

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

i

Ph.D. DISSERTATION

Study on Binary Resistance Switch Array

for Neuromorphic Hardware

by

Guhyun Kim

February 2020

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

ii

Study on Binary Resistance Switch Array

for Neuromorphic Hardware

Advisor : Prof. Cheol Seong Hwang

by

Guhyun Kim

A thesis submitted to the Graduate Faculty

of Seoul National University in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Department of Materials Science and Engineering

December 2019

Approved

 by

 Chairman of Advisory Committee : Sang Bum Kim

 Vice-chairman of Advisory Committee : Cheol Seong Hwang

 Advisory Committee : Dongsuk Jeon

 Advisory Committee : Doo Seok Jeong

 Advisory Committee : Byung Joon Choi

i

Abstract

Resistance switch array is a strong contender for next-generation memory. A

resistance switch has low resistance state or high resistance state. Switching

between states are stimulated by electric signal such as application of voltage

or current. With crossbar array configuration, resistance switch array reaches to

high integration density of 4F2 where F means minimum feature size. Analog

resistance switches are also have been proposed, but most of them need very

precise control of conductance. Additionally, at least one of their potentiation

or depression is non-linear to pulse number (or pulse length).

Resistance switch array is also able to realize matrix-vector multiplication,

or parallel operation. In other words, the current response to an applied input

voltage vector naturally captures the conductance matrix-voltage vector

multiplication.

Simulating resistance switch array is an efficient method to analyze its

property. The most popular simulation uses Newton-Raphson methods for

resistance array simulation, but this method consumes large calculation costs.

As an alternative, an artificial neural network was applied for the resistance

switch simulation. An artificial neural network was utilized in the behavior

inference of a random crossbar array (10 × 9 or 28 × 27 in size) of nonvolatile

binary resistance-switches (in a high resistance state (HRS) or low resistance

state (LRS)) in response to a randomly applied voltage array. The employed

artificial neural network was a multilayer perceptron (MLP) with leaky rectified

linear units. This MLP was trained with 500,000 or 1,000,000 examples. For

ii

each example, an input vector consisted of the distribution of resistance states

(HRS or LRS) over a crossbar array plus an applied voltage array. That is, for

a M × N array where voltages are applied to its M rows, the input vector was M

× (N+1) long. The calculated (correct) current array for each random crossbar

array was used as data labels for supervised learning. This attempt was

successful such that the correlation coefficient between inferred and correct

currents reached 0.9995 for the larger crossbar array. This result highlights MLP

that leverages its versatility to capture the quantitative linkage between input

and output across the highly nonlinear crossbar array. Additionally, MLP

accelerates simulation 8 times faster compared to Newton-Raphson method.

With its availability of parallel operation, resistance switch array is used in

various parts of neuromorphic hardware, which aims to synthesize hardware

mimicking neural networks. The typical application of resistance switch array

is an artificial synapse array. Because matrix-vector multiplication in resistance

switch array is similar to that in neural network, neuromorphic hardware can be

accelerated by implementation of a resistance switch array as an artificial

synapse array.

In this paper, a learning algorithm suitable for binary resistance switch array

is proposed. This algorithm is referred to as the Markov chain Hebbian learning

algorithm. The algorithm pursues efficient use in memory during training in

that: 1) the weight matrix has ternary elements (−1, 0, 1) and 2) each update

follows a Markov chain—the upcoming update does not need past weight

values. Additionally, the ternary synaptic units are easily realized by a pair of

resistance switches, so that the Markov chain Hebbian learning algorithm is

iii

appropriate for training binary resistance switch array used as synapse array.

The algorithm was verified by two proof-of-concept tasks: image (MNIST and

CIFAR-10 datasets) recognition and multiplication table memorization.

Particularly, the latter bases multiplication arithmetic on memory, which may

be analogous to humans’ mental arithmetic. The memory-based multiplication

arithmetic feasibly offers the basis of factorization, supporting novel insight

into memory-based arithmetic.

Another application is using a resistance switch array as a content-

addressable memory (CAM) as lookup table (LUT) in topology block. The LUT

stores the entire connectivity among neurons. When a spike occurs from a

neuron, the topology block searches the LUT and finds the destination neurons

and synapses to update. Resistance switch-based CAM (RCAM) satisfies fast

search ability, high integration density and low static energy consumption, and

thus it is appropriate for LUT.

RCAM, however, has a low data density due to the use of a pair of resistance

switches for a single bit of contents (0.5 bit/switch) in comparison with resistive

random access memory (1 bit/switch). In this paper, we propose a new type of

RCAM referred to as combination-encoding CAM (CECAM). In N-CECAM,

a single unit consists of N high and N low resistance state switches whose

combination collectively represents binary contents, yielding a data density of

approximately 0.85 bit/switch when N = 10, for instance. The key to CECAM

is the encoding of an n-bit search key as a 2N-digit key and its decoding. To

this end, we propose a simple algorithm for encoding and decoding and its

implementation in digital circuitry.

iv

Keywords: Neuromorphic engineering, resistance switch array, multilayer

perceptron, Markov chain, content-addressable memory

Student Number: 2015-20801

 Guhyun Kim

v

Table of Contents

Abstract .. i

Table of Contents .. v

List of Tables .. ix

List of Figures ... x

List of Abbreviations ... xviii

1. Introduction ... 1

1.1. Resistance switch array ... 1

1.2. Resistance switch array application in neuromorphic

hardware .. 4

1.3. Bibliography .. 7

2. Artificial neural network for response inference of a nonvolatile

resistance-switch array ... 10

2.1. Introduction ... 10

2.2. Description of model system ... 12

2.3. Description of artificial neural network 14

2.4. Training and test datasets .. 15

2.5. Training results .. 16

2.6. Conclusions ... 22

vi

2.7. Bibliography .. 22

3. Markov chain hebbian learning algorithm with ternary synaptic

units .. 25

3.1. Introduction ... 25

3.2. Model description .. 28

3.2.1. Network structure and energy .. 28

3.2.2. Field application and update probability 33

3.3. Implementation of the MCHL algorithm on hardware 36

3.3.1. Field-programmable gate array .. 36

3.3.2. Resistance-based random access memory 36

3.4. Applications .. 40

3.4.1. Image recognition ... 40

3.4.1.1. Implementation on a general-purpose computer 40

3.4.1.2. MCHL accelerator .. 49

3.4.2. Multiplication table memorization and prime

factorization ... 50

3.5. Discussion ... 60

3.6. Appendix ... 64

3.6.1. Derivation of stochastic activity of a neuron 64

3.6.2. Calculation of update probability 65

3.6.3. Properties of Markov chain in MCHL 66

vii

3.6.4. Effect of update probability and temperature parameter on

training 70

3.6.5. Handwritten digit recognition ... 72

3.6.6. MCHL accelerator in detail .. 75

3.6.7. Multiplication table memorization 80

3.6.8. Prime factorization ... 83

3.6.9. Direct search factorization .. 84

3.7. Bibliography .. 84

4. Combination-encoding content addressable memory 89

4.1. Introduction ... 89

4.2. Combination-encoding content addressable memory 91

4.2.1. Algorithm for combination encoding 97

4.2.2. Implementation of encoding circuit 100

4.3. Parallel search of N-CECAM domains 103

4.4. Algorithm for content decoding and circuit implementation 106

4.5. Discussion ... 109

4.6. Conclusion ... 114

4.7. Appendix ... 114

4.8. Bibliography .. 116

5. Conclusion .. 120

Curriculum Vitae .. 122

viii

List of publications ... 124

Abstract (in Korean) .. 126

ix

List of Tables

Table 2.1. Parameters of model switch. ... 13

Table 3.1. Symbols. ... 32

Table 3.2. MCHL algorithm for handwritten digit classification 74

Table 3.3. MCHL algorithm for multiplication table memorization 82

Table 4.1. Truth table of encodings of 4-bit integers as resistor configurations

(N = 3) ... 99

Table 4.2. Comparison to previous work .. 113

x

List of Figures

Figure 1.1. Schematic of resistance switch array. Each resistance switch is

placed at each crossing points between electrodes. The output

current from resistance switch array is same as multiplication

between conductance matrix and input voltage vector. 3

Figure 1.2. (a) Scheme of neuromorphic hardware. It consists of neuron block,

synapse block which realize artificial neurons and synapses,

respectively, and topology block. (b), (c) Topology block stores

neuronal connectivity. When a spike occurs, it searches LUT and

find the destination neurons and synapses to be updated. (d)

Scheme for CAM as LUT. CAM enables fast-searching for

topology block. ... 6

Figure 2.1. (a) Schematic of an M × N crossbar array. (b) Assumed I-V

characteristics of the model resistance-switches (Types A and B).

(c) Schematic of the MLP with M × (N + 1) input and N output

units, and O hidden layers. The rule for mapping resistance-

switches and input voltage arrays to an input vector is tabulated in

the inset. .. 13

Figure 2.2. Inference-error reduction while training a network with the dataset

of a 10 × 9 crossbar array of (a) Type A and (b) Type B switches.

Their output results (inferred currents) for the entire 10,000 test

datasets after successful training (green lines) are plotted against

the desired currents in (e) and (f), respectively. The histogram of

xi

the error (the difference between inferred and desired currents) for

each case is shown in the inset. The red solid lines denote the

perfect match of inference with the desired (correct) results. The

results are shown for a 28 × 27 crossbar array of (c) Type A and

(d) Type B switches, and their statistics in (g) and (h),

respectively. .. 19

Figure 2.3. (a) Training the network (2,500 units in each of two hidden layers)

with 500,000 and 1,000,000 examples for Type B switch. The

capability of response inference is shown for the network trained

with (b) 500,000 and (c) 1,000,000 examples. The insets address

the distribution of inference-error. .. 21

Figure 2.4. Comparison of run time for the proposed method and Newton-

Raphson method. .. 21

Figure 3.1. MCHL algorithm working principle. (a) Basic network of M input

and N output binary stochastic neurons (u1 and u2: their activity

vectors). (b) Behavior of P(u2[i] = 1) with z[i] when b[i]=0. This

probability is identical to the deterministic activity a2[i] of the

neuron. .. 31

Figure 3.2. Network with hidden layers. F2 and FD-1 denote a field matrix for

w2 and wD-1. ... 35

Figure 3.3. Memory-centric illustration of a neural network. (a) Graphical

description of the weight matrix w that determines the correlation

between the input activity u1 and output activity u2. The grey

vertical and horizontal lines denote word and bit lines,

xii

respectively. This weight matrix w evolves in accordance to given

pairs of an input u1 and write vector v, ascertaining the statistical

correlation between u1 and v. (b) A pair of memory resistors in

each synaptic unit. Three combinations of the two conductance

values represent the ternary weight (1, -1, 0). (c) Potentiation: a

weight component at the current step t (wt[i, j]) has a nonzero

probability to gain +1 (i.e. Δwt[i, j] = 1) only if u1[j] ≠ 0, v[i] = 1,

and wt[i, j] ≠ 1; for instance, given u1 = (0, 1, 0, …, 0) and v = (1, -

1, -1, …, -1), wt[1, 2] has a probability of positive update. (d)

Depression: all components wt[i, 2] (i ≠ 1) are probabilistically

subject to negative update (gain -1) insofar as u1[2] ≠ 1, v[i] = -1,

and wt[i, 2] ≠ -1. .. 38

Figure 3.4. Application to handwritten digit recognition. (a) Schematic of the

network architecture for handwritten digit recognition. A single

HL is included. The matrix w1 first maps the input vector u1 to the

hidden neurons. The array a2 is taken as an input vector to w2 that

maps the input vector to the output neurons. The write vector v1

has 10 (the number of labels) buckets, each of which has H1

elements, i.e. N = 10H1. Each thick arrow indicates an input vector

to a group of neurons (each neuron takes each element in the input

vector). (b) The increase of recognition accuracy (red curve) and

corresponding decrease of energy (grey curve) with training

epoch. The trained network is a single-layer network (H=100). (c)

Classification accuracy change in due course of training with

xiii

network depth (H1=100, H2=50, H3=30). 44

Figure 3.5. Bucket size dependence of recognition accuracy. Recognition

accuracy change with (a) H1 in a network without a hidden layer,

(b) H2 with a single hidden layer (w1 was fully trained beforehand;

H1=100), and (c) H3 with two hidden layers (w1 and w2 were fully

trained beforehand; H1=100 and H2=100). 46

Figure 3.6. Memory usage and training time (for 105 epochs) for the MCHL

algorithm. The networks subject to the measurements varied in the

numbers of HLs (1, 2, and 3) and neurons (HD20, 30, and 50) in

each bucket. Each HL included the same number of neurons. The

data were compared with the memory usage and training time for

the MCHL accelerator and two feed-forward networks (MLP and

CNN) trained using a backpropagation algorithm (105 training

epochs). The clock speed of the FPGA board was set to 20

MHz. ... 47

Figure 3.7. Recognition accuracy of networks trained with the CIFAR-10

dataset. (a) Accuracy evolution with training epoch for a network

including three HLs, each of which embodies 500 nodes, reaching

approximately 43%. An MLP trained using backpropagation with

real-valued weights represents approximately 51%. (b)

Recognition accuracy upon the number of HLs. Each HL includes

500 nodes .. 48

Figure 3.8.Multiplication table memorization and aliquot part retrieval. (a)

Network architecture for multiplication table memorization. The

xiv

numbers in the range 1 – M are described by one-hot vectors. Any

two of total M2 numbers are combined to form an input vector u1

(𝑢1 ∈ ℤ2𝑀; 𝑢1𝑖 ∈ 0, 1); for instance, when M = 9, u1 for one and

six is [100000000|000001000], where the first and last 9 bits

indicate one and six, respectively, as shown in the figure. The

correct answer serves as the label of chosen numbers; there are M2

labels in total. Each label (bucket) has H elements so that the write

vector v is a M2H long vector that is adjusted given the correct

label. Given entire pairs of numbers in the table and their

multiplication results, the matrix w (𝑤 ∈ ℤ𝑀2𝐻 × 2𝑀) is

adjusted. 𝑃 + 0, 𝑃 − 0, b[i], and τ were set to 1, 0, 3, and 0.001,

respectively (b) Network architecture of aliquot part retrieval

given the matrix w. The transpose of w (wT) finds the entire aliquot

parts of a given number in a parallel manner in place. For instance,

for number ‘6’, an input vector u1 (M2H long vector) has a single

nonzero bucket (6th bucket) that is filled with ones. The output

vector z is [111001000|111001000], indicating the sum of four

one-hot vectors (‘1’ + ‘2’ + ‘3’ + ‘6’)each of them is an aliquot

part of 6. For prime numbers, the output vector includes only two

1’s (1 and its own number) so that prime numbers can readily be

found; for instance, 7 results in [100000100|100000100] as shown

in the figure. .. 55

Figure 3.9.Prime factorization. (a) Memory (𝑤𝑇 ∈ ℤ2𝑀 ×𝑀2𝐻) based

iterative and parallel search for prime factors. Given an input

xv

vector u standing for a certain number n, the matrix multiplication

wTu outputs vector z (𝑧 ∈ ℤ2𝑀; 𝑧𝑖 ∈ 0, 1) that reveals one pair of

its factors—except 1 and itself—z[1:M] and z[M+1:2M] whose

product yields n. Operator T2 adds these two one-hot vectors,

resulting at
 (𝑎𝑡 ∈ ℤ𝑀). The iteration terminates upon no further

change in a other than a[1]. Otherwise, operator T1 transforms at

to u, and the next cycle continues. (b) Prime factorization of 840 =

23×3×5×7 with a matrix wT (M = 100, H = 30). The first iterative

step outputs a1 in (c); the address of each element indicates a

factor, e.g. the 21st element, a[21], means a factor of 21, and the

element value its exponent. Only a1[21] and a1[40] in a1 except

a1[1] are nonzero, indicating 21×40. The second iteration outputs

a2 whose nonzero elements are a2[2], a2[3], a2[7], and a2[20] (= 1,

1, 1, and 1, respectively), implying 22×10×21. The third iteration

respectively sets a3[2], a3[3], a3[7], and a3[10] to 2, 1, 1, and 1, i.e.

22×3×7×10. The forth iteration sets a3[2], a3[3], a3[5], and a3[7] to

3, 1, 1, and 1, i.e. 23×3×5×7 and an additional iteration does not

alter other elements than a[1] such that the prime factorization is

completed. (d) The number of factorization steps until prime

factors for the integers (1.62884×1010 – 7.75541294×1011). The

results are compared with the direct search factorization. 57

Figure 3.10.Prime factorization capacity. The number of integers factorizable

using the proposed algorithm with the size M of a trained

multiplication table and the memory for matrix w. 59

xvi

Figure 3.11. Effect of multinary synaptic weight. Improvement of handwritten

digit recognition accuracy with multinary synaptic weight. The

trained network is a single-layer network (H = 100). A benchmark

is a single-layer perceptron with real-valued weight, which was

trained with a backpropagation algorithm. 63

Figure 3.12. (a) State transition diagram for a weight element given three

different v[i] values. (b) NE change (for 100 weight elements

randomly sampled) monitored when training a network with the

MNIST dataset. (c) The 100 final NE values plotted with respect

to the frequency of non-zero input during the training phase. (d)

Probability distribution over w[i, j] = 1, 0, 1 with training epoch. 69

Figure 3.13. Effect of (a) update probability and (b) temperature parameter on

training. ... 71

Figure 3.14. Block diagram of the MCHL accelerator. 79

Figure 4.1. Schematic of the conventional RCAM in (a) active and (b) passive

crossbar arrays. ML, SL, SL, and PL denote a match line, search

line, complementary search line, and plate line, respectively. A

timing diagram for active and passive arrays is illustrated in (c)

and (d), respectively. CLK, VSL, VSL, and VML denote a clock

cycle, search line voltage, complementary search line voltage, and

match line voltage, respectively. IML in (d) means the current

through the match line. The red lines in (c) and (d) indicate VSL,

VSL, and the CAM responses when mismatching. 95

Figure 4.2. (a) Schematic of 3-CECAM (N = 3). A single unit consists of N

xvii

HRS and N LRS switches. SA and PE mean a sense amplifier and

priority encoder, respectively. (b) Current responses to a given

encoded key upon a match and mismatches. Matching allows the

minimal current response (first row). .. 96

Figure 4.3. Content density of N-CECAM with N in comparison with the

conventional RCAM and RRAM. The kinks arise from the floor

function in (1). .. 96

Figure 4.4. (a) Block diagram of an encoding circuit for 3-CECAM. (b)

Timing diagram for encoding a search key of 15 as a 6-digit key of

101100... 102

Figure 4.5. Encoding delay and number of entries in the LUT P with the bit

number of a search key (n).. 102

Figure 4.6. Schematic of parallel searches of Np-CECAM partitions. NEXT in

the figure means NEXT block in the encoding circuit. The n-bit

search key is divided into np chunks, and each chunk applies to the

NEXT block of each partition. All partitions share a single LUT

P. ... 105

Figure 4.7. (a) Block diagram of a decoding circuit for 3-CECAM. (b) Timing

diagram for decoding an encoded search key of 101100 as its

original search key (15) .. 108

Figure 4.8. Schematic of CECAM with a voltage-reading scheme. The blue

arrow in the second row illustrates activated pull-down path. 112

xviii

List of Abbreviations

LRS Low resistance state

HRS High resistance state

RAM Random access memory

SNN Spiking neural network

IC Integrated circuit

CMOS Complementary metal oxide semiconductor

LUT Lookup table

CAM Content-addressable memory

MLP Multilayer perceptron

CNN Convolutional neural network

MAC Multiply-accumulation

GPU Graphics processing unit

MCMC Markov chain Monte Carlo

MCHL Markov chain Hebbian learning

CBA Crossbar array

HL Hidden layer

FPGA Feld programmable gate array

2T2R 2 transistor-2 resistance switch

CECAM Combination-econding content-addressable memory

1

1. Introduction

1.1. Resistance switch array

Resistance switch is regarded as a promising candidates for next-generation

memory [1]. Resistance switch has two states called low resistance state (LRS)

and high resistance state (HRS). The states of resistance switch are non-volatile

so that it allows lower energy consumption compared to the conventional

memories such as dynamic random access memory (DRAM), which needs

refreshment. The switching between LRS and HRS is triggered by electrical

stimulation such as applying voltage or current to resistance switch. In the

resistance switch array, each resistance switch is placed at the crossing point

between each horizontal and vertical metal electrode lines (Fig. 1.1). Note that

these horizontal and vertical electrodes have roles of word and bit line.

Therefore, resistance switch array is regarded as a two-terminal memory. This

simple structure without transistor allows high integration density, the

minimum cell size of 4F2, where F means the minimum feature size [2].

