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Abstract

The Gauss class number problem
and the conjecture of Birch and
Swinnerton-Dyer

Jigu Kim
Department of Mathematical Sciences

The Graduate School
Seoul National University

The Gauss class number problem is to determine a complete list of quadratic
number fields for any given class number. It follows from Siegel’s theorem
that for each class number there are only finitely many imaginary quadratic
fields and real quadratic fields of Richaud-Degert type. Since Siegel’s theo-
rem is ine[edtive, it cannot provide a solution for the Gauss class number
problem.

Goldfeld discovered an e [edtive method, which concerns arithmetic of an
elliptic curve, to solve the class number problem for imaginary quadratic
fields and real quadratic fields of Richaud-Degert type. In the imaginary case
only Oesterlé simplified Goldfeld’s proof and made an explicit result, which
led him to solve the class number three problem for imaginary quadratic
fields.

We find explicit constants in Goldfeld’s method and apply the results to
the class number problem for real quadratic fields of Richaud-Degert type.
Key words: class numbers, quadratic fields, elliptic curves.

Student Number: 2014-21201
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Chapterl

Introduction

In his 1801 Disquisitiones Arithmeticae [Gau], Gauss posed his class number
conjectures in the language of binary quadratic forms (for even discriminant
only). Since Dedekind’s time, the conjectures have been rephrased in the
language of quadratic fields, which is how we will state.

Let K be a quadratic field, i.e. an extension of Q (\)} degree 2. There is
a unique square-free integer D 8 1 such that K = Q( D). We call D the
fundamental radicand. Let d = 4D/0?, where 0 =2 if D =1 (mod 4) and
o = 1 otherwise. The value d is called the fundamental discriminant. We
denote by h(d) the class number of K.

Gauss surmised that h(d) — oo as K= Q( d) runs through the imagi-
nary quadratic fields (i.e., d <0 and d — —oo). Landau [Lan18] published
Hecke’s work, which stated that the conjecture is true under the assumption
that the Generalized Riemann hypothesis (GRH for short) was true. Unex-
pectedly, the falsity of the GRH also implies the right answer by a series
of papers of Deuring [Deu33], Mordell [Mor34] and Heilbronn [Hei34] in the
1930’s. So they gave an unconditional proof.

For positive discriminants, Gauss predicted completely dilerknt behav-
ior of the class numbers and surmised that there are infinitely many real
quadratic fields with class number one, which is still unproved. Unlike an
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imaginary quadratic field, a real quadratic field has infinitely many units
and its unit group Uk is isomorphic to Z/2Z < Z. Let ¢4 > 1 be the fun-
damental unit %}Ch that Ux = {£1} x [ejCAnd let R(d) = log (g4) be the
regulator of Q( d) for d > 0.

Disquisitiones Arithmeticae [Gau] also gave the tables of imaginary quadratic
fields with low class numbers and Gauss conjectured that there are no more.
For this class number problem and other purposes, a lower bound of h(d)
for d < 0 and that of h(d) x R(d) for d > 0, have been studied by Lan-
dau [Lan35], Siegel [Sie35], Tatuzawa [Tat51], etc. However, their results are
not eledtive. For example, it follows that there is at most one fundamental
discriminant d;y < 0 with class number one, beyond that 9 already known
to Gauss. So dilerent methods were required to solve the class number one
problem for imaginary quadratic fields. In the late 1960’s, both nonexistence
of dig < 0 with class number one and that of d;g < 0 with class number two
were proved by two di[lerknt methods: one is Baker’s e [edtive transcendence
method [Bak69, Bak71] and the other is Stark’s [Sta67, Sta69, Sta71]. How-
ever, neither Baker’s method nor Strark’s applied to the class number three
problem.

In 1976, Goldfeld [Gol76] made a startling discovery: The existence of
an elliptic curve E over Q with high analytic rank g implies that for any
fundamental discriminant d <0 and any small 30

L1
(logd)*=7H if Xa(=N) = (=1)*7,

A= Ce> g ayss1 if y(=N) = (—1)02,

and the constant cg can be eledtively computed. The inequality holds with
a factor R(d) on the left-hand side if d > 0.

In 1983, Gross and Zagier [GZ83] were able to find a Weil curve E with
analytic rank 3, which satisfies all of Goldfeld’s hypotheses. The correspond-
ing constant cg of a slightly diCerknt form, was computed by Oesterlé [Oes85,
Oes88]: For any d <0,
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—
h(d) > 551Iog |d| - 6(d) if (d,5077) =1,
=055 109 [d] - 6(d)
1 v [
where 8(d) = [y 1— [fTTD and P(d) is the set of prime divisors of d

except maximal one. The first inequality is calculated from Gross and Za-
gier’s elliptic curve

y2+y=x3—7x+6, N=5077,
and the other one is from the twisted elliptic curve
—139y? = x*+10x* —20x + 8, N =37-139%
Oesterlé’s method, however, works for imaginary quadratic fields only.

For sake of application to real quadratic fields of narrow Richaud-Degert
type (i.e., D =n?=%1 or n? % 4) whose regulators are the smallest size as a
function of d, we will largely follow Goldfeld’s paper [Gol76] and calculate all
constants in questions. The constant cg will be provided by the following two
diLerkent methods: The Grgdssencharakter for an elliptic curve with complex
multiplication, and Goldfeld-Ho [stkin-Lieman method for an elliptic modular
form which is not a lift from GL(1) (cf. [GHL94] and [Wak]).

As a preliminary part, part | consists of chapter 2 and chapter 3. In
chapter 2, we will review Dirichlet’s class number formula and list ine [ed
tive results about lower bounds for L(1,%). In chapter 3, we will recall the
definition of the Hasse-Weil L-function attached to an elliptic curve and the
conjecture of Birch and Swinnerton-Dyer. We will also introduce some ma-
terials to be used to compute cg.

Part Il consists of chapter 4 and chapter 5. Chapter 4 contains main re-
sults and explicit constants in Goldfeld’s method. Chapter 5 provides appli-
cations to a certain family of real quadratic fields of narrow Richaud-Degert
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type as well as two dilerknt proofs for Lemma 4.3.3.
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Chapter 2

Special values of the Dirichlet
L-functions

2.1 Dirichlet’s class number formula

Definition 2.1.1. For a positive integer q, a Dirichlet character (mod q) is
a homomorphism from (Z/gZ)“to the unit circle S' [C] extended by zero
to a function on Z/qZ and lifted to Z.

Definition 2.1.2. The principal character xo (mod q) is defined by xo(n) =
1if (n,q) = 1 and Xe(n) = 0 otherwise. A Dirichlet character x (mod q)
that cannot be obtained by x = Xox“with X, (mod q) and any character x"
modulo a proper factor q"| q, is called primitive. Any Dirichlet character
X comes from a unique primitive character x“and the modulus of this x"is
called the conductor of .

Proposition 2.1.3. We denote a rational prime by p. For any Dirichlet
charater the following holds.

(1) Since x(—1)2=x(1) =1, x(—1) = 1.
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(2) The number of primitive Dirichlet characters (mod q) is q
op = ((p—1)/p)* if p?| g and (p—2)/p if p .

plq Olp, Where

(3) Every real Dirichlet character is of the form Xo@ |57 » Where Xo is

the principal character, Hjilxﬂ(g@for some [4,1[g 10,1}, S is a finite
set of odd primes, and ; is the Legendre symbol.

(4) Every real primitive Dirichlet character x (mod q) can be defined, us-
ing the Kronecker symbol, to be

]
X(n) =Xa(n) = ? :

V_
which is attached to the quadratic field Q( d) and the fundamental
discriminant is given by d = x(—1)q.

Let v =v(x) = XD,

Definition 2.1.4. The function

A | B L 1 -
Ls,X)= x(mn—==  (Q—-x(P)p~)
n=1 o]
is called the Dirichlet L-function and
C 1T 3 1 [1

T S+vV
NS X) = q r 5 L(s, X)

is called the completed Dirichlet L-function.

Theorem 2.1.5. The completed Dirichlet L-function of a primitive character
X modulo g has an analytic continuation to the whole complex plane as an
entire function and satisfies the functional equation

AGX) = iTTQ%A(l ~5%).

8
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where T(x) = I%I)((m) exp (Mm/q).

Theorem 2.1.6 (Dirichlet’s class number formula). The following identity
holds for any number field K.
wi|d |2 . Ck(s)

hk = 20+ (K2R, lim 2s)

where hg is the class number, wg the number of units of finite order of Ok,
dkx the fundamental discriminant, r; the number of real embeddings, 2r, the
number of complex embeddings, Rk the regulator, and {x(s) the Dedekind
zeta function of K.

Remark 2.1.7. If K = Q or an imaginary quadratic field, Rx = 1 by con-
vention.

When K is a quadratic field, ZK(S)\f Z(s)L(s, Xq) with the real primitive
Dirichlet character Xy attached to Q( d).

Theore\ryl 2.1.8 (Class number formula for quadratic fields). For any quadratic
field Q( d), B
e] : _
h(d) = —aL(l,xd) !f d < —4,
r(d)l-(l,Xd) if d>1.
The value of Dirichlet L-function at s =1, L(1,x) = n;;:l)((n)n‘1 is of
main interest. Dirichlet [Dir], who first faced this problem in his work on
primes in arithmetic progressions, proved that

L1 )
mld| o if d<—4,

L(1, > [ — 1.
(1. Xa) 2log 3( d—4+ d) dz if d>5,

which is immediately followed from Theorem 2.1.8 and h = 1.
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2.2 An upper bound and regulators

Proposition 2.2.1. [Ovel4, Proposition 5.3] Let x and X, be a nonprincipal
and principal Dirichlet character modulo q respectively. For o = 1/4,

IL(s, X0 = 2q(|t] + 4)

Ho - @Séﬂe 20((t]+ 4).

and

This proposition will be used to show Siegel’s Theorem 2.4.1. The next
result provides better estimates for the special value of L(s,x) at s = 1.

Theorem 2.2.2. For a non-principal Dirichlet character x modulo q =3

L1
L1 3 [ogpy,  for a primitive character ,

L= 5N I

(- 3 logg for a non-primitive character x.

Proof. Let Aq(X) = ,_,X(n). By Pdlya-Vinogradov inequality (cf. [Ovel4,
Proposition 3.24)), Y
|Aq(X)I <c qlogaq,

where ¢ = 1 if x is primitive and ¢ = 8/3 otherwise. By partial summa-
tion, we have

@ = Jim A
L] 1
= | AO'T(X)+ Aq(u)u™? du

1

= Aq(u)u?du.
1

10
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Hence we have

L] Ll
LA < |AWudu+  |Ag(u)ludu
b

i |

< uu’du+ c\/ﬁ(log g)u2du.

1 b
L1
If we choose b = \/G, then |L(1,X)| < log \/ﬁ +clogq = L_EFI+ ¢ logq. [

Corollary 2.2.3. For the regulator R(d) of a real quadratic field Q( d),

R(d) = ¥ log d.
In other words, the fundamental unit €4 has the following upper bound.

V_
g <=exp(3 d/4)d.
va va
Proof. R(d) < h(d)R(d) = -2L(1, Xa) < ;% log d. O

It is natural to ask what are optimal bounds of L(1, Xq) and R(d). Under
the GRH, Littlewood deduced the following bounds.

Theorem 2.2.4. [Lit28, Theorem 1 and Theorem 2] Assume L(s,X) has no
zeros in 0 > 1/2.

(1) If x is a real non-principal character x modulus g, then as q —» oo

2

{1+ 0(1)}5 (logloglal)™ < L(1,x) < {1+ o(1)}2e"log logq],

T
12ev

where y is Euler’s constant. The right-hand inequality is true also for
a complex character if one replaces L(1,x%) by |L(1, X)I.

(2) There are infinitely many d such that for X4
L(1, Xa) > {1 + 0o(1)}e”log log [d.

11
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(3) There are infinitely many d such that for x4

2
L(L Xe) < {1 +0(D)}5; (loglog|d)

Remark 2.2.5. However, Littlewood gave nothing about the o(1), neither
its sign nor the manner in which it approaches zero as a function of d.
The statement (3) in Theorem 2.2.4 was later established unconditionally
by Chowla [Cho48].

Therefore unde\r/ the GRH, we expect that the regulator R(d) of a real
quadratic field Q( d) has the following upper bound.

V_
R(d) < {1+ o(1)}2e¥ dloglog|d]|.

On the other hand, in view of the Cohen-Lenstra heuristics and some
numerical evidence, the following is conjectured.

Conjecture 2.2.6. [JLW95] There exists an infinite set of the prime funda-

mental radicand D > 0 for which

v_
d

R(@) iog logd”

At present the best result of this type is that of Halter-Koch.

