation and (3), which is true if
G Cit1
(N—(i +1))>(N-(i H)).Therefore, ¢; > c;11- Consequently, ¢; > ¢;4; holds for

nonnegative a;.

For given a, vector ¢(a) is defined as c(a)=[cy, ¢i, ..., cy.1] where the
components are sorted in descending order according to Lemma 2. Associating
b with ¢(a) such that ‘1’ is placed on each (¢ +1)th digit of b, and ‘0’s on the
other digits, it is proven that c(a) is bijectively mapped to b. If a is also
bijectively mapped to c(a), a is eventually proven to be mapped to b in a
bijective manner. Also, using Lemma 1 and bijective mapping of c¢(a) to b, the

following equation is acquired:

nc) = n(8) =n(0) = (%)) (©)

115

where C = {c | c=c(a)}.
Lemma 3: if x #y, then c(x) # c(y).
Proof. 1f Lemma 3 is true, its contraposition (if ¢(x) = ¢(y), then x =y) is also

true. Given (1), a (= ao) is expressed as
2 (Ci
a=ay,+YNg (Nii)' (7

Equation (4) for i = N-1 yields (C]\l]'l) <ay, < (CN‘IIH), ie., ey <ang <

en.r+1. Thus, ay. = ey = (7)), Therefore, (7) is rewritien by a =33 (/).

This equation indicates a unique a for a given vector ¢(a), so that if c¢(x) = ¢(y),
then x =y. Lemma 3 therefore holds true, identifying injective mapping of a to
C.

Equation (6) and Lemma 3 identify bijective mapping of a to c. Given the
bijective mapping of a to ¢ and c to b, the encoding function Ey is a bijective
function.

4.8. Bibliography

[1] K. Pagiamtzis and A. Sheikholeslami, IEEE Journal of Solid-State
Circuits, vol. 41, no. 3, pp. 712-727, 2006.

[2] H. J. Chao, Proceedings of the IEEE, vol. 90, no. 9, pp. 1518-1558,
2002.

[3] T.-B. Pei and C. Zukowski, in IEEE International Conference on
Computer Communications, 1991, pp. 515-524.

[4] T.-B. Pei and C. Zukowski, IEEE Network, vol. 6, no. 1, pp. 42-50,

1992.

116

5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

N.-F. Huang, W.-E. Chen, J.-Y. Luo, and J.-M. Chen, in IEEE Blogal
Communications Conference, 2001, vol. 3, pp. 1877-1881.

G. Qin, S. Ata, I. Oka, and C. Fujiwara, in IEEE International
Conference on Computer Communications, 2002, vol. 3, pp. 2350-
2354.

A. J. McAuley and P. Francis, in IEEE International Conference on
Computer Communications, 1993, pp. 1382-1391.

V. Kornijcuk, J. Park, G. Kim, D. Kim, I. Kim, J. Kim, J. Y. Kwak, and
D. S. Jeong, Advanced Materials Technologies, vol. 4, no. 1, p.
1800345, 2019.

S. Panchanathan and M. Goldberg, IEEE Transactions on Signal
Processing, vol. 39, no. 9, pp. 2066-2078, 1991.

C. Lee and M. Paull, Proceedings of the IEEE, vol. 51, no. 6, pp. 924-
932, 1963.

I. Hayashi, T. Amano, N. Watanabe, Y. Yano, Y. Kuroda, M. Shirata,
K. Dosaka, K. Nii, H. Noda, and H. Kawai, IEEE Journal of Solid-State
Circuits, vol. 48, no. 11, pp. 2671-2680, 2013.

O. Tyshchenko and A. Sheikholeslami, IEEE Journal of Solid-State
Circuits, vol. 43, no. 9, pp. 1972-1981, 2008.

Y. Yang, J. Mathew, R. S. Chakraborty, M. Ottavi, and D. K. Pradhan,
IEEE Transactions on Nanotechnology, vol. 15, no. 3, pp. 527-538,

2016.