Recently, several analog resistance switches have been proposed [3], [4].

These analog resistance switches enable high data density because a single

resistance switch express multi-bit data. Yet, analog resistance switches have

bottlenecks such as high non-linear write-pulse number dependency [4], and

they also need extremely dedicate control to reach desired resistance [5].

An important feature of resistance switch array is that it realizes matrix-

vector multiplication [6]-[8]. From the Kirchhoff’s law, the output current

2

response is derived as the multiplication between conductance matrix and input

voltage vector (Fig. 1.1). This parallel operation enables resistance switch array

to be applied to various field, such as analog computer, artificial synapse array,

content-addressable memory (CAM). Additionally, this parallel operation

enables exclusion of sneak current, which causes degradation of sensing margin,

because all electrodes are connected to ground or Vdd. Therefore, sneak currents

problem is merely considered in the parallel operation of resistance-switch

array [6]-[8].

3

Figure 1.1. Schematic of resistance switch array. Each resistance switch is

placed at each crossing points between electrodes. The output current from

resistance switch array is same as multiplication between conductance matrix

and input voltage vector.

4

1.2. Resistance switch array application in neuromorphic

hardware

Neuromorphic engineering aims for implementing biologically plausible

spiking neural network (SNN) into hardware [9]. With SNN, neuromorphic

hardware is expected to be energy-efficient similar to human brain [10]. Also it

is suitable for temporal learning, including temporal difference learning [11]

and temporal sequence learning [12], and thus expected to be appropriate to

solve time-dependent problem.

A neuromorphic hardware consists of neurons that are interconnected

through synapses. Implementing neurons and synapses commonly uses analog

and/or digital integrated circuits (IC) based on standard complementary metal

oxide semiconductor (CMOS) technologies [13], [14]. Recently, emerging

devices such as phase change memory [15], [16], magnetic tunnel junctions

[17], [18], threshold switches [19], and floating-gate transistors [20] are

proposed to build artificial neurons and synapses.

Resistance switch array is also a strong candidate for artificial synapses [3],

[4]. In neural network, the activation of pre-synaptic neurons causes spikes and

these spikes are transmitted to post-synaptic neurons. Here, post-synaptic

neurons receive weighted sum of spikes from pre-synaptic neurons, not spikes.

The weighted sum of spikes is expressed as W × x, where W and x indicate a

synaptic weight matrix and activation of pre-synaptic neurons, respectively. It

is similar to matrix-vector multiplication in resistance switch array, mentioned

section 1.1 so that resistance switch array is usable as artificial synapse array.

5

Another application of resistance switch array in a neuromorphic hardware

is as a look-up table (LUT) in a topology block [21] (Fig. 1. 2). The entire

connections between neurons through synapses are tabulated in the LUT. When

a spike occurs from a neuron, the topology block searches all elements of the

LUT and find the post-synaptic neurons and synapses to update. Therefore, fast-

search ability is the most important factor of LUT. RAM is not a proper solution

for LUT because RAM search every address sequentially and it causes

significant delays. Unlike RAM, content-addressable memory (CAM) has

parallel search ability and thus it is proper to be used as LUT [22]. The

conventional CAMs, however, have SRAM-based structure which needs

tremendous amount of transistors and have low-integration density.

Compared to SRAM-based CAM, resistance switch-based CAM (RCAM)

has much higher content density because they use much less transistors [23],

[24]. Also, RCAM has very low static energy consumption because of non-

volatility. Consequently, RCAM is appropriate for the LUT in topology block

of neuromorphic hardware.

From this features, this paper consists of three parts. At first, artificial neural

network is applied to accelerate simulation of resistance-switch array. In the

second part, a new learning algorithm called Markov Chain Hebbian Learning

is proposed as the appropriate learning algorithm for resistance switch array.

Lastly, a new type of RCAM, called combination-encoding CAM, is proposed

to improve content density.

6

Figure 1.2. (a) Scheme of neuromorphic hardware. It consists of neuron block,

synapse block which realize artificial neurons and synapses, respectively, and

topology block. (b), (c) Topology block stores neuronal connectivity. When a

spike occurs, it searches LUT and find the destination neurons and synapses to

be updated. (d) Scheme for CAM as LUT. CAM enables fast-searching for

topology block.

7

1.3. Bibliography

[1] A. Beck, J. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Applied

Physics Letters, vol. 77, no. 1, pp. 139-141, 2000.

[2] J. Y. Seok, S. J. Song, J. H. Yoon, K. J. Yoon, T. H. Park, D. E. Kwon,

H. Lim, G. H. Kim, D. S. Jeong, and C. S. Hwang, Advanced

Functional Materials, vol. 24, no. 34, pp. 5316-5339, 2014.

[3] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K.

Likharev, and D. B. Strukov, Nature, vol. 521, no. 7550, pp. 61-64,

2015.

[4] G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang, I. Boybat, R.

S. Shenoy, P. Narayanan, K. Virwani, and E. U. Giacometti, IEEE

Transactions on Electron Devices, vol. 62, no. 11, pp. 3498-3507, 2015.

[5] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila,

H. Jiang, R. S. Williams, and J. J. Yang, Advanced Materials, vol. 30,

no. 9, p. 1705914, 2018.

[6] D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang, Advanced

Electronic Materials, vol. 2, no. 9, p. 1600090, 2016, Art no. 1600090.

[7] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S.

Lam, N. Ge, J. J. Yang, and R. S. Williams, in Proceedings of the 53rd

annual design automation conference, 2016: ACM, p. 19.

[8] L. Gao, P. Y. Chen, and S. Yu, IEEE Electron Device Letters, vol. 37,

no. 7, pp. 870-873, 2016.

8

[9] C. Mead, Proceedings of the IEEE, vol. 78, no. 10, pp. 1629-1636,

1990.

[10] G. Cauwenberghs, Proceedings of the national academy of sciences, vol.

110, no. 39, pp. 15512-15513, 2013.

[11] R. P. Rao and T. J. Sejnowski, Neural computation, vol. 13, no. 10, pp.

2221-2237, 2001.

[12] F. Wörgötter and B. Porr, Neural computation, vol. 17, no. 2, pp. 245-

319, 2005.

[13] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. Van Schaik, R.

Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, and

S. Renaud, Frontiers in neuroscience, vol. 5, p. 73, 2011.

[14] M. R. Azghadi, N. Iannella, S. F. Al-Sarawi, G. Indiveri, and D. Abbott,

Proceedings of the IEEE, vol. 102, no. 5, pp. 717-737, 2014.

[15] T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, and E. Eleftheriou,

Nature nanotechnology, vol. 11, no. 8, p. 693, 2016.

[16] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. di

Nolfo, S. Sidler, M. Giordano, M. Bodini, and N. C. Farinha, Nature,

vol. 558, no. 7708, p. 60, 2018.

[17] A. Sengupta, P. Panda, P. Wijesinghe, Y. Kim, and K. Roy, Scientific

reports, vol. 6, p. 30039, 2016.

[18] A. Mizrahi, T. Hirtzlin, A. Fukushima, H. Kubota, S. Yuasa, J. Grollier,

and D. Querlioz, Nature communications, vol. 9, no. 1, p. 1533, 2018.

9

[19] H. Lim, H.-W. Ahn, V. Kornijcuk, G. Kim, J. Y. Seok, I. Kim, C. S.

Hwang, and D. S. Jeong, Nanoscale, vol. 8, no. 18, pp. 9629-9640,

2016.

[20] V. Kornijcuk, H. Lim, J. Y. Seok, G. Kim, S. K. Kim, I. Kim, B. J.

Choi, and D. S. Jeong, Frontiers in neuroscience, vol. 10, p. 212, 2016.

[21] V. Kornijcuk, J. Park, G. Kim, D. Kim, I. Kim, J. Kim, J. Y. Kwak, and

D. S. Jeong, Advanced Materials Technologies, vol. 4, no. 1, p.

1800345, 2019.

[22] K. Pagiamtzis and A. Sheikholeslami, IEEE Journal of Solid-State

Circuits, vol. 41, no. 3, pp. 712-727, 2006.

[23] A. Grossi, E. Vianello, C. Zambelli, P. Royer, J.-P. Noel, B. Giraud, L.

Perniola, P. Olivo, and E. Nowak, IEEE Transactions on Very Large

Scale Integration Systems, no. 99, pp. 1-9, 2018.

[24] R. Han, W. Shen, P. Huang, Z. Zhou, L. Liu, X. Liu, and J. Kang,

Japanese Journal of Applied Physics, vol. 57, no. 4S, p. 04FE02, 2018.

10

2. Artificial neural network for response

inference of a nonvolatile resistance-switch

array

2.1. Introduction

An artificial neural network (ANN) is a layered graph of nodes (activation units)

and edges (nonzero connection weights), offering an immensely versatile

hypothesis for various types of data description and different training methods

[1]. Among feed-forward neural networks, multilayer perceptrons (MLP) and

convolutional neural networks (CNN) are the most frequently applied types of

neural network [2]. MLP is a prototypical feed-forward architecture in which

every unit in a layer is fully wired to all units in the adjacent layers. In contrast,

CNN has interlayer connections that are sparse and localized in the network

topology [3,4]. A weight matrix in the CNN filters an input matrix fed into the

next layer, and this filter (also known as convolution kernel) skims over the

input layer. This is mathematically identical to convolving around the input

layer, thus this architecture is termed CNN. In fact, the CNN has been

successfully applied to a wide range of tasks including image recognition [1],

[3]-[5] and natural language processing [6].

The scope of tasks (other than conventional tasks mentioned above) within the

capability of ANN has been markedly expanding, including quantum

mechanical problems such as estimation of quantum mechanical ground state

given a two-dimensional potential distribution [7] and modelling a mechanical

11

system in presence of noise [8]. These examples highlight the neural network

as a versatile hypothesis and the capability of backpropagation for supervised

learning as a widely applicable training method.

Meanwhile, a crossbar array of nonvolatile resistance-switches, i.e., passive

resistive random access memory (RRAM), ideally meets the 4F2 design rule (F

is the minimum feature size), offering a solution to high-density nonvolatile

memory [9]-[11]. Additionally, its current response to an applied voltage array

naturally captures the multiply-accumulate (MAC) operation so that crossbar

arrays have often been used for physical implementation of the matrix–vector

product [12]-[14]. The benefit of this approach is obvious in comparison to the

digital MAC operation: high speed due to the fully parallel operation and

energy-efficiency due to no need for data transference during the operation.

Given that the MAC operation is at the heart of MLP for both training and

inference, the passive RRAM can substantially improve efficiency in MLP,

which is an important field of neuromorphic engineering [12], [14]-[19].

Considering the beneficial relationship between passive RRAM and MLP

(particularly, the aforementioned passive RRAM for MLP), it is of interest to

seek the reverse approach (MLP for passive RRAM). To this end, this work

exemplifies the feasible application of MLP to the response inference of passive

RRAM in which, once trained, the inference merely costs a few steps of matrix-

vector product (depending on the depth of the network). Our new method may

offer a new feasible means of crossbar circuit simulations as an alternative to

conventional circuit simulation methods.

12

2.2. Description of model system

Passive RRAM as a model system is a M × N matrix R loaded with RHRS and

RLRS that denote resistance in a high resistance state (HRS) and low resistance

state (LRS), respectively, i.e., R∈{RHRS, RLRS}M × N. This model system outputs

an N-long real-valued current vector (∈ℝN) in response to an M-long real-

valued input voltage vector V (∈{0,1}M). The model system is illustrated in

Fig. 2.1(a).

The model is a nonlinear system because the HRS features a highly nonlinear

current-voltage (I-V) relationship in contrast to the linear (or almost) I-V of the

LRS. In this regard, the HRS was provided with a nonlinear I-V characteristic

as follows: I = I0e
aV, where I0 and a denote a pre-exponential factor and voltage

coefficient, respectively. The larger a, the higher nonlinearity is given to the I-

V behavior. Such nonlinearity in the HRS has been observed in an enormous

number of resistance-switches given the usual thermal activation of current

transport in the HRS [10, 20, 21]. In contrast, the LRS was given a linear I-V

characteristic, keeping fidelity to experimental systems that generally represent

linear or very weakly nonlinear I-V characteristics.

Two types of resistance-switch were addressed in this study: Type A and B,

whose detail is tabulated in Table 2.1. The I-V behavior for each switch is

plotted in Fig. 2.1(b). They differ in the RHRS/RLRS ratio (evaluated at 1 V); the

ratio for Type A is 100 times larger than Type B. For each type, two different

array sizes (10×9 and 28×27; M = 10 and N = 9, and M = 28 and N = 27,

respectively) were considered.

13

Figure 2.1. (a) Schematic of an M × N crossbar array. (b) Assumed I-V

characteristics of the model resistance-switches (Types A and B). (c) Schematic

of the MLP with M × (N + 1) input and N output units, and O hidden layers.

The rule for mapping resistance-switches and input voltage arrays to an input

vector is tabulated in the inset.

Table 2.1. Parameters of model switch.

Heading Type A Type B

RHRS (Ω) 108 × e−V 105 × e−V

RLRS (Ω) 10k 1k

RHRS/RLRS at 1 V 3679 36.79

14

2.3. Description of artificial neural network

The passive RRAM outputs a current vector I that is determined by the

configuration of switches over the whole array instead of their local

configuration. A fully connected feed-forward network is, therefore, suitable for

the model system instead of a CNN capturing patterns over local areas.

Additionally, given the aforementioned nonlinearity of the model system, a

hidden layer(s) needs to be incorporated in the network, rendering an MLP most

suitable. Thus, an MLP was chosen as an appropriate network for the crossbar

array. Fig. 2.1(c) illustrates the employed MLP with M × (N + 1) input units, N

output activation units, and O hidden layers, each of which is filled with Hi

activation units where i ∈ {1, 2, ···, O}. The input into the MLP is the

resistance-state (+1 and −1 for the LRS and HRS, respectively) distribution

over the M×N array (R) plus an M-long vector for input voltage (+1 and−1 for

V[i] = 1 and V[i] = 0, respectively) as sketched in Fig. 2.1(c). This matrix is

then vectorized to feed into the MLP. The output is the estimated output current

of the crossbar array at a given voltage. Note that successful training is crucial

to rescale the original physical input (resistance and voltage) and output

(current) in a heuristic manner such that the rescaled (scale-free) values stay in

an “acceptable” range. To this end, symbolic (+1 and−1), rather than physical,

values were given to the input components. Likewise, the desired (correct)

output values (currents) were rescaled such that L[i] = 10×I[i]×RLRS.

The leaky rectified linear unit (ReLU) was deployed as an activation unit: f(x)

= max(x, 0.1x). The leakage when x < 0 is required for the negative input

15

components. Otherwise, the negative input components are merely ignored as

for the simple ReLU, f(x) = max(x, 0). The ReLU is a workaround for the

notorious vanishing gradient problem, which is significant when the network is

deep.

2.4. Training and test datasets

The output I in response to an input V for a given R was evaluated by applying

the Kirchhoff’s circuit law to each switch. The obtained nonlinear equations

were solved using the Newton-Raphson method, which resulted in the output I.

The calculation was elaborated in [22]. A training dataset was produced by

randomly sampling resistance state distribution over the array and input V. First,

p1 (0 ≤ p1 ≤ 1) was randomly sampled from a uniform probability distribution

function (PDF) and used as the probability that V[i] = 1. That is, if p1 is 0.4, 40%

of all input lines are pulled high (1 V), and the rest lines (60%) are pulled down

(0 V). Another number p2 (0 ≤ p2 ≤ 1) was subsequently sampled for each input

line from a uniform PDF to randomly distribute 1 V signals over all input lines

at a probability of p1 such that, when p2 ≤ p1, V[i] = 1, and 0 otherwise. This

process was repeated with different p2’s over M rows, resulting in an input V

for this training example. A third number p3 (0 ≤ p3 ≤ 1) was picked from a

uniform PDF and taken as the percentage of LRS switches in the entire array.

For each switch in the array, p3 was compared with another random number, p4

(0 ≤ p4 ≤ 1) was sampled for each switch, and R[i, j] = RLRS when p4 ≤ p3, and

R[i,j] = RHRS otherwise. The label of this training example was the current

response for I given R and V. The complete dataset was acquired by repeating

this process. The test dataset was separately made for the fair evaluation of

16

inference accuracy. Two different crossbar array sizes (10×9 and 28×27) for

each type of switch were considered so that four different training and test

datasets were produced. Each training dataset included 500,000 training

examples (V, R, and I) unless otherwise specified. The network was examined

for every training epoch using 10,000 test examples. Backpropagation using the

mean-squared error loss function was employed with Adam optimizer that

leverages learning rate adaptation for each parameter to accelerate training [23].

The MLP was batch-trained with a batch size of 100 (100 examples were

randomly chosen for each training epoch). Both training and inference were

performed using TensorFlow [24]. Note that for successful training, the

network should vary on its hyper-parameters such as the number of ReLU units

in each hidden layer (Hi) and the network depth (O) depending on the input

array length.

2.5. Training results

Fig. 2.2 shows a reduction in the discrepancy between the output (inferred)

current Iout and desired (correct) current Icor in due course, revealing successful

training for all four cases conditional on the network structure. For the small

crossbar array (10×9), a network including a single hidden layer (O = 1) loaded

with 100 ReLU units could successfully be trained with the 500,000 training

examples (Fig. 2.2(a), (b)). However, the use of fewer units (50 and 75) falls

short of the capability of learning the dataset so that a high error level is

maintained for both types of switch. This is a result of underfitting referring to

the use of an unsuitable network for capturing the input pattern. Here, the

network is too simple (insufficient number of units) to describe the complexity

17

of input data. The successfully trained network infers the output current of a

random 10×9 crossbar array R at a random V. The inferred currents for 10,000

test examples are plotted against the desired (correct) currents in Fig. 2.2(e), (f),

each of which includes 90,000 data points (10,000 test examples, each of which

produces 9 current values). The error histogram for each case is plotted in the

inset, indicating a root mean squared error (RMSE) of 0.313 µA and 17.8 µA,

respectively. The larger error for Type 2 switch arises from the higher current

in both HRS and LRS due to the lower RHRS and RLRS. The results for the

larger crossbar array (28 × 27) of Types A and B switches are shown in Fig.

2.2(c), (d), respectively. Given the larger input dimension (28×28 = 784), a

network needs more units in each hidden layer and/or more hidden layers for

success in training. The employed network varies on the number of units (1500

and 2500) in a hidden layer and the network depth (1 and 2). The three networks

among four are given the capability to estimate the response of a random 28 ×

27 crossbar array R at a random V. As such, the network fully trained along the

green curve for Types A and B switches represents low inference-error (a

RMSE of 4.85 µA and 62.7 µA, respectively) as elucidated in Fig. 2.2(g), (h),

and their insets.

The correlation coefficient r for each case was also evaluated as another

measure of success of training, which is given by r = cov(Iout −

Icor)/√var(Iout)·var(Icor), where cov and var denote a covariance and variance,

respectively. The correlation coefficient is asymptotic to 1 when the inference

error tends to zero, and thereby r = 1 implies zero error (perfect match). The

calculated r for each case is written in Fig. 2.2. The failure of training for the

18

network with 2,500 units in each of the two hidden layers is due to overfitting

(see orange curves in Fig. 2.2(c), (d)). Although the network is given sufficient

complexity (a large number of units and hidden layers) to learn the complex

input pattern, insufficient training examples lead to faulty training as shown in

the orange curves (Fig. 2.2(c), (d)). Overfitting could be avoided by training

with a larger training dataset (here 1,000,000 examples for Type B switch) as

shown in Fig. 2.3(a). The inference-error for the overfitting case is detailed in

Fig. 2.3(b) which represents a substantial discrepancy between the inferred and

desired outputs, the extent to which the RMSE reaches 438.2 µA (r = 0.99571).

The error statistics are plotted in the inset. In contrast, a remarkable reduction

in inference-error is identified for the non-overfitting case (Fig. 2.3(c)) whose

RMSE is lowered down to 49.2 µA (r = 0.9995).

Finally, we compared the time-efficiency of the proposed method with the

conventional Newton-Raphson method [22]. The run time of a 10×9 resistance

array calculation was measured for both methods using the same computer. The

result shown in Fig. 2.4 ensures an acceleration in calculation by approximately

8 times, identifying a feasible benefit of fast calculation from the proposed

method.

19

Figure 2.2. Inference-error reduction while training a network with the dataset

of a 10 × 9 crossbar array of (a) Type A and (b) Type B switches. Their output

results (inferred currents) for the entire 10,000 test datasets after successful

training (green lines) are plotted against the desired currents in (e) and (f),

respectively. The histogram of the error (the difference between inferred and

desired currents) for each case is shown in the inset. The red solid lines denote

the perfect match of inference with the desired (correct) results. The results are

20

shown for a 28 × 27 crossbar array of (c) Type A and (d) Type B switches, and

their statistics in (g) and (h), respectively.