Theorem 2.2.7. [HK89] There exists an infinite set of discriminant d > 0
of an order of a real quadratic field (not necessarily a fundamental discrim-
inant) such that

R(d) Clog’d.

12
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2.3 Siegel zero

To introduce the definition of Siegel zero, we recall a zero-free region for
{(s) and L(s, X), respectively.

Theorem 2.3.1. There is a constant ¢ > 0 such that if [t > 2 and {(o +
it) =0 then
o<

1— :

log [t]
Theorem 2.3.2. There is a constant ¢ > 0 such that if L(o +it,x) =0 for
some primitive complex Dirichlet character x mod g then

c

o0<l—-———.
log q(|t] +2)

(2.1)
If x is a real primitive character then (2.1) holds for all zeros of L(s, Xx) with
at most one exception. The exceptional zero, if it exists, is real and simple.

Definition 2.3.3. The exceptional zero in Theorem 2.3.2, if it exists, is
called Siegel zero (or Landau-Siegel zero).

Remark 2.3.4. Since we can choose constant c arbitrary small in Theorem
2.3.2 and Definition 2.3.3, if Siegel zero exis&s then there must be infinitely
many Siegel zeros and the corresponding Q( d). As in [HB83], the meaning
of Siegel zeros is to be as follows: there is a sequence of d;’s, |dj| — oo, and
corresponding Siegel zeros [3; of L(s, Xq) with (1 —3;) log|d;| = Lg.1for some
fixed positive [g.]

We expect that there is no such zero by the Generalized Riemann Hy-
pothesis (GRH for short), which is the conjecture that each nontrivial zero
of an L-series associated to a primitive Dirichlet character x has real part
1/2. The nonexistence of Siegel zero, though much weaker than the GRH,
is not yet proved. But we can still obtain some strong restrictions on how
Siegel zeros can vary with g and x. Siegel zeros cannot occur even for char-
acters of dilerent moduli if we set the threshold low enough:

13
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Theorem 2.3.5. [Lan18] There is a constant ¢ > 0 such that, for any dis-
tinct primitive real characters x;, X» to (not necessarily distinct) moduli gy,
g, at most one of L(s, X1) and L(s, X2) has an exceptional zero 3 > 1—@.
In particular, for each q there is at most one real character mod g whose
L-series has an exceptional zero 3 > 1—(c/log Q).

2.4 Ine[edtive lower bounds

2.4.1 Siegel-Tazuzawa theorem

In this section we introduce one of the simplest proofs of Siegel’s theorem
due to Goldfeld [Gol74] and see what leads to a none [edtive result.

Theorem 2.4.1. [Sie35] Given 0 < [ & % there is ¢(D> 0 which is inef-
fective such that

L(1,Xa) = c(OH [d|™

Proof. Suppose that x and x; are primitive quadratic characters to distinct
moduli q, q; respectively (q > q;). Let

F(s) = ¢(S)L(S, X1)L(S, X)L(S, X2X) =  ann™.
Since all the Dirichlet coe [ciehts of

B W ]
log (F(s)) = = 14 X(0F) + X(P) + X2 (P)X(P*) p7*

p k=1

=~

are nonnegative, a, = 0.
Let P(s) =s(s+1)(s+2)(s+3)(s+4)(s+5) and let 1/2 < a < 1. By

14
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the weighted version of the Perron formula (cf. [Ovel4, p. 161)),

1 Fehieo XS+ — i
JE— = —_ —a —
oM F(s+a)P(S)ds n<X(x n)’a,n = (x — 1)°.
By the residue theorem,
- I:—l1/2+ioo
xi—@ Fla) 1 XS
1 b X
= — F(s+ ) ds
2T[| 2—ioco P(S)
(x—1)°
= N

]
By Proposition 2.2.1, F(s) = O %%qz(m +4)* in the region: 0 = 1/4 and
|s— 1] > [ 0. Since the degree of the polynomial P(s) is 6, we have

vo'q

xi-a F(a
+ 29 0 grax

—a/2 % (X - 1)5
(1-a) 120 - '

X5

L(L X)L XL XX

By Theorem 2.2.2, L(1,x1)L(1,x1X) [lodq; (logq: + log Q).

Now we suppose F(a) < 0 for some x; (mod ;) and some 1-d<a <1
(® > 0 will be determined later). Then for su Lciehtly large ¢ defined by
X = (Cq4)2/cx,
L(L,X)(log q)*(cq®)?*~¥"® 11

Since 0 < 2% < 8 if we choose & su [ciehtly small then for any =0
we can force

L(1,x) Cat’

For an imprimitive character X" (mod g% induced by a primitive character
X (mod q),

15
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L 1
"X o,

plg¥ p=q™

L(1,x) = LX)

By the Mertens formula (cf. [Ovel4, Proposition 1.11)),

LX) Cqios rgh s (g

logg®

Now it su [ced to show that there are x; and a such that 1 —d < a <
1 and F(a) < 0. If there is no Siegel zero, we choose some arbitrary real
primitive character X; modulo some g; = 3. In this case L(a, X1), L(a, X)
and L(a,xi1x) are positive for any a with 1 —0 < a < 1. Since {(O) is
negative, F(a) < 0. In the other case there exists a real primitive character
X1 with modulo g; = 3 such that L(3,x1) =0 (so F(B) = 0) for Siegel zero
B with 1—0 <3 <1. We have no way to estimate this modulus g; and so
the result of the latter case become ine [edtive. O

A lower bound of L(1,Xq) can be deduced immediately from an estimate
of a Siegel zero 3 by the following lemma due to Tatuzawa.

Lemma 2.4.2. [Tat51, Lemma 8] Let 0 < [ 1/2. If L(s,X) has no real
zero 3 in the interval 1 — [/4 <3 <1 then

]

=
L(LX) = 0.376

Tatuzawa used Theorem 2.3.5 and Lemma 2.4.2 to show the following
theorem. The above proof of Theorem 2.4.1 was further developed by Ho[-1
stein [Hof80] to yield a simple proof of the following theorem, too.

Theorem 2.4.3. [Tat51, Theorem 2] Let 0 < [2 ¢ and |d| = max{et,e!?}.
Then
L(L, Xq) = 0.655 ]d[""

16
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with one possible exception.

Remark 2.4.4. Hecke’s conditionally e [edtive result assuming nonexistence
of Siegel zero (published by Landau [Lanl18]), can be obtained by Lemma
2.4.2 with substituting [With 4c/ log|d|, where c is in Theorem 2.3.2. Also,
under the assumption that there is no Siegel zero, one exception in Theorem
2.4.3 can be removed.

2.4.2 Sarnak-Zaharescu theorem

Assuming that all the zeros of the L-functions are either real or lie on the
critical line (Hypothesis H), Sarnak and Zaharescu [SZ02] improved results
on Siegel zero and established a better lower bound for L(1,Xq). We will
state Hypothesis H separately depending on the L-functions in questions:

(1) Hypothesis H;: All the zeros of L(s, Xq) are either on the line Re(s) =
1/2 or are real.

(2) Hypothesis H,: Not only H;, but also all the zeros of the L(E [Xd, S)
are either on the line Re(s) = 1 or are real.

Remark 2.4.5. Hypothesis H; (Hypothesis H») is a weak form of the Gen-
eralized Riemann Hypothesis (Grand Riemann Hypothesis, respectively), ex-
cluding the assumption for real zeros. On the other hands, there are some
reasons to accept Hypothesis H. For example, H is true for the Selberg zeta
function for a lattice I' in SL(2, R), and some authors have studied the zeros
of ¢(s)L(s, Xq) dilerkently according to real zeros and complex zeros.

Theorem 2.4.6. [SZ02, Theorem 1] Assume Hypothesis H;. Then for any
[ 0 there exists a constant c([) > 0 (ine[edtive) such that

c(D

- Xa) = g T

17
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Theorem 2.4.7. [SZ02, Theorem 3] Assume Hypothesis H,. Given an ellip-
tic curve E over Q of which the L-function has a zero of order g at s = 1,
for any [ = 0 there is an eledtive constant c(E, D 0 such that

c(E, D1

L(l, Xd) = |d|(2+ DA(g+1)

2.4.3 A table

We give a table of lower bounds for L(1, Xq) in growth rate order, includ-
ing Goldfeld’s result and Oesterlé’s which we introduced in chapter 1. The
following table implies that for su Lciehtly large d

for each item.

L(1, Xq) = contant < growth rate,

Growth rate Constant Condition Due to
1 Conditionally The Generalized RH Sarnak,
(log|d])& ine Cedtive, c([l except real zeros Zaharescu
itionall .
1 Condlt.lona Y No Siegel zero Hecke
log |d| e [edtive, ¢
1
Ine [edtive, c Siegel
1 At most
0.665 d=d Tatuzawa
[ fa11d] = d(L2) one exception
. The Grand RH
1 Conditionally except real zeros Sarnak,
d|@+&)/(@+D) e [edtive, c(E ’ Zaharescu
5 ® (CR/Q s.t.g [N
(log [d[)e—>~" -
T E [edtive, c(E) (CR/Q s.t.g [N Goldfeld
7)) =1
a9 g < n/55 (d,5077) =1, Oesterlé
ldi or 1/7000
-1/2 < —4
M= d 1 Dirichlet
(log(d—4))d™2 d=>5
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Chapter 2. Special values of the Dirichlet L-functions

where an 0and 0 < 1 d([))=ma ell? is the analytic

y I_1__l> Lk ('EI:] ﬁ{ﬁﬁmp}mﬁ y
rank of an elliptic curve over Q, 8(d) = |y 1— o T and P(d) is the
set of prime divisors of d except maximal one.

2.5 Real quadratic fields of Richaud-Degert type

In the section 2.2, we introduced the two unsolved questions regarding
the regulator R(d) of Q( d) with d > 0:

(1) What is the largest value that R(d) can attain as a function of d?
(2) How often does R(d) become that large?

Now we restrict real quadratic fields to be of certam\/orms so\/that we
avoid di Cculty of the regulator. Recall that for K=Q( d) = Q( D), the
fundamental discriminant d and the fundamental radicand D have the fol-
lowing relation:

d =4D/d?,
where 1
c=2 if D=1 (mod 4),
o =1 otherwise.

Definition 2.5.1. Let D = n?+r 85 be a square-free positive integer such
that
rj4n and —n<r=<n.

V_
The real quadratic field K =Q( D) is called a real quadratic field of Richaud-
Degert (R-D for short) type. Specially, if |r|] {1, 4} then K is of narrow R-D
type. Otherwise, it is of wide R-D type.

V_
Theorem 2.5.2. [Deg58, Satz 1 and Satz 2] Let K = Q( D) be a real
quadratic field of R-D type. Then the fundamental unit € and its norm are
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Chapter 2. Special values of the Dirichlet L-functions

given as follows:

1 v

E=FEn+ \}’12 +r, N(g) = —sgn(r) if |r|=1,
=(n+ n2+r)/2, v N(g) = —sgn(r) if |r| =4,
=@n?+r)/|rl+2n n2+r/|r|, N() =1 if |r|&1,4.

By theorem 2.4.3 and theorem 2.5.2, in the 1980’s Mollin and Williams
made a list of R-D types of various class numbers, and showed that the list is
complete with one possible GRH-ruled out exception (cf. [Mol96]). Some of
these lists have been unconditionally verified. In 2007, for example, Byeon,
Kim, and Lee [BKLO7] classified all real quadratic fields of narrow R-D types
with class number one.
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Chapter 3

The L-function attached to an
elliptic curve

3.1 The Hasse-Weil L-function

We begin by defining the incomplete L-function, which omits the finitely
many places at which E has bad reduction. Also, we introduce isogeny the-
orem to explain that the incomplete L-function determines E up to isogeny
over K. We then define the global Hasse-Weil L-function and the complete
L-function, and describe its analytic properties.

Let E be an elliptic curve over a number field K and let its Weierstrass
equation

Y2 + CiXy + C3y = X + CoX* + C4X + Cs,

with ¢; CKlL Let S be the finite set of places of K consisting of the infinite
places and the places where E has bad reduction. For all places v I'S] there
is @ model of E such that the coe [ciehts c; lie in the local ring O, at v and
the discriminant [,1d a unit in O,. Let 1, be a uniformizing element in O,
and let O,/n,O, = F, be the residue field, of cardinality q,. For v I'S] we
gat an elliptic curve £ lover the residue field F,. The formal local L-factor
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Chapter 3. The L-function attached to an elliptic curve

at v with v I S] is
Ly(E/K, s) = L(EAF,, 9;%) = 1 —a.q;° + gL ),

where #I‘:‘V_(FV) =1+q,—a.