117

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Q. Guo, X. Guo, Y. Bai, and E. Ipek, in Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture,
2011, pp. 339-350.

B. Rajendran, R. W. Cheek, L. A. Lastras, M. M. Franceschini, M. J.
Breitwisch, A. G. Schrott, J. Li, R. K. Montoye, L. Chang, and C. Lam,
in 2011 3rd IEEE International Memory Workshop, 2011, pp. 1-4.

J. Li, R. K. Montoye, M. Ishii, and L. Chang, IEEE Journal of Solid-
State Circuits, vol. 49, no. 4, pp. 896-907, 2013.

S. Matsunaga, M. Natsui, K. Hiyama, T. Endoh, H. Ohno, and T.
Hanyu, Japanese Journal of Applied Physics, vol. 49, no. 4S, p.
04DMO05, 2010.

S. Matsunaga, A. Katsumata, M. Natsui, S. Fukami, T. Endoh, H. Ohno,
and T. Hanyu, in 2011 Symposium on VLSI Circuits-Digest of
Technical Papers, 2011: IEEE, pp. 298-299.

W. Xu, T. Zhang, and Y. Chen, IEEE transactions on very large scale
integration (VLSI) systems, vol. 18, no. 1, pp. 66-74, 2009.

I. Bayram and Y. Chen, in Non-Volatile Memory Systems and
Applications Symposium, 2014, pp. 1-6.

B. Chen, Y. Zhang, W. Liu, S. Xu, R. Cheng, R. Zhang, and Y. Zhao,
IEEE Electron Device Letters, vol. 39, no. 9, pp. 1294-1297, 2018.
L.-Y. Huang, M.-F. Chang, C.-H. Chuang, C.-C. Kuo, C.-F. Chen, G.-
H. Yang, H.-J. Tsai, T.-F. Chen, S.-S. Sheu, and K.-L. Su, in 2014
Symposium on VLSI Circuits Digest of Technical Papers, 2014, pp. 1-

2.
118

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Han, W. Shen, P. Huang, Z. Zhou, L. Liu, X. Liu, and J. Kang,
Japanese Journal of Applied Physics, vol. 57, no. 4S, p. 04FE02, 2018.
D. Ly, B. Giraud, J. Noel, A. Grossi, N. Castellani, G. Sassine, J. Nodin,
G. Molas, C. Fenouillet-Beranger, and G. Indiveri, in 2018 IEEE
International Electron Devices Meeting, 2018, pp. 20.3.1-20.3.4.

A. Grossi, E. Vianello, C. Zambelli, P. Royer, J.-P. Noel, B. Giraud, L.
Perniola, P. Olivo, and E. Nowak, IEEE Transactions on Very Large
Scale Integration Systems, pp. 1-9, 2018.

A. Chen, IEEE Transactions on Electron Devices, vol. 60, no. 4, pp.
1318-1326, 2013.

P.-Y.ChenandS. Yu, IEEE Transactions on Electron Devices, vol. 62,
no. 12, pp. 4022-4028, 2015.

I. Arsovski and A. Sheikholeslami, IEEE Journal of Solid-State
Circuits, vol. 38, no. 11, pp. 1958-1966, 2003.

N. Mohan, W. Fung, D. Wright, and M. Sachdev, IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 56, no. 3, pp. 566-573,

2008.

119

5. Conclusion

As mentioned above, binary resistance switch array can be applied as synapse
array in synapse block or lookup-table in topology block. Therefore, we have
studied on three subjects, which are a new simulation method for binary
resistance switch array, a new learning algorithm with ternary synaptic weight,
and a new type of resistance switch-based content addressable memory with
high content density.

In the first part, multi-layer perceptrons with different structures (depth and
the number of perceptrons in each layer) was successfully trained to infer the
current response of a random crossbar array to a randomly applied voltage
vector. The trained network predicted exact current response with appropriate
network structure and sufficient training examples. Additionally, this neural
network is 8 times faster than Newton-Raphson method for 10x9 resistance
switch array.

