creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Quantization of Deep Neural Networks for
Improving the Generalization Capability

At 58 o] L T 2 ABY A

s

Sungho Shin

February 2020

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Abstract

Deep neural networks (DNNs) achieve state-of-the-art performance for various ap-
plications such as image recognition and speech synthesis across different fields. How-
ever, their implementation in embedded systems is difficult owing to the large number
of associated parameters and high computational costs. In general, DNNs operate well
using low-precision parameters because they mimic the operation of human neurons;
therefore, quantization of DNNSs could further improve their operational performance.
In many applications, word-length larger than 8 bits leads to DNN performance com-
parable to that of a full-precision model; however, shorter word-length such as those of
1 or 2 bits can result in significant performance degradation. To alleviate this problem,
complex quantization methods implemented via asymmetric or adaptive quantizers
have been employed in previous works.

In contrast, in this study, we propose a different approach for quantization of
DNNs. In particular, we focus on improving the generalization capability of quan-
tized DNNs (QDNN&s) instead of employing complex quantizers. To this end, first, we
analyze the performance characteristics of quantized DNNs using a retraining algo-
rithm; we employ layer-wise sensitivity analysis to investigate the quantization char-
acteristics of each layer. In addition, we analyze the differences in QDNN performance
for different quantized network sizes. Based on our analyses, two simple quantization
training techniques, namely adaptive step size retraining and gradual quantization are
proposed. Furthermore, a new training scheme for QDNNs is proposed, which is re-
ferred to as high-low-high-low-precision (HLHLp) training scheme, that allows the
network to achieve flat minima on its loss surface with the aid of quantization noise.
As the name suggests, the proposed training method employs high-low-high-low pre-
cision for network training in an alternating manner. Accordingly, the learning rate

is also abruptly changed at each stage. Our obtained analysis results include that the

proposed training technique leads to good performance improvement for QDNNs com-
pared with previously reported fine tuning-based quantization schemes.

Moreover, the knowledge distillation (KD) technique that utilizes a pre-trained
teacher model for training a student network is exploited for the optimization of the
QDNNSs. We explore the effect of teacher network selection and investigate that of
different hyperparameters on the quantization of DNNs using KD. In particular, we
use several large floating-point and quantized models as teacher networks. Our ex-
periments indicate that, for effective KD training, softmax distribution produced by
a teacher network is more important than its performance. Furthermore, because soft-
max distribution of a teacher network can be controlled using KD hyperparameters, we
analyze the interrelationship of each KD component for QDNN training. We show that
even a small teacher model can achieve the same distillation performance as a larger
teacher model. We also propose the gradual soft loss reducing (GSLR) technique for
robust KD-based QDNN optimization, wherein the mixing ratio of hard and soft losses
during training is controlled.

In addition, we present a new QDNN optimization approach, namely stochas-
tic quantized weight averaging (SQWA), to design low-precision DNNs with good
generalization capability using model averaging. The proposed approach includes (1)
floating-point model training, (2) direct quantization of weights, (3) capture of multi-
ple low-precision models during retraining with cyclical learning rate, (4) averaging of
the captured models, and (5) re-quantization of the averaged model and its fine-tuning
with low learning rate. Additionally, we present a loss-visualization technique for the
quantized weight domain to elucidate the behavior of the proposed method. Our vi-
sualization results indicate that a QDNN optimized using our proposed approach is
located near the center of the flat minimum on the loss surface.
keywords: Quantized Deep Neural Networks, Fixed-point Optimization, Generaliza-
tion Capability, High-low-high-low-precision Training, Stochastic Quantized Weight
Averaging, Knowledge Distillation
student number: 2013-23122

ii

Contents

Abstract i
Contents iii
List of Tables vi
List of Figures X
1 INTRODUCTION 1
1.1 Quantization of Deep Neural Networks 1

