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Abstract

The Gauss class number problem
and the conjecture of Birch and

Swinnerton-Dyer

Jigu Kim

Department of Mathematical Sciences
The Graduate School

Seoul National University

The Gauss class number problem is to determine a complete list of quadratic
number fields for any given class number. It follows from Siegel’s theorem
that for each class number there are only finitely many imaginary quadratic
fields and real quadratic fields of Richaud-Degert type. Since Siegel’s theo-
rem is ineffective, it cannot provide a solution for the Gauss class number
problem.

Goldfeld discovered an effective method, which concerns arithmetic of an
elliptic curve, to solve the class number problem for imaginary quadratic
fields and real quadratic fields of Richaud-Degert type. In the imaginary case
only Oesterlé simplified Goldfeld’s proof and made an explicit result, which
led him to solve the class number three problem for imaginary quadratic
fields.

We find explicit constants in Goldfeld’s method and apply the results to
the class number problem for real quadratic fields of Richaud-Degert type.
Key words: class numbers, quadratic fields, elliptic curves.
Student Number: 2014-21201

i



ii



Contents

Abstract i

1 Introduction 1

I Preliminary 5

2 Special values of the Dirichlet L-functions 7
2.1 Dirichlet’s class number formula . . . . . . . . . . . . . . . . . 7
2.2 An upper bound and regulators . . . . . . . . . . . . . . . . . . 10
2.3 Siegel zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Ineffective lower bounds . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Siegel-Tazuzawa theorem . . . . . . . . . . . . . . . . . . 14
2.4.2 Sarnak-Zaharescu theorem . . . . . . . . . . . . . . . . . 17
2.4.3 A table . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Real quadratic fields of Richaud-Degert type . . . . . . . . . . 19

3 The L-function attached to an elliptic curve 21
3.1 The Hasse-Weil L-function . . . . . . . . . . . . . . . . . . . . . 21
3.2 The conjecture of Birch and Swinnerton-Dyer . . . . . . . . . . 25
3.3 An elliptic curve with complex multiplication . . . . . . . . . . 26

3.3.1 The Grössencharakter . . . . . . . . . . . . . . . . . . . 26
3.3.2 The Hecke L-function . . . . . . . . . . . . . . . . . . . 29

iii



CONTENTS

3.3.3 Deuring’s theorem . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Theory of complex multiplication . . . . . . . . . . . . . 31

3.4 The symmetric square L-function attached to an elliptic curve 33
3.4.1 The primitive symmetric square L-function . . . . . . . 33
3.4.2 Watkins’ theorem . . . . . . . . . . . . . . . . . . . . . . 35

II Goldfeld’s method 37

4 Explicit Goldfeld’s Theorem 39
4.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Proofs of main results . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 A proof of Proposition 4.2.1 . . . . . . . . . . . . . . . . . . . . 45
4.4 A proof of Proposition 4.2.2 . . . . . . . . . . . . . . . . . . . . 56

5 Two proofs of Lemma 4.3.3 and applications 73
5.1 Elliptic curves with complex multiplication . . . . . . . . . . . 73
5.2 Elliptic curves of symmetric square conductor greater than 11 78

5.2.1 A proof of Theorem 4.1.4 . . . . . . . . . . . . . . . . . 78
5.2.2 A proof of Proposition 5.2.2 . . . . . . . . . . . . . . . . 79
5.2.3 A proof of Proposition 5.2.3 . . . . . . . . . . . . . . . . 85

5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Further progress and research questions 89

Bibliography 93

Abstract (in Korean) 99

iv





CONTENTS

vi



Chapter 1

Introduction

In his 1801 Disquisitiones Arithmeticae [Gau], Gauss posed his class number
conjectures in the language of binary quadratic forms (for even discriminant
only). Since Dedekind’s time, the conjectures have been rephrased in the
language of quadratic fields, which is how we will state.

Let K be a quadratic field, i.e. an extension of Q of degree 2. There is
a unique square-free integer D "= 1 such that K = Q(

√
D). We call D the

fundamental radicand. Let d = 4D/σ2, where σ = 2 if D ≡ 1 (mod 4) and
σ = 1 otherwise. The value d is called the fundamental discriminant. We
denote by h(d) the class number of K.

Gauss surmised that h(d) → ∞ as K = Q(
√

d) runs through the imagi-
nary quadratic fields (i.e., d < 0 and d → −∞). Landau [Lan18] published
Hecke’s work, which stated that the conjecture is true under the assumption
that the Generalized Riemann hypothesis (GRH for short) was true. Unex-
pectedly, the falsity of the GRH also implies the right answer by a series
of papers of Deuring [Deu33], Mordell [Mor34] and Heilbronn [Hei34] in the
1930’s. So they gave an unconditional proof.

For positive discriminants, Gauss predicted completely different behav-
ior of the class numbers and surmised that there are infinitely many real
quadratic fields with class number one, which is still unproved. Unlike an
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Chapter 1. Introduction

imaginary quadratic field, a real quadratic field has infinitely many units
and its unit group UK is isomorphic to Z/2Z × Z. Let εd > 1 be the fun-
damental unit such that UK = {±1} × 〈εd〉 and let R(d) = log (εd) be the
regulator of Q(

√
d) for d > 0.

Disquisitiones Arithmeticae [Gau] also gave the tables of imaginary quadratic
fields with low class numbers and Gauss conjectured that there are no more.
For this class number problem and other purposes, a lower bound of h(d)
for d < 0 and that of h(d) × R(d) for d > 0, have been studied by Lan-
dau [Lan35], Siegel [Sie35], Tatuzawa [Tat51], etc. However, their results are
not effective. For example, it follows that there is at most one fundamental
discriminant d10 < 0 with class number one, beyond that 9 already known
to Gauss. So different methods were required to solve the class number one
problem for imaginary quadratic fields. In the late 1960’s, both nonexistence
of d10 < 0 with class number one and that of d19 < 0 with class number two
were proved by two different methods: one is Baker’s effective transcendence
method [Bak69, Bak71] and the other is Stark’s [Sta67, Sta69, Sta71]. How-
ever, neither Baker’s method nor Strark’s applied to the class number three
problem.

In 1976, Goldfeld [Gol76] made a startling discovery: The existence of
an elliptic curve E over Q with high analytic rank g implies that for any
fundamental discriminant d < 0 and any small ε > 0

h(d) > cE ×

{
(log d)g−2−ε if χd(−N) = (−1)g−1,
(log d)g−3−ε if χd(−N) = (−1)g−2,

and the constant cE can be effectively computed. The inequality holds with
a factor R(d) on the left-hand side if d > 0.

In 1983, Gross and Zagier [GZ83] were able to find a Weil curve E with
analytic rank 3, which satisfies all of Goldfeld’s hypotheses. The correspond-
ing constant cE of a slightly different form, was computed by Oesterlé [Oes85,
Oes88]: For any d < 0,

2



Chapter 1. Introduction

h(d) >

{
1
55 log |d| · θ(d) if (d, 5077) = 1,

1
7000 log |d| · θ(d)

where θ(d) =
∏

p∈P(d)

(
1 − "2√p$

p+1

)
and P(d) is the set of prime divisors of d

except maximal one. The first inequality is calculated from Gross and Za-
gier’s elliptic curve

y2 + y = x3 − 7x + 6, N = 5077,

and the other one is from the twisted elliptic curve

−139y2 = x3 + 10x2 − 20x + 8, N = 37 · 1392.

Oesterlé’s method, however, works for imaginary quadratic fields only.

For sake of application to real quadratic fields of narrow Richaud-Degert
type (i.e., D = n2 ± 1 or n2 ± 4) whose regulators are the smallest size as a
function of d, we will largely follow Goldfeld’s paper [Gol76] and calculate all
constants in questions. The constant cE will be provided by the following two
different methods: The Grössencharakter for an elliptic curve with complex
multiplication, and Goldfeld-Hoffstein-Lieman method for an elliptic modular
form which is not a lift from GL(1) (cf. [GHL94] and [Wak]).

As a preliminary part, part I consists of chapter 2 and chapter 3. In
chapter 2, we will review Dirichlet’s class number formula and list ineffec-
tive results about lower bounds for L(1, χ). In chapter 3, we will recall the
definition of the Hasse-Weil L-function attached to an elliptic curve and the
conjecture of Birch and Swinnerton-Dyer. We will also introduce some ma-
terials to be used to compute cE.

Part II consists of chapter 4 and chapter 5. Chapter 4 contains main re-
sults and explicit constants in Goldfeld’s method. Chapter 5 provides appli-
cations to a certain family of real quadratic fields of narrow Richaud-Degert

3



Chapter 1. Introduction

type as well as two different proofs for Lemma 4.3.3.
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Preliminary
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Chapter 2

Special values of the Dirichlet
L-functions

2.1 Dirichlet’s class number formula

Definition 2.1.1. For a positive integer q, a Dirichlet character (mod q) is
a homomorphism from (Z/qZ)∗ to the unit circle S1 ⊂ C, extended by zero
to a function on Z/qZ and lifted to Z.

Definition 2.1.2. The principal character χ0 (mod q) is defined by χ0(n) =
1 if (n, q) = 1 and χ0(n) = 0 otherwise. A Dirichlet character χ (mod q)
that cannot be obtained by χ = χ0χ ′ with χ0 (mod q) and any character χ ′

modulo a proper factor q ′ | q, is called primitive. Any Dirichlet character
χ comes from a unique primitive character χ ′ and the modulus of this χ ′ is
called the conductor of χ.

Proposition 2.1.3. We denote a rational prime by p. For any Dirichlet
charater the following holds.

(1) Since χ(−1)2 = χ(1) = 1, χ(−1) = ±1.

7



Chapter 2. Special values of the Dirichlet L-functions

(2) The number of primitive Dirichlet characters (mod q) is q
∏

p|q αp, where
αp = ((p − 1)/p)2 if p2 | q and (p − 2)/p if p ‖ q.

(3) Every real Dirichlet character is of the form χ0ψ
∏

l∈S

( ·
l

)
, where χ0 is

the principal character, ψ = χε4
4 χε8

8 for some ε4, ε8 ∈ {0, 1}, S is a finite
set of odd primes, and

( ·
l

)
is the Legendre symbol.

(4) Every real primitive Dirichlet character χ (mod q) can be defined, us-
ing the Kronecker symbol, to be

χ(n) = χd(n) =
( d

n

)
,

which is attached to the quadratic field Q(
√

d) and the fundamental
discriminant is given by d = χ(−1)q.

Let v = v(χ) = 1−χ(−1)
2 .

Definition 2.1.4. The function

L(s, χ) =
∞∑

n=1

χ(n)n−s =
∏

p

(1 − χ(p)p−s)−1

is called the Dirichlet L-function and

Λ(s, χ) =
(

π
q

)− s+v
2

Γ
(

s + v
2

)
L(s, χ)

is called the completed Dirichlet L-function.

Theorem 2.1.5. The completed Dirichlet L-function of a primitive character
χ modulo q has an analytic continuation to the whole complex plane as an
entire function and satisfies the functional equation

Λ(s, χ) =
τ(χ)
iv√q

Λ(1 − s, χ),

8



Chapter 2. Special values of the Dirichlet L-functions

where τ(χ) =
∑q

m=1 χ(m) exp (m/q).

Theorem 2.1.6 (Dirichlet’s class number formula). The following identity
holds for any number field K.

hK =
wK|dK|1/2

2r1(K)+r2(K)πr2(K)RK
lim
s→1

ζK(s)
ζ(s)

,

where hK is the class number, wK the number of units of finite order of OK,
dK the fundamental discriminant, r1 the number of real embeddings, 2r2 the
number of complex embeddings, RK the regulator, and ζK(s) the Dedekind
zeta function of K.

Remark 2.1.7. If K = Q or an imaginary quadratic field, RK = 1 by con-
vention.

When K is a quadratic field, ζK(s) = ζ(s)L(s, χd) with the real primitive
Dirichlet character χd attached to Q(

√
d).

Theorem 2.1.8 (Class number formula for quadratic fields). For any quadratic
field Q(

√
d),

h(d) =

{ √
|d|

π L(1, χd) if d < −4,
√

d
2R(d)L(1, χd) if d > 1.

The value of Dirichlet L-function at s = 1, L(1, χ) =
∑∞

n=1 χ(n)n−1 is of
main interest. Dirichlet [Dir], who first faced this problem in his work on
primes in arithmetic progressions, proved that

L(1, χd) >

{
π|d|−

1
2 if d < −4,

2 log
(

1
2(

√
d − 4 +

√
d)

)
d− 1

2 if d > 5,

which is immediately followed from Theorem 2.1.8 and h ≥ 1.

9



Chapter 2. Special values of the Dirichlet L-functions

2.2 An upper bound and regulators

Proposition 2.2.1. [Ove14, Proposition 5.3] Let χ and χ0 be a nonprincipal
and principal Dirichlet character modulo q respectively. For σ ≥ 1/4,

|L(s, χ)| ≤ 2q(|t| + 4)

and ∣∣∣∣L(s, χ0) −
φ(q)

q
1

s − 1

∣∣∣∣ ≤ 2q(|t| + 4).

This proposition will be used to show Siegel’s Theorem 2.4.1. The next
result provides better estimates for the special value of L(s, χ) at s = 1.

Theorem 2.2.2. For a non-principal Dirichlet character χ modulo q ≥ 3

|L(1, χ)| ≤






3
2 log q for a primitive character χ,(

1
2 +

√
8
3

)
log q for a non-primitive character χ.

Proof. Let Aq(x) =
∑

n≤x χ(n). By Pólya-Vinogradov inequality (cf. [Ove14,
Proposition 3.24]),

|Aq(x)| < c
√

q log q,

where c = 1 if χ is primitive and c =
√

8/3 otherwise. By partial summa-
tion, we have

L(1, χ) = lim
x→∞

∑

n≤x

Aq(n)
n

= lim
x→∞

(
Aq(x)

x
+

∫ x

1
Aq(u)u−2

)
du

=
∫∞

1
Aq(u)u−2du.

10



Chapter 2. Special values of the Dirichlet L-functions

Hence we have

|L(1, χ)| ≤
∫b

1
|Aq(u)|u−2du +

∫∞

b
|Aq(u)|u−2du

≤
∫b

1
uu−2du +

∫∞

b
c
√

q(log q)u−2du.

If we choose b = √q, then |L(1, χ)| ≤ log √q + c log q =
( 1

2 + c
)

log q.

Corollary 2.2.3. For the regulator R(d) of a real quadratic field Q(
√

d),

R(d) ≤
3
√

d
4

log d.

In other words, the fundamental unit εd has the following upper bound.

εd ≤ exp (3
√

d/4)d.

Proof. R(d) ≤ h(d)R(d) =
√

d
2 L(1, χd) ≤ 3

√
d

4 log d.

It is natural to ask what are optimal bounds of L(1, χd) and R(d). Under
the GRH, Littlewood deduced the following bounds.

Theorem 2.2.4. [Lit28, Theorem 1 and Theorem 2] Assume L(s, χ) has no
zeros in σ > 1/2.

(1) If χ is a real non-principal character χ modulus q, then as q → ∞

{1 + o(1)}
π2

12eγ (log log |q|)−1 < L(1, χ) < {1 + o(1)}2eγlog log |q|,

where γ is Euler’s constant. The right-hand inequality is true also for
a complex character if one replaces L(1, χ) by |L(1, χ)|.

(2) There are infinitely many d such that for χd

L(1, χd) > {1 + o(1)}eγlog log |d|.

11
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(3) There are infinitely many d such that for χd

L(1, χd) < {1 + o(1)}
π2

6eγ (log log |d|)−1.

Remark 2.2.5. However, Littlewood gave nothing about the o(1), neither
its sign nor the manner in which it approaches zero as a function of d.
The statement (3) in Theorem 2.2.4 was later established unconditionally
by Chowla [Cho48].

Therefore under the GRH, we expect that the regulator R(d) of a real
quadratic field Q(

√
d) has the following upper bound.

