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Abstract

Quantifying genetic effect

on the longitudinal phenotypic profile

Donghe Li

Interdisciplinary Program in Bioinformatics

The Graduate School

Seoul National University

The main goal is to identify the progressing effect of SNPs on the 

important health related phenotypic traits, and lung function specific traits by 

calculating SNP heritability with longitudinal data. The total 16 prominent 

health-related phenotypic traits were observed biennially for each subject 

during 10 years, and 12 spirometric measures were biennially observed for 14

years. SNP-based heritabilities for those phenotype averages and annual 

change were estimated. Since linear mixed models with two random effects 

are computationally very intensive, here, we proposed and applied two-stage 

model. First, the phenotypic average and annual change for each subject were 

estimated with a linear model, and then both regression coefficients were used 

as responses to estimate SNP heritability with GCTA software. This approach 

provides a reasonable and easy method to estimate heritability in longitudinal 
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data and potentially assess both heritability of the phenotypic averages and 

changes through several periods. In the 16 health-related phenotypes analysis, 

results show that that significant SNP heritability is objectively confirmed for 

longitudinal changes in lung function decline including FEV1 in comparison 

with other health-related indices. In the 12 lung function specific analysis, 

SNP heritabilities of the annual change rate of FEV1 % predicted and 

FEV1/FVC were significantly high (hdecline
2=0.105, p-value=0.004 for FEV1 % 

predicted; hdecline
2=0.157, p-value=7.25 × 10��for FEV1/FVC). In subgroup 

analsysis, POST FEV1/FVC (hdecline
2=0.399, p-value=0.009) were in never 

smokers significant high than in ever smokers.

Key words: Genome-wide association studies (GWAS), heritability, GREML, 

longitudinal 

Student number: 2014-31030
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Chapter 1

Introduction

1.1 The background on genetic association studies

1.1.1 Overview of genome-wide association studies

Genome-wide association study (GWAS), which analyzes thousands of 

genetic variants across human genome to identify genetic risk factors for 

complex disease and traits that are common in the population(Bush and 

Moore 2012). The main goal of GWAS is to use genetic risk factors to predict 

personal disease status and to find connected biological mechanisms for 

developing new preventions and treatment strategies (Bush and Moore 2012). 

Since the success of GWAS on identifying age-related macular degeneration

(AMD) risk factor gene, more than 50 thousand associations between 
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genotype and phenotype under genome-wide significant (P < 5×10-8) have 

been reported (Buniello et al. 2019).  

As one of the methods to identify genetic risk factors, GWAS have led to 

insights into several important area as the architecture of disease susceptibility 

which through identifying the novel disease-causing genes, and clinical care 

which is about identifying new drug targets and disease biomarkers, and 

personalized medicine and personal genetic testing, which aims to provide 

optimized healthcare to individual patients based on their genetic information 

and other biological features (Bush and Moore 2012).   

To identify genotype-phenotype associations, we need both genotype and 

phenotype dataset, which can be generated from different types of sources. In 

GWAS, the genome-wide single-nucleotide polymorphism (SNP) arrays that 

combined with imputed genotypes based on population reference panels, are 

generally used as genetic information. SNP arrays are highly accurate and 

reliable, and there are well-established analytical pipelines and tools have 

been developed for data analysis. As the improvement of sequencing 

technology, whole-genome sequencing (WGS) is also an alternative choice.

Currently, even it is relatively expensive and less mature and less accurate 

comparing to SNP arrays, but it is possible to detect and fine-map the rare 

variants, even detect the ultra-rare variants that growing evidences show the

rare variants or low-frequency variants contribute to the etiology of complex 

disease, and the trend to shift to WGS is inevitable in the near future. For the 
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phenotype data, it primarily consists of two classes that are categorical (often 

binary case/control) and quantitative data. As a disease status, which 

diagnosed as affected or unaffected, can be treated as a binary categorical 

variable, and the disease traits, like body mass index(BMI), high-density 

lipoprotein(HDL) and low-density lipoprotein(LDL), which are all measured 

in continuous values, can be regarded as quantitative data. From the statistical 

perspective, quantitative traits are preferred because they improve power to 

detect a genetic effect (Bush and Moore 2012).

1.1.2 Single SNP-based analysis in GWAS

If a well-defined phenotype has been selected for a study population, and 

the genotypes of the population are collected by reasonable techniques, 

statistical analysis is ready to perform with these data. The widely applied 

analysis of genome-wide association data is known as single locus statistic 

test, which test the association between each independent SNP and phenotype. 

There are variety of factors should be considered in the selection of statistical 

test, but the primary consideration is according to the type of phenotype data 

that case/control or quantitative one. 

Generally, a contingency table or logistic regression would be applied 

to binary case/control traits. Contingency table tests examine and measure the 

deviation from independence that is expected under the null hypothesis that 

there is no association between the phenotype and genotype classes. The chi-
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square test usually applied to this method. Logistic regression is an extension

of linear regression using a logistic function as the outcome which predicts the 

probability of having case status given a genotype class. Logistic regression

also can adjust the covariates and provide adjusted odds ratios as a measure of 

effect size (Bush and Moore 2012). 

For the quantitative traits, generalized linear model (GLM) approaches 

are generally applied, most commonly the Analysis of Variance(ANOVA). 

The null hypothesis of an ANOVA using a single SNP is that there is no 

difference between the traits means of any genotype group. And there are 

some assumptions of GLM and ANOVA that the trait is following normal 

distribution and having the same variance within each group and the groups 

are independent (Bush and Moore 2012).

Except for selecting right method for analysis, in many situations, there 

are confounding factors (covariates) that can affect the relationship between 

independent variables and the outcome. Thus, we need to adjust for the 

covariates such as sex, age or principle component (PC) scores to reduce the 

spurious associations in the regression model.   

The most widely used program in GWAS is PLINK, which is a freely 

available analysis toolkit, it has a wide range of functions, including those 

related to data organization, formatting, quality control, association testing 

and much more. 
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1.2 The background on heritability estimation

1.2.1 Overview of heritability estimation

Heritability is usually explained in two different aspects: one is the 

broad-sense heritability, which reflects all the genetic contribution to a 

population’s phenotypic variance including additive, dominant, and epistatic, 

as well as parental effects, where individuals are directly affected by their 

parent’s phenotype. The other one is the narrow-sense heritability, which only 

infers the proportion of the total phenotypic variance explained by the 

additive effect of genetic variance (Yang et al. 2010, Visscher, Hill, and Wray 

2008). According to the different definition of heritability, there are also 

different approaches to estimate it. The former one utilizes pedigrees or twins, 

but one drawback of utilizing this method is that it heavily relies on the 

assumption regarding the cause of covariance between close relatives, which 

can bias the results if the assumption is false. The latter method estimates 

heritability with unrelated individuals and genomic data on single-nucleotide 

polymorphism (SNP), which is unlikely to be confounded by other 

environmental effects in the additive effect of genomic variance. In this study, 

we focus on the latter definition, estimating the narrow-sense heritability, also 

called SNP-based heritability ( ), which is explained by all SNPs used in 

genome-wide association study (GWAS), genotyped in unrelated individuals 

for complex traits and diseases. The narrow-sense heritability quantifies the 

aggregate genetic contribution without identifying specific effects. 

2
snph
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1.2.2 Summary of heritability estimation methods

There are several estimation methods have been developed and 

still being updated nowadays. One of the most popular methods is proposed 

by Yang, et.al., which suggests generating genetic relatedness matrices 

(GRMs) to estimate genetic and phenotypic variances with restricted 

maximum likelihood (GREML) through linear mixed model (LMM) (Yang et 

al. 2010). Other popular method is LDAK, developed by Speed, et.al., which 

calculates a modified kinship matrix in which SNPs are weighted according to 

local linkage disequilibrium (LD) (Speed et al. 2012). Besides these two, 

other methods employ computationally efficient mixed model approaches

(Loh et al. 2015), such as relating the effect sizes of SNPs from a GWAS to 

their degree of LD tagging (Finucane et al. 2015, Bulik-Sullivan et al. 2015), 

treelet covariance smoothing (Crossett et al. 2013), or using related and 

unrelated samples to account for rare and common variant effects (Zaitlen et 

al. 2013)and so on. Importantly, the fact that there are many different 

methodologies estimating could lead to discrepancies in estimation and 

even considerable biases across the different procedures. Thus, not only 

should estimations should be carefully interpreted, but also it is recommended 

to try several methods before giving a final estimation value (Ni et al. 2018, 

Evans et al. 2018).

2
snph

2
snph
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1.3 Overview of GxE analysis 

Even though, GWAS have achieved the clear success, the study design 

still has not been avoided some controversy, as the single-nucleotide 

variants(SNVs) identified in GWAS explain only a small fraction of the 

heritability of complex traits (Manolio et al. 2009), and it may represent 

spurious associations (McClellan and King 2010) and do not necessarily infer 

the causal variants and genes(Boyle, Li, and Pritchard 2017), and that GWAS 

will yield too many loci that may uninformative if the detected variants in all 

genes are implicated (Goldstein 2009). Therefore, it has been proposed to 

focus efforts on the analysis of rare-variants, even ultra-variants, and post-

GWAS experiments that functional studies, gene network analysis and 

translational medicine (Tam et al. 2019). 

Many researchers recognized that too much focus on main effects could

become a barrier to the identification of additional genes underlying these 

disease traits. Increasing emphasis is being placed on gene-environment 

interaction analyses in recent years (Sung et al. 2014).

One of reasons to identify GxE interaction, as GxE interaction or more 

complex pathways involving multiple genes and environments could explain 

parts of missing heritability. They also can further elucidate the biological 

networks underlying complex disease risk and enable “profiling” of 

individuals who are at the highest risk for disease (Sung et al. 2014).
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1.4 Overview of Longitudinal analysis 

The progression of diseases or traits can be assessed with longitudinal 

study designs in which the repeatedly measured outcomes are provided. 