1.2 Generalization Capability of DNNs 3

1.3 Improved Generalization Capability of QDNNs 3

1.4 Outline of the Dissertation 5

2 Analysis of Fixed-point Quantization of Deep Neural Networks 6
2.1 Introduction 6

2.2 Fixed-point Performance Analysis of Deep Neural Networks 8
2.2.1 Model Design of Deep Neural Networks 8

2.2.2 Retrain-based Weight Quantization 10

2.2.3 Quantization Sensitivity Analysis 12

224 Empirical Analysiso 13

2.3 Step Size Adaptation and Gradual Quantization for Retraining of Deep
Neural Networks L L. 22

iii

2.3.1 Step-size adaptation during retraining 22

2.3.2 Gradual quantization scheme 24
2.3.3 Experimental Results 24
24 Concludingremarks L oo 30

HLHLp:Quantized Neural Networks Training for Reaching Flat Minima

in Loss Surface 32
3.1 Introduction 32
32 RelatedWorks 33
3.2.1 Quantization of Deep Neural Networks 33
3.2.2 Flat Minima in Loss Surfaces 34
3.3 Training QDNN for Improved Generalization Capability 35
3.3.1 Analysis of Training with Quantized Weights 35
3.3.2 High-low-high-low-precision Training 38
34 Experimental Results 40
3.4.1 Image Classification withCNNs 41
34.2 Language Modeling on PTB and WikiText-2 44
3.4.3 Speech Recognitionon WSJ Corpus 48
344 Discussion 49
3.5 Concluding Remarks 55

Knowledge Distillation for Optimization of Quantized Deep Neural Net-

works 56
4.1 Introduction 56
4.2 Quntized Deep Neural Network Training Using Knowledge Distillation 57

4.2.1 Quantization of deep neural networks and knowledge distillation 58

4.2.2 Teacher model selectionforKD 59
4.2.3 Discussion on hyperparametersof KD 62
43 Experimental Results 0oL 62

v

4.3.1 Experimentalsetup 62

4.3.2 Results on CIFAR-10 and CIFAR-100 64
4.3.3 Model size and temperature 66
4.3.4 Gradual Soft Loss Reducing 68
44 ConcludingRemarks L oL 68

5 SQWA: Stochastic Quantized Weight Averaging for Improving the Gen-

eralization Capability of Low-Precision Deep Neural Networks 70
5.1 Introduction 70
5.2 Relatedworks 71

5.2.1 Quantization of deep neural networks for efficient implemen-

tations e e e 71

5.2.2 Stochastic weight averaging and loss-surface visualization . . 72

5.3 Quantization of DNN and loss surface visualization 73
5.3.1 Quantization of deep neural networks 73

5.3.2 Loss surface visualization for QDNNs 75

54 SQWAalgorithm oo 76

5.5 Experimentalresults 80
5.5.1 CIFAR-100 e 80

5.52 ImageNet 87

5.6 Concludingremarks 90

6 Conclusion 92
Abstract (In Korean) 110
Acknowlegement 112

2.1

2.2

23
24
2.5

2.6

List of Tables

Frame-level phoneme error rates (%) on the test set with the TIMIT
phoneme recognition with the RNN. Numbers in the parenthesis indi-
cate the ratio of the weights capacity compared to the floating-point
VEISION . & v v v v e o e e e e e e e e e e e e e e e e e e e 20
Bit per character on the test set with the English Wikipedia language

model with the RNN. Numbers in the parenthesis indicate the ratio of

the weights capacity compared to the floating-point version 20
Depthchange in DNN 21
Depthchangein CNN 22

Frame-level phoneme error rate (%) on the test set with the TIMIT
phoneme recognition examples. Note that ‘conventional’ is the base-

line [1] and ‘adaptive’ is the proposed scheme. 26
The error rate of the proposed quantization strategies on TIMIT phoneme
recognition task. The network is FFDNN with two 512 size hidden lay-

ers, and the floating-point result is 29.61%. ‘Conventional’ is general
retraining based quantization, ‘adaptive’ conducts proposed step size
adaptation, ‘gradual’ is curriculum learning style quantization scheme,

and ‘adaptive & gradual’ represents mixed approach using both tech-

DIQUES. « . v v v e e e e e e e 28

Vi

2.7

2.8

3.1

3.2

33
34

3.5

Miss classification rate on the test set with the SVHN house number
recognition example. The alphabets ‘L, ‘C’, and ‘V’ represent specific
structure of the CNN. The ‘L is the most smallest network and the ‘V’
is the biggest network. Please refer Section 2.3.3 for details.
Bit per character (BPC) on the test set with the English Wikipedia

language model.