21

Figure 2.3. (a) Training the network (2,500 units in each of two hidden layers)

with 500,000 and 1,000,000 examples for Type B switch. The capability of

response inference is shown for the network trained with (b) 500,000 and (c)

1,000,000 examples. The insets address the distribution of inference-error.

Figure 2.4. Comparison of run time for the proposed method and Newton-

Raphson method.

22

2.6. Conclusions

A fully connected feed-forward network with different structures (depth and the

number of activation units) was successfully trained to infer the current

response of a random crossbar array to a randomly applied voltage array. This

work first verifies the capability of ANN to capture the highly nonlinear input-

output relationship of a crossbar array model system. Secondly, MLP for

supervised learning provides a means of real-valued array inference beyond the

classification of input patterns. Thirdly, this work offers a distinct view of

crossbar array evaluation — a numerical solution of a number of simultaneous

equations can be avoided at the expense of a few steps of matrix-vector product

for inference. However, training the network and preparing datasets can be

expensive, depending on the network hyper-parameters and model crossbar

array size. Thus, we leave this efficiency issue open for the moment.

2.7. Bibliography

[1] Y. LeCun, Y. Bengio, and G. Hinton, Nature, Insight vol. 521, no. 7553,

pp. 436-444, 2015.

[2] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, and A. Borchers, in 2017 ACM/IEEE

44th Annual International Symposium on Computer Architecture

(ISCA), 2017: IEEE, pp. 1-12.

[3] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Proceeding of IEEE,

vol. 86, no. 11, pp. 2278-2324, 1998.

23

[4] Y. LeCun, K. Kavukcuoglu, and C. Farabet, in 2010 IEEE

International Symposium on Circuits and Systems (ISCAS), 2010, pp.

253-256.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Advances in Neural

Information Processing Systems, 2012, pp. 1097-1105.

[6] R. Collobert, J. Weston, L. o. Bottou, M. Karlen, K. Kavukcuoglu, and

P. Kuksa, Journal of Machine Learning Research, vol. 12, pp. 2493-

2537, 2011.

[7] K. Mills, M. Spanner, and I. Tamblyn, arXiv:1702.01361, 2017.

[8] M. Nentwig and P. Mercorelli, in 2008 7th IEEE International

Conference on Cybernetic Intelligent Systems, 2008: IEEE, pp. 1-6.

[9] R. Waser, R. Dittmann, G. Staikov, and K. Szot, Advanced Materials,

vol. 21, pp. 2632-2663, 2009.

[10] D. S. Jeong, R. Thomas, R. Katiyar, J. Scott, H. Kohlstedt, A. Petraru,

and C. S. Hwang, Reports on Progress in Physics, vol. 75, no. 7, p.

076502, 2012.

[11] J. Y. Seok, S. J. Song, J. H. Yoon, K. J. Yoon, T. H. Park, D. E. Kwon,

H. Lim, G. H. Kim, D. S. Jeong, and C. S. Hwang, Advanced

Functional Materials, vol. 24, no. 34, pp. 5316-5339, 2014.

[12] D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang, Advanced

Electronic Materials, vol. 2, no. 9, p. 1600090, 2016.

[13] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S.

Lam, N. Ge, J. J. Yang, and R. S. Williams, Proceedings of the 53nd

Annual Design Automation Conference, 2016, pp. 1-6.

24

[14] L. Gao, P. Y. Chen, and S. Yu, IEEE Electron Device Letters, vol. 37,

no. 7, pp. 870-873, 2016.

[15] D. S. Jeong, I. Kim, M. Ziegler, and H. Kohlstedt, RSC Advances, vol.

3, no. 10, pp. 3169-3183, 2013.

[16] J. J. Yang, D. B. Strukov, and D. R. Stewart, Nature Nanotechnology,

vol. 8, no. 1, pp. 13-24, 2013.

[17] P. Y. Chen, L. Gao, and S. Yu, IEEE Transactions on Multi-Scale

Computing Systems, vol. 2, no. 4, pp. 257-264, 2016.

[18] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, Nature

Nanotechnology, Article vol. advance online publication, 2017.

[19] S. Choi, J. H. Shin, J. Lee, P. Sheridan, and W. D. Lu, Nano Letters,

vol. 17, no. 5, pp. 3113-3118, 2017.

[20] D. S. Jeong, H. Schroeder, and R. Waser, Electrochemical Solid-State

Letters, vol. 10, p. G51, 2007.

[21] D. S. Jeong, H. Schroeder, and R. Waser, Physical review B, vol. 79, p.

195317, 2009.

[22] D. S. Jeong, H.-W. Ahn, S.-D. Kim, M. An, S. Lee, and B.-k. Cheong,

Electronic Materials Letters, vol. 8, no. 2, pp. 169-174, 2012.

[23] D. P. Kingma and J. Ba, arXiv:1412.6980, 2014.

[24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, and M. Devin, arXiv:1603.04467, 2016.

25

3. Markov chain hebbian learning algorithm with

ternary synaptic units

3.1. Introduction

Recent progress in machine learning (particularly, deep learning) endows

machines with high precision recognition and problem-solving capabilities

beyond the human level [1]-[3]. Computers on the von Neumann architecture

are the platform for the breakthroughs albeit frequently powered by hardware

accelerators, e.g., graphics processing unit (GPU) [4]. The main memory stores

intertwined fragmentary information, e.g., weight matrix, representation of

hidden neurons, input datasets, and so forth. However, essential to efficient

memory retrieval is memory organization such that the whole weight matrix

can readily be recalled when necessary. In this regard, a high-density crossbar

array (CBA) of two-terminal memory elements, e.g., oxide-based resistive

memory and phase change memory, is perhaps a promising solution to machine

learning acceleration [5]-[9].The connection weight between a pair of neurons

is stored in each memory element in the CBA as conductance, and the weight

is read out in place by monitoring current in response to a voltage [5]-[9].

Albeit promising, this approach should address the following challenges;

each weight should be calculated beforehand using a conventional error-

correcting technique, and the pre-calculated value needs to be programmed in

a single memory element. The former particularly hinders online learning. In

this study, an easy-to-implement algorithm based on a stochastic neural

26

network—termed the Markov chain Hebbian learning (MCHL) algorithm—is

proposed. The most notable difference between the MCHL and restricted

Boltzmann machine (RBM) [10]-[15] is that the MCHL is a discriminative

learning algorithm with the aid of ‘‘external field’’ that realizes supervised

learning. Also, each update uses only local (spatial and temporal) data rather

than global data such as energy of the entire network. The MCHL algorithm

also features as follows: (a) Each weight w[i, j] is a ternary number: w[i, j] ∈

{−1,0,1}

(b) Given (a), each update of weight follows a finite-state Markov chain, and

the update probability is in line with the Hebbian learning.

(c) A group of output neurons in a bucket (rather than a single neuron)

simultaneously represent a data class (label), which is comparable to concept

cells [16]-[18].

(d) When the network is deep, the network is trained in a greedy layer-wise

manner, and each layer is trained in a greedy edge-wise manner.

Provided with these features, the MCHL algorithm enables an ad hoc update

of the weight matrix (online learning) in a memory-saving fashion, so that it is

suitable for machine learning powered by CBA-based memory. No need for an

auxiliary function for error correction, e.g., backpropagation, particularly

alleviates computational complexity. Each synapse is given a ternary number

during the entire learning period—distinguishable from binarizing real-valued

weight at each update step [19] as well as the use of auxiliary real-valued

variables [20]. A Markov chain, specifically, in Markov chain Monte

Carlo(MCMC), is a common means of sampling from a complex distribution

27

of data to extract information in stochastic machine learning [21]. Especially, a

Markov decision process offers a solution to an optimal policy that maps a

current state of an agent to a certain action resulting in the maximum reward in

reinforcement learning [22], [23] Additionally, MCMC yields a posterior

probability distribution that is the key to Bayesian inference and learning [21]

Examples also include recent attempts to apply Markov chains to multi-instance

multi-label learning [24] that addresses objects embodying multiple instances

(features). In this case, Markov chains are used as probabilistic classifiers

mapping multiple instances to multiple labels [25].

Stochastic Hebbian learning algorithms are methods to probabilistically train

a binary synapse conditional on the pre and postsynaptic activities in line with

the MCHL algorithm [26], [27]. Interestingly, such algorithms can train

networks to a comparable degree with its deterministic counterpart [26], [27].

Yet, these algorithms barely support supervised learning for classification tasks.

Senn and Fusi proposed a single-layer perceptron with a stochastic learning

algorithm for supervised learning [28]. The algorithm requires global inhibition

that is applied to all output neurons so that the actual synaptic input in total

(input from binary excitatory synapses plus global inhibition) is not all or

nothing. Additionally, no explicit method to apply the algorithm to multilayer

perceptrons (MLPs) is proposed.

Note that, regarding the feature (d), the network depth indicates repeated

linear classifiers through the layers so that it differs from that of a multilayer

feed-forward network that features a nonlinear classifier. Nevertheless, we term

the additional layers between input and output layers as hidden layers(HLs)

28

given that they are literally hidden irrespective of their role in non-linear

classification. Additionally, a network with such HLs is referred to as a deep

network.

The MCHL algorithm was applied to two proof-of concept examples: image

recognition using the MNIST and CIFAR-10 datasets and multiplication table

memorization. The latter example relates the arithmetic to memory-based

perception in an analogous way to humans’ mental arithmetic. The weight

matrix trained with the multiplication table was then applied to more

complicated arithmetic such as aliquot part evaluation and prime factorization.

3.2. Model description

3.2.1. Network structure and energy

Analogous to the RBM, two layers of neurons without recurrent connection

form the basis for the MCHL algorithm. However, it differs from the RBM such

that the HL in the RBM is replaced by an output layer that does not feed input

into the input layer. Fig. 3.1(a) depicts a stochastic neural network of M input

features and N output neurons. u1 and u2 denote the input vector and activity

vector of the output layer, defined as

{
u1 ∈ ℝ

M,

u2 ∈ ℤ
N,

0 ≤ u1[i] ≤ 1

u2[i] ∈ {0,1}
 ,

respectively. In the output layer, H neurons associatively represent each of total

L labels so that the output layer includes LH neurons (N=LH). A group of such

H neurons is referred to as a bucket. When the L labels are indexed from 1 to L,

u2[(n − 1)H+1:nH] is a block of output activities for the nth label. Note that

x[a:b] denotes a block ranging from the ath to bth elements of vector x. A matrix

29

w (∈ ℤLH×M) defines the weight of feed-forward connection from the input to

output layer such that the input z[i] into the ith output neuron is given by

 z[i]=∑ w[i, j]u1[j]
M
j=1 (1)

Each element of w is given one of the ternary values (−1, 0, 1). According to

the bucket configuration of the vector u2, the matrix w can be partitioned such

that w[(n − 1)H+1:nH,·] is for the connection from the input vector to the output

neurons of the nth label. ‘·’ means all j=1, ..., M. Likewise, z(= wu1)can also be

partitioned into L buckets.

The energy of this network is defined as

 E(u1, u2) = −(2u2 − 1⃗)
T
∙w∙u1 + bT∙u2, (2)

where w is a weight matrix, 1⃗ is a N-long vector filled with ones. b denotes a

bias vector for the output layer. (2u2 − 1⃗) in (2) transforms u2 such that a quiet

neuron (u2[i] = 0) is given an output of −1 rather than zero. This counts the cost

of a positive connection (w[i, j]=1) between a nonzero input (u1[j]≠0) and

output neuron in an undesired label (u2[i]=0). This undesired connection raises

the energy by u1[j].

The following conditional probability that u2[i]=1 given z[i] holds:

 P(u2[i] = 1|z[i]) = [1+ e−(2z[i]−b[i])/τ]
−1

, (3)

where τ denotes a temperature parameter. (3) is plotted in Fig. 3.1(b). The

derivation of (3) is elaborated in Appendix A. We also define the deterministic

activity of neuron i in the jth layer as

aj[i] = [1+ e−(2z[i]−b[i])/τ]
−1

. (4)

For instance, for the network in Fig. 3.1(a), a2[i] denotes the activity of neuron

30

i in the second (output) layer. This deterministic activity is used for inference

as follows. The output from each label n (O[n]) is the sum of deterministic

activity over all output neurons in the label. The maximum component of O

designates the estimated label for a given input. (4) is also used when training

a deep network (Sec. IVA).

Note that, unless otherwise stated, the bias is set to zero, simplifying (2), (3),

and (4) to

 E(u1, u2) = −(2u2 − 1⃗)
T
∙w∙u1, (5)

 P(u2[i] = 1|z[i]) = [1+ e−2z[i]/τ]
−1

, (6)

and

aj[i] = [1+ e−2z[i]/τ]
−1

, (7)

respectively. The description of each mathematical symbol is addressed in

Table 3.1.

31

Figure 3.1. MCHL algorithm working principle. (a) Basic network of M input

and N output binary stochastic neurons (u1 and u2: their activity vectors). (b)

Behavior of P(u2[i] = 1) with z[i] when b[i]=0. This probability is identical to

the deterministic activity a2[i] of the neuron.

32

Table 3.1. Symbols.

Symbol Description

x[i] (i ≥1) ith element in array x

x[i:j] (i ≥j) Block ranging from the ith to jth element in array x

u1

Activity vector of the M input neurons

𝒖1 ∈ ℝ
𝑀;

0 ≤ 𝑢1[𝑖] ≤ 1

u2

Activity vector of the N output neurons

𝒖2 ∈ ℤ
𝑁;

𝑢2[𝑖] ∈ {0,1}

w

Weight matrix

𝒘 ∈ ℤ𝑁×𝑀;

𝑤[𝑖, 𝑗] ∈ {−1,0,1}

b Bias vector for the output neurons

z

Array of inputs into the output neurons

𝑧[𝑖] =∑𝑤[𝑖, 𝑗]𝑢1[𝑗]

𝑀

𝑗=1

a2

Deterministic activity of the N output neurons

𝒂2 ∈ ℝ
𝑁;

0 ≤ 𝑎2[𝑖] ≤ 1

L Number of total labels in a dataset

Hi Number of neurons in a bucket in the ith layer

v

Write vector

𝒗 ∈ ℤ𝐿𝐻;

𝑣[𝑖] ∈ {−1,1} if H = 1

𝑣[𝑖] ∈ {−1,0,1} otherwise

τ Temperature parameter

E Energy of the model

P+ Probability of potentiation

P- Probability of depression

𝑃+
0 Maximum probability of potentiation

𝑃−
0 Maximum probability depression

33

3.2.2. Field application and update probability

In the MCHL algorithm, write vector v designates the correct label of a given

input u1. Akin to u2, v is an LH-long vector in which v[(n−1)H+1:nH] is

assigned to the nth label. The correct label (indexed N) is indicated by v such

that

 v[i]= {
1

−1

0

if i = (N − 1)H+ h

 if i = (n− 1)H+ h for all n (≠ N)
otherwise

 , (8)

where 1 ≤ h ≤ H, and h is chosen at random. That is, one of the elements for

label N is endowed with 1 while one of the elements for each undesired label is

given −1. Thus, only one element in v has 1, L−1 elements −1, and the others 0.

In conjunction with the corresponding input vector u1, a field matrix F is

defined as F = v∙u1
T and F[i, j] = v[i]u1[j] element-wise. F[i, j] determines

the sign and probability of weight change of w[i, j] for a given input and its

correct label. F[i, j] (>0) causes potentiation (Δw[i, j] = 1) at probability P+ only

if u2[i] = 0 (condition (a)) and w[i, j] ≠ 1 (condition (b)). In contrast, F[i, j] (<0)

causes depression (Δw[i, j] = −1) at probability P− only if u2[i] = 1 (condition

(a)) and w[i, j] ≠ −1 (condition (b)). P+ and P− are

{
P+ = P+

0 F[i, j]=P+
0 v[i]u1[j]

P- = −P−
0 F[i, j] = −P−

0 v[i]u1[j]
 , (9)

where P+
0 and P−

0 denote the maximum probability of potentiation and

depression, respectively. Stochastic update on weight given probability is

detailed in Appendix B.

This update rule is reminiscent of the Hebbian learning such that the larger

the input u1[j], the more likely the update is successful since P+ and P− scale

34

with u1[j] as shown in (9). Condition (a) indicates that a quiet output neuron

(u2[i] = 0) supports potentiation, whereas an active one (u2[i] = 1) supports

depression. Condition (b) keeps w[i, j]∈{−1, 0, 1} so that the update falls into

a finite state Markov chain. v is renewed for the subsequent update with another

input data and its label. h in (8) is also randomly renewed.

Specifically, the MCHL algorithm exploits inhomogeneous Markov chains

that alter the transition matrices every training epoch given the update

probability conditional on input and write vector according to (9). Several basic

properties of the inhomogeneous Markov chains in the MCHL algorithm are

addressed in Appendix C. Generally, a learning rate is of significant concern for

successful learning. A learning rate in the MCHL algorithm is dictated by P+
0

and P−
0 in place of an explicit rate term. For extreme cases such as P+

0 = 1

and P−
0 = 1, the matrix barely converges, but constantly fluctuates.

When including HLs (Fig. 3.2), the network is trained in a greedy layer-wise

manner as for deep belief networks [29]. That is, the matrix w1 was first fully

trained with a field matrix F1 of each input vector u1 and the corresponding

write vector v. The matrix w2 is subsequently trained with a field matrix F2 for

a given u1 and v, which reads 𝑭2 = v∙u2
T. Such layer-wise training continues

up to the topmost weight matrix wD−1 that is trained with FD−1 shown in Fig. 3.2.

35

Figure 3.2. Network with hidden layers. F2 and FD-1 denote a field matrix for

w2 and wD-1.

36

3.3. Implementation of the MCHL algorithm on

hardware

3.3.1. Field-programmable gate array

Implementing the MCHL algorithm on hardware boosts the advantage of the

algorithm with regard to its efficient use of memory and computational

simplicity in weight update. To identify the acceleration of training and

inference, a field programmable gate array (FPGA) is an easy-to-implement test

bed where weight matrices can be densely organized in static random access

memory (SRAM) arrays that are readily accessed when necessary. We will

highlight the significant acceleration of the MCHL algorithm by implementing

the MCHL algorithm on an FPGA board later in Sec. IVA.

3.3.2. Resistance-based random access memory

A CBA of resistance-based memories offers extremely time efficient multiply-

accumulate (MAC) operation and random accessibility to each bit [30], making

the MCHL come into its own. Fig. 3.3(a) illustrates a feed-forward connection

between u1 and u2 for the topology in Fig. 3.1(a), where the weight matrix w

is mapped onto a RAM. Each ternary unit is placed at the cross point between

a word line (vertical grey line) and bit line (horizontal grey line). The input

vector u1 is physically represented by a voltage array in that u1[j] is applied to

the jth word line. w[i, j] is implemented by the conductance of the unit at the

cross point between the jth word and ith bit lines. High conductance and low

conductance correspond to1 and 0, respectively. Likewise, a w[i, j] of −1

corresponds to negatively high conductance. This counterintuitive concept is

37

realized as illustrated in Fig. 3.3(b). Each unit consists of 2 bits (two resistors),

and each word line for u1[j] is paired with an additional line for negative u1[j]

(Fig. 3.3(b)). Therefore, the total current through the parallel resistors I is

 I = (G[i, j] − G̅[i, j])u1[j]

where G and G̅ are the conductance of the left and right resistors in each unit,

respectively. The three combinations of G and G̅ in Fig. 3.3(b) realize the

ternary weight. Note that (G, G̅) = (1,1) is not favorable because of high

power consumption, it can represent 0 though. Therefore, in this strategy, z

corresponds to an array of output currents; z[i] is the current through the ith bit

line, equivalent to (1). The random accessibility to each unit supports the

parallel programming (training) of the units with a programming voltage

applied to each bit line. An array of programming voltages corresponds to write

vector v (Figs. 3.3(a) and (c)). The sign of v[i]u1[j] dictates the weight change

of the unit placed between the ith bit line and jth word line. When positive, the

unit is given the non-zero probability that Δw[i, j] = 1 (potentiation) while

negative v[i]u1[j] gives the unit nonzero probability that Δw[i, j] = −1

(depression) as sketched in Figs. 3.3(c) and (d), respectively.