Longitudinal data allows researchers to assess temporal disease aspects, 

especially, compared to cross-sectional studies, longitudinal studies often have 

less variability and increased statistical power(Zeger and Liang 1992). But the 

analysis is complicated by complex correlation structures, irregularly spaced 

visits, missing data, and mixtures of time varying and static covariate effects

(Garcia and Marder 2017). There are several methods have been developed to 

handle these complications, as mixed effect regression model, and it is more

important to use these methods appropriately and interpret their outputs 

correctly.
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1.5 The purpose of this study

The main purpose of this thesis is to explore the progressing genetic 

effect on the important health related phenotypic traits by using genome-wide 

association analysis and heritability estimation with longitudinal data. To 

overcome the analysis problem with longitudinal data, we applied two-step 

approach to estimate the effects of averages and longitudinal changes of 

phenotypic traits through periods. 

In the first study, sixteen phenotypic traits associated with major health 

indices were observed every two years for 6,843 individuals with 10-year 

follow-up in a Korean community-based cohort. Average SNP heritability and 

longitudinal changes in the total period were estimated using a two-stage 

model. Average and periodic differences for each subject were considered 

responses to estimate SNP heritability. Furthermore, a genome-wide 

association study (GWAS) was performed for significant SNPs.

In the second study, twelve spirometric measures were observed every 

two years for 8,768 Korean adults aged 40-69 years during 14 years. 

Phenotypic averages and annual change were calculated for each participant, 

and SNP heritabilities for both were estimated by GCTA. Furthermore, we 

also calculated the subgroup heritibility of smoking status.
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1.6 Outline of the thesis

This thesis is organized as follows. Chapter 1 is an overview of GWAS 

and heritability estimation on the background and the methods that the studies 

applied. Chapter 2 contains an overview of genetic effects quantifying 

analysis with longitudinal data which applied in the following studies. 

Chapter 3 deals with identifying the progressing effects of SNPs on 16 

phenotypic traits with longitudinal data. Chapter 4 is about heritability 

analyses which revealed the significant effect of SNPs on lung function 

decline rate. At last, the summary and conclusions are presented in Chapter 5.
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Chapter 2

An overview of genetic effect quantifying analysis 

with longitudinal data. 

2.1 Challenges of genetic effect quantifying analysis 

with longitudinal data

The traditional way of analyzing genetic variants that influence complex 

traits is cross-sectional study, which usually focuses on phenotypes and 

covariates measurements from a single time point. Even though genetic 

variants are basically fixed, the quantitative disease traits and their associated 

risk factors would be varying over time. Recently, many genetic association 

studies have been performed on longitudinal cohorts to take advantage of 

repeat measurement of time varying variables (Wu, Hu, and Melton 2014). 
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There are several advantages by performing longitudinal analysis in 

genetic studies. First, repeated measurements can reduce type I error, 

increasing statistical power compared to a single measurement. Second, by 

analyzing longitudinal data, we can identify genetic determinants both for age 

of onset and subsequent progression of phenotypic traits. Finally, longitudinal 

studies could handle the prospective measurement of time-varying covariates 

that are not typically included in traditional genetic studies(Wu, Hu, and 

Melton 2014). 

There are some challenges of genetic effect quantifying analysis with 

longitudinal data. One of the challenges comes from the correlated data, as

measurements in longitudinal studies are correlated by design. Correlation 

exists between repeated measures on the same individual or the individuals 

from similar sites that sharing the same investigator, study protocol variations 

and equipment. The within-family correlation also could be a problem. 

Another one is computational burden. There are some advanced statistical 

methods developed for epidemiological studies, including generalized 

estimating equations (GEE) and linear mixed models (LMM) with two 

random effects, that account for large pedigree structure may not be available 

to whole-genome sequence data. Beside these challenges, missing data, 

irregularly spaced visits, and mixtures of time-varying and static covariate 

effects are problems should be considered in longitudinal study, thus, the 

additional statistical consideration should be accounted to solve these 

problems.
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2.2 Review methods of longitudinal data analysis

Here, we are going to review several methods applied in longitudinal 

data analysis. The methods generally could be separated into traditional and 

modern ones. The traditional methods include ANOVA approaches like 

repeated measures ANOVA and multivariate ANOVA (MANOVA). The 

modern methods include generalized estimating equations model (GEE) and 

mixed effects regression (MER) (Garcia and Marder 2017). 

ANOVA approaches are limited in handling irregularly timed and 

missing data. Repeated measures ANOVA assesses group differences over 

time, the group sizes can be different, but all participants must be measured at 

the same number of time points. The downside of repeated measures ANOVA 

is it assumes the measured outcomes have equal variances and covariances 

over time. This may be unrealistic since variances tend to increase with time 

and covariances decrease with increasing intervals in time. The MANOVA 

model, in comparison, makes no assumptions about the variance-covariance 

structure of the repeated measures, and thus removes misspecification 

concerns, but it requires fully complete data. Applying ANOVA methods to 

data with missing observations yields biased parameter estimates. 

The limitations ANOVA approaches inspired to use the modern 

approaches that robustly handle challenges of longitudinal studies. Two 
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preferred modern methods for longitudinal data include generalized 

estimating equations model (GEE) and mixed effects regression (MER)

(Garcia and Marder 2017). Both of the methods allow time-invariant 

predictors (e.g. gender, genotype) and time-varying predictors (e.g. age), and 

could handle irregularly timed and missing data without the need for explicit 

imputation(Garcia and Marder 2017). 

GEE model could be applied for analyzing the regression 

relationship between covariates and repeated responses, but not the correlation 

structure of the repeated responses. When estimating the regression 

parameters, the correlation structure in a GEE is represented using a working, 

potentially incorrect model, but it still yields valid estimates without 

disregarding incomplete data(Garcia and Marder 2017), and it applies quasi-

likelihood methods which is computationally easier than full-likelihood 

methods. The limitations of GEE include it cannot perform hypothesis testing 

since these are not directly estimated, and it cannot be used to test and 

compare model fits with usual methods like likelihood ratio tests (LRT), 

Akaike/Bayesian Information Criterions (AIC/BIC), because it focuses on 

regression parameters, not all model parameters(Garcia and Marder 2017). 

MER models could be used for analyzing the regression relationship 

between covariates and repeated responses, and also the correlation structure 

of the repeated response. The correlations of repeated measures could be 

estimated by using random effects, which describing the cluster-specific 

trends over time. Random effects allow estimation of cluster-specific effects 
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useful for understanding interindividual variability in longitudinal responses 

and cluster-specific predictions (Garcia and Marder 2017). The MER 

advantages are not only could handle the limitations of GEE we listed before, 

but it is more robust to missing data and assumes MAR as missingness which 

is more general than the MCAR assumption of GEE. However, MER models 

still have limitations that the computational complexity, particularly with 

nonlinear MER, it involves time-consuming numerical integration over the 

random effects (Garcia and Marder 2017). 
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2.3 Method applied in this paper with longitudinal 

data analysis

We assume that the observed trait of subject i at time point j is ���, then 

we assume ���	is a function �� of his and her age, age�� , and a measurement 

error with variance ��
� , then we have equation as follows: 

��� = �
�
(age��) + ��� , ���~���(0, ��

� ).

If we say �� is simple linear regression of age�� , and we centering the age by 

subtracting the mean of age (	age������), then it can be shown as

���age��� = ��� + ����age�� − age�������.

Here, ��� indicates the expected phenotypic mean of subject i for the 

observed trait when he or she is ��������� years old, and ��� is the average 

longitudinal change in that trait. Furthermore, we apply ��� and ��� in 

linear mixed model with sex and ��������� as fixed effect and �� as the random 

effect of SNPs, �� is error term. Then we have following two equations. 

��� = ��
� + ��

�sex� + ��
�age������ + ��

� + ��
� ,

��� = ��
� + ��

�sex� + ��
�age������ + ��

� + ��
� .

We let �� = (��
� ⋯ ��

�)� , �� = (��
� ⋯ ��

�)� , �� = (��
� ⋯ ��

�)�

and �� = (��
� ⋯ ��

�)�. If we let � be the genetic relationship matrix,

��~�����,���
� ��, ��~�(0, ���

� ),

��~�����,���
� ��, ��~�(0, ���

� ).
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Then two different relative proportions of phenotypic variances explained by 

the genetic components can be defined by

ℎ�
� =

���
�

���
� + ���

� , ℎ�
� =

���
�

���
� + ���

� .

ℎ�
� indicates the relative proportions of phenotypic variances explained by the 

genetic components when he or she is age������ years old, and is equivalent to the 

SNP-based heritability. ℎ�
� indicates the relative proportions of variances of 

phenotypic changes explained by the genetic components. Figure 2.1 shows 

the illustrative example of ℎ�
� and ℎ�

�. We assume that effect of environment 

is small and phenotypes are mostly determined by genetic components. Then 

phenotypic distributions according to age can differ by ℎ�
� and ℎ�

�. If ℎ�
� or

ℎ�
� is larger than 0, then phenotypic average or annual changes are associated 

with genetic components.
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Figure 2.1 The illustrative example of ��
� and ��

�. We assume that effect of environment is small and phenotypes are mostly determined by 

genetic components. Then phenotypic distributions according to age can differ by ��
� and ��

�.
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Chapter 3

Identifying Progressing Effect of SNPs on 16 

Phenotypic Traits with Longitudinal Data

3.1 Introduction

Single nucleotide polymorphism (SNP)-based heritability (ℎ���
� ) 

indicates the relative proportion of genetic variance explained on the basis of 

SNPs used for genome-wide association studies (GWASs). For ℎ���
�

estimation, the genomic restricted maximum likelihood (GREML) for linear 

mixed models (LMMs) is often implemented in the genetic complex trait 

analysis (GCTA) tool (Yang, Manolio, et al. 2011). GREML first calculates 
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the genetic relatedness matrices (GRM), which are used as variance-

covariance matrices for random effects. The significance of estimates 

obtained through GREML depends on the study design; if it is applied to 

family-based samples, it displays pedigree-based heritability, but for unrelated 

subjects, it estimates ℎ���
� (Yang et al. 2017, Kim, Lee, et al. 2015). 

Estimating ℎ���
� involves considerable differences across not only 

methodologies but also procedures requiring careful interpretation of results 

(Ni et al. 2018, Evans et al. 2018). Moreover, the estimated heritability is 

potentially biased and misleading owing to measurement errors at various 

degrees. To overcome these challenges, the heritability determined from 

longitudinal data is more reliable than that determined from cross-sectional 

data. While most studies on ℎ���
� focused on the primary effect of SNPs, 

significant effects of SNPs on the average annual differences indicate the 

SNP-by-age interaction. Numerous examples illustrate the importance of age 

on longitudinal changes (2000, van de Pol and Verhulst 2006, Nishimura et al. 