Definition 3.1.1. The incomplete L-function of E is

L 1
Ls(E/K,s) = L (E/K,s). (3.1)
vIs]

Conversely, the formal Euler product (3.1) determines E up to isogeny
over K for the following reasons. We denote by T,(E) the l-adic Tate module
which is defined to be

Ti(E) .= limE[I],
n

with respect to the maps
ENMY =L EfN, P3P
We denote by V,(E) the rational Tate module, which is defined by

VI(E) = Ti(E) Qi = Ti(E)[L].

Then T,(E) is a free Z;-module and V,(E) %,2 as a Q,-vector space. The
absolute Galois group Gk = Gal(K°/K) acts on V,(E), and this action induces
the l-adic representation:

per i Gk -~ Aut(Vi(E)) £6L,(Q)).

Theorem 3.1.2 (Faltings, 1988). Let K be a number field and let Gx =
Gal(K3/K). If A and B are two abelian varieties over K, then the natural
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Chapter 3. The L-function attached to an elliptic curve

map
Homy (A, B) [z4, -~ Homg, (T\(A), Ti(B))

IS an isomorphism

In short, Faltings’s isogeny theorem reduces a geometric problem to a
problem in terms of Galois representations. We list some consequences of
the theorem.

Proposition 3.1.3. Let E; and E; be elliptic curves over a number field K.
Then the following are equivalent:

(1) E; and E, are isogenous over K,

(2) For all prime I not dividing v [CS] V,(E;) Q.(Ez) as Gg-modules,
(3) For some prime | not dividing v [S] V,(E,) Q.(Ez) as Gg-modules,
(4) Ly(E1,s) = Ly(Ey,s) for all places v I'Slof K,

(5) Ly(Ey1,s) = Ly(Ez,s) for almost all places v ¥Slof K.

For the L-function to have a meromorphic continuation to the whole of
C and satisfy a functional equation, we must add some factors to the incom-
plete L-function, corresponding to the infinite places and the finite places of
bad reduction. For finite v [S] we define the local L-factor

1
E 1 if E has additive reduction at v;
L/(E/K,s) = %— g,%)~! if E has split multiplicative reduction at v;
+q,%)"! if E has non-split multiplicative reduction at v.

We can define the Hasse-Weil L-function as follows.

Definition 3.1.4. The Hasse-Weil L-function of E/K is

L 1 L 1
L(E/K,s) = Ls(E/K,s)  L,(E/k,s)=  L.(E/K,s).
VEOII v[do
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Chapter 3. The L-function attached to an elliptic curve

Adding factors at the infinite places, the completed Hasse-Weil L-function is
L] .
AE/K,s) = (2m) T (s) o UL (E/K,s).

The following two quantities measure bad reduction.

Definition 3.1.5. The minimal discriminant of an elliptic curve E over a
number field K is the integral ideal of K defined by

Dejk = x(liﬂ

v[do

where [, 19 the discriminant of a minimal equation for E/K, and p, is the
prime ideal associated to the finite place v.

Definition 3.1.6. The conductor of E is the integral ideal given by

T
Nex = Py’ s
vido

where 1
0 if E has good reduction at v,

if E has multiplicative reduction at v;

f, = 1
§+ 0, Iif E has additive reduction at v,

where 9, is a non-negative integer depending on the action of wild inertia
at v on T,(E). It is zero whenever the characteristic of v is not equal to 2
or 3.

Remark 3.1.7. In fact, the conductor of E is the Artin conductor of the
Tate module of E. It is related to Dg/ by Ogg’s formula

f, = ord,(Dgsk) + 1 —my,

where m, is the number of irreducible components of the Néron model of E
at v. (cf. [Sil94, Chapter 4, Section 11])
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Conjecture 3.1.8. Let K be a number field, and E/k an elliptic curve. Then
the complex analytic function A(E/K,s) on the right half plane Re(s) > 3/2
admits an analytic continuation to the entire complex plane and satisfies the
functional equation

N(E/K,s) = A SA(E/K, 2 —s)

where A is the product of the absolute norm of conductor Ng with the
square of the discriminant of K.

Wiles and Taylor [TW95, Wil95] proved this conjecture in the case when
K = Q and the conductor Ngy is square-free. In [BCDTO01], their methods
were extended to cover all elliptic curves over. Some other cases when K is
a totally real number field are known.

3.2 The conjecture of Birch and Swinnerton-Dyer

Conjecture 3.2.1 (Birch and Swinnerton-Dyer). Let E/K be an elliptic curve
over a number field, and assume that L(E/K,s) has a meromorphic contin-
uation to a neighborhood of the point s = 1.

(1) BSD rank conjecture: If n is the algebraic rank of E(K), then

ords=;L(E/K,s) = n.

(2) Strong BSD conjectrue: Let c(E/K) be the leading term in the Taylor
expansion at s = 1, that is,

L(E/K,s) CAAE/K) - (s—1)" as s — 1.

Then
c(E/K) = P(E/K) - R(E/K) - #111(K, E),
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where

(a) the period of E/K, P(E/K) is defined by

—=3 - .
P(E/K) = L,(E/K, 1) - oy - oo,
. E(Ky)

V|oo

with a non-zero invariant dilerkential w on E/K,
(b) the regulator of E/K, R(E/K) is defined by

R(E/K) = det (B}, P;DY 17,

with the Néron-Tate height 1. E(K) x E(K) - R, a basis

of free part of the Hasse-Weil group {Pi}iL,, and I = [E(K) :
By, - -, Pnl
(c) the Tate-Shafarevich group, III(K, E) is defined by
—1 —1

1
HI(K,E) = ker HYK,E) -~  HY(K,E)

Vv

(for detail, see [Groll]).

3.3 Anelliptic curve with complex multiplication

3.3.1 The Grossencharakter

Let m be an integral ideal of the number field K, and let J" be the group
of all non-zero fractional ideals of K which are relatively prime to m. Search-
ing for the most comprehensive class of characters x : J™ — S! for which
the corresponding L-series could have a functional equation, Hecke was led
to the notion of a Grossencharakter mod m.
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We introduce the sets
KM ={a K| (a,m) =1},

K™={a [KI |a=1 (mod m)},
oM ={a Q™| (a,m) = 1},

and
O™ ={a A" |a=1 (mod m)}.

We denote by R the Minkowski space, which is
R oK L£R" x C™
in the usual way (cf. [Neu99, Chapter 1, Section 5]).

Definition 3.3.1. A Grossencharakter mod m is a character x : J" - St
which there exists a pair of characters (i.e., a continuous homomorphism)

Xi . (O/m)* - St Xoo : R* = 8¢

such that
x(fahl= x¢(a)X(a)
for any a CQ™M,

Remark 3.3.2. The following can be deduced easily:

(1) A finite component ¥z : (O/m)* - St is a character of a finite abelian
group and so xf(a) =1 when a CA™.

(2) An infinite component X, : O* - S! that deals with contributions
from the units O™, under the map j from K> to the multiplicative
Minkowski space R™.
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(3) For a LO%, Xi(a)X(a) = x([@n= 1.

(4) O™ LOr and for a [A™, Xw(a) = Xf(@)X(a) = x(lADI= 1. Hence
Xoo . R*/OM _ SL,

(5) For a CKM" (i.e., a = b/c with b,c CAQ™, b =c¢ mod M), Xe(a) =
x([@hland K™ is dense in R™. Hence X is determined uniquely by x
(and so is X¢).

The infinite components can be given explicitly as follows. The multi-
plicative Minkowski space is written by

R* LR x (C™)',
via the map X = (X¢)r B ((Xp), X6)s). The characters of

(R™)"™ x (C™)"2 L£1} x Rog)™ x (S x Rso)'

have the form
npzieg bl
(Xll e 1Xr1+r2) B _J |X]|Iqjl
= Xl

where 1
{0,1}, when j=1,---,rq,
pj 1 L !
Z, when j=r;+1,--,r; + 1y,
and g; (Rl for each j =1,---,r; + 1, Hence every Xo is in the form
(I 1 1
x r iq
X=X 3 N _ X
(T)T |X| || ’

[_1 [ 1
where p [1_Z and g 1R such that:

(1) pp =0,1 for all p, and psps = 0 for all o, and

(2) 9.5 =0 for all o.
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Such an element is called admissible. Then we say that x is of type (p,q),
and we call p —iq the exponent of the Grdssencharakter X.

3.3.2 The Hecke L-function

We may assume that X is a primitive Grdssencharakter mod m, i.e., that
the corresponding finite component s of (O/m)™is primitive. The L-series of
an arbitrary character dilers from the L-series of the corresponding primitive
character only by finitely many Euler factors. So analytic continuation and
functional equation of one follow from those of the other.

The L-function of the G(C|R)-set X = Hom(K, C) is defined by

Lx(s1) = Lr(s)"Lc(s)",

with 1 = (1, ,1) where the number of 1 is n = #X, i.e., the degree of
K/Q, and

Lr(s) = 321 (s/2) = Ly(s) if Y ={p},

Lc(s) =2@2m) 75T (s) = Ly(s) if Y ={o,0}.

Recall that an infinite comoponent X.. of R™is given as
(I A I
Xeo(X) = N XP|x|7P™19
for an admissible (p,q) with p 1 Z and g 1 R. Let
Leo(X,S) = Lx(s1 +p —iq).
Let A(X,s) be the completed Hecke L-series which is defined to be
A, X) = (1dkINmM))* Lea (s, XIL(S, X)-

Theorem 3.3.3. Let x be a primitive Grossencharakter mod m of a number
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field K. Then the function
A, X) = (dNmM))™? Leo(s, X)L(S, X),  Re(s) > 1,

has a meromorphic continuation to the complex plane C and satisfies the
functional equation

A(s, X) = WOOA(L —s,X),

where |W(x)| = 1. It is holomorphic on all of C, if m81 or p 8 0.

3.3.3 Deuring’s theorem

Theorem 3.3.4 (Deuring). Let E/F be an elliptic curve with complex mul-
tiplication by the ring of integers Ok of imaginary quadratic field K.

(1) Assume that K is contained in F. Then

ILEE/F, ) = L(s, Wr)L(S, Wr)

for some primitive Grossencharakter g of F,

(2) Assume that K is not contained in F, and let F”’= FK. Then

LEE/F,s) = L(s, Yr)

for some primitive Grossencharakter Yo of FY)

where IEB/F, s) is the normalized Hasse-Weil L-function such that the critical
line is s =1/2.

In the case of an elliptic curve E/Q with complex multiplication by the
ring of integers Ok of imaginary quadratic field K,

L(E/Q,s) = L(s, 1) (3.2)
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for a primitive Grossencharakter (quasi-character) g mod f of some normal-
ized Y.

For X = Hom(K,C), ry =0 and r, = 1. If ¢ : J' — S is a Grossen-
charakter then for a [CKI,

1 1]
Wk ([@DI= Yr f(@Wk .« (a) = Wk (Ao)o

and [TT11 [ 1
1O a, 7 .
llJKyoo (aU)U = N |a | Iacllq = apla‘llq p1
o

for some p = p; 4 and q = q, [R. Since the left-hand side in (3.2) has
the Dirichlet series with rational coe [ciehts, g = 0. In this case, there is a
functional equation given by

NS, X) = WOONAQL +p —s,X),
which implies that the integer p must be equal to one and
Y(@P=a for a [KI.

In short, the Grossencharakter attached to an elliptic curve over Q with CM
must be of type (1, 0).

3.3.4 Theory of complex multiplication

Let K be an imaginary quadratic field, let CI(K) be the class group of
K, and let hx be the class number of K. We will see that if E is an elliptic
curve with CM by Ok, then j(E) generates the Hilbert class field of K. Let

Ec(K) = {C-isomorphism classes of elliptic curves over C with CM by Oy}.
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There is a well-defined map

CI(K) - Ec(K)
[a] B C/a.

Let

Eq(K) = {(_Q-isomorphism classes of elliptic curves over C with CM by Oy}.
Then there is a natural map Eg(K) - Ec(K).

Lemma 3.3.5. The above two maps are bijective.

Now we simply write E(K) and we define an action of CI(K) on E(K).
Let [a] CCI(K) and let C/b [CEIK) for a fractional ideal b of K. Set

[a] - C/b = C/(a~'b).

By the above lemma, this action is transitive.
For each o I:Gal(é/K) there is a unique ideal class [a] [QI(K) such
that E° £f4]- E. This defines a map

S : Gal(Q/K) - CI(K).

Theorem 3.3.6. Let E be an elliptic curve with CM by Ok. Suppose that
E =E, Ey, - - En. is a complete set of representatives of E(K). Then

K

(1) H=K((E)) is the Hilbert class field of K,
(2) [QU(E)) : QI =[K(G(E)) : K] = hg,
(3) J(E1), -+ ,j(En) is a complete set of conjugates for j(E).
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(4) (Reciprocity Law) Let j(c) := j(C/c) for a fractional ideal ¢ of K. If a
and b are fractional ideals of K then

i) = j(a™'b)

(for detail, see [Gha03]).