38

Figure 3.3. Memory-centric illustration of a neural network. (a) Graphical

description of the weight matrix w that determines the correlation between the

input activity u1 and output activity u2. The grey vertical and horizontal lines

denote word and bit lines, respectively. This weight matrix w evolves in

accordance to given pairs of an input u1 and write vector v, ascertaining the

statistical correlation between u1 and v. (b) A pair of memory resistors in each

synaptic unit. Three combinations of the two conductance values represent the

ternary weight (1, -1, 0). (c) Potentiation: a weight component at the current

step t (wt[i, j]) has a nonzero probability to gain +1 (i.e. Δwt[i, j] = 1) only if

u1[j] ≠ 0, v[i] = 1, and wt[i, j] ≠ 1; for instance, given u1 = (0, 1, 0, …, 0) and v

= (1, -1, -1, …, -1), wt[1, 2] has a probability of positive update. (d) Depression:

39

all components wt[i, 2] (i ≠ 1) are probabilistically subject to negative update

(gain -1) insofar as u1[2] ≠ 1, v[i] = -1, and wt[i, 2] ≠ -1.

40

3.4. Applications

3.4.1. Image recognition

The MCHL algorithm was applied to image recognition tasks with the MNIST

database (M = 28×28 and L = 10) and CIFAR-10 database (M =32×32×3 and L

=10). Fig. 3.4(a) shows a memory-centric schematic of the network for the

training, which includes one HL. The implementation was two-fold. First, the

MCHL algorithm was implemented on a general-purpose computer (CPU: Intel

i5-4690 3.5GHz) without using a GPU. The code was written in Python. Second,

the algorithm was implemented on an FPGA board (Virtex-7 XC7VX485T) to

identify the acceleration of the algorithm. Hereafter, the FPGA board on which

the MCHL algorithm is implemented is referred to as an MCHL accelerator.

Regarding a tradeoff between recognition accuracy and training speed,

parameters P+
0 (= P−

0) and τ were set to 0.1 and 1, respectively, during training

with the MNIST dataset. The effect of the parameters on training behavior is

elaborated in Appendix D. Note that parameters P+
0 (= P−

0) and τ were set to

0.01 and 1, respectively, during training with the CIFAR-10 dataset, with regard

to the tradeoff.

3.4.1.1. Implementation on a general-purpose computer

When training the network with the MNIST dataset, the repeated ad hoc

updates increase the recognition accuracy and decrease the network energy in

(5) as plotted in Fig. 3.4(b). The network depth substantially alters the

recognition accuracy as plotted in Fig. 3.4(c). Without HL the accuracy merely

reaches approximately 88% at H1 = 100 while deploying one HL improves the

41

accuracy up to approximately 92% at H1 =100 and H2 =50. Note that H1 and H2

denote bucket size in the HL and output layer, respectively. Improvement on

accuracy continues onwards with more HLs (e.g., two HLs; blue curve in Fig.

3.4(c)), although its effect becomes smaller compared with the drastic

improvement by the first HL. The training and test in detail are addressed in

Appendix E. The weight matrix becomes larger with bucket size, so is the

memory allocated for the matrix. Nevertheless, the benefit of deploying buckets

at the expense of memory is two-fold. First, many input features (pixels) are

shared among labels such that several individual features do not exclusively

belong to a single particular label. The use of buckets allows such common

features to be connected with elements over different labels given the sparse

update on the weight matrix. For instance, without such buckets, every attempt

to direct the feature at (1,1) — belonging to both labels 1 and 2 — to label 1

probabilistically weakens its connection with label 2. Second, when shared, the

statistical correlation between the feature and each of the sharing labels is

captured by bucket, enabling comparison among the labels. As depicted in Fig.

3.4(a), the 10 sub-matrices in the matrix w2 define 10 ensembles of H2 output

neurons; the final output from each label O[n] is the sum of deterministic

activity a2[i] over the neurons in the same label, i.e., the output range scales

with H2 in the range 0 – H2.

A single training is hardly able to capture a statistical correlation between

input and write vectors. However, the larger the training numbers, the less likely

the statistical error (noise) is incorporated into the data, which is similar to the

error reduction in Monte Carlo simulation with an enormous number of random

42

numbers (RNs) [31]. The use of buckets enables the parallel acquisition of

effectively multiple w matrices as opposed to repeated training trials to acquire

a w matrix on average. Therefore, it is conceivable that a larger bucket size

tends to improve the recognition accuracy. In fact, the bucket size and

consequent memory allocation for matrix w significantly determine the

recognition accuracy (see Fig. 3.5). However, in Monte Carlo simulations, the

error reduction with sample number tends to be negligible when the number is

sufficiently large. The same holds for the MCHL algorithm as shown in Fig.

3.5. Additionally, the memory cost perhaps outweighs the negligible

improvement in the accuracy. Therefore, it is practically important to reconcile

the performance with the memory cost.

Considerable reductions in memory usage and training time (for 105 epochs)

for the MCHL algorithm were experimentally identified as plotted in Fig. 3.6.

The networks subject to the measurements varied in the numbers of HLs and

neurons in each layer. Benchmarking data were acquired from two feed-

forward networks: MLP and convolutional neural network (CNN). They were

trained using a backpropagation algorithm with real-valued weights. The MLP

consisted of 784 input neurons, one HL including 100 neurons, and 10 output

neurons. The CNN employed 3×3 kernels, 1×1 stride, and 2×2 max pooling

size. Its fully-connected network was of 2,048×100×10. The MLP and CNN

can infer the labels of handwritten digits with high accuracy (98% and 99.5%,

respectively) at the cost of memory in use and complexity in computation (see

Fig. 3.6). On the other hand, the input complexity in the CIFAR-10 dataset

keeps there cognition accuracy of our network considerably low as for the MLP

43

trained using a backpropagation algorithm [32]. The network under training

varied in the number of HLs from zero to three with a bucket size of 500. P+
0 ,

P−
0 and τ were set to 0.01, 0.01, and 1, respectively. The training results are

plotted in Fig.3. 7, identifying a maximum accuracy of approximately 43%

when incorporating three HLs. This maximum accuracy is approximately 8%

lower than the benchmark accuracy from an MLP with three HLs (each of

which has 500 nodes) trained using a backpropagation algorithm with real-

valued weights (see the red curve in Fig. 3.7(a)).

44

Figure 3.4. Application to handwritten digit recognition. (a) Schematic of the

network architecture for handwritten digit recognition. A single HL is included.

The matrix w1 first maps the input vector u1 to the hidden neurons. The array a2

is taken as an input vector to w2 that maps the input vector to the output neurons.

The write vector v1 has 10 (the number of labels) buckets, each of which has H1

elements, i.e. N = 10H1. Each thick arrow indicates an input vector to a group

of neurons (each neuron takes each element in the input vector). (b) The

increase of recognition accuracy (red curve) and corresponding decrease of

45

energy (grey curve) with training epoch. The trained network is a single-layer

network (H=100). (c) Classification accuracy change in due course of training

with network depth (H1=100, H2=50, H3=30).

46

Figure 3.5. Bucket size dependence of recognition accuracy. Recognition

accuracy change with (a) H1 in a network without a hidden layer, (b) H2 with a

single hidden layer (w1 was fully trained beforehand; H1=100), and (c) H3 with

two hidden layers (w1 and w2 were fully trained beforehand; H1=100 and

H2=100).

47

Figure 3.6. Memory usage and training time (for 105 epochs) for the MCHL

algorithm. The networks subject to the measurements varied in the numbers of

HLs (1, 2, and 3) and neurons (HD20, 30, and 50) in each bucket. Each HL

included the same number of neurons. The data were compared with the

memory usage and training time for the MCHL accelerator and two feed-

forward networks (MLP and CNN) trained using a backpropagation algorithm

(105 training epochs). The clock speed of the FPGA board was set to 20 MHz.

48

Figure 3.7. Recognition accuracy of networks trained with the CIFAR-10

dataset. (a) Accuracy evolution with training epoch for a network including

three HLs, each of which embodies 500 nodes, reaching approximately 43%.

An MLP trained using backpropagation with real-valued weights represents

approximately 51%. (b) Recognition accuracy upon the number of HLs. Each

HL includes 500 nodes

49

3.4.1.2. MCHL accelerator

The same type of network was built on an FPGA board and trained using the

MCHL algorithm that was modified to save the resource. The modification

includes representation of aj[i] in (4) and (7) using an 8-bit integer value. The

original input data (8 bits/pixel) was downsized to 2 bits/pixel to accelerate the

input data transfer from the computer to the FPGA board (bandwidth: 300 kb/s).

The MCHL accelerator is of bucket-wise parallel structure such that the

evaluation of neuronal activities in one bucket is performed in parallel with the

other buckets. Accordingly, the partitions of each weight matrix a real so

structured in parallel so that an update on weight in each partition can be

executed in parallel. The MCHL accelerator is elaborated in Appendix F.

A network with one HL (H1=20, H2=10) was trained with the downsized

MNIST dataset, resulting in are cognition accuracy of 88%. The reduction in

recognition accuracy for the FPGA implementation arises from the downsized

input data and the use of 8-bit numeric data type for aj[i].

The MCHL accelerator markedly accelerates training and minimizes a need

for memory (see Fig. 3.6). Evaluating the activity of each neuron in a bucket

using (1) and (7) merely needs one clock cycle Tclk (=1/fclk, where fclk denotes

clock speed). Inferring a single handwritten digit needs to evaluate all neurons

in the network, (H1+H2)L in total. The evaluation for each bucket is executed

in parallel. Thus, each inference takes (H1+H2)Tclk, i.e., (H1+H2)/fclk. Setting fclk

to20MHz, single inference is finished in 1.5 µs. Each update on w1 needs the

evaluation of u2 (performed in parallel with the update) given the current w1,

u1, and v to determine the update probability detailed in Sec. IIIB. This is done

50

in a single clock cycle (Tclk) with regard to the partition-wise parallel weight

update (see Appendix F). Therefore, each w1-training epoch takes 1/fclk, e.g., 50

ns at 20 MHz.

However, each update on w2 needs the evaluation of a2 given the fully trained

w1 and input u1 using (1) and (7) beforehand. As such, this step takes H1Tclk,

i.e., H1/fclk. Akin to updating w1, an update on w2 given the evaluated a2, current

w2, v, and u3 (also acquired in parallel with the update) merely takes one clock

cycle (Tclk). The weight update time in total for each w2-training epoch is

therefore (H1+1)/fclk: 1.05 µs at 20 MHz. The only memory in use was for the

weight matrices w1 and w2. Given that 2-bit memory is allocated to each element,

w1 and w2 need memory capacities of 313.6kb (2×784× H1 ×L) and 40kb (2×H1

×L ×H2 ×L), respectively, i.e., 353.6 kb (44.2 kB) in total.

3.4.2. Multiplication table memorization and prime factorization

The MCHL algorithm can also be applied to deterministic learning. Examples

include multiplication table memorization, where the MCHL algorithm

spontaneously finds correct-answer-addressing matrix w. This way recalls,

rather than computes, the correct answer. Matrix w

(w∈ℤN×2M; w[i, j]∈{0, 1}, N=M2H) was trained with the M × M

multiplication table. Two integer factors in the range (1 – M) were chosen and

represented by two one-hot vectors, each of which had M elements. These two

vectors were merged into input vector u1 (∈ℤ2M; u1[i]∈{0, 1}); u1[1:M] were

allocated for the first vector, and u1[M+1:2M] for the second one. The product

(1 – M2) is taken as the desired label of the input. Therefore, M2 labels in total

51

are available. Given bucket size H for each label, write vector v is M2H long.

Multiplication is deterministic so that no stochasticity intervenes in learning.

Consequently, P+
0 = 1 and P−

0 = 0 were given to (9), and all neurons were

frozen (τ = 0.01). In this regard, write vector generation does not require

random sampling within the bucket in the desired label. Instead, an element in

the bucket is conferred on each pair of factors in training order. For instance,

2×8 addresses the nth element in label 16, and the multiplication addressing the

same label in the closest succession, e.g., 4×4, takes the (n+1)th element.

Therefore, the bucket includes a set of possible multiplications yielding the

same label. Notably, a prime number has only two factors, ‘1’ and itself, and

thus, the bucket includes only two multiplications. Note that bias is given to

each output neuron; b[i] = 3 for all i’s. Therefore, (3) is expressed

as P(u2[i] = 1|z[i]) = [1+ e−(2z[i]−3)/τ]
−1

. The bias allows u2[i] = 1 only if z[i]

> 2 so that a single factor cannot solely activate the output neuron.

The network structure is sketched in Fig. 3.8(a); no HL is required to achieve

the maximum accuracy. The training continued onwards until the entire pairs

of numbers in the table were memorized. M2 training steps were thus required

to complete the memorization task. Indexing vector A (∈ℤ𝑀
2
; A[i] = h) was

defined to count the possible multiplications (h) resulting in the same product.

For instance, when M ≥ 6, A[6] = 4 because 1×6, 2×3, 3×2, and 6×1 result in 6

(see Fig. 3.8(a)).

Notably, A[i] is identical to the number of factors of i. The training procedure

is elaborated in Appendix G. Note that the prime numbers large than M cannot

52

be taken as a label. Notably, the bucket size H should not be smaller than the

maximum A[i] (i ≤ M2), otherwise some buckets cannot host all multiplications.

To save memory, it is necessary to calculate the integer (≤ M2) that has the most

factors and accordingly allocate memory to each bucket.

The trained matrix w can readily be used to find the aliquot parts of number

n by transposing the matrix: wT∈ℤ2M×N; N = M2H (see Fig. 3.8(b)). The

matrix multiplication z = wTu1 with u1(∈ℤN; N = M2H) — all H elements in

the nth bucket are set to 1—yields a vector z whose upper M bits z[1:M] are the

sum of the entire aliquot parts, each of which is represented by a one-hot vector

(Fig. 3.8(b)). Given the commutative property of multiplication, z[1:M] = z[M

+1:2M]. For instance, when M = 9, input ‘6’ yields z[1:9] = [111001000],

indicating ‘1’ + ’2’ + ’3’ + ’6’. A prime number ‘7’ yields z[1:9]=[100000100]

(‘1’+‘7’); two 1’s in z indicates a prime number (h=2).

The matrix w trained with an M ×M multiplication table also serves as the

basis for prime factorization (Fig. 3.9(a)). It is a modified version of the aliquot

part retrieval to avoid retrieving ‘1’ and itself if other factors exist. A remarkable

advantage consists in the parallel decomposition of many numbers; for input u

(the sum of one-hot vectors under decomposition, e.g., A = a × b and B = c ×

d), the single matrix-vector multiplication z = wTu uncovers all a, b, c, and d. It

should be noted that u[i] for all i’s is no longer one of the binary numbers (0

and 1); instead it can be any nonnegative integer.

An M × M multiplication table that the matrix w is trained with beforehand

can be used to factorize any positive integers whose all factors are smaller than

or equal to M. That is, a priori knowledge of a number subject to prime

53

factorization can significantly reduce the size of a multiplication table in use.

Without such knowledge of integer N under prime factorization, a full N ×N

multiplication table is needed to safely prime factorize the number. If N is a

priori known to be an even number, an (N/2) × (N/2) multiplication table is

sufficient for successful prime factorization.

Fig. 3.9(b) illustrates a factor tree of ‘840’; the first iteration with w (M = 50)

results in ‘40’ + ‘21’, the following iteration gives ‘2’ + ‘3’ + ‘7’ + ‘20’, and the

third iteration 2 × ‘2’ + ‘3’ + ‘7’ + ‘10’, equivalent to a1, a2, and a3 in Fig. 3.9(c).

To demonstrate the efficiency of this method, a randomly picked integer in a

multiplication table (M =300) was prime factorized, and the number of the

iteration steps was counted. The results for the integers (1.62884×1010–

7.75541294×1011) are plotted in Fig. 3.9(d) in comparison with benchmark

results (direct search factorization). The higher efficiency of the present method

over the benchmark can obviously be understood. The direct search

factorization is elaborated in Appendix H. The matrix w once trained with a

multiplication table can repeatedly be used to prime factorize numbers covered

by the table. Therefore, the factorization iteration steps in Fig. 3.9(d) do not

include the multiplication table memorization steps.

The capacity for prime factorization using the proposed algorithm is dictated

by the size of a trained M × M multiplication table. As such, the larger the size

M, the more the factorizable integers (Fig. 3.10). Note that the factorizable

integers should be addressed as a product in the M × M multiplication table so

that the number of factorizable integers is identical to that of products in the

table. There exist 36 different products in the 9×9 multiplication table; all of

54

them are prime-factorizable. Upon enlarging the table size up to M = 300, the

capacity reaches 24,047. Given the ternary weight in w (each element needs 2

bits), the required memory size for w (M =300) is 180 kbits (Fig. 3.10).

55

Figure 3.8. Multiplication table memorization and aliquot part retrieval. (a)

Network architecture for multiplication table memorization. The numbers in

the range 1 – M are described by one-hot vectors. Any two of total M2 numbers

are combined to form an input vector u1 (𝑢1 ∈ ℤ
2𝑀; 𝑢1[𝑖] ∈ {0, 1}); for

instance, when M = 9, u1 for one and six is [100000000|000001000], where the

first and last 9 bits indicate one and six, respectively, as shown in the figure.

56

The correct answer serves as the label of chosen numbers; there are M2 labels

in total. Each label (bucket) has H elements so that the write vector v is a M2H

long vector that is adjusted given the correct label. Given entire pairs of

numbers in the table and their multiplication results, the matrix w (𝑤 ∈

ℤ𝑀
2𝐻×2𝑀) is adjusted. 𝑃+

0 , 𝑃−
0 , b[i], and τ were set to 1, 0, 3, and 0.001,

respectively (b) Network architecture of aliquot part retrieval given the matrix

w. The transpose of w (wT) finds the entire aliquot parts of a given number in a

parallel manner in place. For instance, for number ‘6’, an input vector u1 (M2H

long vector) has a single nonzero bucket (6th bucket) that is filled with ones.

The output vector z is [111001000|111001000], indicating the sum of four one-

hot vectors (‘1’ + ‘2’ + ‘3’ + ‘6’)each of them is an aliquot part of 6. For

prime numbers, the output vector includes only two 1’s (1 and its own number)

so that prime numbers can readily be found; for instance, 7 results in

[100000100|100000100] as shown in the figure.

57

Figure 3.9. Prime factorization. (a) Memory (𝑤𝑇 ∈ ℤ2𝑀×𝑀
2𝐻) based iterative

and parallel search for prime factors. Given an input vector u standing for a

certain number n, the matrix multiplication wTu outputs vector z (𝑧 ∈

ℤ2𝑀; 𝑧[𝑖] ∈ {0, 1}) that reveals one pair of its factors—except 1 and itself—

z[1:M] and z[M+1:2M] whose product yields n. Operator T2 adds these two one-

hot vectors, resulting at
 (𝑎𝑡 ∈ ℤ

𝑀). The iteration terminates upon no further

change in a other than a[1]. Otherwise, operator T1 transforms at to u, and the

next cycle continues. (b) Prime factorization of 840 = 23×3×5×7 with a matrix

58

wT (M = 100, H = 30). The first iterative step outputs a1 in (c); the address of

each element indicates a factor, e.g. the 21st element, a[21], means a factor of

21, and the element value its exponent. Only a1[21] and a1[40] in a1 except a1[1]

are nonzero, indicating 21×40. The second iteration outputs a2 whose nonzero

elements are a2[2], a2[3], a2[7], and a2[20] (= 1, 1, 1, and 1, respectively),

implying 22×10×21. The third iteration respectively sets a3[2], a3[3], a3[7], and

a3[10] to 2, 1, 1, and 1, i.e. 22×3×7×10. The forth iteration sets a3[2], a3[3],

a3[5], and a3[7] to 3, 1, 1, and 1, i.e. 23×3×5×7 and an additional iteration does

not alter other elements than a[1] such that the prime factorization is completed.

(d) The number of factorization steps until prime factors for the integers

(1.62884×1010 – 7.75541294×1011). The results are compared with the direct

search factorization.

59

Figure 3.10. Prime factorization capacity. The number of integers

factorizable using the proposed algorithm with the size M of a trained

multiplication table and the memory for matrix w.

60

3.5. Discussion

The MCHL algorithm employs the population representation of output neurons;

the population is partitioned as a consequence of bucket allocation for each

label. This notion is reminiscent of ‘concept cells’ [16]-[18]. They fire only to

specific inputs that point to the same concept even with different stimulus

modalities [17]. Likewise, the 10 populations in Fig. 3.4(a) may be equivalent

to concept cells, each of which represents each digit. Additionally, deploying

buckets may support the integration of different stimulus modalities, each of

which is directed to the same concept cell throughout different path ways. This

bucket can include different neurons at the pinnacles of different pathways, e.g.,

in an auditory modality, so that these different stimulus modalities can

complementarily activate the bucket.

Given that each bucket represents a single concept, a one-hot vector

representation is most suitable for the mathematical description of concepts.