2012). For instance, annual decline in lung function is associated with age 

(Kim et al. 2016), and another study reported a genetic influence on changes 

in both lipoprotein risk factors and systolic blood pressure over a decade 

(Friedlander et al. 1997). Therefore, the ℎ���
� 	should be estimated on the basis 

of not only the mean of observed traits but also changes in the sufficient 

period. Hence, we applied a two-stage approach, which is a convenient 

method of analyzing longitudinal data by combining linear regression models 
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to investigate the effect of SNPs on both average and longitudinal differences 

in phenotypic traits.

In this study, we investigated the magnitude of the effect of SNPs on 

average and longitudinal differences by using both genomic data and 16 

phenotypic traits associated with major health indices using a phenotype-

genotype dataset of unrelated individuals in a community-based cohort and 

evaluated their importance. Except for baseline, each phenotype was 

objectively measured every 2 years for 10-year follow-up, and six repeated 

measurements (maximum) were obtained for each individual. For each subject, 

both the average phenotypic traits and their longitudinal changes were 

estimated via subject-specific regression analysis, using intercepts and 

coefficients of ages, respectively. Each ℎ���
� value was estimated using 

GCTA. The results show that lung function has the only significant ℎ���
� for 

longitudinal changes, while all average phenotypes of 16 traits yielded a 

significant ℎ���
� value. Furthermore, the GWAS revealed certain novel 

genome-wide significant SNPs associated with the phenotypes analyzed

herein.

3.2 Methods

3.2.1 KARE cohort data 

Korea Associated Resource (KARE) data are based on a community-

based epidemiological study and comprises subjects residing in Ansan (urban 
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area) and Ansung (rural area) in the Gyeonggi Province of South Korea (Cho 

et al. 2009). A baseline survey was completed in 2001–2002, and 10,030 

participants aged 40–69 years were recruited. Since then, biennial repeated 

surveys were conducted, and the last survey were completed in 2013–2014 

(Kim, Han, and Ko 2017). Six different surveys were conducted in total. 

These measurement periods are indicated as periods 1–6 throughout, each 

with a different number of subjects (period 1, 8,543 subjects [4,052 male, 

4,491 female]; period 6, 5,391 subjects [2,502 male, 2889 female]). The 

number of overlapping subjects throughout the 6 periods was 4,306 (2,009 

male, 2,297 female). Among these, subjects whose traits were measured at 

least thrice were considered, and 6,843 participants (3,273 male, 3,570 female) 

were assessed in total.

Many participant phenotypes were recorded by trained interviewers 

through questionnaires and clinical measurement; however, we only 

considered 16 quantitative traits because they were measured objectively and 

associated with major health indices; these were classified into four groups: 

anthropometric, biochemistry, cardiopulmonary, and red blood cell traits 

(Table 1). As glycated hemoglobin (HbA1c), fasting blood glucose (GLU0), 

high-density lipoprotein (HDL), triglycerides (TG), and systolic blood 

pressure (SBP) displayed skewed distributions, they were log-transformed and 

denoted by log(HbA1c), log(GLU0), log(HDL), log(TG), and log(SBP), 

respectively. The missing rate of HbA1c was larger than 0.5 at period 2 and 
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was excluded from the present analysis. For each trait, subjects with more 

than three measurement observations were assessed.

3.2.2 Genotype data

Genotype data for KARE cohort were obtained by using the Affymetrix 

Genome-Wide Human SNP array 5.0 (Cho et al. 2009). Quality control (QC) 

of SNPs and subjects were conducted with PLINK (Purcell et al. 2007) and 

ONETOOL (Song et al. 2018). We excluded SNPs with P-values from Hardy-

Weinberg equilibrium (HWE) analysis <10-5, minor allele frequencies (MAFs) 

<0.05, and genotype call rates <95%. Furthermore, we excluded subjects with 

missing genotype call rates >5% or sex-based inconsistencies. The missing 

genotypes for typed SNPs were imputed based on the 1000-genome sequence 

reference data. After quality control, 305,158 SNPs were analyzed for SNP 

heritability estimation and GWAS (Figure 3.1).
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Figure 3.1 A schematic representation of heritability analysis and the 

genome-wide association study.
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3.2.3 Calculation of phenotype averages and annual changes for 

each subject

We calculated the phenotypic averages and annual changes for each 

subject, and then they were used to estimate SNP heritability and for GWAS. 

We found significant differences of phenotypic variances among each period, 

and such heteroscedasticity was considered for phenotypic averages and 

annual changes for each subject as follows. First, we fitted the linear 

regression with traits belonging to the same period. Effect of sex, age, and 10 

principal component (PC) scores estimated from genetic relationship matrix 

were adjusted by including them. If we let ��� be the residual variances of

trait k (k=1, …, 16) during the period j, for subject i, we fit the following 

linear model.

���� = ���� + ���������� − ���������� + ���� , ����~��0,
�

���
���
� �     (1)       

Here, i indicates the ith subject, and ��������� indicates the mean of ages at 

the observed time points. In the regression model (1), ���� indicates the 

expected phenotypic mean of subject i for trait k when he or she is ���������

years old, and ���� is the average longitudinal change in trait k. The 

estimated values of ���� and ���� were used to estimate the heritability and 

for GWAS analysis. For convenience, both are denoted by �� and �� , 

respectively.
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3.2.4 Heritability Estimation 

After we fit the Equation (1), �� and 	�� were separately used as 

responses in the SNP heritability estimation models in GCTA (Yang, Manolio, 

et al. 2011). The proportion of genetic variance in several chosen traits was 

estimated by using restricted maximum likelihood analysis, which is 

implemented in the GCTA. Effect of ages and sex were adjusted by including 

them as covariates.

3.2.5 GWAS analysis 

�� and �� were also separately used as responses to identify the 

disease susceptibility loci for 16 different traits. Effect of ages, and sex were 

included as covariates. Since ages of subjects are different for different 

periods, the age variable was coded by ���������. Furthermore, 10 PC scores 

estimated from the genetic relationship matrix were included as covariates to 

adjust the population stratification. 

3.3 Results

3.3.1 Estimation of heritability  

A schematic representation of heritability analysis and genome-wide 

association study is shown in Figure 3.1. For 16 different traits of 6,843 
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subjects, the mean and standard deviation values of each trait at period 1 are 

shown in Table 3.2 (see Table 3.1 for detailed information). Some missing 

values resulted in differences in the total number of subjects depending on the 

phenotype, and the sample sizes of those traits and descriptive statistics 

including sex and age are summarized.

A multidimensional scaling (MDS) plot was generated for those 6,843 

subjects (Figure 3.2). As shown in Figure 3.2, subjects from the 1000 

Genomes Project were also included, and the analyses were not affected by 

population stratification. We calculated the descriptive statistics for �� and 

�� (Table 3.3, see Materials and Methods for details). �� in equation (1) 

indicates the means of the predicted traits at ��������� years of age. �� stands 

for the longitudinal changes in the traits of each subject. Table 3 shows that 

the means of �� are similar to those for period 1. Means of �� were 

generally closer to 0. Figure 3.3 shows the estimates of heritability with ��

as the response in the GREML model, and the estimated heritability of height 

for the data peaked at 0.318 (P=1.665×10-16, FDR=2.664×10-15). The 

subsequent three highest heritability traits were total cholesterol (TCHL), 

log(HDL), and low-density lipoprotein (LDL), with values of 0.265 

(P=3.895×10-12, FDR=3.116×10-11), 0.241 (P=8.911×10-10, FDR=4.753×10-

9), and 0.222 (P=5.178×10-9, FDR=1.657×10-8), respectively. These three 

traits are cholesterol-related. The heritability of WAIST was 0.218 (P= 

5.016×10-9, FDR=1.657×10-8) and that of WEIGHT was 0.196 (P=2.046×10-

7, FDR=5.456×10-7). For Hb, the heritability was 0.195 (P=4.926×10-7, 
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FDR=9.852×10-7) and for log(TG), the value was 0.192 (P=4.419×10-7, 

FDR=9.852×10-7). The heritability of the other traits with an FDR larger than 

1×10-6 were less than 0.19.

We compared the our estimated ℎ���
� 	of 16 traits for ��, which the 

phenotypic mean, with the results of Yang et al. study (Yang et al. 2013). The 

results are listed in Table 3.3, and we found the range of difference between 

the result of our study and the result of reference was about 0.02~0.17. We 

also estimated the ℎ���
� 	of the traits for each period, and calculated the means 

and median of them. Figure 3.4 shows the comparison of the ℎ���
� 	of 

phenotypic mean (��), result of reference and the mean of ℎ���
� 	of 6 periods.

Except for some traits, most of the result shows consistency.  

Figure 3.5 shows the estimated ℎ���
� 	for ��, which are generally less 

than those for ��, and we found that the lung function traits FVC and FEV1, 

WAIST, diastolic blood pressure (DBP), BMI, and log(SBP) are relatively 

high. The highest ℎ���
� 	was observed for FEV1 (0.171) and its FDR-adjusted 

P-value was 0.0189. The heritability estimates of other traits were less than 

0.1. The second highest heritability was 0.0941 for FVC, and its FDR-

adjusted P-value was 0.166. The heritability of WAIST was also relatively 

higher than that of other traits. Its heritability and the FDR-adjusted P-values 

were 0.0082 and 0.0657, respectively. The higher heritability estimates of ��

indicate that the decreasing/increasing rates are associated with genetic factors. 

HEIGHT displayed the highest heritability estimates for ��; however, the 
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estimate for �� was low (0.0297). HEIGHT does not usually change since 

the age of 20 years, which probably attributes to the low HEIGHT value in 

this study. For the other traits including log(HbA1c), LDL, log(HDL), TCHL, 

and Hb levels, SNP heritability estimates tended towards 0. 