R(d) < {1 + o(1)}2eγ
√

dlog log |d|.

On the other hand, in view of the Cohen-Lenstra heuristics and some
numerical evidence, the following is conjectured.

Conjecture 2.2.6. [JLW95] There exists an infinite set of the prime funda-
mental radicand D > 0 for which

R(d) -
√

d
log logd

.

At present the best result of this type is that of Halter-Koch.

Theorem 2.2.7. [HK89] There exists an infinite set of discriminant d > 0
of an order of a real quadratic field (not necessarily a fundamental discrim-
inant) such that

R(d) - log4 d.

12



Chapter 2. Special values of the Dirichlet L-functions

2.3 Siegel zero

To introduce the definition of Siegel zero, we recall a zero-free region for
ζ(s) and L(s, χ), respectively.

Theorem 2.3.1. There is a constant c > 0 such that if |t| > 2 and ζ(σ +
it) = 0 then

σ < 1 −
c

log |t|
.

Theorem 2.3.2. There is a constant c > 0 such that if L(σ + it, χ) = 0 for
some primitive complex Dirichlet character χ mod q then

σ < 1 −
c

log q(|t| + 2)
. (2.1)

If χ is a real primitive character then (2.1) holds for all zeros of L(s, χ) with
at most one exception. The exceptional zero, if it exists, is real and simple.

Definition 2.3.3. The exceptional zero in Theorem 2.3.2, if it exists, is
called Siegel zero (or Landau-Siegel zero).

Remark 2.3.4. Since we can choose constant c arbitrary small in Theorem
2.3.2 and Definition 2.3.3, if Siegel zero exists then there must be infinitely
many Siegel zeros and the corresponding Q(

√
d). As in [HB83], the meaning

of Siegel zeros is to be as follows: there is a sequence of dj’s, |dj| → ∞, and
corresponding Siegel zeros βj of L(s, χd) with (1 − βj) log |dj| ≤ ε0, for some
fixed positive ε0.

We expect that there is no such zero by the Generalized Riemann Hy-
pothesis (GRH for short), which is the conjecture that each nontrivial zero
of an L-series associated to a primitive Dirichlet character χ has real part
1/2. The nonexistence of Siegel zero, though much weaker than the GRH,
is not yet proved. But we can still obtain some strong restrictions on how
Siegel zeros can vary with q and χ. Siegel zeros cannot occur even for char-
acters of different moduli if we set the threshold low enough:

13
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Theorem 2.3.5. [Lan18] There is a constant c > 0 such that, for any dis-
tinct primitive real characters χ1, χ2 to (not necessarily distinct) moduli q1,
q2 at most one of L(s, χ1) and L(s, χ2) has an exceptional zero β > 1− c

log q1q2
.

In particular, for each q there is at most one real character mod q whose
L-series has an exceptional zero β > 1 − (c/ log q).

2.4 Ineffective lower bounds

2.4.1 Siegel-Tazuzawa theorem

In this section we introduce one of the simplest proofs of Siegel’s theorem
due to Goldfeld [Gol74] and see what leads to a noneffective result.

Theorem 2.4.1. [Sie35] Given 0 < ε < 1
2 , there is c(ε) > 0 which is inef-

fective such that
L(1, χd) ≥ c(ε) · |d|−ε.

Proof. Suppose that χ and χ1 are primitive quadratic characters to distinct
moduli q, q1 respectively (q > q1). Let

F(s) = ζ(s)L(s, χ1)L(s, χ)L(s, χ1χ) =
∞∑

n=1

ann−s.

Since all the Dirichlet coefficients of

log (F(s)) =
∑

p

∞∑

k=1

1
k

(
1 + χ1(pk) + χ(pk) + χ1(pk)χ(pk)

)
p−ks

are nonnegative, an ≥ 0.

Let P(s) = s(s + 1)(s + 2)(s + 3)(s + 4)(s + 5) and let 1/2 < α < 1. By

14



Chapter 2. Special values of the Dirichlet L-functions

the weighted version of the Perron formula (cf. [Ove14, p. 161]),

1
2πi

∫ 2+i∞

2−i∞
F(s + α)

xs+5

P(s)
ds =

∑

n<x

(x − n)5ann−α ≥ (x − 1)5.

By the residue theorem,

L(1, χ1)L(1, χ)L(1, χ1χ)
x1−α

P(1 − α)
+

F(α)
120

+
1

2πi

∫−α/2+i∞

−α/2−i∞
F(s + α)

xs

P(s)
ds

=
1

2πi

∫ 2+i∞

2−i∞
F(s + α)

xs

P(s)
ds

≥
(x − 1)5

x5 .

By Proposition 2.2.1, F(s) = O
(
q2

1q2(|t| + 4)4
)

in the region: σ ≥ 1/4 and
|s − 1| > ε0 > 0. Since the degree of the polynomial P(s) is 6, we have

L(1, χ1)L(1, χ)L(1, χ1χ)
x1−α

P(1 − α)
+

F(α)
120

+ O
(
q2

1q
2x−α/2) ≥

(x − 1)5

x5 .

By Theorem 2.2.2, L(1, χ1)L(1, χ1χ) . log q1 (log q1 + log q).

Now we suppose F(α) ≤ 0 for some χ1 (mod q1) and some 1 − δ < α < 1
(δ > 0 will be determined later). Then for sufficiently large c defined by
x = (cq4)2/α,

L(1, χ)(log q)2(cq4)2(1−α)/α - 1.

Since 0 < 8(1−α)
α < 8δ

1−δ , if we choose δ sufficiently small then for any ε > 0
we can force

L(1, χ) - q−ε.

For an imprimitive character χ ′ (mod q ′) induced by a primitive character
χ (mod q),
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Chapter 2. Special values of the Dirichlet L-functions

L(1, χ ′) = L(1, χ)
∏

p|q ′

(1 −
χ(p)

p
) - q−ε

∏

p≤q ′

(1 − p−1).

By the Mertens formula (cf. [Ove14, Proposition 1.11]),

L(1, χ ′) - q−ε 1
log q ′ - (q ′)−2ε = (q ′)−ε ′

.

Now it suffices to show that there are χ1 and α such that 1 − δ < α <
1 and F(α) ≤ 0. If there is no Siegel zero, we choose some arbitrary real
primitive character χ1 modulo some q1 ≥ 3. In this case L(α, χ1), L(α, χ)
and L(α, χ1χ) are positive for any α with 1 − δ < α < 1. Since ζ(α) is
negative, F(α) ≤ 0. In the other case there exists a real primitive character
χ1 with modulo q1 ≥ 3 such that L(β, χ1) = 0 (so F(β) = 0) for Siegel zero
β with 1 − δ < β < 1. We have no way to estimate this modulus q1 and so
the result of the latter case become ineffective.

A lower bound of L(1, χd) can be deduced immediately from an estimate
of a Siegel zero β by the following lemma due to Tatuzawa.

Lemma 2.4.2. [Tat51, Lemma 8] Let 0 < ε < 1/2. If L(s, χ) has no real
zero β in the interval 1 − ε/4 < β < 1 then

L(1, χ) ≥ 0.376
ε

|d|ε
.

Tatuzawa used Theorem 2.3.5 and Lemma 2.4.2 to show the following
theorem. The above proof of Theorem 2.4.1 was further developed by Hoff-
stein [Hof80] to yield a simple proof of the following theorem, too.

Theorem 2.4.3. [Tat51, Theorem 2] Let 0 < ε < 1
2 and |d| ≥ max{e

1
ε , e11.2}.

Then
L(1, χd) ≥ 0.655ε · |d|−ε

16



Chapter 2. Special values of the Dirichlet L-functions

with one possible exception.

Remark 2.4.4. Hecke’s conditionally effective result assuming nonexistence
of Siegel zero (published by Landau [Lan18]), can be obtained by Lemma
2.4.2 with substituting ε with 4c/ log |d|, where c is in Theorem 2.3.2. Also,
under the assumption that there is no Siegel zero, one exception in Theorem
2.4.3 can be removed.

2.4.2 Sarnak-Zaharescu theorem

Assuming that all the zeros of the L-functions are either real or lie on the
critical line (Hypothesis H), Sarnak and Zaharescu [SZ02] improved results
on Siegel zero and established a better lower bound for L(1, χd). We will
state Hypothesis H separately depending on the L-functions in questions:

(1) Hypothesis H1: All the zeros of L(s, χd) are either on the line Re(s) =
1/2 or are real.

(2) Hypothesis H2: Not only H1, but also all the zeros of the L(E ⊗ χd, s)
are either on the line Re(s) = 1 or are real.

Remark 2.4.5. Hypothesis H1 (Hypothesis H2) is a weak form of the Gen-
eralized Riemann Hypothesis (Grand Riemann Hypothesis, respectively), ex-
cluding the assumption for real zeros. On the other hands, there are some
reasons to accept Hypothesis H. For example, H is true for the Selberg zeta
function for a lattice Γ in SL(2, R), and some authors have studied the zeros
of ζ(s)L(s, χd) differently according to real zeros and complex zeros.

Theorem 2.4.6. [SZ02, Theorem 1] Assume Hypothesis H1. Then for any
ε > 0 there exists a constant c(ε) > 0 (ineffective) such that

L(1, χd) ≥
c(ε)

(log |d|)ε .

17
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Theorem 2.4.7. [SZ02, Theorem 3] Assume Hypothesis H2. Given an ellip-
tic curve E over Q of which the L-function has a zero of order g at s = 1,
for any ε > 0 there is an effective constant c(E, ε) > 0 such that

L(1, χd) ≥
c(E, ε)

|d|(2+ε)/(g+1) .

2.4.3 A table

We give a table of lower bounds for L(1, χd) in growth rate order, includ-
ing Goldfeld’s result and Oesterlé’s which we introduced in chapter 1. The
following table implies that for sufficiently large d

L(1, χd) ≥ contant × growth rate,

for each item.

Growth rate Constant Condition Due to

1
(log |d|)ε1

Conditionally
ineffective, c(ε1)

The Generalized RH
except real zeros

Sarnak,
Zaharescu

1
log |d|

Conditionally
effective, c

No Siegel zero Hecke

1
|d|ε2

Ineffective, c(ε2) Siegel

1
|d|ε2

0.665ε2 |d| ≥ d(ε2)
At most

one exception
Tatuzawa

1
|d|(2+ε1)/(g+1)

Conditionally
effective, c(E)

The Grand RH
except real zeros,

(∃ E/Q s.t. g - 1)

Sarnak,
Zaharescu

(log |d|)g−3−ε1

|d|1/2 Effective, c(E) (∃ E/Q s.t. g - 1) Goldfeld

log |d|·θ(d)
|d|1/2 d < 0

π/55 (d, 5077) = 1,
or 1/7000

Oesterlé

π|d|−1/2 d < −4
(log (d − 4)) d−1/2 d > 5

1 Dirichlet

18



Chapter 2. Special values of the Dirichlet L-functions

where any ε1 > 0 and 0 < ε2 < 1
2 , d(ε2) = max{e 1

ε , e11.2}, g is the analytic
rank of an elliptic curve over Q, θ(d) =

∏
p∈P(d)

(
1 − "2√p$

p+1

)
, and P(d) is the

set of prime divisors of d except maximal one.

2.5 Real quadratic fields of Richaud-Degert type

In the section 2.2, we introduced the two unsolved questions regarding
the regulator R(d) of Q(

√
d) with d > 0:

(1) What is the largest value that R(d) can attain as a function of d?

(2) How often does R(d) become that large?

Now we restrict real quadratic fields to be of certain forms, so that we
avoid difficulty of the regulator. Recall that for K = Q(

√
d) = Q(

√
D), the

fundamental discriminant d and the fundamental radicand D have the fol-
lowing relation:

d = 4D/σ2,

where {
σ = 2 if D ≡ 1 (mod 4),
σ = 1 otherwise.

Definition 2.5.1. Let D = n2 + r "= 5 be a square-free positive integer such
that

r | 4n and − n < r ≤ n.

The real quadratic field K = Q(
√

D) is called a real quadratic field of Richaud-
Degert (R-D for short) type. Specially, if |r| ∈ {1, 4} then K is of narrow R-D
type. Otherwise, it is of wide R-D type.

Theorem 2.5.2. [Deg58, Satz 1 and Satz 2] Let K = Q(
√

D) be a real
quadratic field of R-D type. Then the fundamental unit ε and its norm are
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given as follows:





ε = n +
√

n2 + r, N(ε) = −sgn(r) if |r| = 1,
ε = (n +

√
n2 + r)/2, N(ε) = −sgn(r) if |r| = 4,

ε = (2n2 + r)/|r| + 2n
√

n2 + r/|r|, N(ε) = 1 if |r| "= 1, 4.

By theorem 2.4.3 and theorem 2.5.2, in the 1980’s Mollin and Williams
made a list of R-D types of various class numbers, and showed that the list is
complete with one possible GRH-ruled out exception (cf. [Mol96]). Some of
these lists have been unconditionally verified. In 2007, for example, Byeon,
Kim, and Lee [BKL07] classified all real quadratic fields of narrow R-D types
with class number one.
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Chapter 3

The L-function attached to an
elliptic curve

3.1 The Hasse-Weil L-function

We begin by defining the incomplete L-function, which omits the finitely
many places at which E has bad reduction. Also, we introduce isogeny the-
orem to explain that the incomplete L-function determines E up to isogeny
over K. We then define the global Hasse-Weil L-function and the complete
L-function, and describe its analytic properties.

Let E be an elliptic curve over a number field K and let its Weierstrass
equation

y2 + c1xy + c3y = x3 + c2x2 + c4x + c6,

with ci ∈ K. Let S be the finite set of places of K consisting of the infinite
places and the places where E has bad reduction. For all places v /∈ S, there
is a model of E such that the coefficients ci lie in the local ring Ov at v and
the discriminant 1v is a unit in Ov. Let πv be a uniformizing element in Ov

and let Ov/πvOv = Fv be the residue field, of cardinality qv. For v /∈ S, we
gat an elliptic curve Ẽv over the residue field Fv. The formal local L-factor
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Chapter 3. The L-function attached to an elliptic curve

at v with v /∈ S, is

Lv(E/K, s) = L(Ẽv/Fv, q−s
v ) = (1 − avq−s

v + q1−2s
v )−1,

where #Ẽv(Fv) = 1 + qv − av.

Definition 3.1.1. The incomplete L-function of E is

LS(E/K, s) =
∏

v/∈S

Lv(E/K, s). (3.1)

Conversely, the formal Euler product (3.1) determines E up to isogeny
over K for the following reasons. We denote by Tl(E) the l-adic Tate module
which is defined to be

Tl(E) := lim←−
n

E[ln],

with respect to the maps

E[ln+1] ×l−→ E[ln], P 3→ lP.

We denote by Vl(E) the rational Tate module, which is defined by

Vl(E) := Tl(E) ⊗Zl Ql = Tl(E)[1
l ].

Then Tl(E) is a free Zl-module and Vl(E) ∼= Q2
l as a Ql-vector space. The

absolute Galois group GK = Gal(Ks/K) acts on Vl(E), and this action induces
the l-adic representation:

ρE,l : GK → Aut(Vl(E)) ∼= GL2(Ql).

Theorem 3.1.2 (Faltings, 1988). Let K be a number field and let GK =
Gal(Ks/K). If A and B are two abelian varieties over K, then the natural
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Chapter 3. The L-function attached to an elliptic curve

map
HomK(A, B) ⊗Z Zl → HomGK(Tl(A), Tl(B))

is an isomorphism

In short, Faltings’s isogeny theorem reduces a geometric problem to a
problem in terms of Galois representations. We list some consequences of
the theorem.

Proposition 3.1.3. Let E1 and E2 be elliptic curves over a number field K.
Then the following are equivalent:

(1) E1 and E2 are isogenous over K,

(2) For all prime l not dividing v ∈ S, Vl(E1) ∼= Vl(E2) as GK-modules,

(3) For some prime l not dividing v ∈ S, Vl(E1) ∼= Vl(E2) as GK-modules,

(4) Lv(E1, s) = Lv(E2, s) for all places v /∈ S of K,

(5) Lv(E1, s) = Lv(E2, s) for almost all places v /∈ S of K.