Test accuracy on CIFAR-10 and CIFAR-100 dataset. The numbers in
the parenthesis are the accuracy difference between the floating and
the 2-bit models. Both fine-tuning and HLHLp results are an average
of fivetimesrunning.o
HLHLp training results on ResNet-18 ImageNet. In this experiment,
only the weights are quantized in 2-bit. The values in the parentheses
are the difference between the full-precision and quantized accuracy
(%) in literature. HLHLp result is an average of five times running. . .
Detailed results on ImageNet contaminated test for Top-5 accuracy.

PPL for 2-bit ternary and 2-bit 4-level weight quantized network of
LSTM and GRU based language models on PTB test set. We denote
2-bit ternary and 4-level as ‘“T” and ‘4’, respectively. The activations
are also quantized in 2-bit 4-level. The number in the parenthesis rep-
resents that the gap of the PPL between the 2-bit and full-precision in
literature. HLHLp result is an average of five times running.
Quantization results on WikiText-2 test set for 2-bit quantized net-
works. ‘FP’ means full-precision and ‘Difference’ represents the gap
between the PPL for 2-bit and full-precision in literature. HLHLp re-

sult is an average of five times running.

vii

42

44
46

3.6

3.7

3.8

4.1

4.2

4.3

4.4

5.1

HLHLp training results on WSJ corpus. We quantize both weight and
activations in 2-bit. ‘CER’ is character error rate (%) and ‘WER’ means
word error rate (%). ‘Clean’ represents the results on Aurora-4 clean
set, and ‘Noisy’ means the results on average of all noisy set. 49
Ablation study on GRU PTB LM. The results are reported in PPL.
Results in the same column represent obtained PPL with the exactly
sameepochs. 50

e-shaprness measurment. Lower value means flatter loss surface. . . . 52

Train and test accuracies of the quantized ResNet20 that was trained

with various KD methods on CIFAR-10 dataset. “Ty’, ‘T’, S’, ‘(F)’,

and ‘(Q)’ denote large teacher, teacher, student, (full-precision), and
(quantized), respectively. HD is a conventional training using hard

loss. T represents the temperature. Note that all the student networks

are 2-bit QDNN and the results are the average of five times running. . 61
Train and test accuracies (%) of the teacher networks on the CIFAR-10

and the CIFAR-100 datasets. ‘WRN20x/V’ denotes WideResNet with
awide factorof “N’. 63
Training results of full-precision and 2-bit quantized ResNet20 on CIFAR-

10 and CIFAR-100 datasets in terms of accuracy (%). The models are
trained with hard lossonly. 64
Results of QDNN training with KD on ResNet-20 for CIFAR-10 and
CIFAR-100 dataset. “WRN’,‘RN’, ‘SM’, ‘DS’ represent WideResNet,

ResNet, student model, and deeper student, respectively. 65

Train and test accuracies (%) of the full-precision ResNet-20 for the
SQWA training on CIFAR-100 dataset. ‘Conventional’ means training
without special techniques, ‘KD’ represents knowledge distillation [2],

and ‘SWA’ is stochastic weight averaging technique [3].. 80

viii

5.2

53

54

5.5

5.6

Train and test accuracies (%) of the quantized model during retrain-
ing with cyclical learning rate scheduling on CIFAR-100 dataset. The
left column represents the result obtained at the beginning phase of
retraining, while the right shows that at the last phase, 214th to 250th
epochs. ‘Avg.” means the averaged model using 7 models during cycli-
cal learning rate training with specific epochs, ‘Direct’ represents the
direct quantization results of the averaged model, and ‘Fine-tune’ is
the result after fine-tuning of direct quantized network.
Comparison with literature in terms of the test accuracy (%) for quan-
tized ResNet20 and MobileNetV2 on CIFAR-100.