Remark 3.3.7. More generally if E is an elliptic curve with End(E) an ar-
bitrary order of K then it turns out that j(E) generates a (not necessarily
unramified) abelian extension of K.

3.4 The symmetric square L-function attached to
an elliptic curve

3.4.1 The primitive symmetric square L-function

Let E be an elliptic curve over Q with conductor N and let [(E/Q,s) be
the normalized Hasse-Weil L-function such that its critical line is s = 1/2.
We write the Euler product of [(E/Q,s) = L(E/Q,s + 1/2) as follows:

T and

y —

= (1-aE)p*+1nmp )"
—

= a- O(pp_s)_l(l - Bpp_s)_la

p

L(E/Q,s) =

where

1 _
Efer p N, op +Bp =ap(E), [0p|=1[Bp| =1, ap =P,

éfp[ﬂl, ap = E~5, Bp =0,
r p?|N, op =B, =0.

o
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We denote by L(Sym?E, s) an imprimitive (normalized) symmetric square
L-function associated to E/Q, which is defined as follows.

Definition 3.4.1.

L1
L(Sym{E,s) = (1= opp™) (L — apBpp ™) (L - Bpp )
p

L(E, LE CXI)NCS)-

By [CS87], there exists the symmetric square conductor B [Z] the prim-
itive (normalized) symmetric square L-function L(Symf)E,s) and the Euler
product U(E,s) such that

L] L]
A(Sym?E, s) |:,§/2 Skl rg% L(Sym;E, s)
Cf LI GIGT 5 ]

) 5 T L(Sym?E, s) - U(E, s)

satisfies the functional equation
A(Sym’E, s) = A(Sym’E, 1 —s), (3.3)

L1
and the Euler product U(E,s) =y Up(E,s).

Also, Uy (E,s) is given as follows. Let F=Ep be a global minimal twist
of E and we write invariants with subscripts according to E or F. We have
L(Sym E,s) = L(Sym F,s), Be = Bf = B. Let

S; = Si(E;RD) = {p:p|D, pINg,
SZ = Sl(E!F!D) = {pplD! p”NF}

Note that for any odd prime p, if p S} or p [Sb, ord,(Ng) = 2 and if
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P? | N, ordp(Ng) = ord,(Ng). Also we can write

Ne = MD2D32%,
N|: = MD227\F,

where M is odd, D, is the product of the odd primes in S;, D, is the product
of the odd primes in S,, and 2-adic valuations Az = Ar. From the definition
of imprimitive symmetric square L-functions,

L1
L(Sym{E,s) = L(Sym{F,s) 1= ap(AP™)A - p™)A - BE(FP™)

x Q-p~). (3.4)
pIS3

Let Be = B = IOpgp. Then for a global minimal twist elliptic curve F, we

have 1
fof p (Ng,  0p =0, Up(F,s) =1,

for p Mg, 0, =1, Up(Fs) =1,
fo} p? | N¢, 8, =1, there are three possibilities for
Up(Fs):1, 1xp™)™

(cf. [CS87], [Del03] and [Wako02]).

(3.5)

3.4.2 Watkins’ theorem

In [Wak], Watkins showed the following theorem.

Theorem 3.4.2. [Wak, Lemma 3.4] Let E be an elliptic curve with B = 12.

Then L(SympE, 1) = 2&2.

We give a sketch of proof as follows. Watkins made the argument of
[GHLY94] explicit, in the case of an elliptic curve which is not GL(1)-lift,
and then he derived an explicit zero-free region for L(Symf)E, S).
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For an elliptic curve with CM, Watkins acquired an explicit zero-free re-
gion for the corresponding Hecke L-function.
To turn that into a lower bound for L(Symf)E, 1), Watkins used

1
F(s) = Ys)L(SymgE,8) =  ann,
n
which is the Dirichlet series with nonnegative coe Lciehts. He calculated the
following integral moving the contour to s = 1/2 —b:

| —
[ (s)XSF(s + b)zd—Tf‘i = N =e VX

ban/X’ —
2 n“e

where b =1 — WE(B)' The above zero-free region implies that F(s) has no
Siegel zero in [b, 1), and so the residue value is

L(Sym3E, 1)X'7°r (1 — b) + F(b),

with F(b) < 0. By the residue theorem, he derived the result.
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Goldfeld’s method
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Chapter 4

Explicit Goldfeld’s Theorem

4.1 Main results
Goldfeld obtained an eledtive lower bound for L(1, xq) as follows.

Theorem 4.1.1. [Gol76, Theorem 1] Let E be an elliptic curve over Q with
conductor N. If E has complex multiplication and the L-function associated
to E has a zero of order g at s = 1, then for any xgq with (d,N) = 1 and
|d| > exp exp(c:Ng®), we have

(log|d)*™ " exp(=21 gloglog|d])
Cy 0g expi= gloglog
L(11Xd) = g4gNl3 'W' ’

where 41 = 1 or 2 is suitably chosen so that xq(—N) = (—1)?7#, and the
constants c;, ¢; > 0 can be eledtively computed and are independent of g,
N and d.

In fact, Goldfeld proved Theorem 4.1.1 under assumption that the as-
sociated base change Hasse-Weil L-function LE,Q(\/H)(S) has a zero of order
= g. Thus the proof of Theorem 4.1.1 in [Gol76] also implies the following
theorem with e[edtive constants.
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Theorem 4.1.2. [BK18, Theorem 1.3] Let E be an elliptic curve over Q with
conductor N and g = 4 be a positive integer. If E has complex multiplication
and the associated base change Hasse-Weil L-function Lg, Vg (s) has a zero
of order = g at s = 1, then for any such d with (d,N) = 1 and |d| >
exp exp(400Ng?®), we have

v
10 (log d)9~ 3exp(—21 gloglog d)
4gN5 d

L(1, Xa) >

Remark 4.1.3. Let E be an elliptic curve o\\ﬁer Q with complex multiplica-
tion by an imaginary quadratic field K= Q( —K). In the proof of Theorem
4.1.2, we use the fact that —k is one of —3, —4,—7,—8,—11, —19, —43, —67, —163
(cf. statement (2) in theorem 3.3.6 or [Sil09, Example 11.3.1]), so k < 163,
instead of the fact k < N (because k | N), which is used in the proof of
[Gol76, Theorem 1]. That is why there is a dilerknce for exponents of N
between Theorem 4.1.1 and Theorem 4.1.2.

We will improve theorem 4.1.2 to the following theorem in section 5.2.

Theorem 4.1.4. [BK19, Theorer\T} 1.3] Let d > 0 be a fundamental discrim-
inant of a real quadratic field Q( d). Let E be an elliptic curve over Q with
conductor N of which the symmetric square conductor B is greater than 11,
and let g = 4 be a pOS\}IVG integer. If the associated base change Hasse-
Weil L-function L(E/Q( d),s) has a zero of order = g at s = 1, then for
any such d with (d,N) =1 and d > expexp(330Ng?), we have

v___
6 % 10%8 (log d)9~ 3exp(—21 g log log d)
g*oN d

L(l, d) =

Remark 4.1.5. The previous version of Theorem 4.1.4, which is [BK19,
Theorem 1.3], failed to consider the cases of non global minimal twist. Also,
the proof in [BK19] works under the additional assumption that E is a global
minimal twist of itself.
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4.2 Proofs of main results

Let E be an elliptic curve over Q and assume the same conditions as in
Theorem 4.1.2 or 4.1.4. As [Gol76], let

1
d(s) = Le(s+3)Le(s+ 3, Xa) = an™®
n=1
and
$1(2s) = Le(s + 3)Le(s + 3, N), 4.1)

1 L
where A(n) = n(=1)". We note that ¢(s) = LE,Q(\/H)(S + 3) and ¢(s)

has a zero of order =g at s=1. Let

O N _ 1
= 62 - gnn~° and G(s,x) =  gnnS. (4.2)
1

n= n<x

G(s)

For A =9 and U = (log d)®, let

e

H= 2 7H AT s + DO Db @5y

In [Gol76], Goldfeld proved that for d > expexp(cNg®) and c su Lciehtly
large, either L(1,Xq) > (log d)®™*~*~& or else

) L1 0
HI CON23(logd) ™ (L+p ) [GolT6,p.662),  (4.3)

Xa(p)E—1
p<uy

and that for d > exp(500g®), either L(1, Xq) > (log d)g‘“‘la% or else
|H| Cg™NL(L, xa)A(log log A)9 7+ [Gol76, (52)]. (4.4)
We see that both L(1, xa) > (logd)9™#~*-& and (4.3), (4.4) imply Theo-
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rem 4.1.1. To prove Theorem 4.1.2, we need the following propositions cor-
responding to (4.3) and (4.4), respectively.

Proposition 4.2.1. Assume the same conditions as in Theorem 4.1.2. Then
for any such d = exp exp (400Ng®), either L(1, Xa) > (log )97+ or else

t]

V_
H|=1.8x107-gN™ d(logd)s ™+ ip 2

Xa(p)E-1
p<u

NIF| NI

Proposition 4.2.2. Assume the same conditions as in Theorem 4.1.2. Then
for any such d = expexp (400Ng®), either L(1,Xq) > (log d)g‘“‘l»La or else

IH| < 2 =% 10° - (2)9g9**°L(1, Xa)A(log log A)s .

We will prove Proposition 4.2.1 in Section 4.3 and Proposition 4.2.2 in
Section 4.4. If we assume Proposition 4.2.1 and 4.2.2, then we can prove
Theorem 4.1.2 as follows.

Proof of Theorem 4.1.2. Let P be the set of primes p < (logd)® for which
Xa(p) B —1. We may assume

L(1, Xa) = (logd)?™*7*-4 (. d = expexp (400Ng?)).

From the inequality 2Pl < @(Iog d)97*1 in the proof of [Gol76, Lemma
9], we see that |P| < @g(log logd). So we have

I__E'L% L1 1 i (|
log e 2 = 2log =P

b [E] 1-p 2 I:IPEE' 1-p 2
[ — 1

= 2 i-1 = ¥y
1-p 2

pLP] p [P
Ld) ]

< : e dx = 8x%+8log(x%—1)2
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16|P|z
209%(Iog log d)%.

IA

IA

From Proposition 4.2.1 and Proposition 4.2.2, we have for d = exp exp (400Ng?),

2% 10% - (2)9g%9*°L(1, xa)A(log log A)9~H+° -
> 1.8x107°-gN™* d(logd)®*texp —20gz(loglogd)z .

,
Let f(N,g,d) =exp %I%(Iog logd)z - (8)79g%9~*5(log log 24)~9°. We claim
that if N > 10, g = 3 and d = exp exp (400Ng?), then

f(N, g, d) = exp (450).

Since loglog & < loglogd® = loglogd + 1, we have

4n2

log f(N, g, d)
= g2(loglog d)% —glog % + (29 —4.5)logg — (g +5)log (loglogd + 1),

which is an increasing function for d because its partial derivative with re-
spect to d is
J \/ﬁ _ g+5
% —!gglogd(log d)d (loglogd + 1)(log d)d
g(loglogd) —2(g +5)
2(loglog d)(logd)d
> 0.

So we have

logf(N, g,d)
> (400N)zg2 —glog ® + (2g—4.5)logg — (g + 5) log (400Ng* + 1),
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which is an increasing function for g because its partial derivative with re-
spect to g is

29— 4.5

2(400N)zg — log () +2logg +

, 2
— log (400Ng® + 1) — S 200NG* (g * )

400Ng? + 1
> 2(400N)2g — log () — 45 — 3log g — log (400N + 1) — &2
> 0.
So we have
log f(N, g, d)

> (400N)Z -3 —3log & + 1.5log 3 — 8 log (400 - N + 1),

which is an increasing function for N because its derivative with respect to
N is

v___ v___
400 - 32 8400 - 3* 400 - 3?2 8
N\ > N— —

Ve — — > 0.
2 N 400- 33N+ 1 2 N N
So we have
I\C}gf(N,g,d)
= 4000 3°—3log & + 1.5l0og3 — 81log (4000 - 3° + 1)
> 450

and the claim is proved. Thus we have
1
exp I%%(Iog logd)z > exp (450) - (8)9g729"*>(log log 25)9*°.