Furthermore, we estimated the variance explained by each chromosome

ℎ�
�	of FEV1, which displayed the highest ℎ�

�	 in the �� model. Consequently, 

chromosome 2 accounted for the highest proportion of phenotypic variance 

(ℎ�
�=0.0397) with an albeit high standard error (Figure 3.6). We also plotted 

the ℎ�
�	against chromosome length for FEV1. There was a significant positive 

correlation between chromosome length and ℎ�
� (r=0.58, P=0.0045) in FEV1

(Figure 3.7).
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Table 3.1 Sixteen phenotypic traits associated with major health indices

Anthropomorphic Traits Height, Waist, Weight, Body-mass index(BMI) 

  Biochemistry Traits

         Glucose: Glycated hemoglobin (HbA1c), Fasting blood glucose (GLU0)

       Cholesterol:
Low-density lipoprotein (LDL), High-density lipoprotein 
(HDL), Total cholesterol (TCHL), Triglyceride (TG)

Cardiopulmonary Traits

Blood Pressure: Systolic blood pressure (SBP), Diastolic blood pressure (DBP)

     Lung Capacity:
Predicted forced vital capacity (FVC)%, Predicted forced 
expiratory volume in one second (FEV1)%, Predicted 
FEV1/FVC %

Red Blood Cell Traits  Hemoglobin levels (Hb)
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Table 3.2 Descriptive statistics of 16 traits

Trait

Trait 
(Baseline) Total (N)

Female Age

Mean SD N % Mean SD

HEIGHT(cm) 160.11 8.63 6823 3557 52.13% 51.90 8.69

WAIST(cm) 82.63 8.70 6835 3567 52.19% 51.90 8.69

WEIGHT(kg) 63.24 10.10 6822 3556 52.13% 51.90 8.69

BMI(kg/m2) 24.62 3.10 6822 3556 52.13% 51.90 8.69

HbA1c(%) 5.74 0.82 6329 3321 52.47% 51.87 8.62

GLU0(㎎/㎗) 86.73 19.41 6728 3514 52.23% 51.85 8.67

TG(㎎/㎗) 161.47 103.19 6840 3568 52.16% 51.91 8.70

LDL(㎎/㎗) 115.00 32.89 6840 3568 52.16% 51.91 8.70

HDL(㎎/㎗) 44.69 9.91 6840 3568 52.16% 51.91 8.70

TCHL(㎎/㎗) 191.92 35.09 6840 3568 52.16% 51.91 8.70

SBP(mmHg) 121.12 18.10 6843 3570 52.17% 51.91 8.70

DBP(mmHg) 80.19 11.33 6843 3570 52.17% 51.91 8.70

Hb(g/㎗) 13.61 1.57 6840 3568 52.16% 51.91 8.70

FVC(%predicted) 104.76 14.17 4291 2135 49.76% 50.37 8.17

FEV1(%predicted) 112.27 16.62 4290 2134 49.74% 50.37 8.16

FEV1/FVC(predicted) 74.89 1.77 4291 2135 49.76% 50.37 8.17
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Table 3.3 Summary of �� and �� of 16 traits

TRAIT
�� ��

MEAN SD MIN MAX MEAN SD MIN MAX

HEIGHT 159.906 8.724 130.241 187.866 -0.060 0.139 -2.168 0.747

WAIST 83.743 8.480 58.333 121.591 0.184 0.692 -4.968 6.904

WEIGHT 62.860 9.931 30.532 105.355 -0.094 0.480 -3.739 2.657

BMI 24.531 2.992 14.197 38.831 -0.019 0.185 -1.486 1.048

log(HbA1c) 1.737 0.107 1.256 2.441 0.002 0.011 -0.093 0.157

log(GLU0) 4.538 0.149 4.260 5.733 0.012 0.018 -0.166 0.171

Log(TG) 4.834 0.423 3.584 7.189 -0.012 0.057 -0.409 0.412

LDL 120.111 25.757 11.833 281.590 0.193 4.065 -29.218 28.549

log(HDL) 3.782 0.193 3.100 4.567 -0.001 0.024 -0.211 0.135

TCHL 194.208 28.114 97.986 343.106 -0.120 4.468 -34.599 29.468

log(SBP) 4.768 0.114 4.461 5.156 -0.001 0.017 -0.122 0.086

DBP 78.252 8.239 50.639 111.556 -0.259 1.358 -12.330 8.066

Hb 13.695 1.370 7.764 18.889 0.022 0.147 -1.641 1.468

FVC 104.541 13.466 46.629 162.844 -0.090 2.478 -13.065 13.685

FEV1 111.128 16.295 38.951 184.532 -0.239 2.575 -16.022 15.620

FEV1/FVC 73.945 1.809 67.654 78.000 -0.213 0.127 -1.246 1.244
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Table 3.4 Comparison between heritability of reference and cross-
sectional average (��).

Trait
Reference (Yang et al.) Cross-sectional average (��)

Sample 
Size

ℎ���
�   (SE) P-value

Sample 
Size

ℎ���
�   (SE) P-value

HEIGHT 7170 0.316 (0.042) 2.10E-15 6823 0.318 (0.041) 1.67E-16

WAIST 7163 0.105 (0.040) 4.10E-03 6835 0.278 (0.041) 5.02E-09

WEIGHT 7168 0.161 (0.040) 1.80E-05 6822 0.196 (0.040) 2.05E-07

BMI 7168 0.147 (0.041) 1.10E-04 6822 0.188 (0.040) 6.66E-07

HbA1c 7168 0.126 (0.040) 5.80E-04 6329 0.176 (0.044) 2.79E-05

GLU0 7006 0.112 (0.041) 2.90E-03 6728 0.152 (0.041) 0.0001042

TG 7169 0.216 (0.041) 1.50E-08 6840 0.192 (0.040) 4.42E-07

LDL 6963 0.134 (0.041) 3.80E-04 6840 0.222 (0.040) 5.18E-09

HDL 7169 0.172 (0.041) 8.50E-06 6840 0.241 (0.041) 8.91E-10

TCHL 7169 0.156 (0.040) 2.30E-05 6840 0.265 (0.041) 3.90E-12

SBP 7169 0.250 (0.041) 5.80E-11 6843 0.150 (0.039) 3.28E-05

DBP 7170 0.171 (0.041) 6.70E-06 6843 0.178 (0.039) 8.31E-07

Hb 7169 0.064 (0.039) 4.90E-02 6840 0.195 (0.041) 4.93E-07

FVC(%pred) 7009 0.226 (0.043) 2.10E-08 4291 0.107 (0.062) 0.03672

FEV1(%pred) 7007 0.134 (0.041) 4.20E-04 4290 0.119 (0.062) 0.0234

FEV1/FVC(pred) 7011 0.148 (0.041) 1.00E-04 4291 0.136 (0.063) 0.01394
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Figure 3.2 Population structures identified via a multidimensional scaling
(MDS) plot. This plot shows that the analyses (KARE) are not affected by 
population stratification. AFR, AMR, EAS, EUR, and SAS indicate African, 
Ad Mixed American, East Asian, European, and South Asian populations, 
respectively, from the 1000 Genomes Project
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Figure 3.3 Single-nucleotide polymorphism heritability estimates of 16 traits with �� as the response. Error bars correspond to standard 
error values. The values above the error bar are P-values and false discovery rate (FDR; bold).



36

Figure 3.4 Comparison of heritability of cross-sectional average and reference paper. Red line is heritability estimation of reference paper 
and black solid line is estimated heritability of cross-sectional average, the black dashed line is Mean of estimated heritability of each period.
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Figure 3.5 Single-nucleotide polymorphism heritability estimates of 16 traits with �� as the response. Error bars correspond to standard 
error values. The values above the error bar are P-values and the false discovery rate (FDR; bold), and “*” indicates significant findings at an 
FDR of 0.05



38

Figure 3.6 Single-nucleotide polymorphism heritability estimates of FEV1 based on chromosomes with �� as the response. Error bars 
correspond to standard error values. The values above the error bar are P-values and false discovery rate (FDR; bold).
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Figure 3.7 Correlation between chromosome length and estimated heritability. There was a significant positive correlation between 
chromosome length and heritability in FEV1



40

3.3.2 Genome-wide association studies

�� and �� were considered as responses for the GWAS. Tables 3.5 and 

3.6 show genome-wide significant SNPs at a significance level of 1×10-7. 

Table 4 shows that SNPs have relatively lower P values for log(TG) and 

log(HDL) than any other trait. The most significant variant for log(TG) is 

rs6589566 in ZPR1 with a P-value of 7.9×10-38, the lowest P-value among 

all 16 traits. Furthermore, ZPR1 is associated with TG (Coram et al. 2013). 

The most significant variant of log(HDL) is rs16940212 with a P-value of 

2.08×10-18 in ALDH1A2, which is associated with HDL (Spracklen et al. 

2017). Certain other significant variants are significantly associated with 

proximal genes and with traits assessed herein. The variant rs180349 

(P=8.86×10-35) of log(TG) is proximal to BUD13, which is associated with 

TG (Hoffmann et al. 2018). The variant rs17482753 (P=3.199×10-18) is 

proximal to LPL, which is strongly associated with HDL (Hoffmann et al. 

2018). Herein, we also detected some de novo variants including rs4922117 

(P=2.13×10-15) of log(HDL) and rs2335418 (P=3.2×10-9) of LDL, which 

were previously unknown; however, both their proximal genes LPL and 

HMGCR are significantly associated with each trait (Hoffmann et al. 2018). 

The Manhattan Plot and QQ plot for the model with �� as the response are 

provided in the Figures 3.8 and 3.9.

Table 5 shows the results of GWAS of �� . Based on the results, 

rs2272402 (SLC6A1) is the most significant variant both in FEV1 

(P=1.22×10-8) and FVC (P=1.40×10-9), and the SLC6A1 enhancer is 



41

associated with lung function. Other variants, including rs7209788 (NARF, 

P=3.36×10-7) for FEV1 and rs2668162 (FAM19A1, P=6.18×10-7) for FVC, 

have P-values less than the 1 × 10-6 threshold. We also found that 

rs4789777(HEXDC, P=4.599×10-6) is highly correlated with rs7209788 of 

FEV1. The Manhattan Plot and QQ plot for the model with �� as the 

response are provided in Figure 3.10 and 3.11.
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Table 3.5 Results of the genome-wide association study with �� as the response. Only the significant variants with P-values less than 
1×10-7 in each trait are included.