For the L-function to have a meromorphic continuation to the whole of
C and satisfy a functional equation, we must add some factors to the incom-
plete L-function, corresponding to the infinite places and the finite places of
bad reduction. For finite v ∈ S, we define the local L-factor

Lv(E/K, s) =






1 if E has additive reduction at v;
(1 − q−s

v )−1 if E has split multiplicative reduction at v;
(1 + q−s

v )−1 if E has non-split multiplicative reduction at v.

We can define the Hasse-Weil L-function as follows.

Definition 3.1.4. The Hasse-Weil L-function of E/K is

L(E/K, s) = LS(E/K, s)
∏

v∈S,
v!∞

Lv(E/k, s) =
∏

v!∞

Lv(E/k, s).
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Adding factors at the infinite places, the completed Hasse-Weil L-function is

Λ(E/K, s) =
(
(2π)−sΓ(s)

)[K : Q]L(E/K, s).

The following two quantities measure bad reduction.

Definition 3.1.5. The minimal discriminant of an elliptic curve E over a
number field K is the integral ideal of K defined by

DE/K =
∏

v!∞

pv(*v)
v

where 1v is the discriminant of a minimal equation for E/Kv and pv is the
prime ideal associated to the finite place v.

Definition 3.1.6. The conductor of E is the integral ideal given by

NE/K =
∏

v!∞

pfv
v ,

where

fv =






0 if E has good reduction at v;
1 if E has multiplicative reduction at v;

2 + δv if E has additive reduction at v,

where δv is a non-negative integer depending on the action of wild inertia
at v on Tl(E). It is zero whenever the characteristic of v is not equal to 2
or 3.

Remark 3.1.7. In fact, the conductor of E is the Artin conductor of the
Tate module of E. It is related to DE/K by Ogg’s formula

fv = ordv(DE/K) + 1 − mv,

where mv is the number of irreducible components of the Néron model of E
at v. (cf. [Sil94, Chapter 4, Section 11])
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Conjecture 3.1.8. Let K be a number field, and E/k an elliptic curve. Then
the complex analytic function Λ(E/K, s) on the right half plane Re(s) > 3/2
admits an analytic continuation to the entire complex plane and satisfies the
functional equation

Λ(E/K, s) = ±A1−sΛ(E/K, 2 − s)

where A is the product of the absolute norm of conductor NE/K with the
square of the discriminant of K.

Wiles and Taylor [TW95, Wil95] proved this conjecture in the case when
K = Q and the conductor NE/K is square-free. In [BCDT01], their methods
were extended to cover all elliptic curves over. Some other cases when K is
a totally real number field are known.

3.2 The conjecture of Birch and Swinnerton-Dyer

Conjecture 3.2.1 (Birch and Swinnerton-Dyer). Let E/K be an elliptic curve
over a number field, and assume that L(E/K, s) has a meromorphic contin-
uation to a neighborhood of the point s = 1.

(1) BSD rank conjecture: If n is the algebraic rank of E(K), then

ords=1L(E/K, s) = n.

(2) Strong BSD conjectrue: Let c(E/K) be the leading term in the Taylor
expansion at s = 1, that is,

L(E/K, s) ∼ c(E/K) · (s − 1)n as s → 1.

Then
c(E/K) = P(E/K) · R(E/K) · #X(K, E),
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where

(a) the period of E/K, P(E/K) is defined by

P(E/K) =
∏

v!∞

(
Lv(E/K, 1) ·

∫

E(Kv)
|ωv|

)
·
∏

v|∞

∫

E(Kv)
|ωv|,

with a non-zero invariant differential ω on E/K,

(b) the regulator of E/K, R(E/K) is defined by

R(E/K) = det(〈Pi, Pj〉)/I2,

with the Néron-Tate height 〈 , 〉 : E(K) × E(K) → R, a basis
of free part of the Hasse-Weil group {Pi}n

i=1, and I = [E(K) :
〈P1, · · · , Pn〉],

(c) the Tate-Shafarevich group, X(K, E) is defined by

X(K, E) = ker

(

H1(K, E) →
∏

v

H1(Kv, E)

)

(for detail, see [Gro11]).

3.3 An elliptic curve with complex multiplication

3.3.1 The Grössencharakter

Let m be an integral ideal of the number field K, and let Jm be the group
of all non-zero fractional ideals of K which are relatively prime to m. Search-
ing for the most comprehensive class of characters χ : Jm → S1 for which
the corresponding L-series could have a functional equation, Hecke was led
to the notion of a Grössencharakter mod m.
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We introduce the sets

K(m) = {a ∈ K× | (a, m) = 1},

Km = {a ∈ K× | a ≡ 1 (mod m)},

O(m) = {a ∈ O× | (a, m) = 1},

and
Om = {a ∈ O× | a ≡ 1 (mod m)}.

We denote by R the Minkowski space, which is

R ⊗Q K ∼= Rr1 × Cr2

in the usual way (cf. [Neu99, Chapter 1, Section 5]).

Definition 3.3.1. A Grössencharakter mod m is a character χ : Jm → S1

which there exists a pair of characters (i.e., a continuous homomorphism)

χf : (O/m)× → S1, χ∞ : R× → S1

such that
χ(〈a〉) = χf(a)χ∞(a)

for any a ∈ O(m).

Remark 3.3.2. The following can be deduced easily:

(1) A finite component χf : (O/m)× → S1 is a character of a finite abelian
group and so χf(a) = 1 when a ∈ Om.

(2) An infinite component χ∞ : O× → S1 that deals with contributions
from the units O×, under the map j from K× to the multiplicative
Minkowski space R×.
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(3) For a ∈ O×, χf(a)χ∞(a) = χ(〈a〉) = 1.

(4) Om ⊂ O× and for a ∈ Om, χ∞(a) = χf(a)χ∞(a) = χ(〈a〉) = 1. Hence
χ∞ : R×/Om → S1.

(5) For a ∈ Km (i.e., a = b/c with b, c ∈ O(m), b ≡ c mod m), χ∞(a) =
χ(〈a〉) and Km is dense in R×. Hence χ∞ is determined uniquely by χ
(and so is χf).

The infinite components can be given explicitly as follows. The multi-
plicative Minkowski space is written by

R× ∼= (R×)r1 × (C×)r2,

via the map x = (xτ)τ 3→ ((xρ), (xσ)σ). The characters of

(R×)r1 × (C×)r2 ∼= ({±1} × R>0)r1 × (S1 × R>0)r2

have the form

(x1, · · · , xr1+r2) 3→
r1+r2∏

j=1

(
xj

|xj|

)pj

|xj|iqj ,

where

pj ∈

{
{0, 1}, when j = 1, · · · , r1,
Z, when j = r1 + 1, · · · , r1 + r2,

and qj ∈ R for each j = 1, · · · , r1 + r2. Hence every χ∞ is in the form

x = (xτ)τ 3→ N
((

x
|x|

)p

|x|iq
)

,

where p ∈
∏

τ Z and q ∈
∏

τ R such that:

(1) pρ = 0, 1 for all ρ, and pσpσ = 0 for all σ, and

(2) qσqσ = 0 for all σ.
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Such an element is called admissible. Then we say that χ is of type (p, q),
and we call p − iq the exponent of the Grössencharakter χ.

3.3.2 The Hecke L-function

We may assume that χ is a primitive Grössencharakter mod m, i.e., that
the corresponding finite component χf of (O/m)∗ is primitive. The L-series of
an arbitrary character differs from the L-series of the corresponding primitive
character only by finitely many Euler factors. So analytic continuation and
functional equation of one follow from those of the other.

The L-function of the G(C|R)-set X = Hom(K, C) is defined by

LX(s1) = LR(s)r1LC(s)r2,

with 1 = (1, · · · , 1) where the number of 1 is n = #X, i.e., the degree of
K/Q, and

LR(s) = π−s/2Γ(s/2) = LY(s) if Y = {ρ},
LC(s) = 2(2π)−sΓ(s) = LY(s) if Y = {σ, σ}.

Recall that an infinite comoponent χ∞ of R∗ is given as

χ∞(x) = N
(
xp|x|−p+iq)

,

for an admissible (p, q) with p ∈
∏

τ Z and q ∈
∏

τ R. Let

L∞(χ, s) = LX(s1 + p − iq).

Let Λ(χ, s) be the completed Hecke L-series which is defined to be

Λ(s, χ) = (|dK|N(m))s/2 L∞(s, χ)L(s, χ).

Theorem 3.3.3. Let χ be a primitive Grössencharakter mod m of a number
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field K. Then the function

Λ(s, χ) = (|dK|N(m))s/2 L∞(s, χ)L(s, χ), Re(s) > 1,

has a meromorphic continuation to the complex plane C and satisfies the
functional equation

Λ(s, χ) = W(χ)Λ(1 − s, χ̄),

where |W(χ)| = 1. It is holomorphic on all of C, if m "= 1 or p "= 0.

3.3.3 Deuring’s theorem

Theorem 3.3.4 (Deuring). Let E/F be an elliptic curve with complex mul-
tiplication by the ring of integers OK of imaginary quadratic field K.

(1) Assume that K is contained in F. Then

L̃(E/F, s) = L(s, ψF)L(s, ψF)

for some primitive Grössencharakter ψF of F,

(2) Assume that K is not contained in F, and let F ′ = FK. Then

L̃(E/F, s) = L(s, ψF ′)

for some primitive Grössencharakter ψF ′ of F ′,

where L̃(E/F, s) is the normalized Hasse-Weil L-function such that the critical
line is s = 1/2.

In the case of an elliptic curve E/Q with complex multiplication by the
ring of integers OK of imaginary quadratic field K,

L(E/Q, s) = L(s, ψ) (3.2)
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for a primitive Grössencharakter (quasi-character) ψ mod f of some normal-
ized ψK.

For X = Hom(K, C), r1 = 0 and r2 = 1. If ψ : Jf → S1 is a Grössen-
charakter then for a ∈ Kf,

ψK(〈a〉) = ψK,f(a)ψK,∞(a) = ψK,∞
(
(aσ)σ

)

and
ψK,∞

(
(aσ)σ

)
= N

((
aσ

|aσ|

)p

|aσ|iq
)

= ap|a|iq−p,

for some p = pσ ∈ Z and q = qσ ∈ R. Since the left-hand side in (3.2) has
the Dirichlet series with rational coefficients, q = 0. In this case, there is a
functional equation given by

Λ(s, χ) = W(χ)Λ(1 + p − s, χ),

which implies that the integer p must be equal to one and

ψ(〈a〉) = a for a ∈ Kf.

In short, the Grössencharakter attached to an elliptic curve over Q with CM
must be of type (1, 0).

3.3.4 Theory of complex multiplication

Let K be an imaginary quadratic field, let Cl(K) be the class group of
K, and let hK be the class number of K. We will see that if E is an elliptic
curve with CM by OK, then j(E) generates the Hilbert class field of K. Let

EC(K) = {C-isomorphism classes of elliptic curves over C with CM by OK}.
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There is a well-defined map

Cl(K) → EC(K)

[a] 3→ C/a.

Let

EQ̄(K) = {Q̄-isomorphism classes of elliptic curves over C with CM by OK}.

Then there is a natural map EQ̄(K) → EC(K).

Lemma 3.3.5. The above two maps are bijective.

Now we simply write E(K) and we define an action of Cl(K) on E(K).
Let [a] ∈ Cl(K) and let C/b ∈ E(K) for a fractional ideal b of K. Set

[a] · C/b = C/(a−1b).

By the above lemma, this action is transitive.
For each σ ∈ Gal(Q̄/K) there is a unique ideal class [a] ∈ Cl(K) such

that Eσ ∼= [a] · E. This defines a map

S : Gal(Q̄/K) → Cl(K).

Theorem 3.3.6. Let E be an elliptic curve with CM by OK. Suppose that
E = E1, E2, · · · EhK is a complete set of representatives of E(K). Then

(1) H = K(j(E)) is the Hilbert class field of K,

(2) [Q(j(E)) : Q] = [K(j(E)) : K] = hK,

(3) j(E1), · · · , j(EhK) is a complete set of conjugates for j(E).
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(4) (Reciprocity Law) Let j(c) := j(C/c) for a fractional ideal c of K. If a
and b are fractional ideals of K then

j(b)(a,H/K) = j(a−1b)

(for detail, see [Gha03]).

Remark 3.3.7. More generally if E is an elliptic curve with End(E) an ar-
bitrary order of K then it turns out that j(E) generates a (not necessarily
unramified) abelian extension of K.

3.4 The symmetric square L-function attached to
an elliptic curve

3.4.1 The primitive symmetric square L-function

Let E be an elliptic curve over Q with conductor N and let L̃(E/Q, s) be
the normalized Hasse-Weil L-function such that its critical line is s = 1/2.
We write the Euler product of L̃(E/Q, s) = L(E/Q, s + 1/2) as follows:

L̃(E/Q, s) =
∞∑

n=1

an(E)
ns

=
∏

p

(1 − ap(E)p−s + 1N(p)p−2s)−1

=
∏

p

(1 − αpp−s)−1(1 − βpp−s)−1,

where





for p ! N, αp + βp = ap(E), |αp| = |βp| = 1, αp = β̄p,
for p ‖ N, αp = ± 1√p, βp = 0,
for p2 | N, αp = βp = 0.
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We denote by L(Sym2
i E, s) an imprimitive (normalized) symmetric square

L-function associated to E/Q, which is defined as follows.

Definition 3.4.1.

L(Sym2
i E, s) =

∏

p

(1 − α2
pp−s)−1(1 − αpβpp−s)−1(1 − β2

pp−s)−1

= L̃(E, s
2)L̃(E ⊗ λ, s

2)ζN(s).

By [CS87], there exists the symmetric square conductor B ∈ Z, the prim-
itive (normalized) symmetric square L-function L(Sym2

pE, s) and the Euler
product U(E, s) such that

Λ(Sym2E, s) :=
( B

π3/2

)s
Γ
(s + 1

2

)2
Γ
(s + 2

2

)
L(Sym2

pE, s)

:=
( B

π3/2

)s
Γ
(s + 1

2

)2
Γ
(s + 2

2

)
L(Sym2

i E, s) · U(E, s)

satisfies the functional equation

Λ(Sym2E, s) = Λ(Sym2E, 1 − s), (3.3)

and the Euler product U(E, s) =
∏

p|N Up(E, s).

Also, Up(E, s) is given as follows. Let F = ED be a global minimal twist
of E and we write invariants with subscripts according to E or F. We have
L(Sym2

pE, s) = L(Sym2
pF, s), BE = BF = B. Let

S1 = S1(E, F, D) = {p : p | D, p ! NF},
S2 = S1(E, F, D) = {p : p | D, p||NF}.

Note that for any odd prime p, if p ∈ S1 or p ∈ S2, ordp(NE) = 2 and if
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p2 | NF, ordp(NE) = ordp(NF). Also we can write

NE = MD2
1D2

22λE,
NF = MD22λF ,

where M is odd, D1 is the product of the odd primes in S1, D2 is the product
of the odd primes in S2, and 2-adic valuations λE ≥ λF. From the definition
of imprimitive symmetric square L-functions,

L(Sym2
i E, s) = L(Sym2

i F, s) ×
∏

p∈S1

(1 − α2
p(F)p−s)(1 − p−s)(1 − β2

p(F)p−s)

×
∏

p∈S2

(1 − p−s−1). (3.4)

Let BE = BF =
∏

p pδp . Then for a global minimal twist elliptic curve F, we
have 





for p ! NF, δp = 0, Up(F, s) = 1,
for p ‖ NF, δp = 1, Up(F, s) = 1,
for p2 | NF, δp ≥ 1, there are three possibilities for

Up(F, s) : 1, (1 ± p−s)−1

(3.5)

(cf. [CS87], [Del03] and [Wak02]).