42

Recall A = fTNz. Then we have for d = exp exp (400Ng?),
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V_ 1 1
1.8x107°.gN™ d(logd)?*lexp — 20gz(loglogd)z

H(1 Xa) 2% 10° - (2)9g2e+ss A(log log A)g—#+6
. 18x 107 - 4m* - gN~> (log d)I™ texp — 20g2 (log log d)z
2% 10°- (§)9g?e+45 " d(log log 9N yo-u+o
_ 18x107°-4n? exp(450) (logd)*~exp :/219%(Iog log d)z
2 % 109 - g%oN5 o d
_ 10 (log d)9-3exp :/219%(|og log d)z -
g4gN5 a )

4.3 A proof of Proposition 4.2.1

In this section, we will prove Proposition 4.2.1 Let kK = g — J. From
[Gol76, (53)], we define H; and H, by

H = Hl_\'/" H2
= 2k A(log A 'G(, U)di{L)

v_ g [
+ A ) (log A)™" &7 T%(s + 2)G(s, U)d1(25) 1

r=2

Since |H| = |H;| — |H,|, to get an explicit lower bound for |H|, we need an
explicit upper bound for |H,| and an explicit lower bound for |Hy]|.

Upper Bound for |H;|. Using Leibniz’ rule and Cauchy’s Theorem (for detail,
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see [Gol76, p. 657 and p. 658]) we have

IHo| = QA . (log AYT

m‘% Ledn B (s+ 2)¢1(25) ey Edl e G(s,U) %)E

\/f
= A ) (log A"

e =
: 3= (r — )t 2 1 . 220 R
h 20T =) max|ri(s + 3)éa(2s)] - 22! max |G(s, U)

h=0
v_ it

K
A 8r'r log A)X" max [F2(s + 1) ma 2s)| max |G(s, U
o (logA) sml (s 2)|SEC§|¢1( S)lsﬁl (s, V)],

r=2

IA

(4.5)

where C; is the circle of radius }1 centered at s = % and C, is the circle of
radius § centered at s = 3
By [Gol76, (46)], we have for s =g+ it [Q,,

.

gnlzagéll'z(s + = max — 21exp (W{L%))ls +2%exp (-0 — 1)

C2n@iexp(L-2-1)
= 16. (4.6)

2

IA

We need the following lemma, which is an explicit version of [Gol76,
(49)]. Also, the following lemma will be reproved without the assumption
of complex multiplication, as Lemma 5.2.5 in section 5.2.

Lemma 4.3.1. For s=o+ it [J,

L1
3 x 1012 N3t6 if 1—
10° -

1 3
__1 <g<3 >
100800 Tog[ — 9 = 2 [t =2+ 55 840’

3 3
|s 1| if 1=0=3, |t|<2+840

|P1(s)| =
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v___
Proof. Let Y be the primitive Grossencharakter of K = Q( —Kk) with con-
ductor f such that Lg(s) = Lk(s, W) (cf. (3.2) or [Gol76, Theorem 2]). By
[Gol76, Lemma 2], we have

L(S’ Xk)

I?I‘S-l 4.7
Z(s) 1-p), (4.7)

plk

$1(s) = Le(s + 1, 4?)

where X is a real primitive Dirichlet character (mod k).

From [Gol76, p. 654], we have for 0 <o < 3,

EK(S +1, l]JZ)BS N5 + 32, (4.8)

By [Jam03, Theorem 5.3.13], we have if [t = 2+ - and 0 = 1 —

840
1
840-6(log [t|+11)’ then

12(s)}| < 56 - 840%(log [t + 11)3.

By [Jam03, Proposition 3.1.16], we have for ¢ > —1,

4s) = 4 + 5 +nl),

where [ri(5)| < |55531. So we have if [t| =2+ k5 and 2 <o <3, then

OIS ERO]
|s + 1]
8ls—1|(c +1)
= 1/13.

(4(@+1) —Islls— 1))

Thus we have the following explicit version of a statement in [Gol76, p. 653].

— 2. Q31413 i 1 1
2(9)Y < 56 - 8407 - 6°[t* if 0 =1~ grambeemy 11=2+ g5, 49)
13 if i<o=<? <2+ L '

- 2! 840"
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We note that

N a—
Sxols L s,

L(S! Xk) = ns k_ls

n=1 1I=1

where (s, a) is the Hurwitz zeta function and 0 <a < 1. By [Apo76, The-
orem 12.21], we have for any integer M =0 and ¢ > 0,

II":1I (M+a)t™ ! x—[x]
{ssa)=  Guas*t o1 TS y sy dX.
n=0
So we have, for 0 = 1,
— a3 5 < % '\QM"']-)l_0 + \/m 4.10
|Z(Sa a) a |— n M (0-1)2+2 oMo ( . )

n=1

By applying (4.10) with M = [I1to the region; % so<s2andt=2+ %
we have

Cdry v v
(s,@)—a™ = 1+  hdx+ {5+ A
.\/_ 1
< 5 t,
which gives
Ly V.
|L(S!Xk)| < k™° (_ +5 t)
k

1=1
k
= (Tt ) ‘i
I\71

< 7 kt

By applying (4.10) with M =1 to the region; : <o<2and 0 <t<2+ i

2 — 840"
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we have

V_ L1

|Z(S,a)—a—5|gl+ﬁ+ 1+4tz<ﬁ’

which gives

IL(s, X = K 1]
I=1
D e—
—1 . 16(k-1
= e,
I=1
22 k
< e

We note that L(s, xx) = L(s, Xx). Then we have the following explicit version
of a statement in [Gol76, p. 653].

I —
7 Kt if 3<0=<2 [t|=2+ g, (4.11)

22 Ks—1' ifi<o=2 [=2+L.

IL(s, XK =

Since 0 = % and {8 , P|k} iIs a set containing only one prime from Remark

- 2
4.1.3, we have | | (1 —p~*)7 < |(1—27°)7" = ~5%. Thus Lemma 4.3.1

follows from (4.7), (4.8), (4.9), (4.11) and Remark 4.1.3. O

From Lemma 4.3.1, we have

- Ds N3 L]
?Egif|¢1(25)| < max 10° e
< 4-10°N3. (4.12)
Moreover,
1 |
mtaqG(s, U)| < (1—p2)~* (cf. [Gol76, p. 657]). (4.13)
S
Xdl(op<)L§J—1

49



Chapter 4. Explicit Goldfeld’s Theorem

Thus from (4.5), (4.6), (4.12) and (4.13) we have
V_ —1
|Ha| < 4 - 10°N®g® A(log A)<2 1—p a)™. (4.14)

Xda(p)E-1
p<uU

Lower Bound for |H;|. We need th?@mnwnma, which is an explicit
version of [Gol76, (55)]. (We use b in Lemma 4.3.2 instead of

C_1 .
(I+p~2)*in [Gol76, (55)].)

Nl

Nl

1+p~

Lemma 4.3.2. If d > exp(500g°), then either L(1,Xq4) > (logd)~*~ or
else we have

;

NI

GG, V)| = P
xa@s-1 P
p<U

— (logd)™29,

NI

Proof. We denote by P(s,U) the partial Euler product of G(s) for primes
p < U and write
G(s,U) = P(s,U) —R(s, U).

From [Gol76, Lemma 1], we see that

Iﬂl_; L1
IP(3,U)| = 17p ?
1+p 2
Xa(p)E-1
p<u

So we only need to show that

IR(L, U)| < (log d)~2.

Ny = {n such that pjn [plk U}
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then 1

R(s,U) = gnn~®
n>U, n [NJ,
We write
. 1 | 1 .
IRGG, V)| = |gnjn~2 + lgn|n"2 =Ry +Ro.
A A
U<n=yz d 7 d<n, n [N

We may assume
L(1,Xa) < (logd)“*~£ (d > exp (500g%)).

Let Q0texe) = ToLy by [Gol76, Lemma 1 and Lemma 4], we

D) n=1ns"
have
N L1
R, < U7 2( Vn)?
n=: d
1 —
< U 2(547)(log d)*<

= (i) (logd) 2",

Now we estimate R,. Let

L1
Pi(s,U) = 1-p™)™

Xda(p)E—1
p<u

Since |P| < @g(log logd) (cf. Proof of Theorem 4.1.2), we have

1 LA
log P1(3, U) = log L
e TP °
 — P
< =
p[P1
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L)
47 dX
4]

2y8 + 65 + 8x2 + 12X3 + 24x5 + 24log (x5 — 1) 2

IA

58|P|¢
< 80(gloglog d)%.

IA

So we have
Lolico Vo
Ry = l\ll_,rrc!o 2—ioco Pl(§+z,u>%dz
—5+ieo —Many
= lm PGz 0N
R A
= m, P e
V_
= PGUEDT gt

< 3Y§n exp (80(g log log d)?) - ¥+

Thus we have for d = exp (500g°),

¥

21 - exp (80(g log log d)¢) - +

E(%,U)EIS (77032)"(log d) @HD + 3

4log2
< (logd)™. 0O

To get an explicit lower bound for |[Hy|, we need the following lemma,
which is an explicit version of [Gol76, Lemma 12]. (We note that the in-
equality in [Gol76, Lemma 12] is in the wrong direction.)

Lemma 4.3.3.

d % L S 1 S 1 =
(1) = ds o, LeG +3)LeG + 5. N)
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> 0.98(kN?)72

We will prove Lemma 4.3.3 in section 5.1 and reprove it as Lemma 5.2.8
without the assumption of CM in section 5.2. If we assume Lemma 4.3.3,
then by Lemma 4.3.2 we have for d > exp (500g°), either

L(L Xa) > (log )1 L,

or else
1 1
v_ 5!, B
IHi| =2k 3% - A(log A< fp—_i — (logd)™ . (4.15)
_ +p 2
e

Now we can prove Proposition 4.2.1.

Proof of Proposition 4.2.1. WWe may assume
L(1, Xa) < (log d)*™*+4 (d > exp (500g%)).
From (4.14) and (4.15), we have

H = ll%ll_lHZL/
= 2k3% . A(log A1

k2N4

]
:

[N
+

©
NI

Xda(p)E-1
] _\/ p<uU
— k%% - A(log A)<*(log d)
v_ — | U
+4-10°N3g?® A(log A)<2 1-p3)™

Xd(p)E—1
p<uU

= ﬁl—ﬁz.
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If 1H; = H,, then we have

H = %
v_ |—_'-—rj'_%
= Kigns - A(log A< =P
x@s-1 P
p<uU |;|
V_ I
= g ONT' A(log A)< Tp2  (¢f. Remark 4.1.3)
—+ 2
XME-1 "
p<uU
as desired.
We see that
v_ —1
g 410N AGog AYP e (l—pE)
2 _ ., p<U
Hy ZK%- A(log A)x-1 —de(p)ﬁ_lLlJp_z
p<
(logd)~2¢
L1 Ll
Xd(P)E—-1 1 1
p<U +p 2
4-108 1632 N792(|Og d)_l I :I—Il_'_p_% |—2_—||:|1 I—A_—I
B 2098(9_2) xal(P)E—1 1—p_% 1—p_%
. b=
+(logd)~29 L
xa@a-1 P’
p<U
1 1
<2 1% 6. Ng(logd)~ L T
= — g°(log d) — — .
2-0.98(g — 2) et TP o3
p<U

Let P be the set of primes p < (logd)® for which Xq(p) 8 —1. Since
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IP| < %5 (log log d), we have

log 2
[ - I:Il [,

log P —
1-p 2 1-p 4
th ]
4
= Yt
p [P1
W )
S =Tl s =10
I_z_—l 3 1 1 1 1
= 24 +16x2 + 16x7 + 8log (xz — 1) + 16 log (x7 — 1) ,
< 6P|
-
< 6 Bg;z loglogd . (4.16)

Thus the su [cieht condition of %I—Tl > H, is that

L1 L]

loglogd — 6(;Z; loglog d)# = log 4+ £1% . 163% - N" %, . (4.17)

We write d = expexp (c1Ng®) and assume g = 3. If c; is su [ciehtly large,
the left hand in (4.17) is greater than

3 /
C1Ng® — 6(523c1Ng*) 7 = g°(CaiN — goobsara €y N¥),
and the right hand in (4.17) is less than
2
31+7IogN+Iog%.
Since g = 3 and N > 10, a su [cight condition of H; = H, is that

c; = 389.7. For convenience, if we choose c; = 400, then Proposition 4.2.1
follows. O
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4.4 A proof of Proposition 4.2.2

In this section, we will prove Proposition 4.2.2. From [Gol76, (24), (26)
and (51)] and the assumption that ¢(s) = Le(s + 3)Le(s + 3, A) has a zero
of order =g at s = % we can write

O -
0= () AT (s + 3)d(s) =TT (4.18)

NI

where

| S I |
T1=0 ( an A/n(log A/n)<"I,(n/A)),

 § I T 10 |
=30 ( a, A/n(log A/n)<"I,(n/A)),

r=0 n>A;

0 =1+ (=1)"Xa(=N),

A; = A((8 + 2k) log A)?,

and

4 Ld
/(M) = exp(—(uy + uy))(log usuz)'dusdu, (M =0).

U1=0 UZZM/U]_

By [Gol76, Lemma 10], we have

T, < 1.