The proposed multiplication table memorization algorithm therefore lays the

foundation of arithmetic in association with perception via memory. All

integers (factors and products) in the table are represented by one-hot vectors

that are equivalent to concept cells. They may be addressed by not only

arithmetic but also external stimuli in different sensory modalities. Arithmetic

with the aid of memory may be akin to humans’ mental arithmetic, particularly,

of simple single-digit arithmetic [33]-[35]. Additionally, this memory-based

multiplication may combine arithmetic with sensory modalities, e.g., visual and

auditory stimuli. For instance, an agent—endowed with the handwritten digit

recognition and aforementioned arithmetic capabilities—can recognize

61

handwritten digits (through a visual modality) and multiply them.

The MCHL algorithm offers a solution to online learning given that the

algorithm enables ad hoc updates on a weight matrix accommodated by a

random access memory (RAM) without pre-calculating the weight matrix. This

approach, therefore, provides a workaround for the matrix calculation overhead

that is a challenge when addressing representations with enormous features.

Additionally, the ternary (−1, 0, 1) weight elements—each of which merely

needs 2 bits as shown in Fig. 3.3(b)—significantly improve the areal density of

the matrix mapped onto a RAM array in support of density- as well as the

energy-wise efficiency of training. A CBA of resistance-based memory is

perhaps most suitable for the MCHL algorithm, leveraging its capability of

efficient MAC operation [5], [9], [36]. Given the stochasticity in resistance

switching (particularly, on- and off-switching voltages [37], [38]) in nature, the

probabilistic weight transition may be achieved by controlling driving voltage

without RN generation [39]. Additionally, every update simply overwrites the

current memory contents in this training scheme in that the past weight matrix

no longer needs to be kept given the Markov chain nature, which also alleviates

large memory needs.

A rise in handwritten digit recognition accuracy by approximately 2% was

achieved by endowing each unit with 11 levels, w[i,j] ∈ {−5, −4,. .., 4, 5} as

plotted in Fig. 3.11. The network includes no HL. This implies that the ternary

weight limits the recognition accuracy below a benchmark accuracy of

approximately 92% acquired from an MLP (with real-valued weight and no HL)

trained using a backpropagation algorithm. Such 11 levels require five

62

conductance levels of each resistance-based memory. Fortunately, there are

several resistance-based memory systems that exhibit multilevel operations

[40]-[42].

63

Figure 3.11. Effect of multinary synaptic weight. Improvement of

handwritten digit recognition accuracy with multinary synaptic weight. The

trained network is a single-layer network (H = 100). A benchmark is a single-

layer perceptron with real-valued weight, which was trained with a

backpropagation algorithm.

64

3.6. Appendix

3.6.1. Derivation of stochastic activity of a neuron

Given the network energy in (2), the joint probability distribution of the state

u1 and u2 is described distribution of the state u1 and u2 is described as P(u1,

u2) = e−E(u1, u2)/τ/Z , where Z is the partition function of the network, Z =

∑ ∑ e−E(u1[j], u2[i])/τN
i=1

M
j=1 . Consequently, the conditional probability distribution

of u2 given u1 is

 P(u2|u1)

=
e
∑ (−a[i]u2[i]−∑ w[i, j]u1[j]

M
j=1 +2∑ u2[i]w[i, j]u1[j]

M
j=1)/τN

i=1

∏ ∑ e
(−a[i]u2[i]−∑ w[i, j]u1[j]

M
j=1 +2∑ u2[i]w[i, j]u1[j]

M
j=1)/τ

u2[i]∈{0, 1}
N
i=1

= ∏
e
(−a[i]u2[i]+2∑ u2[i]w[i, j]u1[j]

M
j=1)/τ

1+e
(−a[i]+2∑ w[i, j]u1[j]

M
j=1)/τ

N
i=1 . (10)

 P(u2|u1) = ∏ P(u2[i]|u1)
N
i=1 such that u2[i]’s are independent of each other

owing to the lack of recurrent connection. Therefore, the following equation

holds:

 P(u2[i] = 1|u1) =
e
(−a[i]+2∑ w[i, j]u1[j]

M
j=1)/τ

1+e
(−a[i]+2∑ w[i, j]u1[j]

M
j=1)/τ

. (11)

Introducing z[i] (= ∑ w[i, j]u1[j]
M
j=1) simplifies (11) to

 P(u2[i] = 1|z[i]) =
e(−a[i]+2z[i])/τ

1+e(−a[i]+2z[i])/τ
=

1

1+e(a[i]−2z[i])/τ
, (12)

which is equal to the directed graphical model in Fig. 3.1(a).

65

3.6.2. Calculation of update probability

The update conditions and corresponding probability P can readily be

incorporated into the following equation (when v[i] ≠ 0):

 P(∆w[i, j] = v[i]|wt[i, j], u1[j], v[i], u2[i])

=
u1[j]v[i][P+

0 (1−u2[i])(v[i]+1)+P−
0 u2[i](v[i]−1)]

2[1+ek(wt[i, j]v[i]−w0)]
, (13)

where P+
0 and P−

0 are expressed

as P(∆w[i, j] = 1|wt[i, j] ≠ 1, u1[j] = 1, v[i] = 1, u2[i] = 0) and

 P(∆w[i, j] = −1|wt[i, j] ≠ −1, u1[j] = 1, v[i] = −1, u2[i] = 1) , respectively.

k and w0 dictate the exponential function in the denominator, which are set to

100 and 0.5 through the entire simulation. Note that when v[i] = 0 no update on

w[i, j] is allowed, i.e. P(∆w[i, j] = 0| v[i] = 0) = 1.

In practical computation, the stochastic variable u2[i] with the probability in

(3) is acquired with the aid of a single RN before applying (13) to the w[i, j]

update that needs another RN. Fortunately, u2[i] can be ruled out among the

conditions in (13) as follows:

 P(∆w[i, j] = v[i]|wt[i, j], u1[j], v[i])

= P(∆w[i, j] = v[i]|wt[i, j], u1[j], v[i], u2[i] = 1) × P (u2[i] = 1)

+P(∆w[i, j] = v[i]|wt[i, j], u1[j], v[i], u2[i] = 0) × P (u2[i] = 0)

=
u1[j]v[i][P+

0 (v[i]+1)+P−
0 (v[i]−1)]

2[1+ek(wt[i, j]v[i]−w0)][1+e−(2z[i]−a[i])/τ]
 . (14)

Each update of w[i, j], therefore, needs a single RN, rendering the computation

more efficient.

66

3.6.3. Properties of Markov chain in MCHL

As shown in (9), the transition probability varies over the elements of w every

training epoch so that the MCHL algorithm is of non-homogeneous Markov

chains. The transition matrix for w[i, j] at the nth epoch is given by

Tn
i,j = [

p
n
−1,−1 p

n
−1,0 p

n
−1,1

p
n
0,−1 p

n
0,0 p

n
0,1

p
n
1,−1 p

n
1,0 p

n
1,1

]

where the superscript of p
n
x, y denotes the transition of w[i, j] from x to y. As

such, the transition matrix Tn
i,j differs for epochs with different v[i] as follows:

{

 [

1 0 0

P− 1− P− 0

0 P− 1− P−
] when v[i] = −1

[
1 0 0

0 1 0

0 0 1

] when v[i] = −0

[
1 − P+ P+ 0

0 1 − P+ P+

0 0 1

] when v[i] = 1

 (16)

where P− = P−
0 u1[j]u2

[i] , and P+ = P+
0 u1[j]u2

[i]. State transition diagrams

of these three cases are depicted in Fig. 3.12(a). Although all individual chains

notably lack ergodicity, the inhomogeneous Markov chain alternating a

transition matrix among these three matrices for each epoch may meet

ergodicity. Therefore, ergodicity as an important property of the Markov chain

is worth checking.

To this end, matrix Hn,m is defined as Hn,m = ∏ Tk
i,jn+m

k=n+1 . Thus, Hn,m is a

single transition matrix equivalent to m successive transitions from the (n+1)th

to the (n+m)th epoch. Inhomogeneous Markov chains are known to be ergodic

if |Hn,m[x, y] −Hn,m[x', y]| → 0 as m → 0 for any n, x, x’, and y [43]. That is,

67

an ergodic inhomogeneous Markov chain has identical elements in each column

of Hn,m. For the MCHL algorithm, Hn,m is a 3×3 matrix. During the whole

training phase, a training image for each epoch appears at random so that one

of the three transition matrices is chosen at random. An ergodic Markov chain

thus meets the aforementioned condition irrespective of n. Here n is set to

zero—ergodicity is evaluated from the first epoch. We define non-ergodicity

factor NE as

 NE = ∑ |Hn,m[x, y] −Hn,m[x', y]|x, x', y , (17)

which decreases to zero with an increase in m if ergodic. The maximum NE is

6. We identified NE for randomly sampled 100 elements of w in due course

during training with the MNIST dataset (see Fig. 3.12(b)). The figure explains

a wide range of non-ergodicity in that several trajectories ensure ergodicity,

several ones decay at low rates, and the rest remain in the initial state. Such

non-ergodicity is of the elements that were barely updated because u1[j] = 0

throughout the entire training phase—background pixels. This is identified by

Fig. 3.12(c) displaying the 100 final NE values (after 2×106 epochs) with the

frequency of non-zero u1[j] during the training phase. Notably, the elements of

low frequencies are given high NE values. This is because such elements mostly

receive zero input, i.e., u1[j] = 0, and thus their transition matrices in (16) are

mostly identity matrices irrespective of v[i]. The identity matrix as a transition

matrix results in a non-ergodic Markov chain as illustrated in the middle panel

of Fig. 3.12(a). Stationary distribution is also of concern of the inhomogeneous

Markov chain. To this end, we monitored the numberof elements w[i, j] filled

with each of −1, 0, and 1 every MNIST dataset training epoch as plotted in Fig.

68

3.12(d). The data show asymptotic convergence toward the stationary

probability distribution over w[i, j] = −1, 0, and 1.

69

Figure 3.12. (a) State transition diagram for a weight element given three

different v[i] values. (b) NE change (for 100 weight elements randomly sampled)

monitored when training a network with the MNIST dataset. (c) The 100 final

NE values plotted with respect to the frequency of non-zero input during the

training phase. (d) Probability distribution over w[i, j] = 1, 0, 1 with training

epoch.

70

3.6.4. Effect of update probability and temperature parameter on

training

Parameters P+
0 , P−

0 , and τ considerably affect training speed and recognition

accuracy. To identify the effect, a network without HL was trained with three

different P+
0 (=P−

0) values (0.01, 0.1, and 1) and τ fixed to 1. The MNIST

dataset was used in the training. The results are plotted in Fig. 3.13(a), ensuring

their considerable effect on training speed in that the larger P+
0 (=P−

0) the

sooner the recognition accuracy is saturated. Additionally, a P+
0 of 1 keeps the

accuracy fairly lower than the other values. The effect of temperature parameter

τ on training was also identified by varying τ (0.1, 1, and 10) with P+
0 (=P−

0)

fixed to 0.1. Fig. 3.13(b) notably indicates the lower accuracy achieved with a

τ of 10 than the others. We chose the parameter values with regard to a tradeoff

between learning speed and accuracy. When training with the MNIST dataset,

P+
0 (=P−

0) and τ were set to 0.1 and 1, respectively, regarding the tradeoff. The

same tendency holds for the CIFAR-10 dataset. Yet, the tradeoff in detail

slightly differs so that we set P+
0 (=P−

0) to 0.01 while setting τ to the same

value (1).

71

Figure 3.13. Effect of (a) update probability and (b) temperature parameter on

training.

72

3.6.5. Handwritten digit recognition

For the entire datasets, each feature value was rescaled to the range 0 – 1. A

chosen input dataset (28 × 28 pixels each of which has an 8-bit value) was

converted to an input vector u1 (∈ ℝ784; 0 ≤ u1[i] ≤ 1) . A write vector v

(∈ ℤLH; v[i] ∈ {−1, 0, 1}) was then generated with regard to the desired label

of the chosen digit and RN r (1 ≤ r ≤ H). L and H are the number of total labels

(here 10) and bucket size, respectively. A bucket of H elements is assigned to

each label in the v vector so that v is a 10H-long vector as illustrated in Fig.

3.4(a). Accordingly, the matrix w is partitioned into 10 sub-matrices. One of the

H elements (rth element) in the bucket of the correct label is chosen at random

and set to 1, the rth elements in the other buckets (9 in total) to -1, and the rest

elements [10(H - 1) in total] to 0. Therefore, in the matrix w, the elements in

only one row (rth row in the partition for the correct label) are potentially

subject to potentiation, those in the 9 rows to depression (rth rows in the

partitions for the incorrect labels), and the rest are invariant. The update is

therefore sparse.

The weight matrices were initially filled with zeros. The update direction and

probability were determined by (14). Each ad hoc update needs total 784LH

RNs (one for each w[i, j]). The protocol was repeated for the next epoch with a

randomly chosen digit. For accuracy evaluation, a vector z (= wu1) was

calculated after every ad hoc update and fed into the output neurons that are

also partitioned according to the bucket configuration in the write vector and

weight matrix. Note that this accuracy evaluation no longer needs stochastic

neurons since their probabilistic behaviour rather limits the accuracy. Thus,

73

they are switched to sigmoid deterministic neurons only for accuracy evaluation,

which follows u2[i] = [1+ e−2z[i]/τ]
−1

. Finally, the output from each label n

(O[n]) is evaluated. The maximum component of the output vector designates

the estimated label for a given input. The recognition accuracy was evaluated

with regard to agreement between the desired and estimated labels. The

sequence of the MCHL algorithm application is elaborated in Table 3.2.

A network with a hidden layer is trained in a greedy layer-wise manner as for

deep belief networks [25]. w1 in Fig. 3.4(a) was first fully trained following the

protocol above. Subsequently, w2 was subject to training with input vector u2

(∈ ℤLH1; u2[i] ∈ {0, 1}) that is the output from the LH1 hidden deterministic

neurons taking z1 as input. The write vector v2 was chosen applying the same

protocol as w1 training. Accuracy evaluation was conducted with deterministic

sigmoid output neurons in line with the network without HL.

74

Table 3.2. MCHL algorithm for handwritten digit classification

Pre-arrangement of memory: Load the bucket of each label in write vector v

with H elements. Matrix w partitioned accordingly

Update: update the matrix w given each input u1 and write vector v

 1. Write vector v generation: 𝒗 ∈ ℤ𝑁; N = LH. L is the number of total

labels

 For a given input u and its label l, generate an RN r (1 ≤ r ≤ H)

 v[i] = 1 for i = l·H + r

 -1 for i = j·H + r; j ≠ l

 0 otherwise

 2. Evaluation of z: z = wu1 given w and u1

 3. Update of each component: updating w[i, j] at P in (4)

Repeat

75

3.6.6. MCHL accelerator in detail

A block diagram of the MCHL accelerator (Virtex-7 XC7VX485T) is depicted

in Fig. 3.14. The accelerator employs parallel structure such that L partitions,

e.g. one indexed Partition 1 in Fig. 3.14, are deployed and operate in parallel.

A sub-matrix w1[(n-1)H1+1:nH1,·] for the nth label is accommodated in an

SRAM array in Partition n, e.g. w1[1:H1,·] in Partition 1 as in Fig. 3.14. The

entire M entries in each row of the SRAM array are simultaneously accessed at

a time (one clock cycle).

For each training epoch (TRAIN=1 in Fig. 3.14), a random number generator

RNG_1 produces a pseudo-random number r (1 ≤ r ≤ H1), and accordingly the

row subject to update in the sub-matrix in Partition n is chosen (see Appendix

C). Note that such a pseudo-random number is generated using a linear

feedback shift register.

The accessed row w1[(n-1)H1+r,·] is then multiplied by the input vector u1 to

produce z[(n-1)H1+r] according to (1) (see the red-shaded box in Fig. 3.14 for

n=1). Subsequently, the activation function module computes the deterministic

neuron activity a2[(n-1)H1+r] in the range 0-255 from z[(n-1)H1+r] using (7).

For simplicity, this module approximates the sigmoid function in (7) to a linear

function with a particular slope (matching that of (7) at z = 0) within a certain

z window and zero otherwise. u2[(n-1)H1+r] is then evaluated by comparing

a2[(n-1)H1+r] with a random number (0 – 255) from RNG_2. The w1[(n-

1)H1+r,·], u1, u2[(n-1)H1+r], and v[(n-1)H1+r] (generated for each partition

using (8)) are then passed to the “Δw module” (blue-shaded box in Fig. 3.14 for

n=1) that determines a Δw for each entry of w1[(n-1)H1+r,·] using the update

76

probability in (9) in parallel. This process is executed in a single clock cycle.

The partition-wise parallel structure of the MCHL accelerator enables an update

on w1[(n-1)H1+r,·] for all relevant partitions in parallel in a single clock cycle.

The same holds for an update on w2 except that the deterministic activity

vector a2 given the fully trained w1 matrix should be acquired beforehand. The

a2 vector is distributed over partitions such that a2[(n-1)H1+1:nH1] is stored in

the serial-in-parallel-out (SIPO) buffer of Partition n (see Fig. 3.14 for n=1).

Given the partition-wise parallel structure, the evaluation of a2 in response to

each input data u1 simultaneously takes place over the n partitions so that it

takes H1/fclk. Therefore, each w2-training epoch takes (H1+1)/fclk.

Likewise, when training a neural network with two HLs, each w3-training

epoch consumes (H2+1)/fclk. For a neural network including n (≥1) HLs, and

thus n+1 weight matrices (w1, …, wn+1), the total (intrinsic) training runtime is

given by ∑ (Hi−1 + 1)Ei/f
clk

n+1
i=2 + E1/f

clk
, where Ei denotes the total number of

epochs for training the matrix wi.

Inference needs to evaluate the deterministic activity for all (H1+H2)L

neurons (a2 and a3) in the network using (1) and (7). For a given input digit (u1),

a2 is first evaluated as follows. Each row of a sub-matrix w1[(n-1)H1+r,·] is

sequentially addressed using an address counter (TRAIN = 0 in Fig. 3.14) in

descending order and multiplied by u1, resulting in a2[(n-1)H1+1:nH1] through

the red-shaded and activation function modules in Fig. 3.14. The array is The

finally evaluated a2 vector for this partition, i.e. a2[(n-1)H+1:nH] where n = 0,

is stored in a serial-in-parallel-out (SIPO) buffer (see Fig. 3.14). Given the

partition-wise parallel structure, this process simultaneously takes place for the

77

other partitions so that it takes H1/fclk to evaluate the deterministic activities a2

of the hidden neurons in response to input data u1.

 The same process holds for the a3 evaluation following the a2 evaluation.

Thus, the time-consumption is H2/fclk. The only difference is that a2 in the SIPO

buffers distributed over the partitions is taken as the input.

All elements of a3[(n-1)H2+1:nH2] in Partition n (label n) are added up in the

accumulator module (see Fig. 3.14 for n = 1), resulting in O[n] for Partition n

(label n). The comparator module in Fig 3.11 compares the O’s and

consequently provides the index of the highest O value, which corresponds to

the inferred label. This comparison is performed in a sequential manner, i.e.

O[0] is first compared with O[1], the winner is then compared with O[2], and

so forth. The priority encoder finally encodes the address of the “final” winner.

Note that the comparison is performed in parallel with the a3 evaluation process

so that it does not consume additional time. Consequently, inference for each

input digit consumes (H1+H2)/fclk in total.

Therefore, inference (intrinsic) runtime for each input through a network

with n (≥1) HLs (n+1 weight matrices) is ∑ 𝐻𝑖/𝑓𝑐𝑙𝑘
𝑛+1
𝑖=1 .

Practically, both inference and training rates are dominantly dictated by the

rate of input data transfer from the computer to the MCHL accelerator. Each

handwritten digit image was 2 bits/pixel (downsized from 8 bits/pixel in the

original MNIST dataset), and thus 1,568 bits (2×28×28) per image. The MCHL

accelerator was interfaced with the computer through 16 general-purpose input-

output (GPIO) lines, yielding a data transfer bandwidth of ca. 300 kb/s.

Therefore, transferring one image to the accelerator consumes approximately

78

5.2 ms, outweighing the intrinsic training and inference runtimes. We did not

count this delay in data transfer as training and inference runtimes because the

delay is not an intrinsic characteristic of the MCHL algorithm.

79

Figure 3.14. Block diagram of the MCHL accelerator.