3.4.2 Watkins’ theorem

In [Wak], Watkins showed the following theorem.

Theorem 3.4.2. [Wak, Lemma 3.4] Let E be an elliptic curve with B ≥ 12.
Then L(Sym2

pE, 1) ≥ 0.033
2 log B .

We give a sketch of proof as follows. Watkins made the argument of
[GHL94] explicit, in the case of an elliptic curve which is not GL(1)-lift,
and then he derived an explicit zero-free region for L(Sym2

pE, s).
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For an elliptic curve with CM, Watkins acquired an explicit zero-free re-
gion for the corresponding Hecke L-function.

To turn that into a lower bound for L(Sym2
pE, 1), Watkins used

F(s) = ζ(s)L(Sym2
pE, s) =

∑

n

ann−s,

which is the Dirichlet series with nonnegative coefficients. He calculated the
following integral moving the contour to s = 1/2 − b:

∫

(2)
Γ(s)XsF(s + b)

ds
2πi

=
∑

n

an

nben/X , ≥ e−1/X,

where b = 1 − 1
25 log (B) . The above zero-free region implies that F(s) has no

Siegel zero in [b, 1), and so the residue value is

L(Sym2
pE, 1)X1−bΓ(1 − b) + F(b),

with F(b) < 0. By the residue theorem, he derived the result.
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Chapter 4

Explicit Goldfeld’s Theorem

4.1 Main results

Goldfeld obtained an effective lower bound for L(1, χd) as follows.

Theorem 4.1.1. [Gol76, Theorem 1] Let E be an elliptic curve over Q with
conductor N. If E has complex multiplication and the L-function associated
to E has a zero of order g at s = 1, then for any χd with (d, N) = 1 and
|d| > exp exp(c1Ng3), we have

L(1, χd) >
c2

g4gN13

(log |d|)g−µ−1 exp(−21
√

g log log |d|)
√

|d|
,

where µ = 1 or 2 is suitably chosen so that χd(−N) = (−1)g−µ, and the
constants c1, c2 > 0 can be effectively computed and are independent of g,
N and d.

In fact, Goldfeld proved Theorem 4.1.1 under assumption that the as-
sociated base change Hasse-Weil L-function LE/Q(

√
d)(s) has a zero of order

≥ g. Thus the proof of Theorem 4.1.1 in [Gol76] also implies the following
theorem with effective constants.
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Theorem 4.1.2. [BK18, Theorem 1.3] Let E be an elliptic curve over Q with
conductor N and g ≥ 4 be a positive integer. If E has complex multiplication
and the associated base change Hasse-Weil L-function LE/Q(

√
d)(s) has a zero

of order ≥ g at s = 1, then for any such d with (d, N) = 1 and |d| >
exp exp(400Ng3), we have

L(1, χd) >
10180

g4gN5

(log d)g−3 exp(−21
√

g log log d)
√

d
.

Remark 4.1.3. Let E be an elliptic curve over Q with complex multiplica-
tion by an imaginary quadratic field K = Q(

√
−k). In the proof of Theorem

4.1.2, we use the fact that −k is one of −3, −4, −7, −8, −11, −19, −43, −67, −163
(cf. statement (2) in theorem 3.3.6 or [Sil09, Example 11.3.1]), so k ≤ 163,
instead of the fact k ≤ N (because k | N), which is used in the proof of
[Gol76, Theorem 1]. That is why there is a difference for exponents of N
between Theorem 4.1.1 and Theorem 4.1.2.

We will improve theorem 4.1.2 to the following theorem in section 5.2.

Theorem 4.1.4. [BK19, Theorem 1.3] Let d > 0 be a fundamental discrim-
inant of a real quadratic field Q(

√
d). Let E be an elliptic curve over Q with

conductor N of which the symmetric square conductor B is greater than 11,
and let g ≥ 4 be a positive integer. If the associated base change Hasse-
Weil L-function L(E/Q(

√
d), s) has a zero of order ≥ g at s = 1, then for

any such d with (d, N) = 1 and d > exp exp(330Ng3), we have

L(1, χd) >
6 × 10184

g4gN
(log d)g−3 exp(−21

√
g log log d)

√
d

.

Remark 4.1.5. The previous version of Theorem 4.1.4, which is [BK19,
Theorem 1.3], failed to consider the cases of non global minimal twist. Also,
the proof in [BK19] works under the additional assumption that E is a global
minimal twist of itself.
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4.2 Proofs of main results

Let E be an elliptic curve over Q and assume the same conditions as in
Theorem 4.1.2 or 4.1.4. As [Gol76], let

ϕ(s) = LE(s + 1
2)LE(s + 1

2 , χd) =
∞∑

n=1

ann−s

and
ϕ1(2s) = LE(s + 1

2)LE(s + 1
2 , λ), (4.1)

where λ(n) =
∏

pr||n(−1)r. We note that ϕ(s) = LE/Q(
√

d)(s + 1
2) and ϕ(s)

has a zero of order ≥ g at s = 1
2 . Let

G(s) =
ϕ(s)

ϕ1(2s)
=

∞∑

n=1

gnn−s and G(s, x) =
∑

n<x

gnn−s. (4.2)

For A = dN
4π2 and U = (log d)8g, let

H =
( d

ds

)g−µ [AsΓ 2(s + 1
2)G(s, U)ϕ1(2s)]s= 1

2
.

In [Gol76], Goldfeld proved that for d > exp exp(cNg3) and c sufficiently
large, either L(1, χd) > (log d)g−µ−1 1√

d
or else

|H| - gN−12+ 1
2 (log d)g−µ−1

∏

χd(p)+=−1
p<U

(1 + p− 1
2 )−4 [Gol76, p.662], (4.3)

and that for d > exp(500g3), either L(1, χd) > (log d)g−µ−1 1√
d

or else

|H| . g4gNL(1, χd)A(log log A)g−µ+6 [Gol76, (52)]. (4.4)

We see that both L(1, χd) > (log d)g−µ−1 1√
d

and (4.3), (4.4) imply Theo-
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rem 4.1.1. To prove Theorem 4.1.2, we need the following propositions cor-
responding to (4.3) and (4.4), respectively.

Proposition 4.2.1. Assume the same conditions as in Theorem 4.1.2. Then
for any such d ≥ exp exp (400Ng3), either L(1, χd) > (log d)g−µ−1 1√

d
or else

|H| ≥ 1.8 × 10−5 · gN−4
√

d(log d)g−µ−1
∏

χd(p)+=−1
p<U

(
1−p− 1

2

1+p− 1
2

)2

.

Proposition 4.2.2. Assume the same conditions as in Theorem 4.1.2. Then
for any such d ≥ exp exp (400Ng3), either L(1, χd) > (log d)g−µ−1 1√

d
or else

|H| ≤ 2 × 109 · (80
e )gg2g+4.5L(1, χd)A(log log A)g−µ+6.

We will prove Proposition 4.2.1 in Section 4.3 and Proposition 4.2.2 in
Section 4.4. If we assume Proposition 4.2.1 and 4.2.2, then we can prove
Theorem 4.1.2 as follows.

Proof of Theorem 4.1.2. Let P be the set of primes p < (log d)8g for which
χd(p) "= −1. We may assume

L(1, χd) ≤ (log d)g−µ−1 1√
d

( d ≥ exp exp (400Ng3)).

From the inequality 2|P | ≤ 1
4 log 2(log d)g−µ−1 in the proof of [Gol76, Lemma

9], we see that |P | < 1
log 2g(log log d). So we have

log
∏

p∈P

(
1+p− 1

2

1−p− 1
2

)2
=

∑

p∈P

2 log
(

1+p− 1
2

1−p− 1
2

)

≤
∑

p∈P

2
(

1+p− 1
2

1−p− 1
2

− 1
)

=
∑

p∈P

4√p−1

≤
∫ |P |

2

4√
x−1dx =

[
8x

1
2 + 8 log (x

1
2 − 1)

]|P |

2
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≤ 16|P |
1
2

≤ 20g
1
2 (log log d)

1
2 .

From Proposition 4.2.1 and Proposition 4.2.2, we have for d ≥ exp exp (400Ng3),

2 × 109 · (80
e )gg2g+4.5L(1, χd)A(log log A)g−µ+6

≥ 1.8 × 10−5 · gN−4
√

d(log d)g−µ−1 exp
(

− 20g
1
2 (log log d)

1
2
)
.

Let f(N, g, d) = exp
(
g

1
2 (log log d)

1
2
)

· (80
e )−gg2g−4.5(log log dN

4π2 )−g−5. We claim
that if N > 10, g ≥ 3 and d ≥ exp exp (400Ng3), then

f(N, g, d) ≥ exp (450).

Since log log dN
4π2 ≤ log log de = log log d + 1, we have

log f(N, g, d)

≥
(
g

1
2 (log log d)

1
2
)

− g log 80
e + (2g − 4.5) log g − (g + 5) log (log log d + 1),

which is an increasing function for d because its partial derivative with re-
spect to d is

√g
2
√

log log d(log d)d
−

g + 5
(log log d + 1)(log d)d

>
√

g(log log d) − 2(g + 5)
2(log log d)(log d)d

> 0.

So we have

log f(N, g, d)

≥ (400N)
1
2 g2 − g log 80

e + (2g − 4.5) log g − (g + 5) log (400Ng3 + 1),
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which is an increasing function for g because its partial derivative with re-
spect to g is

2(400N)
1
2 g − log (80

e ) + 2 log g +
2g − 4.5

g

− log (400Ng3 + 1) −
3 · 400Ng2(g + 5)

400Ng3 + 1
> 2(400N)

1
2 g − log (80

e ) − 4.5
g − 3 log g − log (400N + 1) − 3(g+5)

g

> 0.

So we have

log f(N, g, d)

≥ (400N)
1
2 · 32 − 3 log 80

e + 1.5 log 3 − 8 log (400 · 33N + 1),

which is an increasing function for N because its derivative with respect to
N is

√
400 · 32

2
√

N
−

8 · 400 · 33

400 · 33N + 1
>

√
400 · 32

2
√

N
−

8
N

> 0.

So we have

log f(N, g, d)

≥
√

4000 · 32 − 3 log 80
e + 1.5 log 3 − 8 log (4000 · 33 + 1)

> 450

and the claim is proved. Thus we have

exp
(
g

1
2 (log log d)

1
2
)

> exp (450) · (80
e )gg−2g+4.5(log log dN

4π2 )g+5.

Recall A = dN
4π2 . Then we have for d ≥ exp exp (400Ng3),
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L(1, χd) >
1.8 × 10−5 · gN−4

2 × 109 · (80
e )gg2g+4.5

·
√

d(log d)g−µ−1 exp
(

− 20g
1
2 (log log d)

1
2
)

A(log log A)g−µ+6

>
1.8 × 10−5 · 4π2 · gN−5

2 × 109 · (80
e )gg2g+4.5

·
(log d)g−µ−1 exp

(
− 20g

1
2 (log log d)

1
2
)

√
d(log log dN

4π2 )g−µ+6

>
1.8 × 10−5 · 4π2 · exp(450)

2 × 109 · g4gN5 ·
(log d)g−3 exp

(
− 21g

1
2 (log log d)

1
2
)

√
d

>
10180

g4gN5 ·
(log d)g−3 exp

(
− 21g

1
2 (log log d)

1
2
)

√
d

. ⇤

4.3 A proof of Proposition 4.2.1

In this section, we will prove Proposition 4.2.1 Let κ = g − µ. From
[Gol76, (53)], we define H1 and H2 by

H = H1 + H2

= 2κ
√

A(log A)κ−1G(1
2 , U)ϕ ′

1(1)

+
√

A
κ∑

r=2

(
κ
r

)
(log A)κ−r ( d

ds

)r [
Γ 2(s + 1

2)G(s, U)ϕ1(2s)
]

s= 1
2
.

Since |H| ≥ |H1| − |H2|, to get an explicit lower bound for |H|, we need an
explicit upper bound for |H2| and an explicit lower bound for |H1|.

Upper Bound for |H2|. Using Leibniz’ rule and Cauchy’s Theorem (for detail,
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see [Gol76, p. 657 and p. 658]) we have

|H2| =
∣∣∣∣
√

A
κ∑

r=2

(
κ
r

)
(log A)κ−r

·
( r−1∑

h=0

(
r
h

) ( d
ds

)r−h [
Γ 2(s + 1

2)ϕ1(2s)
]

s= 1
2

·
( d

ds
)h [

G(s, U)
]

s= 1
2
)
∣∣∣∣

≤
√

A
κ∑

r=2

(
κ
r

)
(log A)κ−r

·
( r−1∑

h=0

(
r
h

)
23(r−h)(r − h)! max

s∈C2

|Γ 2(s + 1
2)ϕ1(2s)| · 22hh! max

s∈C1

|G(s, U)|
)

≤
√

A
κ∑

r=2

8rr!r
(

κ
r

)
(log A)κ−r max

s∈C2

|Γ 2(s + 1
2)| max

s∈C2

|ϕ1(2s)| max
s∈C1

|G(s, U)|,

(4.5)

where C1 is the circle of radius 1
4 centered at s = 1

2 and C2 is the circle of
radius 1

8 centered at s = 1
2 .

By [Gol76, (46)], we have for s = σ + it ∈ C2,

max
s∈C2

|Γ 2(s + 1
2)| ≤ max

s∈C2

{√
2π exp ( 1

12(σ+ 1
2 )

)|s + 1
2 |σ exp (−σ − 1

2)
}2

≤ (
√

2π(9
8)

5
8 exp ( 1

12 · 8
7 − 7

8))2

≤ 1.6. (4.6)

We need the following lemma, which is an explicit version of [Gol76,
(49)]. Also, the following lemma will be reproved without the assumption
of complex multiplication, as Lemma 5.2.5 in section 5.2.

Lemma 4.3.1. For s = σ + it ∈ C,

|ϕ1(s)| ≤

{
3 × 1012 · N3t6 if 1 − 1

100800 log |t| ≤ σ ≤ 3
2 , |t| ≥ 2 + 1

840 ,
105 · N3 1

|s−1| if 3
4 ≤ σ ≤ 3

2 , |t| ≤ 2 + 1
840 .
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Proof. Let ψ be the primitive Grössencharakter of K = Q(
√

−k) with con-
ductor f such that LE(s) = LK(s, ψ) (cf. (3.2) or [Gol76, Theorem 2]). By
[Gol76, Lemma 2], we have

ϕ1(s) = LK(s + 1, ψ2)
L(s, χk)

ζ(s)

∏

p|k

(1 − p−s)−1, (4.7)

where χk is a real primitive Dirichlet character (mod k).

From [Gol76, p. 654], we have for 0 ≤ σ ≤ 3
2 ,

∣∣LK(s + 1, ψ2)
∣∣ ≤ 10N3

4π2 |s + 3|2. (4.8)

By [Jam03, Theorem 5.3.13], we have if |t| ≥ 2 + 1
840 and σ ≥ 1 −

1
840·6(log |t|+11) , then

|ζ(s)−1| ≤ 56 · 8402(log |t| + 11)3.

By [Jam03, Proposition 3.1.16], we have for σ > −1,

ζ(s) = 1
s−1 + 1

2 + r∗
1(s),

where |r∗
1(s)| ≤ | s(s+1)

8(σ+1) |. So we have if |t| ≤ 2 + 1
840 and 3

4 ≤ σ ≤ 3
2 , then

|ζ(s)| ≥ | s+1
2(s−1) | − |r∗

1(s)|

≥
|s + 1|

8|s − 1|(σ + 1)
(4(σ + 1) − |s||s − 1|)

≥ 1/13.

Thus we have the following explicit version of a statement in [Gol76, p. 653].

|ζ(s)−1| ≤

{
56 · 8402 · 63|t|3 if σ ≥ 1 − 1

840·6·20 log |t| , |t| ≥ 2 + 1
840 ,

13 if 3
4 ≤ σ ≤ 3

2 , |t| ≤ 2 + 1
840 .