Secondly, a new learning algorithm, reffered to as Markov Chain Hebbian
Learning, was proposed. MCHL uses ternary synaptic weight. Therefore,
MCHL is appropriate to use when using binary resistance switch array as
synapse array. Another distinct feature of MCHL is that it does not use
backpropagation and synaptic units are stochastically updated. This feature is
similar to restricted Boltzmann machine, but MCHL is discriminative with
write vector. The potentiation or depression of synaptic units are governed by
write vector v and exact update probability was controlled by activation of input

and output neuron. MCHL was applied to hand-written digit recognition and it

120

have shown 92% accuracy. This accuracy is much lower than that of
conventional backpropagation algorithm, 98%. MCHL, however, uses much
less memory and is faster than backpropagation algorithm. This aspect stands
out when MCHL is implemented in FPGA board. MCHL was also applied to
prime factorization and it needs much less steps than direct search factorization.

At last, anew type of CAM, referred to as CECAM, was proposed to improve
the content density in a memory array. The N-CECAM uses a group of N HRS
resistance switches and N LRS resistance switches as a single memory unit. As
a result, CECAM’s content density is far beyond that of the conventional
RCAM (0.5 bit/switch). For instance, 10-CECAM (N = 10; 20 resistance
switches) has 17-bit content capacity (n = 17) in contrast to the conventional
RCAM that needs 34 resistance switches for 17-bit content capacity. The
encoding and decoding algorithm for CECAM were also proposed. They have
been proven to convert a n-bit search keys to 2N-digit keys with N 1’s and N
0’s bijectively. Additionally, the algorithms are readily realized in digital
circuits with a combination table. The combination table is implemented to
minimize calculation costs from binomial factor. It results in an encoding
(decoding) delay of N clock cycles for the N-CECAM. The proposed CECAM
concept is compatible with various NVM-based CAM designs including active
and passive RCAM, other two-terminal non-volatile memory-based CAM, e.g.,
phase-change memory and magnetic memory, and NVM transistors, e.g.,

ferroelectric transistor and NOR Flash memory.

121

Curriculum Vitae

Guhyun Kim

Department of Materials Science and Engineering E-mail:

College of Engineering kgh920507@snu.ac.kr

Seoul National University Tel.: +82-2-880-8923

1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
Fax.: +82-2-874-6414

|. Educations

2011.3.-2015.2. B.S.

Department of Materials Science and Engineering

Seoul National University, Seoul, Korea

2015.3.-2020.2. Ph.D

Department of Materials Science and Engineering

Seoul National University, Seoul, Korea

122

Il. Research Areas

Thin Film Materials and Devices

Characterization of electronic properties of thin films

Thin films deposition technique

Resistance switch array simulation technique

Neuromorphic Engineering

Learning algorithm for SNN and ANN

Routing algorithm for spike transmission and synaptic unit update

Binarized neural network

I11. Experimental Skills

Deposition methods

DC & RF sputtering (in-situ deposition of Pt, HfO,, TiN)

Sample preparation

Photo-lithography

Analysis methods

Pulse/pattern generator and digital oscilloscope for pulse switching
measurement of resistance switches

Programs apprentice

MATLAB (Mathworks) 2013

Python

C++

123

List of publications

1. Refereed Journal Articles (SCI)

1.1 Domestic

1.2. International

[1]

(2]

3]

[4]

Hyungkwang Lim, Hyung-Woo Ahn, Vladimir Kornijcuk, Guhyun
Kim, Jun Yeong Seok, Inho Kim, Cheol Seong Hwang, and Doo Seok
Jeong, "Relaxation oscillator-realized artificial electronic neurons,
their responses, and noise,” Nanoscale, vol. 8, no. 18, pp. 9629-9640,
2016.