Thus by (4.18) and [Gol76, (27), (30), (31) and (39)], we have

|2H|
|2H — T, — Ty
= 2H=T(G(s, U)| + [T@NI + [Sa] + S| + 1, (4.19)
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where

1] |;l-ioo ]
TEE) = (L) 2 AT s+z+ HR(s+)di(2s + 2L

2—ioo

N[

g(s) = G(s, Ao) — G(s, V),
A = A(log A)~2%,

-

. ¥ 1
S;=2 ( b, A/n(log A/n)<"I,(n/A)),
r=0 r Ap=n=J

==

L 1
S, =2 ( b, A/n(log A/n)“"I.(n/A)),

r=0 J=n=sA;

J = A((k + 6) log log A)?,

and
P 1

ban™® = G(s, A1)P1(25) — G(S, Ag)D1(23).

n=1
So, to obtain an explicit upper bound for |H|, we need explicit upper
bounds for |S,|, |S2|, IT(g(s))| and |2H — T (G(s, U))|.

Upper Bound for |S;|. From [Gol76, p. 649], we have

V_ I_—[QEI
|S1| = 4" 'Ki(log £)¢ A L (4.20)

Ap=n<l]
We may assume
L(L, Xa) < (log d)*"*-&  (d > exp exp (400Ng*)).
Then we can choose
y = L@ Xa)]
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< (log A)*7?3
= Ao

Recall $OL6Xa) — ;;_ L, By [Gol76, (36)], we have

{(2s) n=1 ns

|_—@| L 1 L 1
I R T
Ao=n=] kzsAif Acismsj? flflﬂI :
111 ]
d(k
= % *% ViVm/f (421)
=m=] f
k= Aio y=m Im

1
where d(k) = ¢ 1.

Lemma 4.4.1. (cf. [Apo76, Problem 3, p. 70]) For x = 3,

—é(”j < llog?x + 2Clogx + 10

n
n=x

where C(< 0.6) is the Euler constant.

Proof. By Euler’s summation formula,

1 l;ldt_l;lt—[t] Pl L
n ot P
N — L, =1 [
= logx+ 1-— t-m t + ttz[t]dt il
1 X
1
< Iogx+C+;
and
Ld L _
%_ _ IOgtdt+ (t [t])l ogt dt — (x — [])ogx

n=x 1

= % log? x + A(X).
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We note that

Thus

L
logt+1 log x
AG = ST Sdt+ (= )
LJ
< _logt+2 +(X_[X])Iogx
t X
= 2
T3 13t q
= d —= d log—-+C+ —
d=x qsgq d=x
C Ok +C  logd 1M
< =
d d X
d=x
< (logx+0C) — = Tg+1
d=x d=x

IA

IA

IA

C] 10, O
(logx + C) Iogx+C+; — zlog X+AKX) +1
%Iogzx+2CIogx+C2+2—A(x)+1

%Iogzx+ZCIogx+10. O

Using (4.21), Lemma 4.4.1 and [Gol76, Lemma 7], we have

IA

~

L1 L1 [

log Aio)2 + 2C log Aio +10

(.

%1500 L(L,X)2Jy~z + L(1,Xa)Jz (logy)?

IA

] O
(log )2 2 1500L(1, Xa)J2 (logy)?
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Ll (1
< 20glog IogA+\/2IogIog log A + 2log (K + 6)

= (3000L(1, Xg) A(K + 6) loglog A)

x%K—Z)Iog log A + 2log log log A + log % +2log (K + 6)|€—_|

(3 - 20g log log AJZ

x(3000L(1,Xxg) A(k+6)loglogA)

x(4 - (2k — 2) log log A)®. (4.22)

IA

V_
Using Kk < g — 1, (4.20), (4.22) and the fact n! < e n(3)", we have for
d = exp exp (400Ng?),

IS1] < 4%*k1(20g log log A)K\/K I——[Eﬁ’

Ao=n=l]
32. 4% .3000(209) 245 1K1 (k + 6) (2K — 2)3L(1, Xq)A(log log A)K*5
32.4%.3000 (20 - g- (209)9) - 49 - (g — 1)! - (23g*)L(1, Xq)A(log log A)K*5
23.32.4%.20-3000 - (20g)9 - 49 - g! - g*L(1, Xq)A(log log A)*+5
2%.3%.4%.20-3000 e (8)9 . g?9**3L(L, xa)A(log log A<+
st (4.23)

A AN A

Upper Bound for |S,|. From [Gol76, (32)], we have

] ™M_ I_—@
So] < 4*I(k+1)!(log 5)<exp — (k+6)loglogA A 2 (4.24)

J=n=A;

V_
(We note that the term A is missed in [Gol76, (32)].)

We may assume
L(L, Xa) < (logd)**~& (d > expexp (400Ng)).

60



Chapter 4. Explicit Goldfeld’s Theorem

Then we can choose

y = L(LXa)*As
< (IogA)ZK—ZAl
Ag.

IA

From [Gol76, (33)], we have

%%lsl_dmll_x&_ll_l

J=n=A; kZSA A0<m<% f|m
k

IA

(We note that we use 2! instead of 4% in [Gol76, (33)].)

Using (4.25), Lemma 4.4.1 and [Gol76, Lemma 7], we have

o

J=n<A;

1 1 1
3(log  22)*+2Clog 2 +10
1]

IA

A
L]

*%1500 L(l,xd)zAly_% + L(1,Xd)A1% (logy)’

IA

L1 1]
(log 22)? 2 1500L(1, Xa)A? (logy)®
L]
(2I:O|g + 2) log IclgA + log (2K + 8)
x I%ooom, Xa) A2k + 8)log A
>I<:|2Klog log A + log %> + 2 log (2K + 8)
2 -(20g + 2) log log A
%(?)OO?_(l ) )g/ﬂgz +8)I AD
x : K 0
= Xd Iﬁ g
x 3-2kloglog A . (4.26)

IA

IA
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V_
Using g—2=<kK=g—1, (4.24), (4.26) and the fact n! <e n(7)", we have
for d = exp exp (400Ng?),

- V_
IS;] = 4"k +1)! 2loglog A+ 2log (2K + 8) Qﬂog A) O A
x o
n
JSnSAl

44 (K + 1) I%I 2log log AI;l(Iog A)_('”G)\/K I——@nl
J=n=A;
22.3%.3000 -4 - 16¥(k + 1)!(20g + 2)(2k + 8)(2k)®
xL(1, Xa)A(log A)~«*®(Jog log A)<*S
3.3000- 169 - g! - (20?- 2'g®) - (log A)~@*¥
xL(1, xa)A(log log A)*+®
27-3%.20%-3000 - e - ()9 . g9+ . (400Ng?)~(@*4
%<L(1, Xa)A(log log A)<*®
< SEI (4.27)

IA

IA

IA

IA

Upper Bound for |T(g(s))|. From [Gol76, p. 651], we have
Lo
IT(9(s))| < k! Tf-max ASTIT2(s + 2 + 3)g(s + 2)p1(2s + 22) L H (4.28)
s[Cl 2 [=joo

where C is the circle of radius = (logd)™ centered at s = %
By the same argument in\/the proof of [Gol76, Lemma 7], we have for
x <d and 10° <y < min(} d,x/10),

I 11 1 ) .
N"2  VmVa/m < 1500(L(1, Xa)?dy ™2 + L(1, Xq)X5d ) (log y)*

y=n=x min

V_
instead of for x<d and 10 <y < min(%1 d, x/10),
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I 11 1 ) .
N"2  VpnVim (AL, Xa)?dy ™2 + L(L, Xa)x5d10)(log y)°®

y=n=x min

in [Gol76, Lemma 8].
We may assume
L(L, Xa) < (log d)*"*-&  (d > exp exp (400Ng*)).

Then by [Gol76, (40)], we have
I 1, I 1

NI

max lg(s+2)| = n- \
Re(z)=2[1 U=n=Ao fin
- 241 )% 2L - 3
= 1500 L(1, )(dz/dU 2 +L(1,Xa)A;d10 (log U)
=

15001(1, Xa) A el
= (log d)K_lw%+(logA)_8g =70 (log U)3. (4.29)

1

(We use dU~2 instead of Aou~

z in [Gol76, (40)], so that it is a direct
consequence of [Gol76, Lemma 8].)

By [Gol76, (41)], we have

max |b1(2s+22)] = T(1-2[H40x LA (4.30)

Re(2)=2]

To estimate integral of Gamma function, using [Gol04, (4.6)],

@&w H
s+zp2 1ydz
Tax i AT (s+z+35)F

) [d 1 Geo 1 ) H
=43 1 d —u;— = dusd
= A L_I‘!]&%]( 0 0 2ni 2= (ull'IZ)Z?Z e ™ uz(u1u2)5+2 Eiul:Z
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L]

143 —u;—us 1+ [Cdu;duy
= A2 e (U]_Uz) Taup
uu,>1

< A" (4.31)

Since A < d?, we have A3k d°'%94® < 8. Thus by (4.28), (4.29), (4.30)
and (4.31), we have for d = exp exp (400Ng?),

IT(g(s))] = k' max |g(s+ z)P.(2s + 22)|
Res(lz:)CZZ’ZE]
f+ioco E
+zr2 1\d
T, ATy
1.1500k! 2 - L(1, xq)AH
2 7 (1, Xa)

1
% (log d)*~*~EL + (log A)~* @W © (log U)®

IA

IA

31500 €° - k! - L(1, Xa)A - (log d)**?
] e
x (log d)* 7194 + (log A)™ 5 2 (8glog log d)’
&y 1500+ €% gl g L(L Xa)A - (log )™
2 (logd)™724% . (log log d)®
83 - 1500 - 3% . e7_g . gg+3-5 . (400NgS)—Zg—1
xL(1, Xxa)A(log log A)®
< S (4.32)

IA
X NI

IA

(| 1
Upper Bound for |2H — T G(s,U) |. We note that Kk is determined so that
0 =1+ (—1)*xg(—N) = 2. Then from [Gol76, (45)], we have
LI —
TG U)=2- £ (s=H™'  I(s)ds + 2H, (4.33)
C

2mi
r=1
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where C is the circle of radius 7 Cdentered at s =% and

I—_%-l+ioo |—_§L|—i|v| I—_%-|+iM L=im Y
I = = s = VS s =
1+im 1-ico — M 1-im =1

of which the integrands are =AS*T%(s+z+1)G(s+z, U)$i(2s+22)% and

M is a large number to be determined later.

By [Gol76, (46)], for o0 > 0,
1

Vo L exp(-0) if|f=}
IFs) < 2mexp (5;)lsl” 2 e 2 (4.34)
120 exp (—%It)) if |¢|< 1.
From [Gol76, (47)], we have for Re(s +z) =0,
|G(s + z, U)| = (log d)*9, (4.35)

To estimate |$1(2s + 2z)|, we will use Lemma 4.3.1. Put M =log A and
[= (4-10%loglog A)~t. Then we have

|sRe(23+22) for z CI1 (J =1,2,3,4,5).

1— 1
100800 log |Im(2s+22)
To estimate 14, I,, 13 and 14, we will use the fact that for y > 1000,
3-2y)? - By)° yt e <1050 g7, (4.36)

Firstly, we consider the integral 1,. For z = %+ iy, M=y < oo, we

write

o=Re(s+z+3)=3+Re(x°), t=Im(s+z+1)=y+ImEe).

By applying (4.34), (4.35), (4.36) and Lemma 4.3.1 to the integral I, we
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have

max|l;]] < max |AS?G(s +z, U)|
s[CI s[T]

Re(2)=%
—+joo
2 d
- max ”, (s +z+ 2)dy(2s + ZZ)TZE
< 3x10%-N3(logd)*@As*z
1l jco
, 1 1120—1 _ 61dz
max Lim exp (g5)ls +z + 3|77 exp (—=mt)(2t)°||
< 3@1012 - N3(log d)*9As* 2"
. 3(2y)” exp (—3y)(3y)°y 'dy
< 10780. N¥(log d)*8As*z " eVdy
M
< 10780 N3(log d)*29As*ze ™M, (4.37)
Similarly
max|l| < 107 - N*(log d)*9Aitze ™, (4.38)
S
Secondly, we consider the integral Is. For z=x+1iIM, —[Zx< % we
write

o=Re(s+z+3)=x+1+Re({), t=Im(s+z+3)=M+Im(®).