(4.9)
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We note that

L(s, χk) =
∞∑

n=1

χk(n)
ns = 1

ks

k−1∑

l=1

χk(l)ζ(s, l
k),

where ζ(s, a) is the Hurwitz zeta function and 0 < a ≤ 1. By [Apo76, The-
orem 12.21], we have for any integer M ≥ 0 and σ > 0,

ζ(s, a) =
M∑

n=0

1
(n+a)s + (M+a)1−s

s−1 − s
∫∞

M

x−[x]
(x+a)s+1 dx.

So we have, for σ ≥ 1
2 ,

|ζ(s, a) − a−s| ≤
M∑

n=1

1√
n + (M+1)1−σ√

(σ−1)2+t2
+

√
σ2+t2

σMσ . (4.10)

By applying (4.10) with M = 4t5 to the region; 1
2 ≤ σ ≤ 2 and t ≥ 2 + 1

840 ,
we have

|ζ(s, a) − a−s| ≤ 1 +
∫ "t$

1

1√
xdx +

√
t+1
t +

√
1+4t2

√
t−1

≤ 5
√

t,

which gives

|L(s, χk)| ≤ k−σ
k−1∑

l=1

(
( l

k

)−σ + 5
√

t)

≤ (
k−1∑

l=1

l− 1
2 ) + 5(k−1)√

k

√
t

< 7
√

kt.

By applying (4.10) with M = 1 to the region; 1
2 ≤ σ ≤ 2 and 0 ≤ t ≤ 2+ 1

840 ,
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we have

|ζ(s, a) − a−s| ≤ 1 +
√

2
|s−1| +

√
1 + 4t2 < 16

|s−1| ,

which gives

|L(s, χk)| ≤ k−σ
k−1∑

l=1

(
( l

k

)−σ + 16
|s−1|)

≤ (
k−1∑

l=1

l− 1
2 ) + 16(k−1)√

k
1

|s−1|

< 22
√

k
|s−1| .

We note that L(s̄, χk) = L(s, χk). Then we have the following explicit version
of a statement in [Gol76, p. 653].

|L(s, χk)| ≤

{
7
√

k|t| if 1
2 ≤ σ ≤ 2, |t| ≥ 2 + 1

840 ,
22

√
k|s − 1|−1 if 1

2 ≤ σ ≤ 2, |t| ≤ 2 + 1
840 .

(4.11)

Since σ ≥ 1
2 and {p : p|k} is a set containing only one prime from Remark

4.1.3, we have |
∏

p|k(1 − p−s)−1| ≤ |(1 − 2−s)−1| ≤
√

2√
2−1

. Thus Lemma 4.3.1
follows from (4.7), (4.8), (4.9), (4.11) and Remark 4.1.3.

From Lemma 4.3.1, we have

max
s∈C2

|ϕ1(2s)| ≤ max
s∈C2

(
105 N3

|2s−1|

)

≤ 4 · 105N3. (4.12)

Moreover,

max
s∈C1

|G(s, U)| <
∏

χd(p)+=−1
p<U

(1 − p− 1
4 )−4 (cf. [Gol76, p. 657]). (4.13)
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Thus from (4.5), (4.6), (4.12) and (4.13) we have

|H2| ≤ 4 · 108N3g2
√

A(log A)κ−2
∏

χd(p)+=−1
p<U

(1 − p− 1
4 )−4. (4.14)

Lower Bound for |H1|. We need the following lemma, which is an explicit

version of [Gol76, (55)]. (We use
∏

(
1−p− 1

2

1+p− 1
2

)2

in Lemma 4.3.2 instead of
∏

(1 + p− 1
2 )−4 in [Gol76, (55)].)

Lemma 4.3.2. If d > exp (500g3), then either L(1, χd) > (log d)κ−1 1√
d

or
else we have

|G(1
2 , U)| ≥

∏

χd(p)+=−1
p<U

(
1−p− 1

2

1+p− 1
2

)2

− (log d)−2g.

Proof. We denote by P(s, U) the partial Euler product of G(s) for primes
p ≤ U and write

G(s, U) = P(s, U) − R(s, U).

From [Gol76, Lemma 1], we see that

|P(1
2 , U)| ≥

∏

χd(p)+=−1
p<U

(
1−p− 1

2

1+p− 1
2

)2

.

So we only need to show that

|R(1
2 , U)| ≤ (log d)−2g.

If
NU = {n such that p|n ⇒ p < U}
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then
R(s, U) =

∑

n>U, n∈NU

gnn−s.

We write

|R(1
2 , U)| ≤

∑

U<n≤ 1
4

√
d

|gn|n− 1
2 +

∑

1
4

√
d<n, n∈NU

|gn|n− 1
2 = R1 + R2.

We may assume

L(1, χd) ≤ (log d)κ−1 1√
d

(d > exp (500g3)).

Let ζ(s)L(s,χd)
ζ(2s) =

∑∞
n=1

νn
ns . Then by [Gol76, Lemma 1 and Lemma 4], we

have

R1 ≤ U− 1
2 (

∑

n≤ 1
4

√
d

νn)2

≤ U− 1
2 ( 1

4 log 2)2(log d)2(κ−1)

= ( 1
4 log 2)2(log d)−2(g+µ+1).

Now we estimate R2. Let

P1(s, U) =
∏

χd(p)+=−1
p<U

(1 − p−s)−4.

Since |P | < 1
log 2g(log log d) (cf. Proof of Theorem 4.1.2), we have

log P1(1
6 , U) = log

∏

p∈P

(
1

1−p− 1
6

)4

≤
∑

p∈P

4
6√p−1
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≤
∫ |P |

2

4
6√x−1dx

=
[

24
5 x

5
6 + 6x

2
3 + 8x

1
2 + 12x

1
3 + 24x

1
6 + 24 log (x

1
6 − 1)

]|P |

2

≤ 58|P |
5
6

≤ 80(g log log d)
5
6 .

So we have

R2 ≤ lim
N→∞

∫ 2+i∞

2−i∞
P1(1

2 + z, U)Nz−(
√

d/4)z

z(z+1) dz

= lim
N→∞

∫− 1
3 +i∞

− 1
3 −i∞

P1(1
2 + z, U)Nz−(

√
d/4)z

z(z+1) dz

≤ lim
N→∞

∫∞

−∞
P1(1

6 , U)N− 1
3 +(

√
d/4)− 1

3

|(− 1
3 +it)( 2

3 +it)| dt

≤ P1(1
6 , U)(

√
d

4 )− 1
3

∫∞

−∞

1
2/9+t2 dt

≤ 3 6
√

2π exp (80(g log log d)
5
6 ) · 1

6√d
.

Thus we have for d ≥ exp (500g3),

∣∣R(1
2 , U)

∣∣ ≤ ( 1
4 log 2)2(log d)−2(g+µ+1) + 3 6

√
2π · exp (80(g log log d)

5
6 ) · 1

6√d

≤ (log d)−2g. ⇤

To get an explicit lower bound for |H1|, we need the following lemma,
which is an explicit version of [Gol76, Lemma 12]. (We note that the in-
equality in [Gol76, Lemma 12] is in the wrong direction.)

Lemma 4.3.3.

ϕ ′
1(1) =

d
ds

∣∣∣
s=1

(
LE( s

2 + 1
2)LE( s

2 + 1
2 , λ)

)
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≥ 0.98(kN2)−2.

We will prove Lemma 4.3.3 in section 5.1 and reprove it as Lemma 5.2.8
without the assumption of CM in section 5.2. If we assume Lemma 4.3.3,
then by Lemma 4.3.2 we have for d > exp (500g3), either

L(1, χd) > (log d)κ−1 1√
d

or else

|H1| ≥ 2κ 0.98
k2N4 ·

√
A(log A)κ−1

(
∏

χd(p)+=−1
p<U

(
1−p− 1

2

1+p− 1
2

)2

− (log d)−2g

)

. (4.15)

Now we can prove Proposition 4.2.1.

Proof of Proposition 4.2.1. We may assume

L(1, χd) ≤ (log d)κ−1 1√
d

(d > exp (500g3)).

From (4.14) and (4.15), we have

|H| ≥ |H1| − |H2|

≥
[
2κ 0.98

k2N4 ·
√

A(log A)κ−1
∏

χd(p)+=−1
p<U

( 1−p− 1
2

1+p− 1
2

)2
]

−
[
2κ 0.98

k2N4 ·
√

A(log A)κ−1(log d)−2g

+4 · 108N3g2
√

A(log A)κ−2
∏

χd(p)+=−1
p<U

(1 − p− 1
4 )−4

]

= H̃1 − H̃2.
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If 1
2H̃1 ≥ H̃2, then we have

|H| ≥
H̃1

2

≥ κ 0.98
k2N4 ·

√
A(log A)κ−1

∏

χ(p)+=−1
p<U

(
1−p− 1

2

1+p− 1
2

)2

≥ 0.98
2·1632 · gN−4

√
A(log A)κ−1

∏

χ(p)+=−1
p<U

(
1−p− 1

2

1+p− 1
2

)2

(cf. Remark 4.1.3)

as desired.

We see that

H̃2

H̃1
=

4 · 108N3g2
√

A(log A)κ−2 ∏
χd(p)+=−1

p<U
(1 − p− 1

4 )−4

2κ 0.98
k2N4 ·

√
A(log A)κ−1

∏
χd(p)+=−1

p<U

( 1−p− 1
2

1+p− 1
2

)2

+
(log d)−2g

∏
χd(p)+=−1

p<U

( 1−p− 1
2

1+p− 1
2

)2

≤
4 · 108

2 · 0.98(g − 2)
· 1632 · N7g2(log d)−1

∏

χd(p)+=−1
p<U

(
1+p− 1

2

1−p− 1
2

)2
·
(

1

1−p− 1
4

)4

+(log d)−2g
∏

χd(p)+=−1
p<U

(
1+p− 1

2

1−p− 1
2

)2

≤ 2 ·
( 4 · 108

2 · 0.98(g − 2)
· 1632 · N7g2(log d)−1

∏

χd(p)+=−1
p<U

(
1+p− 1

2

1−p− 1
2

)2
·
(

1

1−p− 1
4

)4)
.

Let P be the set of primes p < (log d)8g for which χd(p) "= −1. Since
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|P | < g
log 2(log log d), we have

log
∏

p∈P

(
1+p− 1

2

1−p− 1
2

)2
·
(

1

1−p− 1
4

)4

≤
∑

p∈P

(
4√p−1 + 4

4√p−1

)

≤
∫ |P |

2

4√
x−1 + 4

4√x−1dx

=
[

16
3 x

3
4 + 16x

1
2 + 16x

1
4 + 8 log (x

1
2 − 1) + 16 log (x

1
4 − 1)

]|P |

2

≤ 6|P |
3
4

≤ 6
(

g
log 2 log log d

) 3
4 . (4.16)

Thus the sufficient condition of 1
2H̃1 ≥ H̃2 is that

log log d − 6( g
log 2 log log d)

3
4 ≥ log

(
4 · 4·108

2·0.98 · 1632 · N7 g2

g−2

)
. (4.17)

We write d ≥ exp exp (c1Ng3) and assume g ≥ 3. If c1 is sufficiently large,
the left hand in (4.17) is greater than

c1Ng3 − 6( 1
log 2c1Ng4)

3
4 = g3(c1N − 6

(log 2)3/4 c3/4
1 N3/4),

and the right hand in (4.17) is less than

31 + 7 log N + log g2

g−2 .

Since g ≥ 3 and N > 10, a sufficient condition of 1
2H̃1 ≥ H̃2 is that

c1 ≥ 389.7. For convenience, if we choose c1 = 400, then Proposition 4.2.1
follows.

55



Chapter 4. Explicit Goldfeld’s Theorem

4.4 A proof of Proposition 4.2.2

In this section, we will prove Proposition 4.2.2. From [Gol76, (24), (26)
and (51)] and the assumption that ϕ(s) = LE(s + 1

2)LE(s + 1
2 , λ) has a zero

of order ≥ g at s = 1
2 , we can write

0 = ( d
ds)κ

[
AsΓ 2(s + 1

2)ϕ(s)
]

s= 1
2

= T1 + T2, (4.18)

where

T1 = δ
κ∑

r=0

(
∑

n≤A1

an
√

A/n(log A/n)κ−rIr(n/A)),

T2 = δ
κ∑

r=0

(
∑

n>A1

an
√

A/n(log A/n)κ−rIr(n/A)),

δ = 1 + (−1)κχd(−N),

A1 = A((8 + 2κ) log A)2,

and

Ir(M) =
∫∞

u1=0

∫∞

u2=M/u1

exp(−(u1 + u2))(log u1u2)rdu1du2 (M ≥ 0).

By [Gol76, Lemma 10], we have

|T2| ≤ 1.

Thus by (4.18) and [Gol76, (27), (30), (31) and (39)], we have

|2H|

= |2H − T1 − T2|

≤ |2H − T(G(s, U))| + |T(g(s))| + |S1| + |S2| + 1, (4.19)
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where

T(F(s)) = ( d
ds)κ

[
δ

2πi

∫ 2+i∞

2−i∞
As+zΓ 2(s + z + 1

2)F(s + z)ϕ1(2s + 2z)dz
z

]

s= 1
2

,

g(s) = G(s, A0) − G(s, U),

A0 = A(log A)−20g,

S1 = 2
κ∑

r=0

(
κ
r

)
(

∑

A0≤n≤J

bn
√

A/n(log A/n)κ−rIr(n/A)),

S2 = 2
κ∑

r=0

(
κ
r

)
(

∑

J≤n≤A1

bn
√

A/n(log A/n)κ−rIr(n/A)),

J = A((κ + 6) log log A)2,

and
∞∑

n=1

bnn−s = G(s, A1)ϕ1(2s) − G(s, A0)ϕ1(2s).

So, to obtain an explicit upper bound for |H|, we need explicit upper
bounds for |S1|, |S2|, |T(g(s))| and |2H − T(G(s, U))|.

Upper Bound for |S1|. From [Gol76, p. 649], we have

|S1| ≤ 4κ+1κ!(log A
A0

)κ
√

A
∑

A0≤n≤J

|bn|√
n . (4.20)

We may assume

L(1, χd) ≤ (log d)κ−1 1√
d

(d > exp exp (400Ng3)).

Then we can choose

y = L(1, χd)2J
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≤ (log A)2κ−2 J
d

≤ A0.

Recall ζ(s)L(s,χd)
ζ(2s) =

∑∞
n=1

νn
ns . By [Gol76, (36)], we have

∑

A0≤n≤J

|bn|√
n ≤

∑

k2≤ J
A0

d(k)
k

∑

A0≤m≤ J
k2

1√
m

∑

f|m

νfνm/f

≤
( ∑

k≤
q

J
A0

d(k)
k

)( ∑

y≤m≤J

1√
m

∑

f|m

νfνm/f
)
, (4.21)

where d(k) =
∑

f|k 1.

Lemma 4.4.1. (cf. [Apo76, Problem 3, p. 70]) For x ≥ 3,

∑

n≤x

d(n)
n ≤ 1

2 log2 x + 2C log x + 10

where C(< 0.6) is the Euler constant.

Proof. By Euler’s summation formula,

∑

n≤x

1
n

=
∫ x

1

dt
t

−
∫ x

1

t − [t]
t2 dt + 1 −

x − [x]
x

= log x +
(

1 −
∫∞

1

t − [t]
t2 dt

)
+

( ∫∞

x

t − [t]
t2 dt −

x − [x]
x

)

≤ log x + C +
1
x

and

∑

n≤x

log n
n

=
∫ x

1

log t
t

dt +
∫ x

1
(t − [t])

1 − log t
t2 dt − (x − [x])

log x
x

=
1
2

log2 x + A(x).
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We note that

|A(x)| ≤
∫ x

1

log t + 1
t2 dt + (x − [x])

log x
x

≤
[

−
log t + 2

t

]x

1
+ (x − [x])

log x
x

≤ 2.