Detailed ImageNet Top-1 and Top-5 accuracies (%) of the quantized

model during retraining with cyclical learning rate scheduling for ResNet18.

‘Avg.’ means the averaged model using seven models that obtained
from 202th to 238th epochs, ‘Direct’ represents the direct quantiza-
tion results of the averaged model, and ‘Fine-tune’ is the result after
fine-tuning of direct quantized network.
Effect of the number of captured models for averaging. The results
are reported in terms of top-1 accuracy after fine-tuning to achive final
2-bit QDNN model on the ImageNet dataset.
Comparison with literature in terms of the validation accuracy (%) for

2-bit ResNetl8 on ImageNet.

iX

2.1

22
23

24

25

List of Figures

The architectures of the DNNs that we employ in this chapter. The text
in the each figure represents sensitivity analysis group. In (c), each cir-
cle represents one layer which is a part of the LSTM. A dotted line
means a backward path and a solid line is a forward path. The plus
and multiplication signs show aggregation functions for summing and
multiplication, respectively. The graph in the circles means an activa-
tion function for logistic sigmoid or tanh.
Computation model for a unit in the hidden layer j.
Results of the sensitivity analysis for the FFDNN (a) and the CNN
(b). (c) and (d) show the performance of the direct quantization with
multiple precision for the FFDNN and the CNN, respectively.
Layerwise sensitivity analysis results of the weights in the phoneme
recognition and language model for RNN examples. In (a), the red
and black horizontal lines indicate the floating-point results for 512
and 256 LSTM size each. Similarly in (b), they indicate 1024 and 512
LSTMsizeeach.
Comparison of retrain-based and direct quantization for DNN. All the

weights are quantized with ternary and 7-level weights.

14

17

2.6

2.7

3.1
32

33

34

Overall fixed-point retraining algorithm with step size adaptation scheme,

where A is the quantization step size, w is the weight groups, net; is
the summed input value of unit 4, §; is the error signal of unit 4, M is
quantization points (2-bit quantization = 3 points, 3-bit quantization =
7 points), « is the learning rate, NV is the number of the weights in each
layer, A; and P; represent the activation of next and previous layer,
¢(+) is the activation function, F is the output error, and superscript

(¢) means the value is quantized.,

23

Training curves in terms of A4 for the FFDNN with the size of 256. 27

Examples of the added noises in the contaminated dataset.
3-D loss surface for test error on ResNet20 CIFAR-100. The three
points in (a) indicate full-precision (FLOAT), 2-bit QDNN that trained
with fine-tuning (Hlp), and 2-bit QDNN that trained with HLHLp
(HLHLp). The three points in (b) represent full-precision (FLOAT), 2-
bit QDNN that trained with HLHLp (HLHLp), and 2-bit QDNN that
trained with HLp (HLp). Note that HLp means 2-bit QDNN after the
second step of HLHL p training scheme.
lustrations of loss surface for train and test error on ResNet20 CIFAR-
100. The three points in (a) and (b) denote that W1 (float), W2 (2-bit
QDNN trained with [4]), and W3 (2-bit QDNN trained with HLHLp).
The three points in (c) and (d) denote that W1 (float), W2 (2-bit QDNN
trained with HLHLp), and W3 (2-bit QDNN trained with HLp).

Ilustrations of loss surface for VGG-16 CIFAR-10. (a) 32-bit floating-
point weight. (b) 2-bit ternary weight trained with a low learning rate
(c) 2-bit ternary weight trained with a large learning rate. (d) 2-bit

ternary weight obtained with HLHLp training.