Hyungkwang Lim, Rohit Soni, Dohun Kim, Guhyun Kim, Vladimir
Kornijcuk, Inho Kim, Jong-Keuk Park, Cheol Seong Hwang, and Doo
Seok Jeong, "Chameleonic electrochemical metallization cells: dual-
layer solid electrolyte-inducing various switching behaviours,"
Nanoscale, vol. 8, no. 34, pp. 15621-15628, 2016.

Vladimir Kornijcuk, Hyungkwang Lim, Jun Yeong Seok, Guhyun
Kim, Seong Keun Kim, Inho Kim, Byung Joon Choi, and Doo Seok
Jeong, "Leaky integrate-and-fire neuron circuit based on floating-gate
integrator,” Frontiers in neuroscience, vol. 10, p. 212, 2016.

Vladimir Kornijcuk, Jongkil Park, Guhyun Kim, Dohun Kim, Inho
Kim, Jaewook Kim, Joon Young Kwak, and Doo Seok %J Advanced
Materials Technologies Jeong, "Reconfigurable Spike Routing
Architectures for On-Chip Local Learning in Neuromorphic Systems,"

Advanced Materials Technologies, vol. 4, no. 1, p. 1800345, 2019.
124

(5]

(6]

[7]

Guhyun Kim, Vladimir Kornijcuk, Dohun Kim, Inho Kim, Jaewook
Kim, Hyo Cheon Woo, Jihun Kim, Cheol Seong Hwang, and Doo Seok
Jeong, "Markov chain Hebbian learning algorithm with ternary
synaptic units," IEEE Access, vol. 7, pp. 10208-10223, 2019.

Guhyun Kim, Vladimir Kornijcuk, Dohun Kim, Inho Kim, Cheol
Seong Hwang, and Doo Seok Jeong, "Artificial Neural Network for
Response Inference of a Nonvolatile Resistance-Switch Array,"
Micromachines, vol. 10, no. 4, p. 219, 2019.

Guhyun Kim, Vladimir Kornijcuk, Jeeson Kim, Dohun Kim, Cheol
Seong Hwang, and Doo Seok Jeong, "Combination-Encoding Content-
Addressable Memory With High Content Density," IEEE Access, vol.

7, pp. 137620-137628, 2019.

2. CONFERENCES

2.1 Domestic

(1]

Guhyun Kim, Cheol Seong Hwang, and Doo Seok Jeong, "Artificial
Neural Network for Response Inference of a Nonvolatile Resistance-

Switch Array," in Nano Korea, 2019, oral

2.2. International

[1]

Guhyun Kim, Cheol Seong Hwang, and Doo Seok Jeong, "Stochastic
Learning with Back Propagation,” in 2019 IEEE International

Symposium on Circuits and Systems (ISCAS), 2019: IEEE, pp. 1-5, oral

125

’

).

R

A
) o1

o

7}A 21

fifol o).

S

=
=

S H

1

<

A3

o

R

P oF wt

o

FAleh w2 o] AFF2 &

A

-

= AT

Mgk Azt

1

<

A3

Abstract (in Korean)

SR . S o SRR
" o = T AR ® LR =
=T 32l e, ¥
uﬁ X iy - JJ A o 760 ~o o
& w X _ | o oy o|J
i o] W W T ™T o
N 0 o|J = —_ =0 T o
SO B N 0 ey & F
ot g H w P M ok P
zT 3 = M% X0 A.._ :.L pod o
B e I i of & o+ 2
= e) h
N 2N K il wm R =
oM 8w o %o 7 B
L T - O >
© o o T ® 7 o XS
O m ﬂ_Al ﬁ:._ O.,M ‘mﬂ - 1) W
=R BV R
T o v o =5 o= T 4 =z
Ar W s, 9 :)
o m g om oy ¥ Lo0®m o o))
N S o TR S 51 X wg an
:i m ﬂmo Y ,A.._ TH ‘Ang XE mmO
Yoo 20w G T
2} E X B 5T 0w W y
B GO S B G S %
.1Url = _l_ ~ 0o L ﬂ/l L M w
I R R - S B - NG
= R T ayl L 03 1 SR
oW F 05 T Fw T <