Thus

∑

n≤x

d(n)
n

=
∑

d≤x

1
d

∑

q≤ x
d

1
q

≤
∑

d≤x

1
d

(
log

x
d

+ C +
d
x

)

≤
∑

d≤x

( log x + C
d

−
log d

d
+

1
x

)

≤ (log x + C)
∑

d≤x

1
d

−
∑

d≤x

log d
d

+ 1

≤ (log x + C)
(

log x + C +
1
x

)
−

(1
2

log2 x + A(x)
)

+ 1

≤
1
2

log2 x + 2C log x + C2 + 2 − A(x) + 1

≤
1
2

log2 x + 2C log x + 10. ⇤

Using (4.21), Lemma 4.4.1 and [Gol76, Lemma 7], we have
∑

A0≤n≤J

|bn|√
n

≤
(

1
2(log

√
J

A0
)2 + 2C log

√
J

A0
+ 10

)

×1500
(

L(1, χ)2Jy− 1
2 + L(1, χd)J

1
2

)
(log y)3

≤ (log J
A0

)2(
2 · 1500L(1, χd)J

1
2
)
(log y)3
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≤
(
20g log log A + 2 log log log A + 2 log (κ + 6)

)2

×(3000L(1, χd)
√

A(κ + 6) log log A)

×
(
(2κ − 2) log log A + 2 log log log A + log N

4π2 + 2 log (κ + 6)
)3

≤ (3 · 20g log log A)2

×(3000L(1, χd)
√

A(κ + 6) log log A)

×(4 · (2κ − 2) log log A)3. (4.22)

Using κ ≤ g − 1, (4.20), (4.22) and the fact n! ≤ e
√

n(n
e )n, we have for

d ≥ exp exp (400Ng3),

|S1| ≤ 4κ+1κ!(20g log log A)κ
√

A
∑

A0≤n≤J

|bn|√
n

≤ 32 · 43 · 3000(20g)κ+24κ+1κ!(κ + 6)(2κ − 2)3L(1, χd)A(log log A)κ+6

≤ 32 · 43 · 3000 · (20 · g · (20g)g) · 4g · (g − 1)! · (23g4)L(1, χd)A(log log A)κ+6

≤ 23 · 32 · 43 · 20 · 3000 · (20g)g · 4g · g! · g4L(1, χd)A(log log A)κ+6

≤ 23 · 32 · 43 · 20 · 3000 · e · (80
e )g · g2g+4.5L(1, χd)A(log log A)κ+6

= S∗
1. (4.23)

Upper Bound for |S2|. From [Gol76, (32)], we have

|S2| ≤ 4κ+1(κ + 1)!(log A1
A )κ exp

(
− (κ + 6) log log A

)√
A

∑

J≤n≤A1

|bn|√
n . (4.24)

(We note that the term
√

A is missed in [Gol76, (32)].)

We may assume

L(1, χd) ≤ (log d)κ−1 1√
d

(d > exp exp (400Ng3)).
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Then we can choose

y = L(1, χd)2A1

≤ (log A)2κ−2 A1
d

≤ A0.

From [Gol76, (33)], we have

∑

J≤n≤A1

|bn|√
n ≤

∑

k2≤ A1
A0

d(k)
k

∑

A0≤m≤ A1
k2

1√
m

∑

f|m

νfνm/f

≤
( ∑

k≤
r

A1
A0

d(k)
k

)( ∑

y≤m≤A1

1√
m

∑

f|m

νfνm/f
)
. (4.25)

(We note that we use A1
A0

instead of A1
J in [Gol76, (33)].)

Using (4.25), Lemma 4.4.1 and [Gol76, Lemma 7], we have

∑

J≤n≤A1

|bn|√
n

≤
(

1
2(log

√
A1
A0

)2 + 2C log
√

A1
A0

+ 10
)

×1500
(

L(1, χd)2A1y− 1
2 + L(1, χd)A

1
2
1

)
(log y)3

≤ (log A1
A0

)2(2 · 1500L(1, χd)A
1
2
1

)
(log y)3

≤
(
(20g + 2) log log A + log (2κ + 8)

)2

×
(
3000L(1, χd)

√
A(2κ + 8) log A

)

×
(
2κ log log A + log N

4π2 + 2 log (2κ + 8)
)3

≤
(
2 · (20g + 2) log log A

)2

×
(
3000L(1, χd)

√
A(2κ + 8) log A

)

×
(
3 · 2κ log log A

)3. (4.26)
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Using g − 2 ≤ κ ≤ g − 1, (4.24), (4.26) and the fact n! ≤ e
√

n(n
e )n, we have

for d ≥ exp exp (400Ng3),

|S2| ≤ 4κ+1(κ + 1)!
(
2 log log A + 2 log (2κ + 8)

)κ(log A)−(κ+6)
√

A

×
∑

J≤n≤A1

|bn|√
n

≤ 4κ+1(κ + 1)!
(
2 · 2 log log A

)κ(log A)−(κ+6)
√

A
∑

J≤n≤A1

|bn|√
n

≤ 22 · 33 · 3000 · 4 · 16κ(κ + 1)!(20g + 2)2(2κ + 8)(2κ)3

×L(1, χd)A(log A)−(κ+6)(log log A)κ+5

≤ 33 · 3000 · 16g · g! · (202 · 27g6) · (log A)−(g+4)

×L(1, χd)A(log log A)κ+5

≤ 27 · 33 · 202 · 3000 · e · (16
e )g · gg+6.5 · (400Ng3)−(g+4)

×L(1, χd)A(log log A)κ+5

< S∗
1. (4.27)

Upper Bound for |T(g(s))|. From [Gol76, p. 651], we have

|T(g(s))| ≤ κ!ε−κ·max
s∈C

∣∣∣∣
1

2πi

∫ 2ε+i∞

2ε−i∞
As+zΓ 2(s + z + 1

2)g(s + z)ϕ1(2s + 2z)dz
z

∣∣∣∣ , (4.28)

where C is the circle of radius ε = (log d)−1 centered at s = 1
2 .

By the same argument in the proof of [Gol76, Lemma 7], we have for
x < d and 1010 < y < min(1

4

√
d, x/10),

∑

y≤n≤x

n− 1
2

∑

m|n

νmνn/m ≤ 1500(L(1, χd)2dy− 1
2 + L(1, χd)x

2
5 d

1
10 )(log y)3

instead of for x < d and 10 < y < min(1
4

√
d, x/10),
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∑

y≤n≤x

n− 1
2

∑

m|n

νmνn/m . (L(1, χd)2dy− 1
2 + L(1, χd)x

2
5 d

1
10 )(log y)3

in [Gol76, Lemma 8].

We may assume

L(1, χd) ≤ (log d)κ−1 1√
d

(d > exp exp (400Ng3)).

Then by [Gol76, (40)], we have

max
s∈T,

Re(z)=2ε

|g(s + z)| ≤
∑

U≤n≤A0

n− 1
2

∑

f|n

νfνn/f

≤ 1500
(
L(1, χd)2dU− 1

2 + L(1, χd)A
2
5
0 d

1
10

)
(log U)3

≤ 1500L(1, χd)
√

A

×
(

(log d)κ−1 2π√
NU

+ (log A)−8g( 4π2

N
) 1

10
)

(log U)3. (4.29)

(We use dU− 1
2 instead of A0u− 1

2 in [Gol76, (40)], so that it is a direct
consequence of [Gol76, Lemma 8].)

By [Gol76, (41)], we have

max
s∈C,

Re(z)=2ε

|ϕ1(2s + 2z)| ≤ ζ2(1 − 2ε + 4ε) < 1
2ε−2. (4.30)

To estimate integral of Gamma function, using [Gol04, (4.6)],

max
s∈C

∣∣∣∣
1

2πi

∫ 2ε+i∞

2ε−i∞
As+zΓ 2(s + z + 1

2)dz
z

∣∣∣∣

≤ A
1
2 +3ε max

s∈C

∣∣∣∣

∫∞

0

∫∞

0

(
1

2πi

∫ 2ε+i∞

2ε−i∞
(u1u2)z dz

z

)
e−u1−u2(u1u2)s+ 1

2 du1du2
u1u2

∣∣∣∣
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≤ A
1
2 +3ε

∫ ∫

u1u2>1
e−u1−u2(u1u2)1+ε du1du2

u1u2

< A
1
2 +3ε. (4.31)

Since A ≤ d2, we have A3ε ≤ d 6 logd e ≤ e6. Thus by (4.28), (4.29), (4.30)
and (4.31), we have for d ≥ exp exp (400Ng3),

|T(g(s))| ≤ κ!ε−κ · max
s∈C,

Re(z)=2ε

|g(s + z)ϕ1(2s + 2z)|

× max
s∈C

∣∣∣∣
1

2πi

∫ 2ε+i∞

2ε−i∞
As+zΓ 2(s + z + 1

2)dz
z

∣∣∣∣

≤ 1
2 · 1500κ!ε−κ−2 · L(1, χd)A1+3ε

×
(

(log d)κ−1 2π√
NU

+ (log A)−8g( 4π2

N

) 1
10

)
(log U)3

≤ 1
2 · 1500 · e6 · κ! · L(1, χd)A · (log d)κ+2

×
(

(log d)κ−1−4g 2π√
N

+ (log A)−8g( 4π2

N

) 1
10

)
(8g log log d)3

≤ 1
2 · 83 · 1500 · e6 · g! · g3 · L(1, χd)A · (log d)g+1

×
(

2 · (log d)−3g−2 2π√
N

)
· (log log d)3

≤ 83 · 1500 · 2π√
N

· e7−g · gg+3.5 · (400Ng3)−2g−1

×L(1, χd)A(log log A)3

< S∗
1. (4.32)

Upper Bound for |2H − T
(
G(s, U)

)
|. We note that κ is determined so that

δ = 1 + (−1)κχd(−N) = 2. Then from [Gol76, (45)], we have

T(G(s, U)) = 2 · κ!
2πi

[ ∫

C
(s − 1

2)−κ−1
5∑

r=1

Ir(s)ds
]

+ 2H, (4.33)

64



Chapter 4. Explicit Goldfeld’s Theorem

where C is the circle of radius 1
2ε centered at s = 1

2 and

I1 =
∫ 1

8 +i∞

1
8 +iM

, I2 =
∫ 1

8 −iM

1
8 −i∞

, I3 =
∫ 1

8 +iM

−ε+iM
, I4 =

∫−ε−iM

1
8 −iM

, I5 =
∫−ε+iM

−ε−iM

of which the integrands are 1
2πiA

s+zΓ 2(s+z+ 1
2)G(s+z, U)ϕ1(2s+2z)dz

z and
M is a large number to be determined later.

By [Gol76, (46)], for σ > 0,

|Γ(s)| ≤
√

2π exp ( 1
12σ)|s|σ− 1

2

{
exp (−σ) if |σ

t | ≥ π
2

exp (−π
2 |t|) if |σ

t | ≤ π
2 .

(4.34)

From [Gol76, (47)], we have for Re(s + z) ≥ 0,

|G(s + z, U)| ≤ (log d)32g. (4.35)

To estimate |ϕ1(2s + 2z)|, we will use Lemma 4.3.1. Put M = log A and
ε = (4 · 105 log log A)−1. Then we have

1 − 1
100800 log |Im(2s+2z)| ≤ Re(2s + 2z) for z ∈ Ij (j = 1, 2, 3, 4, 5).

To estimate I1, I2, I3 and I4, we will use the fact that for y > 1000,

3 · (2y)2 · (3y)6 · y−1 · e−3y ≤ 10−830 · e−y. (4.36)

Firstly, we consider the integral I1. For z = 1
8 + iy, M ≤ y < ∞, we

write

σ = Re(s + z + 1
2) = 9

8 + Re(ε
2 eiθ), t = Im(s + z + 1

2) = y + Im(ε
2 eiθ).

By applying (4.34), (4.35), (4.36) and Lemma 4.3.1 to the integral I1, we
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have

max
s∈C

|I1| ≤ max
s∈T,

Re(z)= 1
8

|As+zG(s + z, U)|

· max
s∈C

∣∣∣∣∣

∫ 1
8 +i∞

1
8 +iM

1
2πiΓ

2(s + z + 1
2)ϕ1(2s + 2z)dz

z

∣∣∣∣∣

≤ 3 × 1012 · N3(log d)32gA
5
8 + ε

2

· max
s∈C

∫ 1
8 +i∞

1
8 +iM

exp ( 1
6σ)|s + z + 1

2 |2σ−1 exp (−πt)(2t)6|dz
z |

≤ 3 × 1012 · N3(log d)32gA
5
8 + ε

2

·
∫∞

M
3(2y)2 exp (−3y)(3y)6y−1dy

≤ 10−800 · N3(log d)32gA
5
8 + ε

2

∫∞

M
e−ydy

≤ 10−800 · N3(log d)32gA
5
8 + ε

2 e−M. (4.37)

Similarly

max
s∈C

|I2| ≤ 10−800 · N3(log d)32gA
5
8 + ε

2 e−M. (4.38)

Secondly, we consider the integral I3. For z = x + iM, −ε ≤ x < 1
8 , we

write

σ = Re(s + z + 1
2) = x + 1 + Re(ε

2 eiθ), t = Im(s + z + 1
2) = M + Im(ε

2 eiθ).

By applying (4.34), (4.35), (4.36) and Lemma 4.3.1 to the integral I3, we
have

max
s∈C

|I3| ≤ max
s∈C,

−ε≤Re(z)≤ 1
8

|As+zG(s + z, U)|
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· max
s∈C

∣∣∣∣∣

∫ 1
8 +iM

−ε+iM

1
2πiΓ

2(s + z + 1
2)ϕ1(2s + 2z)dz

z

∣∣∣∣∣

≤ 3 × 1012 · N3(log d)32gA
5
8 + ε

2

· max
s∈C

∫ 1
8 +iM

−ε+iM
exp ( 1

6σ)|s + z + 1
2 |2σ−1 exp (−πt)(2t)6|dz

z |

≤ 3 × 1012 · N3(log d)32gA
5
8 + ε

2

·
∫ 1

8

−ε
3(2M)2 exp (−3M)(3M)6M−1dx

≤ 10−800 · N3(log d)32gA
5
8 + ε

2 e−M. (4.39)

Similarly

max
s∈C

|I4| ≤ 10−800 · N3(log d)32gA
5
8 + ε

2 e−M. (4.40)

Finally, we will estimate the integral I5. For z = −ε+iy, −M ≤ y ≤ M,
we write

σ = Re(s + z + 1
2) = 1 − ε + Re(ε

2 eiθ), t = Im(s + z + 1
2) = y + Im(ε

2 eiθ).

By applying (4.35) to the integral I5, we have

max
s∈C

|I5| ≤ max
s∈C,

Re(z)=−ε

|As+zG(s + z, U)|

· max
s∈C

∣∣∣∣

∫−ε+iM

−ε−iM

1
2πiΓ

2(s + z + 1
2)ϕ1(2s + 2z)dz

z

∣∣∣∣

≤ (log d)32gA
1
2 (1−ε)

· max
s∈C

∫−ε+iM

−ε−iM

1
2π |Γ 2(s + z + 1

2)| · |ϕ1(2s + 2z)| · |dz
z |. (4.41)

To apply (4.34) and Lemma 4.3.1 to the integral I5, we consider the following
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four integrals. Let y1, y2 and y3 as follows:

max
s∈C

∫M

0

1
2π |Γ 2(s + z + 1

2)| · |ϕ1(2s + 2z)| · dy√
ε2+y2

≤ max
s∈C

( ∫ 1
2π (4−(6+π)ε)

0
∗ +

∫ 1
2π (4+(π−2)ε)

1
2π (4−(6+π)ε)

∗ +
∫ 2+ 1

900

1
2π (4+(π−2)ε)

∗ +
∫M

2+ 1
900

∗
)

= max
s∈C

∫y1

0
∗ + max

s∈C

( ∫y2

y1

∗ +
∫y3

y2

∗
)

+ max
s∈C

∫M

y3

∗, (4.42)

where ∗ = 1
2π |Γ 2(s + z + 1

2)| · |ϕ1(2s + 2z)| · dy√
ε2+y2

.