By applying (4.34), (4.35), (4.36) and Lemma 4.3.1 to the integral I35, we
have

max|l3] =  max |AS?G(s + z,U)|
s[C1 s[C]

—[Re()=3
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5 +HiM
- max L% (s+z+ 1)(])1(25+22)°'ZE
=31\
3 % 102 . N3(log d)*9As*z"
=+iM
‘max exp (&)Is +z + 377 exp (—Tt) (2t)°| L
SIC _im

3 x 1012 N3(log d)*%As*z "
n

IA

IA

? 3(2M)* exp (~3M)(EM)M dx

IA

10—800 N3(log d)*9As*ze ™M, (4.39)
Similarly
max|l| < 107 - N*(log d)*29As+ze ™, (4.40)

Finally, we will estimate the integral Is. For z = —[Hiy, —-M <y <M,
we write

o=Re(s+z+3})=1-[HRe(}d®), t=Im(s+z+3)=y+Im((e").

By applying (4.35) to the integral Is, we have

max|ls] < max |[AST*G(s + z, V)|
s[CI s[C]
Re(z)=—L_1
—[+iM

- max 2iurz(s. +2Z+ 3)Pi(2s + 22)%@

< (Iogd)égAz(l DH

- max AIr2(s+z+ )| - |b1(2s + 22)| - |L|. (4.41)
SIC _=im

To apply (4.34) and Lemma 4.3.1 to the integral Is, we consider the following

67



Chapter 4. Explicit Goldfeld’s Theorem

four integrals. Let y;, y, and y; as follows:

L
max  =[F3(s+z+ )| [du(2s + 22)| - L
s[Cl
I__E]?@ (e+n)m D‘ L (4+(n— 2)[)3 @930 L 1
< max [# 1]
sLcl I;IO 21n(4|je+n)t)j L (4+(n—2) 0 2+ 5L
1
= max IEmax IE [+ max [ (4.42)
s[Cl 0 s[Cl Vi Vo s[Cl Vs

where [F L|2(s+z+ 1)| - |p1(2s + 22)| - *ldz%—yz

We note that for 0 =y <y,

1-3-

>
y1+E|_2

H'IQ

Thus, by applying (4.34) and Lemma 4.3.1 to the first interval, we have

5l ]
5. N3 1 1j20-1 —
rpﬂa%]( ) [I= 10°-N rn%( ) exp (g5)Is +z + 5 exp (—20)
d
= |2$+;Z—1| |Ey_y2
2l
< 10°-N® (y+1) - CAdy
0
< 10°-N°[A (4.43)

We need the following observation to apply (4.34) to the second and third
intervals. For y; <y <y,, we have

max exp&o) exp ( If]m)
< max exp —(1—35H exp —“(y1—5j}
= exp(-1+ 301
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For y, =y <ys;, we have

o _1-F' n
—_ S —_
t y2 - 3 2
and
exp (—3It])

< exp(-1(v2— D)
< exp(—1+ %100

Thus, by applying (4.34) and Lemma 3.1 to the second and third interval,
we have

L L

max [J< 10°-N°max exp(&)|s+z+ %!
s[Cl v1 s[Cl p(60)| 2|

] Y1 ] . ay
xexp —2+ (3+m)l %Tzz—u P_@yz
L5
< 10°-N®* (y+1) 1 -ndy
1

< 5x10°- N°. (4.44)

To estimate the fourth integral, we will use the fact that for y = ys3,

(y+1) - By)° -yt e¥=<2000-e7.

Thus, by applying (4.34) and Lemma 4.4.1 to the fourth interval, we have
Lo
max [J< 310" N?®
s[CI Vs
m 20—-1 6d
1 1)20— — ay
xmax exp (s +z+ 3 e (- (20
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N
= 3.10%-N° (y+1)exp(—3y)(3y)°y *dy

< 3-10%.N°® 2000e”Ydy
Y3
< 9x10". N8 (4.45)

From (4.41), (4.42), (4.43), (4.44) and (4.45), we have

3 329 l(l—[ﬂ:ls 6 14
5 . . + +
[Is] < 2. N3(ogd)*9Az 10° - A+ 5% 105+ 9 % 10

] ]
< N3(logd)®9Az(1=D. 2. 105 . 3+ 10%° . (4.46)

Finally, by (4.33), (4.37), (4.38), (4.39), (4.40) and (4.46), we have

— T(G(s, V)|
Lo b

= B =D 1o

r=1

1
< 2ICY  max|l.(s)|
s[CI

r=1 _\/
< 2IITNB(logd)®® A
LT 10750 AR M 4 2 x 105 A A+ 2 105 AE
K+1 3 32 -\/_ ] 5 —= -
< 2KIMN3(logd)®® A-3. 2x10°-A"z[3 . (4.47)
For d = exp exp (400Ng®), we see that

] |
2K TAINB(log d)®9 -3+ 2x 10°- A"z 3 <1,
so by (4.47), we have
V_
|2H — T(G(s,V))|< A <Sj’ (4.48)
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as desired (cf. [Gol76, p. 656]).
Now we can prove Proposition 4.2.2
Proof of Proposition 4.2.2. WWe may assume
L(1, Xa) < (logd)*™*~&  (d > expexp (400Ng)).
From (4.19), (4.23), (4.27), (4.32) and (4.48), we have for d = exp exp (400Ng?),

12H|
[2H —T(G(s, U))[ + [T(g(s))| + [Suf +[Sz| +1
< 55

< 4x10°- (£)9g°9**°L(1, x)A(log log A)***

IA

and Proposition 4.2.2 immediately follows. ]
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Chapter 5

Two proofs of Lemma 4.3.3 and
applications

In this chapter, we prove Lemma 4.3.3 via two methods in section 5.1 and
section 5.2, respectively. Also, section 5.2 contains a proof of Theorem 4.1.4.
In section 5.3, we apply Theorem 4.1.2 to a certain family of real quadratic
fields of narrow Richaud-Degert type.

5.1 Elliptic curves with complex multiplication

v___
Recall that  is the primitive Grossencharakter of K = Q( —Kk) such
that

Le(s) = Lk(s, ).

From (4.7), we have

L1
P = k@ LT Xx) @—p D7

plk
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Proof of Lemma 4,3.3. Let Y"be a primitive Grossencharakter with conduc-
tor f2of K = Q( —Kk) which induces y?. Then yX@DI= a? for a CKI,
i.e., of type (2,0). Since Le(S) = Lk(s,P), Lk(s,PY is entire and has real
coe Lciehts.

We define (cf. [Gol76, p. 661])

F(s) = Z(s)L(s, X)Lk (s + 1, pY = cnns,
n=1
where
ci=1, ¢h, =0 (for n>1).

Since the Dirichlet series expansion of F(s) is majorized by that of Z(s)*, we
have — ——a
Ch < d(hd(m) < 4 n=8n (for n=1) (5.2)

Im=n Im=n

— VA
where d(k) = g 1=2 k

For fixed x > 0, we see that

L_Z-l-ioo
= - T(s+1)F(s)x°ds
ico
i 1
= L _ e "u’(  =2)x°duds
2—ico 0 n=1
) Blies
= X ¢ - ()ds-edu
n=1 0 2-ioco
1
= R
n=1
> e—l/x’
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so we have
I;‘Lioo
e = L . [ (s + 1)F(s)x°ds
ico
I:—I%+ic>o
= T)LQ, XkLk(2, ¢Ix + . T(s+1F(s)x°ds. (5.3)
~Lojeo

The last integral in (5.3) can be estimated by using the following functional
equations:

2(s) =m0 - o)
2

— (ky3-sT(1-3) _ .
L(S1Xk) - (ﬁ_\)/2 Sr(%_,_%) L(l S, Xk)’

KNG 1— _
Le(s+ 1,4 = W(—5 ) PG L@ = 5,49

for some w [, |w| = 1.

Lety = L' Then by the duplication formula of Gamma function,

PN
I:—I%+io<>
= . [ (s + 1)F(s)x°ds
\/_i_—lc>c> Lh oo
wi N0 L 9T 2 - s)F(L - s)y’ds. (5.4)
~1ojco
Using (5.2) and the following properties of Bessel function 30(2\/{) = L;T:Ol(—l)”%;
L’:f JO(Z\/E) <exp(-t) for t=0,
J0(2\/f)t_sdt =452
0
we have
1 pies ra-s) s
= 1O M2 —s)F(1—s)y>ds
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I__%|+ioo r
S —
= | 5T (s + DF(s)y*~sds
S—loo
e i Y .
= om . (2 Tt use™. s -y Sdu dt ds
n=1p 271> 0 0
B Hhie v
= Cn %m ’ I_—lﬁls—htljs-Jo(Z te Yt ly du dt
n=1 0 0 S—jo MY
VA
= Cn Jo(2 te Yty du dt
n=1 ut=ny
< = exp (—t) exp (—u)y du dt
n=1 n ut=ny t
|
< 8 exp (-t — )T dt. (5.5)
n=1 0

. : : : . vV__ v__
Dividing integration with respect to t into two intervals (0, nNy) and ( Ny, oo),

we have
=
8 exp (—t— ) Fdt
n=1 0
¢ oy ! -
= 8 i exp(—t— F)Fdt+ , exp(—t—F)Fdt
n=1 ny
¢y d .
< 8 exp (—)Fdt+ , exp(—t)Edt
n=1 0 ny
e ]
= 16 v exp(-tFdt
n=1 ny
Py
= 16 v nyexp (—t)dt
n=1 ny
| SSVEN v__
= 16 nyexp (— ny). (5.6)

Now let x = k*N(f9? so that y = % = 16m*k®N(fY. Then by (5.4), (5.5) and
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E—l%+i
i (s + 1)F(s)x°ds
.\/

(5.6), we have

-1 joo

|:EL
= K q nyexp(— ny)
- 4m? - y P
1 - iﬂ
ki'\'z(fq-m-s! VAl &8
4n = (. ny)
1 - 1
4?42k N(Y)* —
]-[2
< (4n®°.16-5!- 5
< 4.1075. (5.7)

Since x = K*N(fY? = 3%, (5.3) and (5.7) give

eX—-4.10"° eV —4.10"° _ 0.98
X T KIN(EDZ T KNG

Lk (2, WHLA, Xl =
From [Gol76, (4) and Theorem 2|, we have
KN(Y < kN(f) =N

and by [Gol76, (59)], we have

) 0.98
Lk WL X = N7k @ WL X = (5 O
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5.2 Elliptic curves of symmetric square conduc-
tor greater than 11

5.2.1 A proof of Theorem 4.1.4

In [Gol76], Goldfeld remarked that Theorem 4.1.1 also holds for elliptic
curves E without complex multiplication provided that Lg(s) comes from a
cusp form of IH(N), which is now true for every elliptic curves E over Q with
conductor N according to the modularity theorem (cf. [Wil95], [TW95] and
[BCDTO1]). But he did not give the proof. In this section, we show that
Theorem 4.1.1 works for elliptic curves without complex multiplication too
and show that Theorem 4.1.4.

Remark 5.2.1. Let E be an elliptic ¢gurve with complex multiplication by
an imaginary quadratic field K = Q( —K). In the proof of Theorem 4.1.1,
Goldfeld use the fact that k < N as well as Deuring’s theorem. In the proof
of Theorem 4.1.2, we use the fact that k < 163 as well as Deuring’s theorem.
In the proof of Theorem 4.1.4, we use theory of the motivic (primitive) sym-
metric square L-function instead of Deuring’s theorem. That is why there is
a dilerence for exponents of N among Theorem 4.1.1, Theorem 4.1.2 and
Theorem 4.1.4.

The following two propositions lead to Theorem 4.1.4 by the same proof
as in the section 4.2.

Proposition 5.2.2. Assume the same conditions as in Theorem 4.1.4. Then
for any such d = expexp (330Ng?), either L(1,Xq) > (log d)g‘“‘1=-La or else

;

N[ Nl

v_ V_
IH=12x10"%-g N(logN)™ d(logd)? ™" lp 2

Xda(p)E-1
p<uU
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Proposition 5.2.3. Assume the same conditions as in Theorem 4.1.4. Then
for any such d = expexp (330Ng®), either L(1,Xq) > (log d)g‘“‘la% or else

IH| < 2= 10° - (8)9g°9**°L(1, Xa)A(log log A)97H+°.

Remark 5.2.4. Proposition 5.2.3 has the same result as in Proposition 4.2.2
except that we do not assume CM.