leaky rectified

ICCERY

-

R

717

=

=

gelel 9
126

(10 X 9 == 28 x 279 =7

22F olgo] 9}

linear units2 AFE3F= multilayer perceptron (MLP)ZE
ggatgitt. o] AFAALS 500,0007 =2 1,000,00074 <]
AAE Fall SFHAT. A oAlvig, ARG 4
ofglole] ME® WAL Iy ek wE
gor FAEdY. =, MY del ko] TheiAl=E M X N
ofgolel thste], 4 WEY A= M x (MDD 7T
7tz el S Al thal Newton—Raphson W< ARg-al AAHeE =3
AF7F A% gh59] doly dolEx &8t o] Alms F&d
=8 AFE AdSsk9en, 28 x 27 ool A A@AFIke]
0.9995¢] o]=%t}. w3k o] WS 7|E9 Newton—Raphson
Wije] wlsf oF 8uf wE ANSEZ=E UER T
A Wt 22k ool MY #wol 7|Wbele], A W3zt Ak
ool wEEYF st=do]e] vefe Fitel &&d + v M
gy gz S A W3t &2 ofdlol® Ay AlWA ofdlolE
T8t ZAolth. A W3zl Az offold dE-wE 5
AFAZE Ui AHA-1E F3 FAsk] wel, A% w3t
22 ofgolE dE AYA ooz &Este AL wEEY
st=dofo #AEs 7HEEe 9l
whebA] i =Eel A=, Markov chain Hebbian learning©]2hil
el okl AF W3t &xp ofyold AYI TG dugEs
el ol g dudgsEe WE" SHAAN a84ds

127

Vet =d ol= 1) AWM 7FA7F —1, 0, 19 ternary #=
ZFAIL 2) Al TR o] fHo|EVE upFEx A3 AlF 9
AdolEE old AFY ThEAl ol IQ gt—& w27

jFolctk w3 —1,0, 19 ternary @2 3k o A3 W3 AAE

A M3l AAf ofgo]e] EUE §8 ok topology blockd
lookup table® ARgE 4 = W& $43 719%A (content—
addressable memory, CAM)©|t}. ©] lookup table= 74 A}o]9]

E dd 3uE ARy ol Asolart BAHAS A

sstolazh Awd RHEN AuelE sok ¥ AMAES

ulZo lookup table® &-83}7] A stsittal & 4 itk

ey RCAM2 st 2&°] A3 w3t Ax= she bits

ke

rd@lst7] wlEo] (0.5bit/switch) resistive random access
memory (1bit/ switch) el H]3] W2 A= WEE 7}x]31 Qi

128

B =Fo &= combination—encoding CAM (CECAM)¢]gt &&=

AMZE FT7Y RCAME AAsAth. N—-CECAM> NE] =2

A ZHE 7= 2Ae MRS B2 A7 dHE T A

i

el gulom FAL. o 245 2TL T

e
flo
N

al

o

)
D

Ue2 gAT £ o9k (V=102 A9 0.85 bit/switch).