TRAIT SNP CHR BP A1 A2 GP GENE MAF HWE_P BETA P

log(GLU0) rs1799884 7 44229068 A G upstream GCK 0.1872 0.9051 0.01889 5.62E-09

log(GLU0) rs7754840 6 20661250 C G intronic CDKAL1 0.478 1 0.01488 6.25E-09

Hb rs5756505 22 37467354 C G intronic TMPRSS6 0.4979 0.9229 0.1125 2.61E-13

Hb rs3768751 2 46346716 G A intronic PRKCE 0.1796 1 -0.113 1.79E-08

log(HbA1c) rs7754840 6 20661250 C G intronic CDKAL1 0.478 1 0.01254 5.41E-11

log(HDL) rs16940212 15 58694020 T G intergenic ALDH1A2 0.3414 0.9786 0.02988 2.08E-18

log(HDL) rs17482753 8 19832646 T G intergenic LPL(dist=7876),SLC18A1(dist=169720) 0.1241 0.1333 0.04232 3.20E-18

log(HDL) rs4922117 8 19852586 G A intergenic LPL(dist=27816),SLC18A1(dist=149780) 0.2077 0.418 0.0316 2.13E-15

LDL rs599839 1 109822166 G A downstream PSRC1 0.06456 0.1925 -5.886 1.53E-11

LDL rs12654264 5 74648603 T A intronic HMGCR 0.4758 0.8085 -2.625 1.41E-09

LDL rs2335418 5 74603479 G A intergenic ANKRD31(dist=70776),HMGCR(dist=29514) 0.4232 0.5689 -2.6 3.20E-09

LDL rs4045166 5 74909446 G C intronic ANKDD1B 0.3326 0.3137 2.727 3.55E-09

LDL rs10942739 5 74786083 T C intronic COL4A3BP 0.3325 0.276 2.709 4.61E-09

LDL rs688 19 11227602 T C exonic LDLR 0.136 0.797 3.402 6.63E-08

TCHL rs599839 1 109822166 G A downstream PSRC1 0.06456 0.1925 -6.822 1.19E-12

TCHL rs780092 2 27743154 G A intronic GCKR 0.3248 0.2948 -3.365 4.63E-11

TCHL rs17321515 8 126486409 T C intergenic TRIB1(dist=35762),LINC00861(dist=448358) 0.4425 0.04178 2.782 4.20E-09

TCHL rs1881396 2 27844601 G T UTR3 ZNF512 0.3313 0.8699 -2.793 3.18E-08

TCHL rs6861279 5 74919409 T C intronic ANKDD1B 0.3386 0.1772 2.784 3.99E-08

TCHL rs6734059 2 27808154 C T intronic ZNF512 0.3357 0.8921 -2.724 6.36E-08

log(TG) rs6589566 11 116652423 C T intronic ZPR1 0.2169 0.3545 0.1113 7.90E-38

log(TG) rs180349 11 116611827 A T intergenic LINC00900(dist=980909),BUD13(dist=7059) 0.2265 0.752 0.1065 8.86E-35

log(TG) rs10503669 8 19847690 T G intergenic LPL(dist=22920),SLC18A1(dist=154676) 0.1207 0.003444 -0.08902 1.63E-16

log(TG) rs780094 2 27741237 C T intronic GCKR 0.4626 0.9806 -0.05656 2.60E-15

log(TG) rs7115242 11 116908283 T C intronic SIK3 0.2796 0.133 0.05987 8.66E-14
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Table 3.6 Results of the genome-wide association study with �� as the response Only the variants with P-values less than 1×10-7 are 
included. The more variants under suggestive threshold (P-values less than 1×10-5) are listed

TRAIT SNP CHR BP A1 A2 GP GENE MAF HWE_P BETA P

FEV1 rs2272402 3 11075461 A G intronic SLC6A1 0.07363 0.1473 -0.5823 1.22E-08

FVC rs2272402 3 11075461 A G intronic SLC6A1 0.07363 0.1473 -0.595 1.40E-09
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Figure 3.8 Manhattan Plot with �� as response.
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Figure 3.9 QQ plot with �� as response
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Figure 1.10 Manhattan Plot with �� as response.
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Figure 3.11 QQ plot with �� as response.
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3.4 Discussion

In this study, SNP-based heritability estimates of 16 phenotypic traits 

were estimated longitudinal data with 10-year follow-up of the KARE cohort. 

The GCTA tool was used with a two-stage approach to determine the 

heritability estimate of phenotypic mean and longitudinal changes in each trait. 

Moreover, chromosomal heritability estimates were determined and GWAS 

analysis were performed using the same approach. Overall, heritability 

estimates within the population-based cohort including KARE are potentially 

lower than those of pedigree or twin studies for all 16 traits, regardless of 

whether the response is �� that phenotypic mean of traits or �� which 

stands for the changes by time of traits. For example, the heritability of height 

herein was estimated to be approximately 0.318 with �� as the response, 

which is lower than the conventional heritability estimate of height of 

approximately 0.8 based on the assumption-free model (Visscher et al. 2006). 

In the case of TCHL and LDL, each heritability estimate was determined to be 

0.265 and 0.22, respectively, which are also lower than the heritability 

estimates of 0.67 and 0.69 for TCHL and LDL, respectively, on familial and 

pedigree analysis (van Dongen et al. 2013). The underlying reason may be 

explained on the basis of the missing heritability, which describes the 

difference in values between heritability estimated via GWAS and via familial 

studies (Sandoval-Motta et al. 2017). However, systemic inflation of 

estimated heritability estimates of polygenic phenotypes in familial studies 

may be confounded owing to a shared environment or environment-dependent 
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genetic effects (Robinson et al. 2017). Therefore, the population-based design 

similar to that of the present study potentially represent the average genetic 

effects regardless of various confounding environmental factors.

Based on the present �� and �� model, the heritabilities of �� are 

markedly lesser than those of ��, indicating that most of the genetic variance 

of traits are not temporally influenced. Here, �� was not determined from 

the baseline measurements of traits but rather the average values of repeated 

measurements to yield a more robust and reasonable result. If baseline 

measurement and longitudinal changes (��) calculated from those were 

considered responses during the estimation of heritability, the estimate would 

have been potentially inaccurate owing to the correlation between baseline 

and �� values. Moreover, by applying a regression model to estimate the 

average �� and longitudinal changes ��, we an independent association was 

observed between �� and ��. Thus, more reliable estimation of heritability 

could be achieved. 

On GWAS, the two-stage model elucidated significant variants 

associated with the traits and their changes in the longitudinal data. We 

confirmed several proven variants and identified some other significant 

unreported variants. In the case of the �� model, rs4922117 (P=2.13×10-15) 

of log (HDL) and rs2335418(P=3.2×10-9) of LDL were both unreported; 

however, their proximal genes LPL and HMGCR respectively, were 

significantly associated with each trait (Hoffmann et al. 2018). Furthermore, 
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unreported SNPs, such as rs180349, including non-coding SNPs with a 

significant P-value for TG, are proximal to BUD13, which is strongly 

associated with TG in the reference study (Hoffmann et al. 2018). Variants 

including rs17482753 also had significant P-values and was proximal to LPL, 

which is strongly associated with the HDL trait (Hoffmann et al. 2018). In the 

model with ��	as response variable, rs2272402 (SLC6A1, P=1.22×10-8) was 

significantly associated for FEV1 and FVC. The SLC6A1 enhancer is 

associated with pulmonary function. Therefore, the present results are 

consistent with previous findings regarding genes associated with each 

phenotype.

Among the 16 phenotypic traits in this study, only FEV1 displayed 

longitudinally significant heritability herein (Figure 3.5), thus reliably 

reflecting the physiological state of the lungs and airways and acting as a 

predictor of morbidity and mortality in the general population; FEV1 is also

widely used to define chronic obstructive pulmonary disease (COPD) (Young, 

Hopkins, and Eaton 2007). Lung function develops in early life, peaks at a 

specific time point in early adulthood, and subsequently declines with age. 

Therefore, the decline of lung function in middle-aged and older individuals is 

suggested to be heritable in the general population (Gottlieb et al. 2001). 

However, longitudinal studies on FEV1 and FEV1/FVC have suggested 

several significant genetic regions that markedly differ from the numerous 

genetic variants associated with lung function, with FEV1 being estimated at a 

single time point (John et al. 2017, Tang et al. 2014). Hence, gene-
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environment interactions and significant genetic heterogeneity in lung 

function have been observed in diseases such as asthma or COPD (Imboden et 

al. 2012, Hansel et al. 2013). Accordingly, the present study included the 

middle-aged general population with similar environmental exposure without 

specific lung diseases, thus suggesting the intact FEV1 decreased due to aging. 

Therefore, the present results show that FEV1 has significant SNP heritability 

for longitudinal changes (FDR=0.0012 for FEV1).

This study has several limitations. First, the analysis of new variants in 

the present GWAS was not replicated for other cohorts. Second, the two-stage 

approach is statistically inefficient, even though it is computationally fast. 

However, the sample size was very large, which hopefully minimized this 

problem. Furthermore, we considered subjects with at least three or more 

measurements, which potentially minimized statistical power loss. Third, 

gene-environment interactions were not analyzed, although the estimation of 

random effects in the mixed model was elusive. Fourth, GCTA itself has 

limitations for reasons such as data overfitting and skewed singular values

(Kumar et al. 2016). Though this study optimized parameters to attain 

accurate results using GCTA, the sample size might have resulted in certain 

variations in comparison with other large studies. Furthermore, the issue 

regarding missing heritability was inevitable to an extent because the 

Affymetrix genotypic array represents only common variants for SNPs, while 

rare genetic SNP variants were not included herein (Bandyopadhyay, Chanda, 

and Wang 2017). 
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Despite the aforementioned limitations, this study elucidated heritability 

estimates via a two-stage approach using a mixed model in GCTA and a 

GWAS, which provides a reasonable and easy method to estimate heritability 

in longitudinal data and potentially assess both heritability of the phenotypic 

mean and longitudinal changes through several periods. Essentially, our

results show that significant SNP heritability is objectively confirmed for 

longitudinal changes in lung function decline (i.e., FEV1) in comparison with 

other health-related indices. Therefore, there should be more genetic studies 

on longitudinal FEV1 decline in the middle-aged general population and 

chromosome 2, which attributes the most in genetic variance should be 

encouraged.
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Chapter 4

Heritability analyses reveal the significant effect of 

SNPs on lung function decline rate 

4.1 Introduction

Lung function is an important human trait, once it is damaged, it 

hard to reverse the condition completely, and the impaired lung function could 

even predict patient’s future morbidity and mortality (Young, Hopkins, and 

Eaton 2007). Generally, spirometry is used to assess the lung function by 

measuring the volume or flow of air that can be inhaled and exhaled (Miller et 

al. 2005). It is helpful in screening general respiratory health, but on its own, 

it is not directly used to an aetiological diagnosis. In clinical practice, force 

vital capacity (FVC) and forced expiratory volume (FEV) which are two 
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important measurements of spirometry, have been used to evaluate 

physiologic status of respiratory disease, measure the effect of disease on 

pulmonary function and assess prognosis of pulmonary disease such as 

asthma, pulmonary fibrosis, cystic fibrosis and COPD (Miller et al. 2005). 