Xi

51

53

4.1

4.2

4.3

5.1

5.2

53

54

5.5

Example of the softmax distribution for label 6 from the teacher mod-
els in Table 4.1. The numbers in square brackets are the CIFAR-10 test
accuracies of the student networks that trained by each teacher model. 60
Results of 2-bit ResNet20 that trained with varying the temperature ()
and the size of the teacher network on the CIFAR-10 and the CIFAR-
100 datasets. The numbers in x-axis represent the wide factor (/V) for
WideResNet20x/N. e 66
Results of 2-bit ResNet20 models that trained by the various size of
teacher networks and the temperature on CIFAR-100. In (b), the black
horizontal line represents the test accuracy when the student network

is trained with hard labelonly. 67

Visualization of three QDNNSs in a single loss surface with the conven-

tional method [3] (a) and ours (b). Three models are captured during
fixed-point retraining. The points of w1, w2, and w3 represent the
captured models at 214th, 232th, and 250th epochs, respectively. . . . 77
Intuitions of the SWA and the SQWA. 78
(Top): Cyclical learning rate scheduling for CIFAR-100 dataset, (Middle):
the test accuracy curve with ResNet20, (Bottom): the sampled test ac-
curacy curve from the every minimum learning rates with ResNet20. . 81
Visualization in terms of train accuracies of three quantized models

on a single loss surface. (a) is depicted by [3] and (b) is by ours. The
points of ‘w2’, ‘wl’, and ‘w3’ represent ‘Epoch 214°, ‘Direct’, and
‘Fine-tune’ in Table 5.2, respectively. 86
(Top): Cyclical learning rate scheduling for ImageNet dataset, (Middle):

a validation top-1 accuracy curve with ResNet18, (Bottom): the sam-

pled top-1 accuracy curve from the every minimum learning rates in

thecycle. e 87

Xii

Chapter 1

INTRODUCTION

1.1 Quantization of Deep Neural Networks

Deep neural networks (DNNs) employ artificial neurons that contain many synaptic
weights and have a considerably good generalization capability for many applications
across different fields [5, 6, 7]. However, significant memory requirements and com-
putational costs hinder the implementation of DNN-based models for applications in
limited resource environments such as on mobile phones or Internet of Things (IoT)
devices. For example, state-of-the-art architectures, such as ResNet [5], DenseNet [8],
and PyramidNet [9], contain 6.8, 25.6, and 116.4 million parameters, respectively.
Quantization of DNNs is among the most popular and effective approaches to allevi-
ate the abovementioned problem.

Fixed-point implementation of signal processing algorithms has long been of in-
terest for VLSI-based design of multimedia and communication systems. Some early
works on this used statistical modeling of quantization noise that had been originally
developed for linear digital filters. Furthermore, a previously proposed simulation-
based word-length optimization method utilized simulation tools to evaluate fixed-
point performance of the system [10]. Ternary (+1, 0, -1) coefficients-based digital

filters were used to eliminate multiplications at the cost of higher quantization noise.

The implementation of adaptive filters with ternary weights were developed, but it
required oversampling to reduce quantization noise [11].

Fixed-point shallow neural network design has also been studied to reduce hard-
ware implementation costs [12]. In [13], backpropagation simulation with 16-bit in-
teger arithmetic was conducted for several applications such as NetTalk, Parity, and
Protein. The authors conducted experiments with different number of hidden units, but
the number of hidden units was relatively small. The integer simulations showed good
results for NetTalk and Parity benchmarks, but not for Protein benchmark. Further-
more, with direct quantization of trained weights, this work also showed satisfactory
operational neural network performance with 8-bit precision. An implementation with
ternary weights was reported for neural network design with optical fiber networks
[14]. In this ternary network design, the authors employed retraining after direct quan-
tization of weights to improve performance of a shallow network.