Fol: wERY dAXYoy, AF W3t 2z offe], tF

HAMEZE, vk A, g F43F 7]9%A

SH: 2015-20801

—

47w

129

	1. Introduction
	1.1. Resistance switch array
	1.2. Resistance switch array application in neuromorphic hardware
	1.3. Bibliography

	2. Artificial neural network for response inference of a nonvolatile resistance-switch array
	2.1. Introduction
	2.2. Description of model system
	2.3. Description of artificial neural network
	2.4. Training and test datasets
	2.5. Training results
	2.6. Conclusions
	2.7. Bibliography

	3. Markov chain hebbian learning algorithm with ternary synaptic units
	3.1. Introduction
	3.2. Model description
	3.2.1. Network structure and energy
	3.2.2. Field application and update probability

	3.3. Implementation of the MCHL algorithm on hardware
	3.3.1. Field-programmable gate array
	3.3.2. Resistance-based random access memory

	3.4. Applications
	3.4.1. Image recognition
	3.4.1.1. Implementation on a general-purpose computer
	3.4.1.2. MCHL accelerator

	3.4.2. Multiplication table memorization and prime factorization

	3.5. Discussion
	3.6. Appendix
	3.6.1. Derivation of stochastic activity of a neuron
	3.6.2. Calculation of update probability
	3.6.3. Properties of Markov chain in MCHL
	3.6.4. Effect of update probability and temperature parameter on training
	3.6.5. Handwritten digit recognition
	3.6.6. MCHL accelerator in detail
	3.6.7. Multiplication table memorization
	3.6.8. Prime factorization
	3.6.9. Direct search factorization

	3.7. Bibliography

	4. Combination-encoding content addressable memory
	4.1. Introduction
	4.2. Combination-encoding content addressable memory
	4.2.1. Algorithm for combination encoding
	4.2.2. Implementation of encoding circuit

	4.3. Parallel search of N-CECAM domains
	4.4. Algorithm for content decoding and circuit implementation
	4.5. Discussion
	4.6. Conclusion
	4.7. Appendix
	4.8. Bibliography

	5. Conclusion
	Curriculum Vitae
	List of publications
	Abstract (in Korean)

<startpage>22
1. Introduction 1
 1.1. Resistance switch array 1
 1.2. Resistance switch array application in neuromorphic hardware 4
 1.3. Bibliography 7
2. Artificial neural network for response inference of a nonvolatile resistance-switch array 10
 2.1. Introduction 10
 2.2. Description of model system 12
 2.3. Description of artificial neural network 14
 2.4. Training and test datasets 15
 2.5. Training results 16
 2.6. Conclusions 22
 2.7. Bibliography 22
3. Markov chain hebbian learning algorithm with ternary synaptic units 25
 3.1. Introduction 25
 3.2. Model description 28
 3.2.1. Network structure and energy 28
 3.2.2. Field application and update probability 33
 3.3. Implementation of the MCHL algorithm on hardware 36
 3.3.1. Field-programmable gate array 36
 3.3.2. Resistance-based random access memory 36
 3.4. Applications 40
 3.4.1. Image recognition 40
 3.4.1.1. Implementation on a general-purpose computer 40
 3.4.1.2. MCHL accelerator 49
 3.4.2. Multiplication table memorization and prime factorization 50
 3.5. Discussion 60
 3.6. Appendix 64
 3.6.1. Derivation of stochastic activity of a neuron 64
 3.6.2. Calculation of update probability 65
 3.6.3. Properties of Markov chain in MCHL 66
 3.6.4. Effect of update probability and temperature parameter on training 70
 3.6.5. Handwritten digit recognition 72
 3.6.6. MCHL accelerator in detail 75
 3.6.7. Multiplication table memorization 80
 3.6.8. Prime factorization 83
 3.6.9. Direct search factorization 84
 3.7. Bibliography 84
4. Combination-encoding content addressable memory 89
 4.1. Introduction 89
 4.2. Combination-encoding content addressable memory 91
 4.2.1. Algorithm for combination encoding 97
 4.2.2. Implementation of encoding circuit 100
 4.3. Parallel search of N-CECAM domains 103
 4.4. Algorithm for content decoding and circuit implementation 106
 4.5. Discussion 109
 4.6. Conclusion 114
 4.7. Appendix 114
 4.8. Bibliography 116
5. Conclusion 120
Curriculum Vitae 122
List of publications 124
Abstract (in Korean) 126
</body>