We note that for 0 ≤ y ≤ y1,

σ
t

≥
1 − 3ε

2

y1 + ε
2

=
π
2

.

Thus, by applying (4.34) and Lemma 4.3.1 to the first interval, we have

max
s∈C

∫y1

0
∗ ≤ 105 · N3 max

s∈C

∫y1

0
exp ( 1

6σ)|s + z + 1
2 |2σ−1 exp (−2σ)

× 1
|2s+2z−1|

dy√
ε2+y2

≤ 105 · N3
∫ 2

π

0
(y + 1) · ε−2dy

< 105 · N3ε−2. (4.43)

We need the following observation to apply (4.34) to the second and third
intervals. For y1 ≤ y ≤ y2, we have

max
{

exp (−σ), exp (−π
2 |t|)

}

≤ max
{

exp
(

− (1 − 3ε
2 )

)
, exp

(
− π

2 (y1 − ε
2 )

)
}

= exp (−1 + 3+π
2 ε).
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For y2 ≤ y ≤ y3, we have

σ
t

≤
1 − ε

2

y2 − ε
2

=
π
2

and

exp (−π
2 |t|)

≤ exp (−π
2 (y2 − ε

2 ))

< exp (−1 + 3+π
2 ε).

Thus, by applying (4.34) and Lemma 3.1 to the second and third interval,
we have

max
s∈C

∫y3

y1

∗ ≤ 105 · N3 max
s∈C

∫y3

y1

exp ( 1
6σ)|s + z + 1

2 |2σ−1

× exp
(

− 2 + (3 + π)ε
) 1

|2s+2z−1|
dy√
ε2+y2

≤ 105 · N3
∫y3

1
π

(y + 1) · π · πdy

< 5 × 106 · N3. (4.44)

To estimate the fourth integral, we will use the fact that for y ≥ y3,

(y + 1) · (3y)6 · y−1 · e−3y ≤ 2000 · e−y.

Thus, by applying (4.34) and Lemma 4.4.1 to the fourth interval, we have

max
s∈C

∫M

y3

∗ ≤ 3 · 1012 · N3

× max
s∈C

∫M

y3

exp ( 1
6σ)|s + z + 1

2 |2σ−1 exp (−πt)(2t)6 dy
y
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≤ 3 · 1012 · N3
∫M

y3

(y + 1) exp (−3y)(3y)6y−1dy

≤ 3 · 1012 · N3
∫M

y3

2000e−ydy

< 9 × 1014 · N3. (4.45)

From (4.41), (4.42), (4.43), (4.44) and (4.45), we have

|I5| ≤ 2 ·
(

N3(log d)32gA
1
2 (1−ε)(105 · ε−2 + 5 × 106 + 9 × 1014)

)

< N3(log d)32gA
1
2 (1−ε) · 2 ·

(
105 · ε−2 + 1015). (4.46)

Finally, by (4.33), (4.37), (4.38), (4.39), (4.40) and (4.46), we have

|2H − T(G(s, U))|

=

∣∣∣∣∣
2 · κ!

2πi

∫

C
(s − 1

2)−κ−1
5∑

r=1

Ir(s)ds

∣∣∣∣∣

≤ 2κ+1κ!ε−κ
5∑

r=1

max
s∈C

|Ir(s)|

< 2κ+1κ!ε−κN3(log d)32g
√

A

·
(
4 × 10−800 · A

1
8 + ε

2 e−M + 2 × 105 · A− ε
2 ε−2 + 2 × 1015 · A− ε

2
)

< 2κ+1κ!ε−κN3(log d)32g
√

A · 3 ·
(
2 × 105 · A− ε

2 ε−2). (4.47)

For d ≥ exp exp (400Ng3), we see that

2κ+1κ!ε−κN3(log d)32g · 3 ·
(
2 × 105 · A− ε

2 ε−2) < 1,

so by (4.47), we have

|2H − T(G(s, U))| <
√

A < S∗
1, (4.48)
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as desired (cf. [Gol76, p. 656]).

Now we can prove Proposition 4.2.2

Proof of Proposition 4.2.2. We may assume

L(1, χd) ≤ (log d)κ−1 1√
d

(d > exp exp (400Ng3)).

From (4.19), (4.23), (4.27), (4.32) and (4.48), we have for d ≥ exp exp (400Ng3),

|2H|

≤ |2H − T(G(s, U))| + |T(g(s))| + |S1| + |S2| + 1

≤ 5S∗
1

< 4 × 109 · (80
e )gg2g+4.5L(1, χ)A(log log A)κ+6

and Proposition 4.2.2 immediately follows.
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Chapter 5

Two proofs of Lemma 4.3.3 and
applications

In this chapter, we prove Lemma 4.3.3 via two methods in section 5.1 and
section 5.2, respectively. Also, section 5.2 contains a proof of Theorem 4.1.4.
In section 5.3, we apply Theorem 4.1.2 to a certain family of real quadratic
fields of narrow Richaud-Degert type.

5.1 Elliptic curves with complex multiplication

Recall that ψ is the primitive Grössencharakter of K = Q(
√

−k) such
that

LE(s) = LK(s, ψ).

From (4.7), we have

|ϕ ′
1(1)| = |LK(2, ψ2)L(1, χk)

∏

p|k

(1 − p−1)−1|

≥ |LK(2, ψ2)L(1, χk)|. (5.1)
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Proof of Lemma 4.3.3. Let ψ ′ be a primitive Grössencharakter with conduc-
tor f ′ of K = Q(

√
−k) which induces ψ2. Then ψ ′(〈α〉) = α2 for α ∈ Kf ′ ,

i.e., of type (2, 0). Since LE(s) = LK(s, ψ), LK(s, ψ ′) is entire and has real
coefficients.

We define (cf. [Gol76, p. 661])

F(s) = ζ(s)L(s, χk)LK(s + 1, ψ ′) =
∞∑

n=1

cnn−s,

where
c1 = 1, cn ≥ 0 (for n > 1).

Since the Dirichlet series expansion of F(s) is majorized by that of ζ(s)4, we
have

cn ≤
∑

lm=n

d(l)d(m) ≤
∑

lm=n

4
√

n ≤ 8n (for n ≥ 1) (5.2)

where d(k) =
∑

f|k 1 ≤ 2
√

k.

For fixed x > 0, we see that

1
2πi

∫ 2+i∞

2−i∞
Γ(s + 1)F(s)xsds

= 1
2πi

∫ 2+i∞

2−i∞

∫∞

0
e−uus(

∞∑

n=1

cn
ns )xsduds

= 1
2πi

∞∑

n=1

cn

∫∞

0

∫ 2+i∞

2−i∞
(ux

n )sds · e−udu

=
∞∑

n=1

cn
en/x

≥ e−1/x,
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so we have

e−1/x ≤ 1
2πi

∫ 2+i∞

2−i∞
Γ(s + 1)F(s)xsds

= Γ(2)L(1, χk)LK(2, ψ ′)x + 1
2πi

∫− 1
2 +i∞

− 1
2 −i∞

Γ(s + 1)F(s)xsds. (5.3)

The last integral in (5.3) can be estimated by using the following functional
equations:

ζ(s) = πs− 1
2

Γ( 1
2 − s

2 )
Γ( s

2 ) ζ(1 − s);

L(s, χk) = ( k
π)

1
2 −s Γ(1− s

2 )
Γ( 1

2 + s
2 )

L(1 − s, χk);

LK(s + 1, ψ ′) = w(
√

kN(f ′)
2π )1−2s Γ(2−s)

Γ(s+1)LK(2 − s, ψ ′)

for some w ∈ C, |w| = 1.

Let y = 16π4x
k2N(f ′) . Then by the duplication formula of Gamma function,

1
2πi

∫− 1
2 +i∞

− 1
2 −i∞

Γ(s + 1)F(s)xsds

= wk
√

N(f ′)
4π2

1
2πi

∫− 1
2 +i∞

− 1
2 −i∞

Γ(1−s)
Γ(s) Γ(2 − s)F(1 − s)ysds. (5.4)

Using (5.2) and the following properties of Bessel function J0(2
√

t) =
∑∞

n=0(−1)n tn

(n!)2 ;

0 ≤ J0(2
√

t) ≤ exp (−t) for t ≥ 0,∫∞

0
J0(2

√
t)t−sdt = Γ(1−s)

Γ(s) ,

we have

1
2πi

∫− 1
2 +i∞

− 1
2 −i∞

Γ(1−s)
Γ(s) Γ(2 − s)F(1 − s)ysds
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= 1
2πi

∫ 3
2 +i∞

3
2 −i∞

Γ(s)
Γ(1−s)Γ(s + 1)F(s)y1−sds

= 1
2πi

∞∑

n=1

∫ 3
2 +i∞

3
2 −i∞

∫∞

0

∫∞

0
J0(2

√
t)ts−1 · use−u ·

cn

ns · y1−sdu dt ds

=
∞∑

n=1

cn

∫∞

0

∫∞

0

1
2πi

∫ 3
2 +i∞

3
2 −i∞

( ut
ny

)sds · J0(2
√

t)e−ut−1y du dt

=
∞∑

n=1

cn

∫ ∫

ut=ny
J0(2

√
t)e−ut−1y du dt

≤
∞∑

n=1

cn

n

∫ ∫

ut=ny
exp (−t) exp (−u)

ny
t

du dt

≤ 8
∞∑

n=1

∫∞

0
exp (−t − ny

t )ny
t dt. (5.5)

Dividing integration with respect to t into two intervals (0, √ny) and (√ny, ∞),
we have

8
∞∑

n=1

∫∞

0
exp (−t − ny

t )ny
t dt

= 8
∞∑

n=1

( ∫√ny

0
exp (−t − ny

t )ny
t dt +

∫∞

√ny
exp (−t − ny

t )ny
t dt

)

≤ 8
∞∑

n=1

( ∫√ny

0
exp (−ny

t )ny
t dt +

∫∞

√ny
exp (−t)ny

t dt
)

= 16
∞∑

n=1

∫∞

√ny
exp (−t)ny

t dt

≤ 16
∞∑

n=1

∫∞

√ny

√
ny exp (−t)dt

= 16
∞∑

n=1

√
ny exp (−

√
ny). (5.6)

Now let x = k4N(f ′)2
so that y = 16π4x

k2N(f ′) = 16π4k2N(f ′). Then by (5.4), (5.5) and
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(5.6), we have

∣∣∣∣∣
1

2πi

∫− 1
2 +i∞

− 1
2 −i∞

Γ(s + 1)F(s)xsds

∣∣∣∣∣

≤
k

√
N(f ′)

4π2 · 16
∞∑

n=1

√
ny exp (−

√
ny)

≤
k

√
N(f ′)

4π2 · 16 · 5!
∞∑

n=1

√ny
(√ny)5

≤
k

√
N(f ′)

4π2 ·
1

(4π2k
√

N(f ′) )4
· 16 · 5!

∞∑

n=1

1
n2

< (4π2)−5 · 16 · 5! ·
π2

6
< 4 · 10−5. (5.7)

Since x = k4N(f ′)2 ≥ 34
, (5.3) and (5.7) give

|LK(2, ψ ′)L(1, χk)| ≥
e−1/x − 4 · 10−5

x
≥

e−1/81 − 4 · 10−5

k4N(f ′)2 ≥
0.98

k4N(f ′)2 .

From [Gol76, (4) and Theorem 2], we have

kN(f ′) ≤ kN(f) = N

and by [Gol76, (59)], we have

|LK(2, ψ2)L(1, χk)| ≥ N−2|LK(2, ψ ′)L(1, χk)| ≥
0.98
k2N4 . ⇤
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5.2 Elliptic curves of symmetric square conduc-
tor greater than 11

5.2.1 A proof of Theorem 4.1.4

In [Gol76], Goldfeld remarked that Theorem 4.1.1 also holds for elliptic
curves E without complex multiplication provided that LE(s) comes from a
cusp form of Γ0(N), which is now true for every elliptic curves E over Q with
conductor N according to the modularity theorem (cf. [Wil95], [TW95] and
[BCDT01]). But he did not give the proof. In this section, we show that
Theorem 4.1.1 works for elliptic curves without complex multiplication too
and show that Theorem 4.1.4.

Remark 5.2.1. Let E be an elliptic curve with complex multiplication by
an imaginary quadratic field K = Q(

√
−k). In the proof of Theorem 4.1.1,

Goldfeld use the fact that k ≤ N as well as Deuring’s theorem. In the proof
of Theorem 4.1.2, we use the fact that k ≤ 163 as well as Deuring’s theorem.
In the proof of Theorem 4.1.4, we use theory of the motivic (primitive) sym-
metric square L-function instead of Deuring’s theorem. That is why there is
a difference for exponents of N among Theorem 4.1.1, Theorem 4.1.2 and
Theorem 4.1.4.

The following two propositions lead to Theorem 4.1.4 by the same proof
as in the section 4.2.

Proposition 5.2.2. Assume the same conditions as in Theorem 4.1.4. Then
for any such d ≥ exp exp (330Ng3), either L(1, χd) > (log d)g−µ−1 1√

d
or else

|H| ≥ 1.2 × 10−3 · g
√

N(log N)−1
√

d(log d)g−µ−1
∏

χd(p)+=−1
p<U

(
1−p− 1

2

1+p− 1
2

)2

.
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Proposition 5.2.3. Assume the same conditions as in Theorem 4.1.4. Then
for any such d ≥ exp exp (330Ng3), either L(1, χd) > (log d)g−µ−1 1√

d
or else

|H| ≤ 2 × 109 · (80
e )gg2g+4.5L(1, χd)A(log log A)g−µ+6.

Remark 5.2.4. Proposition 5.2.3 has the same result as in Proposition 4.2.2
except that we do not assume CM.

5.2.2 A proof of Proposition 5.2.2

Upper Bound for |H2|. Following the notation in section 3.4.1, we write

LE(s + 1
2) = L̃(E, s) =

∏

p

(1 − αpp−s)−1(1 − βpp−s)−1. (5.8)

Let F be a global minimal twist of E. From Definition 3.4.1 and (4.1),
we have

ϕ1(s) =
L(Sym2

i E, s)
ζNE(s)

=
L(Sym2

i F, s)
ζ(s)

×
∏

p|NE

(1 − p−s)−1

×
∏

p∈S1

{
(1 − α2

p(F)p−s)(1 − p−s)(1 − β2
p(F)p−s)

}
×

∏

p∈S2

(1 − p−s−1)

=
L(Sym2

pF, s)
ζ(s)

×
∏

p|NE

(1 − p−s)−1 ×
∏

p2|NF

Up(F, s)−1

×
∏

p∈S1

{
(1 − α2

p(F)p−s)(1 − p−s)(1 − β2
p(F)p−s)

}
×

∏

p∈S2

(1 − p−s−1).

(5.9)

The following lemma is a strong version of Lemma 4.3.1.
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Lemma 5.2.5. For s = σ + it ∈ C,

|ϕ1(s)| ≤

{
2 × 1010 · NB2t6 if 1 − 1

100800 log |t| ≤ σ ≤ 3
2 , |t| ≥ 2 + 1

840 ,
2.5 · NB2|s + 2|3 if 3

4 ≤ σ ≤ 3
2 , |t| ≤ 2 + 1

840 ,

where B is the symmetric conductor of E.

Proof. By the Euler product of L(Sym2
pF, s), we have

∣∣L(Sym2
pE, 3

2 − it)
∣∣ ≤ ζ(3

2)3 < 18.