Lung function in healthy persons, typically, reaches a peak level at 

their early ages, and then a steady decline would be followed in the rest of life. 

However, there is a range of lung function trajectories throughout the whole 

process. As an example, the person who had a failure to reach the predicted 

level of peak lung function in early age, would have a higher prevalence and 

an earlier incidence than those who did not (Agusti and Hogg 2019). Thus, 

longitudinal and trajectory perspective analysis is important for understanding 

the mechanism of lung function. 

Genetic association studies have been widely applied to identify 

genomic regions to provide useful insights into biological mechanisms of 

complex diseases (Sakornsakolpat et al. 2019). Recently, genome-wide 

association studies (GWAS) have identified numerous genetic variants 

associated with lung function in cross-sectional analysis (John et al. 2017, 

Wilk et al. 2009, Soler Artigas et al. 2011, Loth et al. 2014). However, no 

genetic variants have yet been associated with rate of decline in lung function 

at stringent genome-wide significant level (John et al. 2017). There are some 

other researchers reported both cross-sectional lung function and annual 

decline rates in lung function are heritable by using family data (Gottlieb et al. 
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2001), suggesting that there is still scope for further discoveries (John et al. 

2017).

Lately, estimating SNP-based heritability have proven to a powerful 

tool for investigating the genetic architecture of common diseases among 

independent population-based cohorts. The estimation is based on restricted 

maximum likelihood estimation (REML) in the linear mixed model (Yang et 

al. 2010) framework and is applied by several popular tools (Weissbrod, Flint, 

and Rosset 2018, Yang, Lee, et al. 2011, Speed et al. 2017). One of the most 

used tools, is genetic complex trait analysis (GCTA) tool (Yang, Lee, et al. 

2011), which first calculates the genetic relatedness matrices (GRM) between 

individuals, then estimate the proportion of all the single nucleotide 

polymorphisms (SNPs) variance in the phenotypic variance. Previous study of 

lung function by Zhou et al, applied GCTA to estimate heritabilities of FEV1 

and FVC/FVC in the non-Hispanic whites, were both about 37%, which 

consistent with estimates from family-based studies (Zhou et al. 2013).

In this study, we estimated SNP heritability of 12 most common parameters 

measured in spirometry, as forced vital capacity (FVC), forced expiratory 

volume (FEV) in one second, forced expiratory flow 25-75% (FEF 25-75) and 

maximal voluntary ventilation (MVV), including their pre/post measures and 

percent predicted values with Korean longitudinal population-based cohort 

data, which measured biennially for 14 years (Table 4.1). To estimate SNP 

heritability both phenotypic average and annual change of 12 traits, here, we 

proposed and applied a two-stage approach that efficiently solve longitudinal 
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analysis problem. And also estimated how much of phenotypic variance were 

explained in smoking stratified groups of these 12 traits. At last, we calculated 

correlation between the phenotypic averages and annual change rates of those 

traits.
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Table 4.1 Descriptive characteristics of data

Characteristics
ALL

(Baseline)
Never

Smoker
Ever

Smoker

Sample Size, n 5104 3009 2095

Female, n (%) 2692 (52.74%) 2588 (86%) 104 (5%)

Age, yr (Mean±SD) 50.91±8.15 51.19±8.3 50.54±7.94

Height, cm (Mean±SD) 160.3±8.53 155.9±7.02 166.6±6.26

COPD, n (%) 55 (10%) 15 (0.5%) 40 (1.9%)
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4.2 Methods

4.2.1 Study Population and Outcome Definition

We considered the Korean Genome and Epidemiology study 

(KoGES) (Cho et al. 2009) which consists of participants residing in Ansan 

(urban area) and Ansung (rural area) in the Gyeonggi Province of South Korea. 

KoGES was designed to investigate genetic, environmental and behavioral 

risk factors of common complex diseases in Koreans and cause of death with 

long-term follow-up (Kim, Han, and Ko 2017). The baseline survey was 

completed in 2001–2002, and 10,030 participants aged 40–69 years were 

recruited, and then biennial repeated surveys were conducted for the same 

participants for 14 years. We considered 8,768 participants (4,653 male, 4,115 

female) who have both genotype and phenotype information. 

4.2.1 Lung functions 

Here, we focused on the most common lung function phenotypes as 

pre/post and % predicted bronchodilator spirometry which includes forced 

vital capacity (FVC), forced expiratory volume in one second (FEV1), the 

average forced expiratory flow during the mid (25-75%) portion of the FVC 

(FEF25-75%) and maximal voluntary ventilation (MVV), and these 

phenotypes accompanying with the basic information as sex, height and 

smoking history. 
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Lung function tests were performed by a skilled technician using a 

portable spirometer (Vmax-2130, Sensor Medics, Yorba Linda, CA, USA) 

according to standardized protocols of the American Thoracic Society(1995). 

All participants performed prebronchodilator spirometry test until completing 

at least three repeated measurements and an acceptable measure was 

determined when the differences between the largest and the next largest FVC 

and FEV1 values were within 0.15l. Calibration and quality control of 

spirometric examinations were also performed regularly based on American 

Thoracic Society guidelines (1995, Kim, Kim, et al. 2015, Shin et al. 2005).

4.2.2 Genotyping, quality-control and imputation

All patients were genotyped with Affymetrix Genome-Wide Human 

SNP array 5.01. For quality control (QC) tests, we excluded SNPs for which 

the missing genotype call rates were higher than 0.05, minor allele 

frequencies (MAFs) were less than 0.05, and Hardy-Weinberg equilibrium 

(HWE) P-values were less than 10-5; additionally, participants with missing 

genotype call rates higher than 0.05 or with gender inconsistencies were 

excluded. QC was done with PLINK (Purcell et al. 2007) and ONETOOL

(Song et al. 2018). After QC tests, 5,104 participants with 305,158 markers 

remained.

With remaining participants and SNPs, we conducted whole-genome 

imputation by using SHAPEIT2 and IMPUTE2 for pre-phasing data and 
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genotype imputation, respectively, and the 1000 Genome Phase 3 haplotype 

was used as reference panel. To maintain imputation quality, we filtered out 

the imputed SNPs which had less than 0.5 estimated imputation “info” score. 

The standard QC procedure was also applied for these SNPs, and 5,104 

participants with 3,352,722 SNPs were analyzed for SNP heritability 

estimation.

4.2.3 Statistical analysis

Cross-sectional phenotypic averages and annual change rate for each 

subject were calculated with two-stage method. First, a simple linear 

regression model for subjects of the same period with the adjustment of age 

for each lung function traits. Each participant was measured up to 8 times and 

participants with at least three measurements were considered. We found that 

residual variances were heterogeneous among different time points, and the 

inverse of the residual variances were used as weights, and for trait k and time 

point j we considered the following linear regression for each subject i as 

follows:

  ���� = ���� + ���������� − ���������� + ���� , ����~� �0,
�

���
���
� �    (1)

Here ��������� indicates the mean of ages at the observed time points. In this 

model, ���� indicate the expected cross-sectional averages of subject i for 

trait k when he or she is ��������� years old, and ���� is the annual change. 
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Then, the estimated values of ���� and ���� were inverse normal 

transformed and the SNP heritabilities, ℎ�
� and ℎ�

� for both were estimated 

with GCTA with restricted maximum likelihood method (Yang, Manolio, et al. 

2011). For GCTA, ��������� and sex were included as covariates. For the traits, 

as FVC, FEV1, FEV1/FVC, FEV25-75%, MVV, post FVC, post FEV1 and 

post FEV1/FVC, we also included height as covariate. We also estimated the 

best linear unbiased predictor of polygenic risk scores with GCTA with “--

reml-pred-rand” option. The heritability estimation was also conducted for 

never smokers and ever smokers (consists of past smokers and current 

smokers) groups.
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4.3 Results

From figure 4.1, we found most of 12 traits show decreasing trend through 8 

periods. To identify the progressive effect of SNPs on lung function

longitudinal change, first, we assessed the contribution of genetics to 12 lung 

function traits by estimating the SNP-based heritability for both mean and 

longitudinal change. Then, we estimated SNP heritability in never and ever 

smoking groups, separately. We also assessed the correlations between cross-

sectional average and annual change rate of significant results from SNP

heritability estimation.
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Figure 4. 1 Mean value of 12 lung function traits in 8 periods. Since the 
range of 12 phenotypes were different, we divided them into A and B two 
groups. Most of the values shows decreasing trend through 8 periods.
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4.3.1 Characteristics of Study Subjects. 

Since the follow-up study performed 14 years biennially, the most of 

the participants visited center for 8 times including baseline, and there exists 

missing values in the collected data. In the view of potential bias and loss of 

power, we considered the data with participants who visited more than 3 times

and performed analysis. The sample number of each trait are list in Table 2. 

And three of lung function traits, post FVC, post FEV1 and post FEV1/FVC, 

only Ansung data was available.  

4.3.2 The SNP heritability of 12 lung function traits 

To estimate the importance of genetic determinants of 12 lung

function traits, we calculated the proportion of the variance after rank-based 

inverse normal transformation of �� and �� for each phenotype (Table 4.2). 

Figure 4.2(A) shows the estimation of SNP heritability with �� as the 

response in GREML model, and all the P-values of phenotypes are significant 

under FDR=0.05. The post FEV1/FVC has the largest ℎ�
� (ℎ�

� = 0.325 , 

P=1.16 × 10��), and the next is post FEV1/FVC (ℎ�
� = 0.314, P=1.86 ×

10��). FVC %predicted also gives relatively high values with ℎ�
� = 0.237

(P=5.36 × 10��). We also estimated the SNP heritability of each periods, and 

compared the mean of these SNP heritabilities to ℎ�
� for all traits (Table 4.3

and Figure 4.3). We found ℎ�
� are slightly higher than the mean of SNP 

heritablities of each period, it probably caused by the measurement error of 
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each period. Figure 4.2(B) shows the ℎ�
�, and it less than those for ℎ�

�. post

FEV1/FVC is the highest ℎ�
� with value 0.176 (P=0.0099), which is followed 

by FEV1/FVC with ℎ�
� = 0.158 (P=4.91 × 10��). FEV1 %predicted also has 

the significant ℎ�
� with 0.105 (P=0.004).