80

3.6.7. Multiplication table memorization

Training was fully deterministic in that the output neurons were frozen and the

update no longer required RNs. Integers (≤ M) were expressed as one-hot

vectors of M elements; a pair of factors (≤ M) were put together to give an input

vector u1 (∈ ℤ2M; u1[i] ∈ {0, 1}). The product of the factors serves as a label

among M2 labels, each of which has a bucket of H elements. Therefore, a write

vector v has M2H elements in total (v ∈ ℤM2H; v[i] ∈ {0, 1}). For factors of a

and b (a×b = c), the hth element in the cth label, i.e. v[(c-1), H+h], is set to the

only one in the write vector. h is determined in the order of training; the first

pair of factors resulting in a particular label during training takes h = 1 in the

corresponding bucket. Thus, allocating h for each multiplication depends on the

entire training sequence over the M×M multiplication table. The weight matrix

w (∈ ℤM2H×2M; w[i, j] ∈ {0, 1}) was trained in an ascending order of n in the

n-times table (n ×) from 1 to M, and within the n-times table (n × m), m was

also taken in ascending order: 1 × 1, 1 × 2, …, 1 × M, 2 × 1, 2 × 2, …, 2 × M,

… M × 1, M × 2, … M × M. Upon training completion, final h (≤ H) for label i

(i.e. hi) is acquired, which defines vector A (∈ ℤM2

; A[i] = hi). In fact, A[i]

reveals the number of multiplications producing label i, for instance, A[6] = 4

given that 1 × 6, 2 × 3, 3 × 2, and 6 × 1 result in 6 (see Fig. 3.8(a)). Notably,

this number is identical to the number of factors for a given label: 1, 2, 3, and

6 for 6. The sequence of the MCHL algorithm application is tabulated in Table

3.3.

z[i] in z (=wu1) was integrated over elements in the bucket of each label,

81

which was subsequently fed into an output sigmoid neuron, resulting in output

vector O as illustrated in Fig. 3.8(a).

82

Table 3.3. MCHL algorithm for multiplication table memorization

Pre-arrangement of memory: Load the bucket of each label in write vector v

with H elements. Matrix w partitioned accordingly. A[l] = 1 for all l's (1 ≤ l ≤

L). L is the number of total labels (products).

Update: update matrix w given each input u (a pair of one-hot vectors) and

write vector v

 1. Write vector v generation: 𝒗 ∈ ℤ𝑁; N = LH.

 For a given input u1 and its label l,

 v[i] = 1 for i = (l - 1)·H + A[l]

 0 otherwise

 2. Update of each component: updating w[i, j] at P in (4)

 3. A[l] = A[l] + 1

Repeat

83

3.6.8. Prime factorization

As such, the aliquot parts of number n are in parallel retrieved using the

transpose of w [wT ∈ ℤ2M×M2H] memorizing the M×M multiplication table

and input vector u (∈ ℤM2H; u[i] ∈ {0, 1}) whose nth bucket is filled with H

1’s—insofar as n’s largest aliquot part is not larger than M. However, for prime

factorization of n, aliquot parts other than 1 and itself (if they exist) are of

concern, so that it is desirable to avoid retrieving 1 × n and n × 1. With the aid

of vector A, a pair of proper factors can be chosen selectively. As shown in Fig.

3.8(a), for 6 (M ≥ 6), h = 1, 2, 3, and 4 indicate 1×6, 2×3, 3×2, and 6×1,

respectively. For a prime number, e.g. 7, h=1 and 2 indicate 1×7 and 7×1,

respectively. Only the kth multiplication is retrieved, k = max(A[i] – 1, 1) for

each label i, e.g. for i = 6 (M ≥ 6), 3 × 2, and for i = prime number (M ≥ n), 1 ×

n. Thus, operator T1 is a M2H×M matrix:

T1[i, j] = {
1 if i = (n− 1)H+ k and j = n for n = 1,…, M2

0 otherwise
.

For instance, n = 840 (M = 50) is initially represented by vector a0 whose 840th

element is the only one while the rest are zero. u (=T1a0) is subsequently fed

into wT, resulting in z (=wTu) in which z[40] = 1 and z[50 + 21] = 1—denoting

40 and 21, respectively. These two vectors are merged through operator T2 into

a1 (∈ ℤM;a1 = z[1:M] + z[M+ 1:2M]). T2 is, therefore, an M×2M matrix:

T2[i, j] = {
1 if j = i for i = 1,…, M

1 if j = i +M for i = 1,…, M

0 otherwise

.

This operation confers 1 on a1[21] and a1[40] in a1. The address of each element

represents a factor, and the element values its exponent so that the result of the

84

first factorization is 211 × 401. Insofar as a1 differs from a0, the same cycle is

repeated. Note that a1[1] (exponent of 1) is set to zero because a factor of 1 is

redundant in factorization. The following cycle factorizes 21 and 40 in parallel,

providing a2 in which a2[2] = 1, a2[3] = 1, a2[7] = 1, and a2[20] = 1, i.e. 21 × 31 ×

71 × 201.

3.6.9. Direct search factorization

Integer n is repeatedly divided by a series of divisors (decreasing by one) until

zero remainders. The first divisor is ⌊√n⌋. If the remainder is nonzero, ⌊√n⌋ − 1

is taken as the next divisor. With zero remainder, two factors (divisor and quotient)

are obtained, and each factor is separately subject to the same factorization as

above.

3.7. Bibliography

[1] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, in IEEE Conference

on Computer Vision and Pattern Recognition, Columbus, OH, 2014,

pp. 1701-1708.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C.

Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,

and D. Hassabis, Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,

D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K.

Kavukcuoglu, T. Graepel, and D. Hassabis, Nature, Article vol. 529, no.

7587, pp. 484-489, 2016.

85

[4] R. Raina, A. Madhavan, and A. Y. Ng, in 26th Annual International

Conference on Machine Learning, 2009, pp. 873-880.

[5] D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang, Advanced

Electronic Materials, vol. 2, no. 9, p. 1600090, 2016.

[6] J. Y. Seok, S. J. Song, J. H. Yoon, K. J. Yoon, T. H. Park, D. E. Kwon, H.

Lim, G. H. Kim, D. S. Jeong, and C. S. Hwang, Advanced Functional

Materials, vol. 24, no. 34, pp. 5316-5339, 2014.

[7] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K.

Likharev, and D. B. Strukov, Nature, Letter vol. 521, no. 7550, pp. 61-

64, 2015.

[8] G. W. Burr, P. Narayanan, R. M. Shelby, S. Sidler, I. Boybat, C. di Nolfo, and

Y. Leblebici, in International Electron Devices Meeting, 2015, pp.

4.4.1-4.4.4.

[9] L. Gao, P. Y. Chen, and S. Yu, IEEE Electron Device Letters, vol. 37,

no. 7, pp. 870-873, 2016.

[10] P. Smolensky, in Parallel distributed processing: explorations in the

microstructure of cognition, vol. 1, E. R. David, L. M. James, and C. P.

R. Group Eds., 1 ed.: MIT Press, 1986, sec. 104290, pp. 194-281.

[11] Y. Freund and D. Haussler, in Advances in Neural Information

Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann

Eds.: Morgan-Kaufmann, 1992, pp. 912-919.

[12] G. E. Hinton, Neural Computation, vol. 14, no. 8, pp. 1771-1800, 2002.

[13] G. E. Hinton, in Neural Networks: Tricks of the Trade: Second Edition,

2012, pp. 599-619.

86

[14] S. Nagpal, M. Singh, R. Singh, and M. Vatsa, IEEE Access, vol. 3, pp.

3010-3018, 2015.

[15] K. Zhang and X.-W. Chen, IEEE Access, vol. 2, pp. 395-403, 2014.

[16] R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried, Nature,

vol. 435, no. 7045, pp. 1102-1107, 2005.

[17] R. Quian Quiroga, A. Kraskov, C. Koch, and I. Fried, Current Biology,

vol. 19, no. 15, pp. 1308-1313, 2009.

[18] R. Q. Quiroga, Nature Reviews Neuroscience, vol. 13, no. 8, pp. 587-

597, 2012.

[19] M. Courbariaux, Y. Bengio, and J.-P. David, Advances in neural

information processing systems, 2015.

[20] C. Baldassi, A. Braunstein, N. Brunel, and R. Zecchina, Proceedings

of the National Academy of Sciences, vol. 104, no. 26, pp. 11079-11084,

2007.

[21] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, Machine

learning, vol. 50, no. 1-2, pp. 5-43, 2003.

[22] R. Bellman, Journal of mathematics and mechanics, pp. 679-684, 1957.

[23] S. Thrun, in Advances in neural information processing systems, 2000,

pp. 1064-1070.

[24] Z.-H. Zhou and M.-L. Zhang, in Proceedings of the 19th International

Conference on Neural Information Processing Systems, 2006: MIT

Press, pp. 1609-1616.

[25] Q. Wu, M. K. Ng, and Y. Ye, Knowledge and information systems, vol.

37, no. 1, pp. 83-104, 2013.

87

[26] N. Brunel, F. Carusi, and S. Fusi, Network: Computation in Neural

Systems, vol. 9, no. 1, pp. 123-152, 1998.

[27] G. L. Barrows, in IEEE International Joint Conference on Neural

Networks, Anchorage, AK, 1998, pp. 525-530.

[28] W. Senn and S. Fusi, Physical Review E, vol. 71, no. 6, p. 061907, 2005.

[29] G. E. Hinton, S. Osindero, and Y.-W. Teh, Neural Computation, vol.

18, no. 7, pp. 1527-1554, 2006.

[30] T. Gokmen and Y. Vlasov, Frontiers in Neuroscience, vol. 10, no. 333,

2016.

[31] K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical

Physics: an introduction, Third ed. Springer Berlin Heidelberg, 1997.

[32] Z. Lin, R. Memisevic, and K. Konda, arXiv:1511.02580, 2015.

[33] S. A. Hecht, Memory & Cognition, vol. 27, no. 6, pp. 1097-1107, 1999.

[34] J. I. D. Campbell and Q. Xue, Journal of Experimental Psychology:

General, vol. 130, pp. 299-315, 2001.

[35] D. DeStefano and J. A. LeFevre, European Journal of Cognitive

Psychology, vol. 16, no. 3, pp. 353-386, 2004.

[36] M. A. Zidan, Y. Jeong, J. H. Shin, C. Du, Z. Zhang, and W. D. Lu,

IEEE Transactions on Multi-Scale Computing Systems, vol. 4, no. 4,

pp. 698-710, 2017.

[37] S. Long, X. Lian, T. Ye, C. Cagli, L. Perniola, E. Miranda, M. Liu, and J. Suñé,

IEEE Electron Device Letters, vol. 34, no. 5, pp. 623-625, 2013.

88

[38] J. H. Yoon, S. J. Song, I. H. Yoo, J. Y. Seok, K. J. Yoon, D. E. Kwon, T. H.

Park, and C. S. Hwang, Advanced Functional Materials, vol. 24, no. 32,

pp. 5086-5095, 2014.

[39] H. Lim, H.-W. Ahn, V. Kornijcuk, G. Kim, J. Y. Seok, I. Kim, C. S. Hwang,

and D. S. Jeong, Nanoscale, vol. 8, no. 18, pp. 9629-9640, 2016.

[40] S. Yu, Y. Wu, and H.-S. P. Wong, Applied Physics Letters, vol. 98, no.

10, p. 103514, 2011.

[41] D. Ielmini, IEEE Transactions on Electron Devices, vol. 58, pp. 4309-

4317, 2011.

[42] M. Suri, O. Bichler, D. Querlioz, B. Traore, O. Cueto, L. Perniola, V. Sousa,

D. Vuillaume, C. Gamrat, and B. DeSalvo, Journal of Applied Physics, vol.

112, no. 5, pp. 054904-10, 2012.

[43] J. Hajnal and M. Bartlett, in Mathematical Proceedings of the

Cambridge Philosophical Society, 1958, vol. 54, no. 2: Cambridge

University Press, pp. 233-246.

89

4. Combination-encoding content addressable

memory

4.1. Introduction

Content-addressable memory (CAM) is a type of memory accessed based on

contents instead of memory addresses as opposed to random access memory

(RAM) [1]. Upon receiving an input data word to search (search key), CAM

simultaneously searches all memory entries for search-key-relevant contents in

one clock cycle and returns the addresses of the contents. Therefore, CAM has a

significant advantage over RAM in searching speed. Its main application

domains include lookup tables (LUTs) in network routers [2]-[7]. The network

router decides the forwarding direction of a data packet between networks. The

LUT in the network router including the hierarchical addresses is searched for

the best route or port for the data packet to be forwarded. Additionally, the CAM

storing the LUT is a critical component for digital communications among

neurons in neuromorphic hardware [8]. The LUT including the topology of a

neural network is searched for the postsynaptic neuron addresses upon the

occurrence of an event from a presynaptic neuron. A fast search of the CAM

significantly accelerates event routing processes, enabling real-time inference

and learning. It also applies to vector-quantization [9], decomposing an input

image to a set of vectors, and information retrieval [10], finding the information

relevant to the desired information from big data.

90

CAM is categorized as binary CAM (BCAM) and ternary CAM (TCAM). As the

names indicate, each unit cell in BCAM represents either ‘0’ or ‘1’ whereas that

in TCAM has an additional ‘don’t care’ (or ‘X’) state [1]. For instance, ‘1X1’ in

TCAM is matched to search keys ‘101’ and ‘111’ because ‘X’ matches both ‘0’

and ‘1’. This high flexibility of TCAM is the key to packet forwarding tasks [2]-

[7].

Static RAM (SRAM)-based CAM is the most popular form of CAM [1], [11].

The SRAM-based CAM leverages fast searching speed and high compatibility

with well-established complementary metal-oxide-semiconductor (CMOS)

technologies. Nevertheless, significant disadvantages are its low areal density

due to the use of many transistors (≥8) to represent a single bit and high static

power consumption due to the leakage current of SRAM [12]-[14]. As

alternatives to the SRAM-based CAM, CAMs based on emerging non-volatile

memories (NVMs) such as phase-change memory [14-16], magnetic tunnel

junction [14], [17]-[19], ferroelectric memory [20], and resistance switch [21-25]

have been proposed to date. Such NVM-based CAMs highlight their high data

density and zero-static energy consumption due to the non-volatility. They also

offer solutions to TCAM by appropriately configuring the non-volatile memory

elements [14]-[25].

Among the candidates, resistance switch-based CAM (RCAM) is a front

runner; two-transistor two-resistor (2T2R)-based RCAM has been prototyped

using a 4 kb resistive RAM (RRAM) [25]. Additionally, RCAM may be realized

in a passive crossbar array that highlights its ideal 8F2 cell size [21], [23].

Nevertheless, RCAM has a lower content density than RRAM because it uses a

91

pair of resistance switches as a single bit of content, i.e., 0.5 bit/switch. A further

increase in data density needs a new content-encoding framework. To this end,

we propose a new type of resistance switch-based CAM, named combination-

encoding CAM (CECAM).

Section II outlines the working principle of the CECAM including a search

key-encoding algorithm (Section II.A) and its implementation in a digital circuit

(Section II.B). Section III explains parallel searches of multiple CECAM

domains to realize TCAM with coarse granularity. Reading contents from the

CECAM needs to decode them using an appropriate decoding algorithm because

the contents in the CECAM are encoded, which is addressed in Section IV.

Finally, Section V highlights the general application of the CECAM scheme to

various CAM designs.

4.2. Combination-encoding content addressable memory

Fig. 4.1 illustrates a schematic of unit cells of active and passive RCAMs

(voltage- and current-reading schemes, respectively). RCAM takes a pair of

resistance switches as a single unit of single-bit capacity. Each switch is set to

one of the binary states: high resistance state (HRS) and low resistance state

(LRS). Specifically, the two switches are complementary; they are in different

resistance states. This yields two distinguishable configurations, HRS-LRS (HL)

and LRS-HRS (LH), representing one bit of content. For both schemes in Fig.

4.1, LH corresponds to ‘0’ and HL to ‘1’. Each bit of a search key is represented

by voltage signals on complementary search lines (SL and SL) such that ‘0’ pulls

SL low and SL high while ‘1’ pulls SL high and SL low. When a search bit of

92

‘0’ is applied to a stored content of ‘0’ (LH), the RCAM units in Figs. 4.1(a) and

4.1(b) notify matching signals on the match lines (black VML and IML in Figs. 1c

and 1d, respectively). These signals are contrasted with a mismatching case,

where a search bit of ‘1’ is applied to the same content ‘0’, resulting in mismatch

signals on the match lines indicated by the red VML and IML in Figs. 4.1(c) and

4.1(d), respectively. Thus, searching N-bit keys commonly needs 2N switches per

match line, i.e., 0.5 bit/switch per match line.

In contrast, N-CECAM (N = 1, 2, 3, …) uses a chunk of 2N switches per match

line as a single unit of multi-bit capacity, boosting the memory capacity per

switch far beyond a content density of 0.5 bit/switch. Its key difference from

RCAM is that the N-CECAM harnesses the large number of possible

combinations of 2N switches to boost the content density in contrast to RCAM

using complementary pairs of switches and search lines to store and search a

single bit of contents. We regard a passive array of nonvolatile resistance

switches with current reading as a model system of the CECAM. This model

system leverages its high memory density and fast content reading. Nevertheless,

the sneak current disturbing current read-out processes is a critical downside.

However, the CECAM concept is fully compatible with other types of CAM

including active arrays of resistance switches freer from the sneak current issue,

which will be addressed in Section V.

The N-CECAM consists of a resistance switch array and a search key encoder

as illustrated in Fig. 4.2(a). In the array, 2N resistance switches are placed at the

crossing points between each match (horizontal) line and 2N search (vertical)

lines. The search key encoder converts an n-bit search key to a 2N-digit binary

93

key, and each digit is applied to each of the 2N search lines such that ‘1’ and ‘0’

pull the search line high and low, respectively. Assuming m switches are in the

HRS and the other (2N-m) switches in the LRS, the minimum current response

to a single 2N-digit binary key exists only if the key includes m 1’s and (2N-m)

0’s, and each of the m 1’s in the key is matched to each of the m HRS switches.

To maximize the number of possible configurations of 2N switches (
2N

m
), m is

set to N. Thus, the search key encoder maps an n-bit search key to a 2N-digit key

with N 1’s and N 0’s in a bijective manner. When matching N 1’s in the encoded

key to the N HRS switches, the current response through the match line is

minimal as shown in Fig. 4.2(b). Otherwise, some 1’s in the encoded key are

inevitably associated with LRS switches, and thus the current response through

the match line becomes high, indicating a mismatch. Note that the current

response scales with the degree of mismatch, i.e., the number of mismatched bits

in the encoded key. The worst mismatch regarding a sensing margin is due to two

mismatched bits as depicted in Fig. 4.2(b).

The total number of 2N-digit encoded keys is (
2N

N
), and so is the number of

2N switch configurations per match line. Given the use of n-bit search keys, 2n

of (
2N

N
) configurations are associated with the total n-bit keys, satisfying

2n≤ (
2N

N
) < 2n+1. This inequality yields

 n = ⌊log
2
(
2N

N
)⌋ (1)

where ⌊∙⌋ denotes a floor function. Therefore, the content density (content bit

per switch) is given as ⌊log
2
(
2N

N
)⌋ /2N, which is plotted in Fig. 4.3. Notably,

94

for N’s (>2), the content density exceeds the density of the conventional RCAM

designs (0.5 bit/switch) and approaches the density of RRAM (1 bit/switch)

asymptotically.

95

Figure 4.1. Schematic of the conventional RCAM in (a) active and (b) passive

crossbar arrays. ML, SL, SL̅̅̅̅ , and PL denote a match line, search line,

complementary search line, and plate line, respectively. A timing diagram for

active and passive arrays is illustrated in (c) and (d), respectively. CLK, VSL,

VSL̅̅̅̅ , and VML denote a clock cycle, search line voltage, complementary search

line voltage, and match line voltage, respectively. IML in (d) means the current

through the match line. The red lines in (c) and (d) indicate VSL, VSL̅̅̅̅ , and the

CAM responses when mismatching.

96

Figure 4.2. (a) Schematic of 3-CECAM (N = 3). A single unit consists of N

HRS and N LRS switches. SA and PE mean a sense amplifier and priority

encoder, respectively. (b) Current responses to a given encoded key upon a

match and mismatches. Matching allows the minimal current response (first

row).

Figure 4.3. Content density of N-CECAM with N in comparison with the

conventional RCAM and RRAM. The kinks arise from the floor function in (1).

97

4.2.1. Algorithm for combination encoding

The key to the N-CECAM is the bijective mapping of the total n-bit search keys

to 2n 2N-digit keys (2n≤ (
2N

N
)≤ 2n+1) using an appropriate encoding function.

We propose the encoding function EN for an n-bit search key a as follows:

function EN(a)

 set b to 2N-digit binary number 0

 for i = 0 to N-1 do

 if there is c satisfying (
c

N-i
)≤ a < (

c+1

N-i
) then

 set the (c+1)th digit of b to 1

 set a to a- (
c

N-i
)

 end if

 end for

 return b

end function.