From (3.3) we have

∣∣L(Sym2
pF, − 1

2 + it)
∣∣ =

B2

π3

∣∣∣∣∣
Γ(5

4 − i t
2)

Γ(1
4 + i t

2)

∣∣∣∣∣

2 ∣∣∣∣∣
Γ(7

4 − i t
2)

Γ(3
4 + i t

2)

∣∣∣∣∣

·
∣∣L(Sym2

pF, 3
2 − it)

∣∣

< 18
B2

π3

∣∣∣∣
1
4

+ i
t
2

∣∣∣∣
2 ∣∣∣∣

3
4

+ i
t
2

∣∣∣∣

< 18
B2

8π3

∣∣∣∣
3
2

+ it
∣∣∣∣
3

.

Hence, the function
f(s) = L(Sym2

pF, s)(s + 2)−3

is bounded by

C = 18
B2

8π3

on the lines σ = − 1
2 and σ = 3

2 . By Lindelöf theorem (cf. [HR15, p. 15]),
this implies that

∣∣L(Sym2
pF, s)

∣∣ ≤ 18
B2

8π3 |s + 2|3 (− 1
2 ≤ σ ≤ 3

2). (5.10)
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By (3.5), we have for σ ≥ 3/4
∣∣∣∣∣∣

∏

p|NE

(1 − p−s)−1

∣∣∣∣∣∣
×

∣∣∣∣∣∣

∏

p2|NF

Up(F, s)−1

∣∣∣∣∣∣

×

∣∣∣∣∣
∏

p∈S1

{
(1 − α2

p(F)p−s)(1 − p−s)(1 − β2
p(F)p−s)

}∣∣∣∣∣
×

∣∣∣∣∣
∏

p∈S2

(1 − p−s−1)

∣∣∣∣∣

≤
∏

p|NE

1
1 − |p−s|

∏

p2|NE

(1 + |p−s|)3

≤
∏

p‖NE

1
1 − |p−s|

∏

p2|NE

(1 + |p−s|)2 1 + |p−s|
1 − |p−s|

≤
∏

p‖NE

p3/4

p3/4 − 1

∏

p2|NE

(p3/4 + 1
p3/4

)2 p3/4 + 1
p3/4 − 1

.

Since
23/4

23/4−1 < 1.3 · 2 and p3/4

p3/4−1 < p for p ≥ 3,
(

23/4+1
23/4

)2
< 1.3 · 2 and

(
p3/4+1

p3/4

)2
< p for p ≥ 3,

23/4+1
23/4−1 < 2 · 2 and p3/4+1

p3/4−1 < p for p ≥ 3,

from (5.9) we have for σ ≥ 3/4

|ϕ1(s)| ≤ 2.6 · NE ·

∣∣∣∣∣
L(Sym2

pF, s)
ζ(s)

∣∣∣∣∣
. (5.11)

Thus Lemma 5.2.5 follows from Lemma (4.9), (5.9), (5.10) and (5.11).

Remark 5.2.6. In [Gol76, (49)] and Lemma 4.3.1, Deuring’s Theorem and
functional equation for the Hecke L-function are used to give upper bound
for ϕ1(s) in the case of elliptic curves with complex multiplication. To re-
move complex multiplication condition, we use functional equation for the
primitive symmetric square L-function. We also note that B ≤ N (because
B | N) and so Lemma 5.2.5 implies Lemma 4.3.1.
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From Lemma 5.2.5, we have

max
s∈C2

|ϕ1(2s)| ≤ max
s∈C2

(2.5 · N3|2s + 2|3)

≤ 90N3. (5.12)

Thus from (4.5), (4.6), (4.13) and (5.12) we have

|H2| ≤ 6 · 104N3g2
√

A(log A)κ−2
∏

χd(p)+=−1
p<U

(1 − p− 1
4 )−4. (5.13)

Lower Bound for |H1|. We use Watkins’ result:

Lemma 5.2.7. [Wak, Lemma 3.4] Let E be an elliptic curve over Q of which
the symmetric square conductor satisfies B > 11. Then

L(Sym2
pE, 1) ≥

0.033
2 log B

.

Lemma 5.2.7 implies the following lemma, which is a generalization of
Lemma 4.3.3.

Lemma 5.2.8. Let E be an elliptic curve over Q of which the symmetric
square conductor is greater than 11. Then

ϕ ′
1(1) =

( d
ds

∣∣∣
s=1

L(Sym2
i E)

ζNE(s)

)
≥

0.033
2 log N

.

Proof. From (3.5) and (5.9) we have

ϕ ′
1(1) = L(Sym2

pF, 1) ×
∏

p|NE

(1 − p−1)−1 ×
∏

p2|NF

Up(F, 1)−1

×
∏

p∈S1

{
(1 − α2

p(F)p−1)(1 − p−1)(1 − β2
p(F)p−1)

}
×

∏

p∈S2

(1 − p−2)
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≥ L(Sym2
pF, 1) ×

∏

p|NE

(1 − p−1)−1 ×
∏

p2|NF

(1 − p−1)

×
∏

p∈S1

{
(1 + p−2)(1 − p−1)

}
×

∏

p∈S2

{
(1 + p−1)(1 − p−1)

}

≥ L(Sym2
pF, 1) ×

∏

p|NE

(1 − p−1)−1 ×
∏

p2|NE

(1 − p−1)

= L(Sym2
pF, 1) ×

∏

p‖NE

(1 − p−1)−1

≥ L(Sym2
pF, 1)

≥
0.033
2 log B

. ⇤

By Lemma 4.3.2 and Lemma 5.2.8, we have for d > exp (500g3), either
L(1, χd) > (log d)κ−1 1√

d
or else

|H1| ≥ 2κ
0.033

2 log N
·
√

A(log A)κ−1

(
∏

χd(p)+=−1
p<U

(
1−p− 1

2

1+p− 1
2

)2

− (log d)−2g

)

. (5.14)

Now we can prove Proposition 5.2.2.

Proof of Proposition 5.2.2. We may assume

L(1, χd) ≤ (log d)κ−1 1√
d

(d > exp (500g3)).

From (5.13) and (5.14), we have

|H| ≥ |H1| − |H2|

≥
[
2κ 0.033

2 log N ·
√

A(log A)κ−1
∏

χd(p)+=−1
p<U

( 1−p− 1
2

1+p− 1
2

)2
]
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−
[
2κ 0.033

2 log N ·
√

A(log A)κ−1(log d)−2g

+6 · 104N3g2
√

A(log A)κ−2
∏

χd(p)+=−1
p<U

(1 − p− 1
4 )−4

]

= H̃1 − H̃2.

If 1
2H̃1 ≥ H̃2, then we have

|H| ≥
H̃1

2

≥ κ
0.033

2 log N
·
√

A(log A)κ−1
∏

χ(p)+=−1
p<U

(
1−p− 1

2

1+p− 1
2

)2

≥
0.033

4
· g(log N)−1

√
A(log A)κ−1

∏

χ(p)+=−1
p<U

(
1−p− 1

2

1+p− 1
2

)2

≥ 1.2 × 10−3 · g
√

N(log N)−1
√

d(log d)κ−1
∏

χ(p)+=−1
p<U

(
1−p− 1

2

1+p− 1
2

)2

as desired.

We see that

H̃2

H̃1
=

6 · 104N3g2
√

A(log A)κ−2 ∏
χd(p)+=−1

p<U
(1 − p− 1

4 )−4

2κ 0.033
2 log N ·

√
A(log A)κ−1

∏
χd(p)+=−1

p<U

( 1−p− 1
2

1+p− 1
2

)2

+
(log d)−2g

∏
χd(p)+=−1

p<U

( 1−p− 1
2

1+p− 1
2

)2

≤
6 · 104

0.033(g − 2)
· N3(log N)g2(log d)−1

∏

χd(p)+=−1
p<U

(
1+p− 1

2

1−p− 1
2

)2
·
(

1

1−p− 1
4

)4
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+(log d)−2g
∏

χd(p)+=−1
p<U

(
1+p− 1

2

1−p− 1
2

)2

≤ 2 ·
( 6 · 107

33(g − 2)
· N3(log N)g2(log d)−1

∏

χd(p)+=−1
p<U

(
1+p− 1

2

1−p− 1
2

)2
·
(

1

1−p− 1
4

)4)
.

By (4.16), the sufficient condition of 1
2H̃1 ≥ H̃2 is that

log log d − 6( g
log 2 log log d)

3
4 ≥ log

(
4 ·

6 · 107

33
N3(log N) g2

g−2

)
. (5.15)

We write d ≥ exp exp (c1Ng3) and assume g ≥ 3. If c1 is sufficiently large,
the left hand in (5.15) is greater than

c1Ng3 − 6( 1
log 2c1Ng4)

3
4 = g3(c1N − 6

(log 2)3/4 c3/4
1 N3/4),

and the right hand in (5.15) is less than

16 + 3 log N + log log N + log g2

g−2 .

Since g ≥ 3 and N ≥ 12 (because B ≥ 12), a sufficient condition of
1
2H̃1 ≥ H̃2 is that c1 ≥ 324.7. For convenience, if we choose c1 = 330, then
Proposition 5.2.2 follows.

5.2.3 A proof of Proposition 5.2.3

Proof of Proposition 5.2.3. We may assume

L(1, χd) ≤ (log d)κ−1 1√
d

(d > exp exp (330Ng3) and N ≥ 12).
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By section 4.4, we have for d > exp exp (330Ng3),






|S1| ≤ S∗
1,

|S2| ≤ S∗
1,

|T(g(s))| ≤ S∗
1.

(5.16)

Since Lemma 5.2.5 implies Lemma 4.3.1 (cf. Remark 5.2.6), we have for d >
exp exp (330Ng3),

|2H − T(G(s, U))| ≤ S∗
1. (5.17)

By (4.19), (5.16) and (5.17) we have

|2H|

≤ 5S∗
1

< 4 × 109 · (80
e )gg2g+4.5L(1, χ)A(log log A)κ+6

and Proposition 5.2.3 immediately follows.

5.3 Applications

Finally, as an application, we give the following explicit lower bound for
class numbers of certain real quadratic fields of narrow R-D type.

Theorem 5.3.1. Let m be an integer and dm = 41992(2m)4−1 be a square-
free integer. Then for any dm ≥ exp exp (3 × 1013), we have

h(dm) > 9 × 10121 · (log dm)1−10−10
.

Proof. Let E : y2 = x3 − 41992x be an elliptic curve over Q of conductor
N = 32 · 41992. It is known that E has complex multiplication by Q(

√
−1)

and analytic rank g1 ≥ 3 (cf. [Elk94]).
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Let dm = 41992(2m)4 − 1 be a square-free integer and Edm : y2 = x3 −
41992(dm)2x be the quadratic twist of E. Then Edm has a rational point
(41992(2m)2dm, 41992(2m)d2

m) of infinite order (cf. [Kob84, Proposition 17
in p. 44]). By [CW77, Theorem 1], Edm has analytic rank gdm ≥ 1. We
note that 4199dm ≡ 1 (mod 8), so Edm has the root number 1 (cf. [Kob84,
Theorem in p. 84]) and has even analytic rank. Thus Edm has analytic rank
gdm ≥ 2 and LE/Q(

√
dm) has a zero of order g1 + gdm ≥ g = 5 at s = 1.

For the real quadratic field Q(
√

dm), the fundamental unit εdm =
√

dm + 1+
√

dm < dm. Since (dm, N) = 1, by Theorem 4.1.2, for any

dm > exp exp (400 · 32 · 41992 · 53),

we have

h(dm) >
10180

2 · 520 · (32 · 41992)5 (log dm) exp(−21
√

5 log log dm).

We note that if dm > exp exp (400 · 32 · 41992 · 53), then for ε > 10−10,

exp(21
√

5 log log dm)) < (log dm)ε.

Thus we have for any dm ≥ exp exp (3 × 1013),

h(dm) > 9 × 10121 · (log dm)1−10−10
. ⇤

Remark 5.3.2. The above elliptic curve has the symmetric square conductor
B = 8. Also, Elkies [Elk94] lists the 75 (4199 is the smallest integer.) values
of n < 2 · 105 with n ≡ 7 (mod 8) for which the elliptic curve En : y2 =
x3 − n2x has analytic rank at least 3. We can apply the proof of Theorem
5.3.1 to such n.
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Chapter 6

Further progress and research
questions

As an application, Theorem 5.3.1 is not useful because it works for dm ≥
exp exp (3 × 1013), and the value is too large to classify real quadratic fields
of R-D type with class number. The condition

d ≥ exp exp (c1Ng3)

in Theorem 4.1.1 is mainly determined by the inequality (4.17). For the
left-hand side in (4.17) to be positive, one asks for d to be greater than
‘exp exp (3800)’ (because 64/ log3 2 > 3800) regardless of any invariants of
an elliptic curve.

Recently, we have modified Oesterlé’s method to apply real quadratic
fields and it finally works. This method asks for d to be greater than ‘1’.
Indeed, it makes a difference to use the partial Euler product of

L(E ⊗ χd, s)
L(E ⊗ λ, s)

in Oesterlé’s method, instead of the partial Dirichlet’s series of that in Gold-
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feld’s (cf. (4.2) in Section 4.2). In this case, the inequality is of slightly dif-
ferent form as follows:

{
h(d)R(d) ≥ cE(logd)g−3θ(d) for any d > 1,

h(d) ≥ c2(logd)g−4θ(d) for R-D type,

where θ(d) =
∏

p∈P(d)

(
1 − "2√p$

p+1

)
and P(d) is the set of prime divisors of d

except maximal one. We proved that cE is given by

cE =
1

2g+1

L(Sym2
i E, 1)

√
NE

·
g−3∏

i=1

(qi − 1)(√qi − 1)2

(qi + 1)(√qi + 1)2 ,

where qi is the ith smallest splitting prime in the extension Q(
√

d)/Q.
We also used computer program to approximate c2 via Lavrick’s numeri-

cal method for the completed primitive symmetric square L-function attached
to the same elliptic curve in Theorem 5.3.1 (cf. [Coh00, Appendix A], [Del03],
[Dok04]). Hence we obtained that for any square-free integer

dm = 41992(2m)4 − 1,

we have
h(dm) ≥ 7.2 × 10−10 · (log dm)θ(dm)

(cf. [BK]).
The constant c2 = 7.2×10−10, however, is too small to apply the inequal-

ity h ≤ 3. For example, Watkins [Wak04] used |d| ≤ exp (2.7 × 108), which
came from Oesterlé’s theorem, to solve class number problem up to 100 for
imaginary quadratic fields. Watkins mentioned that the computation took
about seven months based on his intensive computer program.

Because cE is mainly determined by 1√
NE

, the following question is essen-
tial. How can we find an elliptic curve over Q with small conductor such
that there exists a family of its twisted elliptic curves of high analytic rank?
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Also, we note that using the following elliptic curve

y2 + y = x3 − 79x + 342, N = 19047851

of algebraic rank 5, one can try to solve the class number problem for real
quadratic fields of R-D type under the BSD rank conjecture.
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국8초록

�우§ 류⇠ 8제란 주어진 류⇠ ✓을 �는 이차⇠체를 완전히 찾는 É이다.
지î 정리에 의해, 주어진 류⇠에 대한 복소 이차⇠체와 리쇼-데제르 유�의 ‰

이차⇠체는 유한 ⌧만 존재한다. 하지만 지î 정리는 ƒ산 불�능한 �‹이¿로
�우§ 류⇠ 8제를 풀 ⇠ 없다.
Ë드펠드는 ¿원·선 이론을 이용하여, 복소 이차⇠체와 리쇼-데제르 유�의

‰ 이차⇠체에 대한 류⇠ 8제를 풀 ⇠ 있는, ƒ산 �능한 방법을 ‡안하였다.
복소 이차⇠체 Ω우에는 외§테흐레� 증명을 단⌧T하‡ 정U한 ∞¸ ✓을 ƒ

산해서, 류⇠� 3인 복소 이차⇠체 류⇠ 8제를 해∞하였다.
저자는 Ë드펠드 방법에 나오는 상⇠ ✓을 정U히 ƒ산하‡, 이를 리쇼-데제

르 유�의 ‰ 이차⇠체에 대한 류⇠ 8제에 적용한다.

주요어휘: 류⇠, 이차⇠체, ¿원·선.
학번: 2014-21201