For lung function traits with significant ℎ�
� (FEV1 %predicted, 

FEV1/FVC, and post FEV1/FVC), we calculate genetic correlations (�� ) 

between genetic components. Figure 4.4 shows phenotypic correlation 

between cross-sectional means and annual change rates of FEV1 %predicted, 

FEV1/FVC, and post FEV1/FVC, and their correlations without any 

adjustment are 0.3, 0.24 and 0.22, respectively. Table 4.4 shows �� and ��.

The former indicates the relative proportions shared between both genetic 

components for between corss-sectional means and annual change rates. The 

results show that around 50% or more of genetic components were

significantly shared between them (�� = 0.5873 , P=0.0014 for FEV1% 

predicted; �� = 0.6279 , P=4.59×10-5 for FEV1/FVC; �� = 0.466 , 

P=0.0219 for post FEV1/FVC). Table 4.4 also shows the residual phenotypic 

correlations (��) between cross-sectional means and annual change rates. ��

indicates relative proportions of environmental variances shared between 

environmental variances for subject-specific means and annual change rates. 

Residual phenotypic correlations are much smaller than �� (�� = 0.220 for 

FEV1%predicted; �� = 0.117 for FEV1/FVC; �� = 0.155 for post 
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FEV1/FVC), and cross-sectional means and annual change rates may be 

affected by different environmental factors.
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Table 4.2 Summary of cross-sectional averages and annual change rate of 
12 lung function traits.

Traits
Sample

Size
Cross-sectional average

Mean (SD)
Annual decline rate

Mean (SD)

FVC 5103 3.467 (0.832) -0.036 (0.033)

FVC %PRED 5103 104.001 (12.974) -0.22 (1.076)

FEV1 5103 2.695 (0.649) -0.04 (0.026)

FEV1 %PRED 5103 111.028 (16.647) -0.221 (1.218)

FEV1/FVC 5103 77.977 (6.802) -0.338 (0.512)

FEF25-75% 5104 2.604 (0.958) -0.074 (0.06)

FEF25-75% %PRED 5104 95.052 (30.134) -1.392 (2.201)

MVV 5099 103.775 (29.545) -2.266 (1.997)

MVV %PRED 5099 93.195 (17.432) -1.243 (1.827)

POST FVC 2706 3.62 (0.808) -0.037 (0.025)

POST FEV1 2707 2.932 (0.635) -0.038 (0.021)

POST FEV1FVC 2707 81.331 (5.74) -0.214 (0.407)
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Table 4.3 Comparison of estimated heritability of cross-sectional average 
and mean of estimated heritability of each period.

Trait Type
Sample

Size
������
� �����

� ����
� S.E.

FVC 
Beta0 6622 0.171 0.039 0.230 0.041

Mean 5087.75 0.186 0.041 0.223 0.054

FVC %PRED
Beta0 6622 159.404 36.048 0.226 0.041

Mean 5087.875 176.297 38.319 0.217 0.054

FEV1 
Beta0 6622 0.134 0.027 0.203 0.041

Mean 5087.25 0.141 0.027 0.196 0.054

FEV1 %PRED
Beta0 6622 242.160 50.577 0.209 0.042

Mean 5087.75 257.619 52.368 0.203 0.054

FEV1/FVC
Beta0 6622 35.848 7.798 0.218 0.042

Mean 5087.875 39.017 7.840 0.202 0.054

FEF25-75%
Beta0 6622 0.640 0.160 0.250 0.042

Mean 5087.125 0.725 0.161 0.227 0.055

FEF25-75% %PRED
Beta0 6623 856.290 220.092 0.257 0.042

Mean 5087.875 962.807 235.288 0.247 0.055

MVV
Beta0 6614 329.744 36.844 0.112 0.041

Mean 5081.375 425.383 35.312 0.089 0.053

MVV %PRED
Beta0 6614 274.218 29.204 0.107 0.041

Mean 5081.375 353.544 25.851 0.076 0.053

post FVC
Beta0 3489 0.166 0.053 0.322 0.077

Mean 2748.5 0.172 0.052 0.300 0.099

post FEV1
Beta0 3490 0.122 0.027 0.222 0.077

Mean 2748.625 0.126 0.026 0.204 0.099

post FEV1/FVC
Beta0 3490 27.237 7.234 0.266 0.076

Mean 2748.75 29.149 7.626 0.263 0.099
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Table 4.4 Genetic correlation of subject-specific mean and annual change rate

Traits ���
� ���

� �������� �� SE(��) ���
� ���

� �������� �� SE(��) P-value(��)

FEV
1 
%PRED 0.6779 0.8798 0.1698 0.2199 0.0117 0.1954 0.1029 0.0833 0.5873 0.1713 0.0014

FEV
1
/FVC 0.5927 0.8233 0.0814 0.1165 0.0121 0.1807 0.1538 0.1047 0.6279 0.1466 4.59E-05

post FEV
1
FVC 0.5662 0.8178 0.1057 0.1553 0.0165 0.2593 0.1742 0.099 0.466 0.2156 0.0219
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Figure 4.2 SNP heritability of 12 lung function traits. (A) SNP heritabilities 
of cross-sectional averages of 12 lung function traits. (B) SNP heritabilities of 
the annual change rate of 12 lung function traits. Error bars correspond to 
standard error values. The dot on the bar are P-values. Blue dash line indicates 
the 0.05 significant level. Red dot indicates significant findings at an FDR of 
0.05.

(A)

(B)
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Figure 4.3 Comparison of estimated heritability of cross-sectional average and mean of estimated heritability of each period.
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Figure 4.4 Correlation of cross-sectional averages and annual decline 
rates and their PRSs in FEV1 % predicted, FEV1/FVC and post 
FEV1/FVC. (A) Correlation between cross-sectional averages and annual 
change rate in FEV1 %predicted and FEV1/FVC. (B) Correlation between 
PRS of cross-sectional averages and PRS of annual change rate in 
FEV1 %predicted and FEV1/FVC.

(A)

(B)
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4.3.3 Effect of smoking status on heritability of lung function traits

We stratified the data into two groups by smoking status, never 

and ever smoker (includes past and current smokers) groups. �� and 

�� were calculated in two groups separately (Table 4.5), and rank 

based inverse normal transformation were performed. For both groups, 

ℎ�
� and ℎ�

� were separately estimated (Figure 4.5), the estimated ℎ�
�

in never smoker groups are higher than those in ever smoker group

except for FEV1/FVC, post FEV1/FVC and FVC %predicted. However, 

none of them except the never group of POST FEV1/FVC is significant 

at the 0.05 significance level for ℎ�
�. 

We also evaluate the heritability for SNP-by-smoking 

interaction (ℎ�×�
� ) for lung function traits with significant ℎ�

� and ℎ�
�.

All 12 lung function traits have significant ℎ�
� but none of them have 

significant ℎ��×�
� (Table 4.6). FEV1/FVC, post FEV1/FVC and FEV1 % 

predicted have significant ℎ�
� and ℎ��×�

� were estimated for them. 

Table 4.6 shows that post FEV1/FVC and FEV1 % predicted achieve 

0.05 significant level (P=0.02091 for FEV1; P=0.021158 for post 

FEV1/FVC) and FEV1/FVC is close to the significance level 

(P=0.079165).
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Table 4. 5 Summary of cross-sectional averages and annual change rate of 12 lung function traits in ever-smoking group

Traits

Never Smokers Ever Smokers

Sample 
Size

Cross-sectional average 
Means (SD)

Annual change rates
Means (SD)

Sample
Size

Cross-sectional average 
Means (SD)

Annual change rates
Means (SD)

FVC 3008 3.045 (0.642) -0.034 (0.023) 2095 4.051 (0.661) -0.039 (0.027)

FVC %PRED 3008 105.533 (12.978) -0.158 (0.922) 2095 101.647 (12.066) -0.287 (0.757)

FEV1 3008 2.430 (0.520) -0.036 (0.019) 2095 3.066 (0.592) -0.046 (0.022)

FEV1 %PRED 3008 114.953 (16.110) -0.120 (1.086) 2095 105.474 (14.922) -0.384 (0.852)

FEV1/FVC 3008 79.815 (5.449) -0.300 (0.430) 2095 75.540 (7.298) -0.418 (0.406)

FEF25-75% 3009 2.526 (0.830) -0.068 (0.047) 2095 2.712 (1.071) -0.088 (0.051)

FEF25-75% %PRED 3009 99.458 (28.106) -1.359 (1.936) 2095 88.909 (31.089) -1.606 (1.657)

MVV 3004 92.488 (24.048) -2.052 (1.340) 2095 119.465 (27.968) -2.583 (1.707)

MVV %PRED 3004 93.298 (17.280) -1.306 (1.423) 2095 93.209 (17.114) -1.152 (1.454)

POST FVC 1524 3.181 (0.626) -0.035 (0.018) 1182 4.144 (0.604) -0.038 (0.023)

POST FEV1 1525 2.628 (0.510) -0.036 (0.014) 1182 3.296 (0.517) -0.043 (0.018)

POST FEV1FVC 1525 82.772 (4.862) -0.236 (0.312) 1182 79.667 (5.949) -0.291 (0.331)
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Table 4.6 Heritability of SNP by environment interaction for 12 lung function traits

Traits
Cross-sectional average Annual change rate

Vge/Vp s.e. P Vge/Vp s.e. P

FVC 0.051622 0.097668 0.29476 -0.02459 0.101463 0.40977

FVC %PRED -0.018434 0.094587 0.422 -0.143755 0.0973 0.09049

FEV1 -0.006611 0.097988 0.47352 -0.089591 0.090754 0.16206

FEV1 %PRED -0.050392 0.09496 0.3002 -0.192572 0.088061 0.02091

FEV1/FVC 0.079199 0.101108 0.21902 0.138339 0.100909 0.079165

FEF25-75% 0.096592 0.102051 0.17629 0.116504 0.098932 0.10881

FEF25-75% %PRED 0.065509 0.101289 0.2634 0.090015 0.098497 0.1715

MVV 0.002662 0.098792 0.4894 -0.150229 0.094267 0.072297

MVV %PRED 0.025806 0.101696 0.4032 -0.153931 0.091747 0.061

POST FVC -0.033354 0.181616 0.42711 -0.08897 0.189262 0.32768

POST FEV1 -0.074344 0.186164 0.35005 -0.047545 0.179968 0.39494

POST FEV1FVC 0.20578 0.190713 0.13673 0.402253 0.198761 0.021158
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Figure 4.5 SNP heritability of 12 lung function traits in never and ever 
smokers. (A) SNP heritabilities of cross-sectional averages of 12 lung
function traits in never and ever smokers. (B) SNP heritabilities of the annual 
change of 12 lung function traits in never and ever smokers. Error bars 
correspond to standard error values. The dot on the bar are P-values. Blue 
dash line indicates the 0.05 significant level. Red dot indicates significant 
findings at an FDR of 0.05.