Note that EN is bijective when At= {0, 1, …, (
2N

N
) -1} and Bt = {b│b: 2N-

digit binary numbers with of N 1’s and N 0’s} are taken as the domain and

codomain of EN, respectively (Theorem 1 in Appendix). Therefore, EN is also

a bijective function for domain A={0, 1, …, 2n-1} (⊂At) and codomain

B={EN(0), EN(1), …, EN(2n-1)} (⊂Bt).

Table 4.1 shows the encodings of 4-bit search keys as 16 distinguishable 6-

digit binary numbers with three 1’s and three 0’s using the encoding function

E3 (N = 3). The encoded data are subsequently programmed in 2N switches such

98

that a ‘1’ and ‘0’ in the encoded data are written as ‘H’ and ‘L’, respectively. ‘H’

and ‘L’ denote HRS and LRS, respectively. The last configuration ‘HHHHHH’

indicates ‘don’t care’ for TCAM.

99

Table 4.1. Truth table of encodings of 4-bit integers as resistor configurations

(N = 3)

Integer Configuration
Search

key
Integer Configuration

Search

key

0 LLLHHH 000111 9 LHHHLL 011100

1 LLHLHH 001011 10 HLLLHH 100011

2 LLHHLH 001101 11 HLLHLH 100101

3 LLHHHL 001110 12 HLLHHL 100110

4 LHLLHH 010011 13 HLHLLH 101001

5 LHLHLH 010101 14 HLHLHL 101010

6 LHLHHL 010110 15 HLHHLL 101100

7 LHHLLH 011001 0 – 15 HHHHHH 000000

8 LHHLHL 011010

100

4.2.2. Implementation of encoding circuit

A search key is encoded as a 2N-digit key iteratively, which needs to be

implemented in circuitry in a way to reduce a delay in decoding at the cost of

memory usage. To this end, the LUT P of (
c

N-i
) for 0 ≤ c ≤ 2N and 0 ≤ i < N

is stored in a memory, which is referred to as a combination table. The LUT P

is an N×(2N+1) matrix whose element P[i, c] is (
c

N-i
). A main advantage of

employing the combination table is that the comparison (
c

N-i
)≤ a < (

c+1

N-i
) in

the encoding function EN can be accelerated considerably by retrieving (
c

N-i
)

and (
c+1

N-i
) from the LUT P rather than evaluating them for every comparison.

A block diagram of the encoding circuit including the LUT P is shown in Fig.

4.4(a). When RESET is 1, the encoding circuit receives search key a that is

encoded (a0). Simultaneously, a 2N-long array b is initialized as b0[k] = 0 for 0

≤ k < 2N, where b0[k] denotes the (k+1)th digit of b0. We note that RESET is

synchronized with clock signals (CLK) to avoid a metastability problem as

shown in Fig. 4.4(b). The circuit first addresses the first row of the LUT P, i.e.,

P[0, :]. The NEXT block finds c in P[0, :], satisfying P[0, c] ≤ a0< P[0, c+1],

using parallel comparators, resulting in c0. a1 is consequently evaluated as

a1=a0- P[0, 𝑐0]. b1 is identical to b0 except its (c0+1)th digit that is set to one,

b1[c0] = 1. c1 is subsequently evaluated for the next row of the LUT P, i.e.,

P[1, :], as for the first row. This evaluation is repeated for all remaining rows,

eventually resulting in a 2N-digit encoded key b (=bN). Therefore, the delay in

encoding is caused by iteratively addressing each row of the LUT P, which

101

scales with N (Fig. 4.4(b)). Given the relationship in (1), the encoding delay is

associated with the bit number of a search key (n) as plotted in Fig. 4.5 (blue

line); the delay tends to increase with the bit number. To address the memory

overhead for the LUT P, the number of its entries was also evaluated with the

bit number of a search key and co-plotted in Fig. 4.5 (red line).

102

Figure 4.4. (a) Block diagram of an encoding circuit for 3-CECAM. (b)

Timing diagram for encoding a search key of 15 as a 6-digit key of 101100.

Figure 4.5. Encoding delay and number of entries in the LUT P with the bit

number of a search key (n).

103

4.3. Parallel search of N-CECAM domains

A search of a single N-CECAM domain can be extended to parallel searches of

multiple N-CECAM domains (partitions). Such parallel searches are useful,

particularly, when a search key is so lengthy that N becomes large according to

(1). To this end, np partitions are given to each match line, where each partition

is a single Np-CECAM domain loaded with 2Np resistance switches in total. All

partitions can share a single LUT P whose component P[i, c] is (
c

Np-i) for 0 ≤

c ≤ 2Np and 0 ≤ i < Np as in Fig. 4.6. Therefore, each match line holds n bits

expressed as

 n = ⌊log
2
(
2Np

Np
)⌋ ∙np. (2)

Each of np partitions is responsible for each n/np bit chunk of the total n-bit

search key. Notably, this method reduces content-memory density. For instance,

for a 60-bit search key, np = 1, 4, 10, 15, and 60 (respectively corresponding to

Np = 32, 9, 4, 3, and 1) yields approximately 0.94, 0.83, 0.75, 0.67, and 0.5

bit/switch, respectively. Np = 32 and 1 indicate the single domain CECAM and

the conventional 2R-based RCAM, respectively. Despite the reduction in

content density, the advantage of the partitioning is threefold: reductions in the

encoding delay and memory usage for the LUT P, and granularity of ‘don’t care’

bits. Regarding the first advantage, the encoding delay is proportional to Np as

considered in Section II.B. Therefore, reducing Np results in a reduction in the

encoding delay. Regarding the second advantage, the LUT P is an Np×(2Np+1)

matrix where the largest component is (
2Np

Np
) which reaches 1.83×1018 for Np

104

= 1, requiring 61-bit memory. Thus, reducing Np (i.e., introducing partitions)

reduces memory usage for the LUT P considerably.

For TCAM application, a configuration of All 2Np resistance switches in the

HRS represents ‘don’t care’ bits in an Np-CECAM domain. Therefore, the

granularity of ‘don’t care’ bits in the Np-CECAM equals n/np bits. As shown in

Table 4.1, 3-CECAM offers a ‘don’t care’ granularity of 4 bits; when all six

resistance switches in a domain are set to the HRS, the switch configuration is

matched to any of 4-bit search keys between 0 and 15. Setting Np = 32 for 60-

bit search keys yields the coarsest granularity (60 bits), unsuitable for TCAM

applications whereas Np = 1, equivalent to the conventional RCAM, yields the

finest granularity (1 bit). Therefore, introducing partitions is a viable method to

decrease data granularity. Nevertheless, because this comes at the cost of a

reduction in content density, the granularity should be reconciled with content

density.

105

Figure 4.6. Schematic of parallel searches of Np-CECAM partitions. NEXT in

the figure means NEXT block in the encoding circuit. The n-bit search key is

divided into np chunks, and each chunk applies to the NEXT block of each

partition. All partitions share a single LUT P.

106

4.4. Algorithm for content decoding and circuit

implementation

Contents in the state-of-the-art 2T2R-RCAM illustrated in Fig. 4.1(a) are read

bitwise such that each bit (a pair of resistance switches) is iteratively examined

for matching with the same key applied to the complementary search lines (SL

and SL)[14]. Therefore, a delay in reading is proportional to the bit number of

contents. An advantage of a passive array of resistance switches shown in Fig.

4.1(b) over the active array is that the total contents per match line can

simultaneously be read by pulling the match line high and simultaneously

measuring the current response on all search lines. Either design employing the

CECAM should be able to decode the 2N-digit contents as the original n-bit

contents by an appropriate decoding function. The decoding function DN is the

reverse of the encoding function EN, which is implemented as follows:

function DN(b)

 set a, i, c to 0

 while i < N do

 if [the (c+1)th digit of b] = 1 then

 set i to i+1

 set a to a+ (
c

i
)

 end if

 set c to c+1

 end while

 return a

107

end function.

A 2N-digit content in the CECAM is decoded as an n-bit key iteratively.

The decoding function DN is implemented in a digital circuit as shown in Fig.

4.7(a). The circuit first initializes an n-long array a0 to 0. Upon receiving a 2N-

digit content b that is decoded (b = b0), the ADR block in Fig. 4.7(a) searches for

the address of the right-most ‘1’ in b0 and returns it, which corresponds to c0

(b0[c0] = 1). P[N-1, 𝑐0] = (
𝑐0
1
) is subsequently retrieved from the LUT P, and

a1 is evaluated as a1 = a0 + P[N-1, c0]. b1 is identical to b0 other than its right-most

‘1’ switched to ‘0’. Subsequently, c1 is evaluated as the address of the right-most

1 in b1, and then a2 and b2 are evaluated as a2 = a1 + P[N-2, c1] and b2 = b1 except

that b2[c1] = 0, respectively. This evaluation is repeated N times, resulting in an

n-bit decoded content a. Similar to encoding, a delay in decoding is caused by

iteratively addressing each row of the LUT P. Therefore, the delay also scales

with N (Fig. 4.7(b)).

108

Figure 4.7. (a) Block diagram of a decoding circuit for 3-CECAM. (b) Timing

diagram for decoding an encoded search key of 101100 as its original search key

(15)

109

4.5. Discussion

The CECAM scheme was applied to a passive array of resistance switches as a

model system. This model system allows the ultimate integration density, i.e.,

when used as RAM, 4F2 cell size per bit. In this case, a current-sensing scheme

is suitable for bitwise reading. However, the reading process is significantly

prone to error because of the notorious sneak current issue due to the lack of

bit-selection devices[26]. Employing transistors as active selectors

significantly keeps the sneak current sufficiently low for reliable reading as for

the 2T2R-based RCAM design[27]. The CECAM scheme applies to an active

array of resistance switches with a voltage-sensing scheme as shown in Fig. 4.8.

In the array, a single unit consists of 2N transistors and 2N resistance switches.

A one-transistor and one-resistor (1T1R) unit is placed at a crossing point

between each match (horizontal) line and each of the 2N search (vertical) lines.

Specifically, the gates of 2N transistors are wired to the 2N search lines, and

thus the encoded 2N-digit key determines the channel conductance of the 2N

transistors during a searching period. For all transistors, the source is connected

to a common plate line which is grounded during searching.

When searching, the match lines are pre-charged simultaneously. Then, a 2N-

digit encoded key is applied to the search lines such that 1’s and 0’s pull the

search lines up and down, respectively. When matching N 1’s in the encoded

key to the transistors paired with the N HRS switches, the voltage on the match

line remains high because none of the pull-down paths are activated. Otherwise,

some 1’s in the encoded key are inevitably associated with transistors paired

with LRS switches, indicating the activation of pull-down paths (Fig. 4.8).

110

Therefore, the voltage on the pre-charged match line decays rapidly, which is

noticed by a sense amplifier as a mismatch. This search process is identical to

the 2T2R-based conventional RCAM.[25]

Regarding the sense amplifier design for the CECAM, a current- and a

voltage-sensing amplifier are suitable for a passive and active array of switches,

respectively, as for RCAM. Compared with RCAM, the CECAM does not

impose additional requirements on its sense amplifiers, so that previously

developed sensing technologies[16, 28, 29] are compatible with the CECAM.

In this regard, the CECAM can make full use of previous RCAM technologies

given a subtle difference between the CECAM and RCAM. The subtle

difference lies in content- and search key-encoding, which is the key of our

present study. Nevertheless, the subtle difference remarkably enhances the

content density.

The application domain of the proposed CECAM fully covers other

resistance-based NVMs with two-terminal switches, e.g., phase-change

memory[14, 15] and magnetic tunnel junction[14, 17], in both active and

passive arrays. Moreover, the CECAM concept is compatible with three-

terminal NVMs, for instance, ferroelectric transistors[20] and NOR Flash

memory.

Table 4.2 compares the CECAM with previous CAM designs. The 4-

CECAM was considered with reference to the 4 kb 1T1R RRAM prototype[25]

and simulation results of a 2R-TCAM[23]. The 128 bit word width in [25]

allows 16 × (4-CECAM domain), i.e., Np = 4 and np = 16. According to (2),

each match line holds 96 bit contents; instead, the conventional RCAM allows

111

64 bit contents per match line only. Therefore, the cell area per content bit is

approximately 0.67 times that of the conventional RCAM as shown in Table

4.2. The same holds for the 2R-TCAM with 64 bit word width in [23].

Regretfully, the actual size of the 1T1R RRAM prototype[25] is unavailable so

that the cell area per bit for the CECAM is expressed as its area relative to that

of the RCAM (0.67). The additional delay in searching due to the encoding of

a search key is Np/fclk, where is fclk clock speed. The cell area per bit and search

delay aside, the CECAM is identical to the RCAM.

112

Figure 4.8. Schematic of CECAM with a voltage-reading scheme. The blue

arrow in the second row illustrates activated pull-down path.

113

Table 4.2. Comparison to previous work

16T-

TCA

M

[11]

6T2R

-

TCA

M

[18]

11T3

R-

TCA

M

[19]

2T2R

-

TCA

M

[16]

2T2R

-

TCA

M

[25]

2R-

TCA

M

[23]

4-

CECA

M

referenc

ed to

[25]

4-

CECA

M

referenc

ed to

[23]

Memory

type

SRA

M
MTJ MTJ PCM RS RS RS RS

Reading

scheme

Volta

ge

Volta

ge

Volta

ge

Volta

ge

Volta

ge

Curre

nt
Current Current

Technolog

y (nm)
65 90 180 90 130 90 130 90

Word

width (bit)
72 32 144 64 128 64 128 64

Cell area

(μm2/bit)
1.69 10.35 42 0.41

NA

(1×)a

NA

(1×)b

NA

(0.66×)a

NA

(0.66×)b

Supply

voltage

(V)

1 1.2 1 1.2 0.9 0.2 0.9V 0.2

Search

delay
1.9ns

0.29n

s
8ns 1.9ns 2ns 0.5ps 0.5ps 0.5ps

Search

energy

(fJ/bit/sear

ch)

1.98 1.04 7.4 NA
NA

(1×)a
0.23

NA

(0.66×)a
0.15

*RS denotes resistance switch

*a,b denotes markers comparing normalized values between previous work and

CECAM

114

4.6. Conclusion

A new type of CAM, referred to as CECAM, was proposed to improve the

content density in a memory array. The N-CECAM employs a group of 2N

resistance switches as a single memory unit with multi-bit (n-bit) capacity,

which enhances its content density far beyond that of the conventional RCAM

(0.5 bit/switch). For instance, 10-CECAM (N = 10; 20 resistance switches) has

17-bit content capacity (n = 17) in contrast to the conventional RCAM that

needs 34 resistance switches for 17-bit content capacity. The key to the

CECAM is an algorithm for n-to-2N encoding and its decoding. The proposed

encoding and decoding algorithms were proven to match n-bit search keys to

2N-digit keys bijectively. Additionally, the algorithms are readily implemented

in digital circuits with a combination table, which results in an encoding

(decoding) delay of N clock cycles for the N-CECAM. The proposed CECAM

concept is compatible with various NVM-based CAM designs including active

and passive RCAM, other two-terminal resistance switch-based CAM, e.g.,

phase-change memory and magnetic memory, and NVM transistors, e.g.,

ferroelectric transistor and NOR Flash memory.

4.7. Appendix

Theorem 1. EN: At → Bt is a bijective function for At= {0, 1, …, (
2N

N
) -1} and

Bt = {b│b: 2N-bit binary numbers, each with N 1’s and N 0’s}.

Proof. Nonnegative integer ai is defined as

ai+1 = ai - (
ci

N-i
) for 0 ≤ i < N-1, (3)

and a0 = a (≥ 0). ci satisfies the following inequality:

115

(
ci

N-i
)≤ a i< (

ci+1

N-i
) for 0 ≤ i < N. (4)

Define the number of elements in set X as n(X).

Lemma 1: n(At) = n(Bt) = (
2N

N
).

Lemma 2: ci > ci+1 for 0 ≤ i < N-1.

Proof. For ai = 0, the only ci satisfying the inequality in (4) is ci = N-i-1 that

yields ai+1 = 0 according to (1). From (4), ci+1 = N-i-2. Therefore, ci > ci+1. For

ai > 0, using (3) and the fact that a i< (
ci+1

N-i
) in (4), the following inequality is

acquired:

0 ≤ ai+1 < (
ci+1

N-i
) - (

ci

N-i
)= (

ci

N-(i+1)). (5)

Equation (4) for ai+1 is (
ci+1

N-(i+1))≤ ai+1 < (
ci+1+1

N-(i+1)
) . ai+1 should

simultaneously satisfy this equation and (3), which is true if

(
ci

N-(i+1))> (
ci+1

N-(i+1)). Therefore, ci > ci+1. Consequently, ci > ci+1 holds for

nonnegative ai.

For given a, vector c(a) is defined as c(a)=[c0, c1, …, cN-1] where the

components are sorted in descending order according to Lemma 2. Associating

b with c(a) such that ‘1’ is placed on each (ci+1)th digit of b, and ‘0’s on the

other digits, it is proven that c(a) is bijectively mapped to b. If a is also

bijectively mapped to c(a), a is eventually proven to be mapped to b in a

bijective manner. Also, using Lemma 1 and bijective mapping of c(a) to b, the

following equation is acquired:

 n(At) = n(Bt) = n(C) = (
2N

N
), (6)

116

where C = {c│c = c(a)}.

Lemma 3: if x ≠ y, then c(x) ≠ c(y).

Proof. If Lemma 3 is true, its contraposition (if c(x) = c(y), then x = y) is also

true. Given (1), a (= a0) is expressed as

 a = aN-1+∑ (
ci

N-i
)N-2

i=0 . (7)

Equation (4) for i = N-1 yields (
cN-1

1
)≤ aN-1 < (

cN-1+1

1
), i.e., cN-1 ≤ aN-1 <

cN-1+1. Thus, aN-1 = cN-1= (
cN-1

1
). Therefore, (7) is rewritten by a =∑ (

ci

N-i
)N-1

i=0 .

This equation indicates a unique a for a given vector c(a), so that if c(x) = c(y),

then x = y. Lemma 3 therefore holds true, identifying injective mapping of a to

c.

Equation (6) and Lemma 3 identify bijective mapping of a to c. Given the

bijective mapping of a to c and c to b, the encoding function EN is a bijective

function.

4.8. Bibliography

[1] K. Pagiamtzis and A. Sheikholeslami, IEEE Journal of Solid-State

Circuits, vol. 41, no. 3, pp. 712-727, 2006.

[2] H. J. Chao, Proceedings of the IEEE, vol. 90, no. 9, pp. 1518-1558,

2002.

[3] T.-B. Pei and C. Zukowski, in IEEE International Conference on

Computer Communications, 1991, pp. 515-524.

[4] T.-B. Pei and C. Zukowski, IEEE Network, vol. 6, no. 1, pp. 42-50,

1992.

117

[5] N.-F. Huang, W.-E. Chen, J.-Y. Luo, and J.-M. Chen, in IEEE Blogal

Communications Conference, 2001, vol. 3, pp. 1877-1881.

[6] G. Qin, S. Ata, I. Oka, and C. Fujiwara, in IEEE International

Conference on Computer Communications, 2002, vol. 3, pp. 2350-

2354.

[7] A. J. McAuley and P. Francis, in IEEE International Conference on

Computer Communications, 1993, pp. 1382-1391.

[8] V. Kornijcuk, J. Park, G. Kim, D. Kim, I. Kim, J. Kim, J. Y. Kwak, and

D. S. Jeong, Advanced Materials Technologies, vol. 4, no. 1, p.

1800345, 2019.

[9] S. Panchanathan and M. Goldberg, IEEE Transactions on Signal

Processing, vol. 39, no. 9, pp. 2066-2078, 1991.

[10] C. Lee and M. Paull, Proceedings of the IEEE, vol. 51, no. 6, pp. 924-

932, 1963.

[11] I. Hayashi, T. Amano, N. Watanabe, Y. Yano, Y. Kuroda, M. Shirata,

K. Dosaka, K. Nii, H. Noda, and H. Kawai, IEEE Journal of Solid-State

Circuits, vol. 48, no. 11, pp. 2671-2680, 2013.

[12] O. Tyshchenko and A. Sheikholeslami, IEEE Journal of Solid-State

Circuits, vol. 43, no. 9, pp. 1972-1981, 2008.

[13] Y. Yang, J. Mathew, R. S. Chakraborty, M. Ottavi, and D. K. Pradhan,

IEEE Transactions on Nanotechnology, vol. 15, no. 3, pp. 527-538,

2016.