5.2.2 A proof of Proposition 5.2.2

Upper Bound for |H,|. Following the notation in section 3.4.1, we write

N m— e
Le(s+3) =L(E )= (L—app ) (L—Bep ™) (5.8)
P
Let F be a global minimal twist of E. From Definition 3.4.1 and (4.1),
we have

2
due) = SIS
2 L1
L(S)ér(rl)l:’ S) = (1 _ p—S)—l
PINe -
~2 ) S _ N2 ) _ n—s—1
x Q-—aFAp)A—p)A-BFP) x @A—-p )
p sS4 p [Sdl
L(Sym2F, 1 1
FEEY s TAmpyix Gy
PINE p?|Ng
~2 ) S _ N2 -s L] I:_I —s—1
x (1—o;(AMP)A—p)A—=Bs(FHp™) x (Q—p~7).
p 54 p [Sd

(5.9)

The following lemma is a strong version of Lemma 4.3.1.
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Lemma 5.2.5. For s=o + it [CC,
[ 1

[P1(8)| =

2 % 101° . NB2S
2.5 NB2|s + 23

if 1—
i 3 3
if ;=0=<3,

where B is the symmetric conductor of E.

1
1 =
100800 Tog [t] —

o

=3 =2+

[t<2+

Proof. By the Euler product of L(SymgF, s), we have

E(Syng, 3 - it)Els (3 <18

From (3.3) we have

E(SymgF, -1+ it)EI =

Hence, the function

is bounded by

7
4

+
YIS

N+ [N =+

N | Nt

%

(] |

i

%+i§)

it)

%+ IEH
2

=
INE:

f(s) = L(SymiF,s)(s +2)~°

BZ
8md

C=18

1
840’
1
840°

on the lines 0 = —% and o = 2. By Lindelsf theorem (cf. [HR15, p. 15]),
this implies that

BZ
E(Symf)F, S)ES 18@ s+2° (-i=o<?d).
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By (3.5), we have for 0 = 3/4

1
1-p™)™ Up(F,8)™

INF
I — 1
"E @ (AP - p ) - BFP™) EEE E a- p‘ﬂ)E

DESEJ pIZSEI
= —— @+
1= p| g
plNE p2|NE
L1 L 1 1+|p=S
s o Grper g
omae 2T IPT P~
P A = L
- 3/4 3/4 3/4 _1°
o P lone P P 1
Since 234 _ 13.9 and P4 for p=3
1 = 1 = Y%
?‘T‘Q’;+1 Iﬁ—gy“ﬂ_
a7 <13.-2 and 0373 < p for p > 3’
+ 374
<22 and Bzt <p for p=3,

from (5.9) we have for o = 3/4

(Sym?F, S)E
|p1(s)| =< 2.6 Ne- @W (5.11)

Thus Lemma 5.2.5 follows from Lemma (4.9), (5.9), (5.10) and (5.11). [

Remark 5.2.6. In [Gol76, (49)] and Lemma 4.3.1, Deuring’s Theorem and
functional equation for the Hecke L-function are used to give upper bound
for ¢.(s) in the case of elliptic curves with complex multiplication. To re-
move complex multiplication condition, we use functional equation for the
primitive symmetric square L-function. We also note that B < N (because
B | N) and so Lemma 5.2.5 implies Lemma 4.3.1.
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From Lemma 5.2.5, we have

< 5-N32s + 2]
max|P.(2s)] = max(2.5- N|2s + 2

< 9ON3. (5.12)

Thus from (4.5), (4.6), (4.13) and (5.12) we have

v_ | —
|Ho| < 6-10*N3g? A(log A)<? 1—p 3)™ (5.13)

Xd(p)E-1
p<uU

Lower Bound for |H;|. We use Watkins’ result:

Lemma 5.2.7. [Wak, Lemma 3.4] Let E be an elliptic curve over Q of which
the symmetric square conductor satisfies B > 11. Then

0.033
2logB’

L(SymjE, 1) =

Lemma 5.2.7 implies the following lemma, which is a generalization of
Lemma 4.3.3.

Lemma 5.2.8. Let E be an elliptic curve over Q of which the symmetric
square conductor is greater than 11. Then

Ld 5 L(sym?E) ':'> 0.033

®:(1) = £@=1 Ine(s) 2logN’

Proof. From (3.5) and (5.9) we have

L 1 L 1
(1) = LESymiF1)x (1—-pH)7tx Up(F, D)™
pPINE p?|Ng 1
e 1-gPpHA-p HA-BFP™H x (@-p?)
p S pLsa
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v
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v
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Two proofs of Lemma 4.3.3 and applications

) i [N e R
LSymF1)x  (1—-p)"x  (1—-p7)

PINg 2|N

-2 -1 I:I -1 -1 I:I
x A+p)(A—p7) x 1+p)(1—-p)

ptsi'z — P .

L(SymgF, 1) < (1—p7) " x 1-p7)

pIN p?|Ng
L(SymiF 1)<  (1—pH™*

p (N

L(SymgF, 1)
0.033

: O
2log B

By Lemma 4.3.2 and Lemma 5.2.8, we have for d > exp (500g°), either
L(1,Xa) > (log d)*~*+4 or else

L1 L L1
0.033 V- k-1 Iﬂl—:)_% -2
lHllZZKZIogN' A(log A) T — (logd)™® . (5.14)
st

Now we can prove Proposition 5.2.2.

Proof of Proposition 5.2.2. WWe may assume

L(1,Xa) < (logd)“™*+% (d > exp (500g%)).

From (5.13) and (5.14), we have

HI

= [Hyl = H| v o
— E 1
= Ko Allog A)< l:s_;
Xd(p)E—1
p<uU
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L] V_
- 2K2°|§g3f\| - A(log A)<(logd)~%
v_ — |, O
+6-10°'N3g? A(log A)*? 1-p )™
Xda(p)E-1
p<u
= ﬁl - ﬁz.
If %I—Tl > H,, then we have
i
H = &
> 0033 \/K(Io A)<? —3, Tp? =
— 2logN g 14p~32
X(P)E-1
p<u
0.033 LV 1 '——l'—rf_'—% L]
= ——— .g(logN)™ A(logA) P
4 1+p~ 2
X(P)E-1
p<U
v_ v_ L, B
> 1.2x10"%.g N(logN)™? d(logd)<? Ip 7
xe-1 P 7
p<u
as desired.
We see that
V_ L1
a 6-10°N3g? A(logA)< 2  ms-1(1—p~2)~
2 _ , p<u
g - v_ [ ] T 101
M g ARG AN e L
p<u
(logd)~
L1 Ll‘lp_% LZ—I
Xa(P)E-1 1
p<U 1+p 2 [_2__| -
104  — Y
Soasa ) - Nog N)g2(og d) e
' © ) Xa(p)E-1 e P

p<U
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¥ _, G
+(log d) ™2 .
s
e 107 , T BIE D L
m N?® (log N)g (logd)~ P_ —T ! 1 .
g ngi)ﬁ_l 1-p~ -p

By (4.16), the su [cieht condition of H; = H; is that

I:I . 07 5 I:I
3 ogN) & . (5.15)

log log d — 6(5553 > 3

We write d = expexp (c:Ng®) and assume g = 3. If c; is su Lciehtly large,
the left hand in (5.15) is greater than

ciNg® — 6(@%'\'94)4 =g*(ciN — W 3/4N3/4)
and the right hand in (5.15) is less than
16+3I0gN+IogIogN+Iog%

Since g = 3 and N = 12 (because B = 12), a su Lcieht condition of
%I—Tl = I—Tz is that c; = 324.7. For convenience, if we choose c; = 330, then
Proposition 5.2.2 follows. O

5.2.3 A proof of Proposition 5.2.3

Proof of Proposition 5.2.3. We may assume
L(L, Xa) < (logd)*~*+& (d > expexp (330Ng®) and N = 12).
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By section 4.4, we have for d > exp exp (330Ng?),
1
ESll < s
| < S (5.16)
$'Q(Sm =Sp

Since Lemma 5.2.5 implies Lemma 4.3.1 (cf. Remark 5.2.6), we have for d >
exp exp (330Ng?),

|2H — T(G(s, U))| < S~ (5.17)
By (4.19), (5.16) and (5.17) we have

[2H|
< 5S-

< 4x10°- (£)9g*"*°L(1, X)A(log log A)<*®

and Proposition 5.2.3 immediately follows. O

5.3 Applications

Finally, as an application, we give the following explicit lower bound for
class numbers of certain real quadratic fields of narrow R-D type.

Theorem 5.3.1. Let m be an integer and d,, = 41992(2m)*—1 be a square-
free integer. Then for any d,, = expexp (3 x 10%), we have

h(dm) > 9 x 1012 - (log dym) ™20,

Proof. Let E : y?> = x3 — 4199%x be an elliptic curve over Q of cond\l}ctor
N = 3241992 It is known that E has complex multiplication by Q( —1)
and analytic rank g, = 3 (cf. [EIk94]).
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Let d,, = 41992(2m)* — 1 be a square-free integer and Eq_, : y? = x° —
4199°(dm)?x be the quadratic twist of E. Then Egy_ has a rational point
(4199%(2m)?d,,, 4199%(2m)d2) of infinite order (cf. [Kob84, Proposition 17
in p. 44]). By [CWT77, Theorem 1], Eq4, has analytic rank gq,, = 1. We
note that 4199d,, =1 (mod 8), so Eq,, has the root number 1 (cf. [Kob84,
Theorem in p. 84]) and has even analytic rank. Thus E4,_, has analytic rank
dq,, = 2 and LE,Q(\/@) has a zero pf order g, +g9q,, =g=5ats=1

For the real quadratic field Q( dpn,), the fundamental unit Ly ] = d, + 1+

dmn < dm. Since (dm, N) =1, by Theorem 4.1.2, for any

dmn > expexp (400 - 32 - 41992 - 5°),

we have

10180

1
2 . 520 i (32 . 41992)5 (Iog dm) eXp(_21 5 |Og |Og dm)

h(dm)

We note that if d,, > expexp (400 - 32 - 41992 - 5%), then for [ 1071°,
1
exp(21 5loglogdm)) < (logdm) ™’
Thus we have for any d,, = expexp (3 x 10%),

h(dm) > 9 x 102! (logdm) ™. O

Remark 5.3.2. The above elliptic curve has the symmetric square conductor
B = 8. Also, Elkies [EIk94] lists the 75 (4199 is the smallest integer.) values
of n < 2-.10° with n = 7(mod8) for which the elliptic curve E, : y?> =
x3 — n2x has analytic rank at least 3. We can apply the proof of Theorem
5.3.1 to such n.

87



Chapter 5. Two proofs of Lemma 4.3.3 and applications

88



Chapter 6

Further progress and research
guestions

As an application, Theorem 5.3.1 is not useful because it works for d,, =
exp exp (3 x 10%), and the value is too large to classify real quadratic fields
of R-D type with class number. The condition

d = expexp (c:Ng®)

in Theorem 4.1.1 is mainly determined by the inequality (4.17). For the
left-hand side in (4.17) to be positive, one asks for d to be greater than
‘exp exp (3800)° (because 6*/log®2 > 3800) regardless of any invariants of
an elliptic curve.

Recently, we have modified Oesterlé’s method to apply real quadratic
fields and it finally works. This method asks for d to be greater than ‘1.
Indeed, it makes a dilerence to use the partial Euler product of

L(E LXd.s)
L(E [Ak)

in Oesterlé’s method, instead of the partial Dirichlet’s series of that in Gold-
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feld’s (cf. (4.2) in Section 4.2). In this case, the inequality is of slightly dif-

ferent form as follows:

-
h(d)R(d) = ce(logd)936(d) for any d > 1,

h(d) = c,(logd)?40(d) for R-D type,

1 v [
where 8(d) = oy 1— o and P(d) is the set of prime divisors of d

except maximal one. We proved that cg is given by

oo L LeymE D) et Vg - 1y
e Ne L @+ DC @+

where q; is the it" smallest splitting prime in the extension Q(\/a)/Q.

We also used computer program to approximate c, via Lavrick’s numeri-
cal method for the completed primitive symmetric square L-function attached
to the same elliptic curve in Theorem 5.3.1 (cf. [Coh00, Appendix A], [Del03],
[Dok04]). Hence we obtained that for any square-free integer

dm = 4199°(2m)* — 1,

we have
h(dy) =7.2 % 1070 (logdm)6(dm)

(cf. [BK]).

The constant ¢, = 7.2x 1071, however, is too small to apply the inequal-
ity h < 3. For example, Watkins [Wak04] used |d| < exp (2.7 x 108), which
came from Oesterlé’s theorem, to solve class number problem up to 100 for
imaginary quadratic fields. Watkins mentioned that the computation took
about seven months based on his intensive computer program.

Because cg is mainly determined by #,{l—fE the following question is essen-
tial. How can we find an elliptic curve over Q with small conductor such
that there exists a family of its twisted elliptic curves of high analytic rank?
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Chapter 6. Further progress and research questions

Also, we note that using the following elliptic curve
y2+y=x>—79x + 342, N = 19047851

of algebraic rank 5, one can try to solve the class number problem for real
quadratic fields of R-D type under the BSD rank conjecture.
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