(A) 

(B)
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4.4 Discussion

In the present study, we suggested two different SNP-based 

heritabilities of cross-sectional averages and annual change rate, and both for

the 12 lung function traits were estimated. We found that heritabilities of 

cross-sectional averages were significant for all 12 lung function traits. For 

the heritability of annual change rates, post FEV1/FVC, FEV1/FVC and 

FEV1 %predicted shows significant result, which reveals the significant 

effects of SNPs on lung function change rate. Then we performed 

stratification analysis by smoking status for both cross-sectional average and 

longitudinal change rate. And the heritabilites for SNP-by-smoking interaction 

also estimated. We found post FEV1/FVC, FEV1/FVC and FEV1 %predicted

show significant SNP-by-smoking interaction, inferring the amount of genetic 

variance would be affected by smoking conditions.

In the estimation of heritability of cross-sectional averages with all 

samples for the 12 traits, the estimated heritability ranges from about 9% 

(MVV) to 33% (post FVC). For the SNP heritability of annual change rates of 

12 traits, were much lower than those of cross-sectional averages. The range 

approximately 1% (MVV) to 18% (post FEV1/FVC). The heritability 

estimation of annual change rates of post FEV1/FVC was the largest one 

among the 12 traits. And FEV1/FVC and FEV1 % predicted also displayed 

longitudinally significant heritability compared to other traits. These three 

traits reliably reflect the physiological state of the lungs and airways and both 
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are the predictor of morbidity and mortality in the general population and 

widely used to define choric obstructive lung disease (COPD).

Estimation of the heritability of lung function could be influenced by 

environmental factors. One of the important factors that influences lung

function is smoking status. In this study, we found both cross-sectional 

averages and annual change rate showed different SNP heritability estimates 

between never and ever smoke groups. Among the 12 traits, FEF25-

75% %predicted and FVC, the never smoker group have 10% and 4% 

respectively higher heritability estimation than those of ever smoker group. 

And FEV1/FVC, post FEV1/FVC and FVC % predicted, the estimated 

heritability in ever smoker group had slightly higher than those of never 

smoker group, and the difference were 7%, 9% and 3%, respectively. For the 

heritability estimates of annual change rates, there were no significant result 

under 0.05 FDR significant level. Collectively, these results indicate that 

smoking status does not affect much to the heritability of annual lung function 

decline rate in mid-aged population.

The result of genetic correlations of cross-sectional average and 

annual change for FEV1 % predicted, FEV1/FVC and post FEV1/FVC 

showed strong positive correlations. Cross-sectional mean and annual change 

rates consist of genetic and environment components, and positive 

correlations between SNP effects for cross-sectional mean and annual change 

rates indicates that subjects with higher genetic risk for cross-sectional means 
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of FEV1/FVC, post FEV1/FVC and FEV1 % predicted tend to have higher 

genetic risk for their annual change.

One of the limitations in this study is that the limited sample sizes of 

some traits and in subgroup analysis, caused the large standard errors of 

heritability estimation in the analysis. To this problem, some previous study 

have GCTA (Robinson et al. 2017). Thus, to yield more stable results, more 

samples need to be collected in our future study.

In summary, we performed SNP heritability estimation for 12 lung 

function traits, by using two-stage method, which can estimate cross-sectional 

averages and annual change rates with Korean population based longitudinal 

data. We expect our work will help informing lung cancer etiology, and to 

discover most of the genetic variability influencing lung function related traits, 

large sample sizes and novel statistical approaches are required.
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Chapter 5

Summary & Conclusions

Genetic effect of health-related phenotypic traits, especially lung 

function has been identified by multiple studies, but the progressive effect of 

SNPs on annual change and their interaction has remained unexplained. The 

main goal is to evaluate the effect of SNPs on annual change of prominent 

health-related phenotypic traits, and lung function related traits, by estimating 

SNP based heritabilities and genome-wide association analysis with 

longitudinal data.  

In chapter 3, we analyzed sixteen phenotypic traits which is associated 

with major health indices, and observed every two years for 6,843 individuals 

with 10-year follow-up. SNP-based heritability of cross-sectional average and 

longitudinal changes were estimated by using the two-stage model. Cross-

sectional average and longitudinal changes for each subject were considered 

responses to estimate SNP heritability. And genome-wide association study 
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(GWAS) was also performed to detecte the significant associtated SNPs. Each 

SNP heritability for the phenotypic averages of all sixteen traits through 6

periods (baseline and five follow-ups) were significant. Gradually, the forced 

vital capacity in one second (FEV1) reflected the only significant SNP 

heritability for longitudinal changes at a false discovery rate (FDR)-adjusted 

0.05 significance level ( ℎ���
� = 0.171 , FDR=0.0012). On estimating 

chromosomal heritability, chromosome 2 displayed the highest heritability 

upon periodic changes in FEV1. SNPs including rs2272402 and rs7209788 

displayed a genome-wide significant association with longitudinal changes in 

FEV1 (P=1.22×10-8 for rs2272402 and P=3.36×10-7 for rs7209788). De novo

variants including rs4922117 (near LPL, P=2.13×10-15) of log-transformed 

high-density lipoprotein (HDL) ratios and rs2335418 (near HMGCR, 

P=3.2×10-9) of low-density lipoprotein were detected on GWAS. Hence, 

significant genetic effects on longitudinal changes in FEV1 among the 

middle-aged general population and chromosome 2 account for most of the 

genetic variance.

In chapter 4, we analyzed twelve lung function traits, which observed 

every two years for 8,768 Korean adults aged 40-69 years during 14 years. 

Phenotypic average and annual change rate were calculated for each 

participant, and SNP heritabilities for both were estimated by GCTA. 

Furthermore, we also calculated the subgroup heritibility of smoking status.

SNP heritabilities of the annual change rate of post FEV1/FVC, FEV1/FVC 

and FEV1 % predicted were significantly high (ℎ�
�=0.176, p-value=0.0099 for 
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post FEV1/FVC; ℎ�
�=0.158, p-value=4.91 × 10��for FEV1/FVC; ℎ�

�=0.105, 

p-value=0.004 for FEV1 %predicted). In subgroup analsysis, post FEV1/FVC 

(ℎ�
�=0.399, p-value=0.009) were in never smokers significant high than in 

ever smokers. For the estimated heritability of SNP-by-smoking interaction 

ℎ�×�
� , FEV1/FVC, post FEV1/FVC and FEV1 % predicted have significant 

ℎ��×�
� .

In summary, the studies elucidate heritability estimates via a two-stage 

approach using a mixed model in GCTA and GWAS, which further 

determines longitudinal change effects independently with a linear model, 

followed by estimation of heritability using regression coefficients. This 

approach provides a reasonable and easy method to estimate heritability in 

longitudinal data and potentially assess both heritability of the phenotypic 

averages and annual changes through several periods. Essentially, the results 

show that significant SNP heritability is objectively confirmed for 

longitudinal changes in lung function decline including FEV1 in comparison 

with other health-related indices. Even in lung function specific analysis the 

significant genetic effect on lung function decline rate in FEV1 % predicted,

FEV1/FVC and post FEV1/FVC were observed, and these traits also showed 

significant SNP-by-smoking interaction, inferring the amount of genetic 

variance would be affected by smoking conditions.
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초   록

유전체 정보(SNP)의 대량생산이 가능해지며 질환의 원인을

규명하고자 질환 또는 위험요인에 대한 유전체 정보를 기반을 둔

전장 유전체 연관성 분석(GWAS)은 지속해서 활발히 진행됐고, 

지역 또는 인종에 따라 다양하게 나타나고 있어 국내에서도 많은

결과가 발표되고 있다. 그러나, 실제 질환과 연관 있다고 보고된

SNP 들의 설명력은 높지 않았다. 이러한 설명되지 않은 유전적

경향성(missing heritability)에 대한 문제점을 보완하기 위한

유전율 추정 방법들이 제안되고 있고, 최근에는 인구집단

기반(population-based)을 둔 유전율 추정이 많이 진행되고 있다. 

현재까지 대부분 population-based 유전율 추정은

단면연구(cross-sectional study)에 집중되어 연구가 진행됐으나

반복측정자료(longitudinal data)를 이용한 유전율 추정 및 유전자-

환경, 유전자-시간의 상호작용으로 인한 유전율 추정 분석은 많이

진행되지 않았다.

본 논문에서는 한국인 질병 관련 임상역학의 종단자료 및

유전체 자료를 기반 표현형에 대한 상염색체 공통변이(common 

variant) 유전적 영향의 추정에 목적을 두어 16 가지의 표현형에

대하여 유전율 추정 및 GWAS 를 진행하였고, 추가로 12 가지의

폐기능관련 표현형에 대하여 유전율 추정을 진행 하였다. 또

표현형과 유전변이의 상호작용으로 인한 유전율에 대한 영향을

추정하였고 종단자료 특성상 분석이 어려운 것을 해결하기 위하여

two-stage 방법론을 제안하여 특정 표현형이 시간으로 인한

변화에 연관된 유전자들을 성공적으로 발굴하였다. 본 연구는
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다량의 질병 관련 표현형 종단자료의 분석에 활용될 수 있을

것으로 기대된다. 

주요어: 전장유전체연관성분석, 유전율분석, 종단자료 분석, GREML 
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