118

[14] Q. Guo, X. Guo, Y. Bai, and E. Ipek, in Proceedings of the 44th

Annual IEEE/ACM International Symposium on Microarchitecture,

2011, pp. 339-350.

[15] B. Rajendran, R. W. Cheek, L. A. Lastras, M. M. Franceschini, M. J.

Breitwisch, A. G. Schrott, J. Li, R. K. Montoye, L. Chang, and C. Lam,

in 2011 3rd IEEE International Memory Workshop, 2011, pp. 1-4.

[16] J. Li, R. K. Montoye, M. Ishii, and L. Chang, IEEE Journal of Solid-

State Circuits, vol. 49, no. 4, pp. 896-907, 2013.

[17] S. Matsunaga, M. Natsui, K. Hiyama, T. Endoh, H. Ohno, and T.

Hanyu, Japanese Journal of Applied Physics, vol. 49, no. 4S, p.

04DM05, 2010.

[18] S. Matsunaga, A. Katsumata, M. Natsui, S. Fukami, T. Endoh, H. Ohno,

and T. Hanyu, in 2011 Symposium on VLSI Circuits-Digest of

Technical Papers, 2011: IEEE, pp. 298-299.

[19] W. Xu, T. Zhang, and Y. Chen, IEEE transactions on very large scale

integration (VLSI) systems, vol. 18, no. 1, pp. 66-74, 2009.

[20] I. Bayram and Y. Chen, in Non-Volatile Memory Systems and

Applications Symposium, 2014, pp. 1-6.

[21] B. Chen, Y. Zhang, W. Liu, S. Xu, R. Cheng, R. Zhang, and Y. Zhao,

IEEE Electron Device Letters, vol. 39, no. 9, pp. 1294-1297, 2018.

[22] L.-Y. Huang, M.-F. Chang, C.-H. Chuang, C.-C. Kuo, C.-F. Chen, G.-

H. Yang, H.-J. Tsai, T.-F. Chen, S.-S. Sheu, and K.-L. Su, in 2014

Symposium on VLSI Circuits Digest of Technical Papers, 2014, pp. 1-

2.

119

[23] R. Han, W. Shen, P. Huang, Z. Zhou, L. Liu, X. Liu, and J. Kang,

Japanese Journal of Applied Physics, vol. 57, no. 4S, p. 04FE02, 2018.

[24] D. Ly, B. Giraud, J. Noel, A. Grossi, N. Castellani, G. Sassine, J. Nodin,

G. Molas, C. Fenouillet-Beranger, and G. Indiveri, in 2018 IEEE

International Electron Devices Meeting, 2018, pp. 20.3.1-20.3.4.

[25] A. Grossi, E. Vianello, C. Zambelli, P. Royer, J.-P. Noel, B. Giraud, L.

Perniola, P. Olivo, and E. Nowak, IEEE Transactions on Very Large

Scale Integration Systems, pp. 1-9, 2018.

[26] A. Chen, IEEE Transactions on Electron Devices, vol. 60, no. 4, pp.

1318-1326, 2013.

[27] P.-Y. Chen and S. Yu, IEEE Transactions on Electron Devices, vol. 62,

no. 12, pp. 4022-4028, 2015.

[28] I. Arsovski and A. Sheikholeslami, IEEE Journal of Solid-State

Circuits, vol. 38, no. 11, pp. 1958-1966, 2003.

[29] N. Mohan, W. Fung, D. Wright, and M. Sachdev, IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 56, no. 3, pp. 566-573,

2008.

120

5. Conclusion

As mentioned above, binary resistance switch array can be applied as synapse

array in synapse block or lookup-table in topology block. Therefore, we have

studied on three subjects, which are a new simulation method for binary

resistance switch array, a new learning algorithm with ternary synaptic weight,

and a new type of resistance switch-based content addressable memory with

high content density.

In the first part, multi-layer perceptrons with different structures (depth and

the number of perceptrons in each layer) was successfully trained to infer the

current response of a random crossbar array to a randomly applied voltage

vector. The trained network predicted exact current response with appropriate

network structure and sufficient training examples. Additionally, this neural

network is 8 times faster than Newton-Raphson method for 10×9 resistance

switch array.

Secondly, a new learning algorithm, reffered to as Markov Chain Hebbian

Learning, was proposed. MCHL uses ternary synaptic weight. Therefore,

MCHL is appropriate to use when using binary resistance switch array as

synapse array. Another distinct feature of MCHL is that it does not use

backpropagation and synaptic units are stochastically updated. This feature is

similar to restricted Boltzmann machine, but MCHL is discriminative with

write vector. The potentiation or depression of synaptic units are governed by

write vector v and exact update probability was controlled by activation of input

and output neuron. MCHL was applied to hand-written digit recognition and it

121

have shown 92% accuracy. This accuracy is much lower than that of

conventional backpropagation algorithm, 98%. MCHL, however, uses much

less memory and is faster than backpropagation algorithm. This aspect stands

out when MCHL is implemented in FPGA board. MCHL was also applied to

prime factorization and it needs much less steps than direct search factorization.

At last, a new type of CAM, referred to as CECAM, was proposed to improve

the content density in a memory array. The N-CECAM uses a group of N HRS

resistance switches and N LRS resistance switches as a single memory unit. As

a result, CECAM’s content density is far beyond that of the conventional

RCAM (0.5 bit/switch). For instance, 10-CECAM (N = 10; 20 resistance

switches) has 17-bit content capacity (n = 17) in contrast to the conventional

RCAM that needs 34 resistance switches for 17-bit content capacity. The

encoding and decoding algorithm for CECAM were also proposed. They have

been proven to convert a n-bit search keys to 2N-digit keys with N 1’s and N

0’s bijectively. Additionally, the algorithms are readily realized in digital

circuits with a combination table. The combination table is implemented to

minimize calculation costs from binomial factor. It results in an encoding

(decoding) delay of N clock cycles for the N-CECAM. The proposed CECAM

concept is compatible with various NVM-based CAM designs including active

and passive RCAM, other two-terminal non-volatile memory-based CAM, e.g.,

phase-change memory and magnetic memory, and NVM transistors, e.g.,

ferroelectric transistor and NOR Flash memory.

122

Curriculum Vitae

Guhyun Kim

Department of Materials Science and Engineering

College of Engineering

Seoul National University

1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea

E-mail:

kgh920507@snu.ac.kr

Tel.: +82-2-880-8923

Fax.: +82-2-874-6414

I. Educations

2011. 3. - 2015. 2. B.S.

Department of Materials Science and Engineering

Seoul National University, Seoul, Korea

2015. 3. – 2020. 2. Ph.D

Department of Materials Science and Engineering

Seoul National University, Seoul, Korea

123

II. Research Areas

1. Thin Film Materials and Devices

- Characterization of electronic properties of thin films

- Thin films deposition technique

- Resistance switch array simulation technique

2. Neuromorphic Engineering

- Learning algorithm for SNN and ANN

- Routing algorithm for spike transmission and synaptic unit update

- Binarized neural network

III. Experimental Skills

1. Deposition methods

- DC & RF sputtering (in-situ deposition of Pt, HfO2, TiN)

2. Sample preparation

- Photo-lithography

3. Analysis methods

- Pulse/pattern generator and digital oscilloscope for pulse switching

measurement of resistance switches

4. Programs apprentice

- MATLAB (Mathworks) 2013

- Python

- C++

124

List of publications

1. Refereed Journal Articles (SCI)

1.1 Domestic

1.2. International

[1] Hyungkwang Lim, Hyung-Woo Ahn, Vladimir Kornijcuk, Guhyun

Kim, Jun Yeong Seok, Inho Kim, Cheol Seong Hwang, and Doo Seok

Jeong, "Relaxation oscillator-realized artificial electronic neurons,

their responses, and noise," Nanoscale, vol. 8, no. 18, pp. 9629-9640,

2016.

[2] Hyungkwang Lim, Rohit Soni, Dohun Kim, Guhyun Kim, Vladimir

Kornijcuk, Inho Kim, Jong-Keuk Park, Cheol Seong Hwang, and Doo

Seok Jeong, "Chameleonic electrochemical metallization cells: dual-

layer solid electrolyte-inducing various switching behaviours,"

Nanoscale, vol. 8, no. 34, pp. 15621-15628, 2016.

[3] Vladimir Kornijcuk, Hyungkwang Lim, Jun Yeong Seok, Guhyun

Kim, Seong Keun Kim, Inho Kim, Byung Joon Choi, and Doo Seok

Jeong, "Leaky integrate-and-fire neuron circuit based on floating-gate

integrator," Frontiers in neuroscience, vol. 10, p. 212, 2016.

[4] Vladimir Kornijcuk, Jongkil Park, Guhyun Kim, Dohun Kim, Inho

Kim, Jaewook Kim, Joon Young Kwak, and Doo Seok %J Advanced

Materials Technologies Jeong, "Reconfigurable Spike Routing

Architectures for On‐Chip Local Learning in Neuromorphic Systems,"

Advanced Materials Technologies, vol. 4, no. 1, p. 1800345, 2019.

125

[5] Guhyun Kim, Vladimir Kornijcuk, Dohun Kim, Inho Kim, Jaewook

Kim, Hyo Cheon Woo, Jihun Kim, Cheol Seong Hwang, and Doo Seok

Jeong, "Markov chain Hebbian learning algorithm with ternary

synaptic units," IEEE Access, vol. 7, pp. 10208-10223, 2019.

[6] Guhyun Kim, Vladimir Kornijcuk, Dohun Kim, Inho Kim, Cheol

Seong Hwang, and Doo Seok Jeong, "Artificial Neural Network for

Response Inference of a Nonvolatile Resistance-Switch Array,"

Micromachines, vol. 10, no. 4, p. 219, 2019.

[7] Guhyun Kim, Vladimir Kornijcuk, Jeeson Kim, Dohun Kim, Cheol

Seong Hwang, and Doo Seok Jeong, "Combination-Encoding Content-

Addressable Memory With High Content Density," IEEE Access, vol.

7, pp. 137620-137628, 2019.

2. CONFERENCES

2.1 Domestic

[1] Guhyun Kim, Cheol Seong Hwang, and Doo Seok Jeong, "Artificial

Neural Network for Response Inference of a Nonvolatile Resistance-

Switch Array," in Nano Korea, 2019, oral

2.2. International

[1] Guhyun Kim, Cheol Seong Hwang, and Doo Seok Jeong, "Stochastic

Learning with Back Propagation," in 2019 IEEE International

Symposium on Circuits and Systems (ISCAS), 2019: IEEE, pp. 1-5, oral

126

Abstract (in Korean)

저항 변화 소자는 차세대 메모리의 선두주자 중 하나이다. 저항

변화 소자는 높은 저항 상태와 낮은 저항 상태를 가지고 있으며,

상태의 변화는 전압 혹은 전류를 가해주는 전기적인 자극에 의해서

발생한다. 크로스바 어레이 구조를 통해, 저항 변화 소자 어레이는

4F2 (F: minimum feature size)의 매우 높은 집적도를 나타낸다.

아날로그 저항 변화 소자 또한 개발되고 있으나, 대부분은 매우

정밀한 저항 컨트롤이 필요하고 저항 변화가 가해주는 펄스 수에

비 선형적이라는 단점이 있다.

저항 변화 소자 어레이의 가장 큰 특징은 행렬-벡터 곱을 구현할

수 있다는 점이다. 즉, 저항 변화 소자 어레이의 출력 전류는

전도도 행렬과 입력 전압 벡터의 곱으로 표현된다.

저항 변화 소자 어레이를 시뮬레이션 하는 것은 저항 변화 소자

어레이의 성질을 분석하는데 매우 유용하다. 가장 대중적인

시뮬레이션 방법은 Newton-Raphson 방법을 사용하는 것이다.

하지만 이 방법은 계산을 위해 많은 리소스가 필요하다. 이에 대한

대안으로, 본 논문에서는 인공신경망을 활용하였다. 본 논문에서는

(10 × 9 또는 28 × 27의 크기를 가지는) 임의의 이진 저항 변화

소자 어레이와 임의의 입력 전압 벡터에 의한 출력 전류를

유추하는 인공신경망을 구성하였다. 인공 신경망은 leaky rectified

127

linear units을 사용하는 multilayer perceptron (MLP)를

활용하였다. 이 인공신경망은 500,000개 혹은 1,000,000개의

예제를 통해 학습되었다. 각각의 예제마다, 인공신경망의 입력

벡터는 저항 변화 소자 어레이의 전도도 행렬과 입력 전압 벡터의

합으로 구성되었다. 즉, M개의 행에 전압이 가해지는 M × N

어레이에 대하여, 입력 벡터의 크기는 M × (N+1)을 가진다.

각각의 예제에 대해 Newton-Raphson 방법을 사용해 계산한 출력

전류가 지도 학습의 데이터 레이블로 활용되었다. 이 시도는 정확한

출력 전류를 예측하였으며, 28 × 27 어레이의 경우 상관계수값이

0.9995에 이르렀다. 또한 이 방법은 기존의 Newton-Raphson

방법에 비해 약 8배 빠른 계산속도를 나타내었다.

저항 변화 소자 어레이의 병렬 작동에 기반하여, 저항 변화 소자

어레이는 뉴로모픽 하드웨어의 다양한 부분에 활용될 수 있다. 가장

널리 알려진 것은 저항 변화 소자 어레이로 인공 시냅스 어레이를

구성하는 것이다. 저항 변화 소자 어레이의 행렬-벡터 곱은

인공신경망 내부의 행렬-벡터 곱과 유사하기 때문에, 저항 변화

소자 어레이를 인공 시냅스 어레이로 활용하는 것은 뉴로모픽

하드웨어의 작동을 가속화할 수 있다.

따라서 본 논문에서는, Markov chain Hebbian learning이라고

불리는 이진 저항 변화 소자 어레이에 적합한 학습 알고리즘을

개발하였다. 이 학습 알고리즘은 메모리 측면에서 효율성을

128

나타내는데 이는 1) 시냅스 가중치가 -1, 0, 1의 ternary 값을

가지고 2) 시냅스 가중치의 업데이트가 마코프 체인—현 시점의

업데이트는 이전 시점의 가중치 값이 필요 없다—을 따르기

때문이다. 또한 -1, 0, 1의 ternary 값은 한 쌍의 저항 변화 소자를

쉽게 구현할 수 있기 때문에, 이진 저항 변화 소자 어레이에도

적합한 알고리즘이라고 볼 수 있다. 이 알고리즘은 이미지 인식과

곱셈표 암기 두가지 분야로 검증되었다. 특히 후자의 경우 사람의

암산과 같은 메모리 기반 곱셈에 기반하였다. 또한 메모리 기반

곱셈에 기반한 방식이기에 인수 분해에도 활용할 수 있음을

증명하였다.

저항 변화 소자 어레이의 또다른 응용 분야는 topology block의

lookup table로 사용될 수 있는 내용 주소화 기억장치 (content-

addressable memory, CAM)이다. 이 lookup table은 뉴런 사이의

모든 연결 정보를 저장하고 있어, 스파이크가 발생하였을 시

스파이크가 전달될 뉴런들과 업데이트 해야 할 시냅스들을

검색하는 역할을 하고 있다. 저항 소자 기반 CAM은 빠른 검색

능력과 높은 집적도, 낮은 정적 에너지 소모량을 가지고 있기

때문에 lookup table로 활용하기 적합하다고 볼 수 있다.

그러나 RCAM은 한 쌍의 저항 변화 소자로 하나의 bit를

표현하기 때문에 (0.5bit/switch) resistive random access

memory (1bit/ switch)에 비해 낮은 컨텐츠 밀도를 가지고 있다.

129

본 논문에서는 combination-encoding CAM (CECAM)이라 불리는

새로운 종류의 RCAM을 제시하였다. N-CECAM은 N개의 높은

저항 상태를 가지는 소자와 N개의 낮은 저항 상태를 가지는 소자를

하나의 유닛으로 구성하고. 이 소자들의 조합을 통해 높은 컨텐츠

밀도를 달성할 수 있었다. (N=10일 경우 0.85 bit/switch).

CECAM의 핵심은 n-bit의 search key를 2N 자리의 이진 key로

인코딩하는 알고리즘과 반대로 디코딩 알고리즘을 구성하는 것이다.

본 논문에서는 CECAM에 적합한 인코딩 알고리즘과 디코딩

알고리즘 및 이 알고리즘들에 대한 회로 역시 구성하였다.

주요어: 뉴로모픽 엔지니어링, 저항 변화 소자 어레이, 다층

퍼셉트론, 마코프 체인, 내용 주소화 기억장치

학번: 2015-20801

김 구 현

	1. Introduction
	1.1. Resistance switch array
	1.2. Resistance switch array application in neuromorphic hardware
	1.3. Bibliography

	2. Artificial neural network for response inference of a nonvolatile resistance-switch array
	2.1. Introduction
	2.2. Description of model system
	2.3. Description of artificial neural network
	2.4. Training and test datasets
	2.5. Training results
	2.6. Conclusions
	2.7. Bibliography

	3. Markov chain hebbian learning algorithm with ternary synaptic units
	3.1. Introduction
	3.2. Model description
	3.2.1. Network structure and energy
	3.2.2. Field application and update probability

	3.3. Implementation of the MCHL algorithm on hardware
	3.3.1. Field-programmable gate array
	3.3.2. Resistance-based random access memory

	3.4. Applications
	3.4.1. Image recognition
	3.4.1.1. Implementation on a general-purpose computer
	3.4.1.2. MCHL accelerator

	3.4.2. Multiplication table memorization and prime factorization

	3.5. Discussion
	3.6. Appendix
	3.6.1. Derivation of stochastic activity of a neuron
	3.6.2. Calculation of update probability
	3.6.3. Properties of Markov chain in MCHL
	3.6.4. Effect of update probability and temperature parameter on training
	3.6.5. Handwritten digit recognition
	3.6.6. MCHL accelerator in detail
	3.6.7. Multiplication table memorization
	3.6.8. Prime factorization
	3.6.9. Direct search factorization

	3.7. Bibliography

	4. Combination-encoding content addressable memory
	4.1. Introduction
	4.2. Combination-encoding content addressable memory
	4.2.1. Algorithm for combination encoding
	4.2.2. Implementation of encoding circuit

	4.3. Parallel search of N-CECAM domains
	4.4. Algorithm for content decoding and circuit implementation
	4.5. Discussion
	4.6. Conclusion
	4.7. Appendix
	4.8. Bibliography

	5. Conclusion
	Curriculum Vitae
	List of publications
	Abstract (in Korean)

<startpage>22
1. Introduction 1
 1.1. Resistance switch array 1
 1.2. Resistance switch array application in neuromorphic hardware 4
 1.3. Bibliography 7
2. Artificial neural network for response inference of a nonvolatile resistance-switch array 10
 2.1. Introduction 10
 2.2. Description of model system 12
 2.3. Description of artificial neural network 14
 2.4. Training and test datasets 15
 2.5. Training results 16
 2.6. Conclusions 22
 2.7. Bibliography 22
3. Markov chain hebbian learning algorithm with ternary synaptic units 25
 3.1. Introduction 25
 3.2. Model description 28
 3.2.1. Network structure and energy 28
 3.2.2. Field application and update probability 33
 3.3. Implementation of the MCHL algorithm on hardware 36
 3.3.1. Field-programmable gate array 36
 3.3.2. Resistance-based random access memory 36
 3.4. Applications 40
 3.4.1. Image recognition 40
 3.4.1.1. Implementation on a general-purpose computer 40
 3.4.1.2. MCHL accelerator 49
 3.4.2. Multiplication table memorization and prime factorization 50
 3.5. Discussion 60
 3.6. Appendix 64
 3.6.1. Derivation of stochastic activity of a neuron 64
 3.6.2. Calculation of update probability 65
 3.6.3. Properties of Markov chain in MCHL 66
 3.6.4. Effect of update probability and temperature parameter on training 70
 3.6.5. Handwritten digit recognition 72
 3.6.6. MCHL accelerator in detail 75
 3.6.7. Multiplication table memorization 80
 3.6.8. Prime factorization 83
 3.6.9. Direct search factorization 84
 3.7. Bibliography 84
4. Combination-encoding content addressable memory 89
 4.1. Introduction 89
 4.2. Combination-encoding content addressable memory 91
 4.2.1. Algorithm for combination encoding 97
 4.2.2. Implementation of encoding circuit 100
 4.3. Parallel search of N-CECAM domains 103
 4.4. Algorithm for content decoding and circuit implementation 106
 4.5. Discussion 109
 4.6. Conclusion 114
 4.7. Appendix 114
 4.8. Bibliography 116
5. Conclusion 120
Curriculum Vitae 122
List of publications 124
Abstract (in Korean) 126
</body>