Recently, fixed-point design of DNNs was revisited in [1] and [15], by which con-
siderably good performance similar to floating-point models was achieved using the
quantization training algorithm. Based on these works, further research has been con-
ducted employing this quantization training scheme by combining various quantizers
including uniform [16, 17, 18, 19, 20], asymmetric uniform [21], non-uniform [22],
and differential [23, 24, 25, 26, 27] quantizers. Furthermore, elaborate techniques
for optimization of DNN have been combined with quantization training, including
knowledge distillation (KD) [2], weight normalization [28], and stochastic weight av-
eraging [3]. Quantization training of DNNs with KD loss was studied in [29] and
[30]. Apprentice [30] showed that employing a pre-trained full-precision teacher and
student models are advantageous to achieve high accuracy of the quantized student
network. Moreover, weight normalization can improve the performance of quantized
DNNs (QDNNSs) because it can help in eliminating long-tail distribution of network
weights [31]. Employing a stochastic weight averaging technique to train QDNNS in

low-precision (i.e., 8-bit) environments, including their weights, activations, and gra-

dients, can improve their training efficacy [32].

1.2 Generalization Capability of DNNs

Unlike traditional machine learning algorithms, DNNs trained with stochastic gra-
dient descent (SGD) do not easily overfit even when the the network size increases
significantly, i.e., these neural networks have a high generalization capability. Many
previous studies have closely explored the reason for this high generalization capabil-
ity [33, 34, 35]. An early work claimed that a flat minimum of the loss or error function
in such networks is the cause of their typically high generalization capability [33]. In
addition, a recent work revealed that the ratio of learning rate to batch size is key to
determine the flatness of the loss surface of a neural network [34]. A flatness of the
trained model is evaluated with the sharpness of the loss function via a heuristic metric
(i.e., e—sharpness) in [35].

Thus, visualization of the loss surface is useful for understanding the generaliza-
tion capability of DNNs. A three-dimensional visualization method for the loss surface
of a DNN was proposed by [36]; they employed a filter normalization method to rep-
resent loss function curvatures. In addition, they showed that the residual connection
in ResNet architectures [5] leads to flattening of their loss surfaces. Visualizing three
models on a single loss surface is also exploited to understand the relationship between
the networks [37, 3]. They found that the minima of these models on the loss surface

trained using SGD were closely-connected.

1.3 Improved Generalization Capability of QDNNs

As discussed in the previous subsections, the quantization method for, and generaliza-
tion capability of DNNs have been actively studied in recent years. In the same vein,
in this study, we attempt to improve the performance of QDNNSs by increasing their

generalization capability. To this end, in Chapter 2, we investigate the performance

resiliency of QDNNs for retraining-based quantization [1] with varying widths and
depths. We observed that a small quantized model shows more performance degrada-
tion than a large one. Therefore, we proposed two simple quantization methods that
perform well for small networks. The first method involves adjusting the quantization
step size, while the second involves gradually decreasing the word-length from 8 to 2
bits during quantization training.

Most previous studies related to the generalization capability of DNNs trained with
SGD have typically reported that batch size and learning rate are important hyperpa-
rameters that determine the flatness of minima on the loss surface of those DNNs. We
showed that learning rate and quantization bit precision is related to the generalization
capability of the quantized models and proposed a new QDNN training method, re-
ferred to as high-low-high-low-precision (HLHLp), which controls both learning rate
and word-length during quantization training; this has been discussed in Chapter 3.

Chapter 4 presents detailed information regarding quantization training with KD.
In particular, we showed that the distribution produced by a teacher network is more
important than the performance of the teacher network itself to obtain high accuracy
of student model. In addition, we determine that if the produced distribution is appro-
priately adjusted using the hyperparameters for KD, then the student network can be
trained well even with a poor teacher network.

In Chapter 5, we discuss our proposed stochastic quantized weight averaging (SQWA)
method that applies the recently reported stochastic weight averaging (SWA) technique
to quantization training. The SWA technique employs cyclical learning rate scheduling
and captures models when the learning rate is lowest in the cycle. The captured mod-
els are then averaged to obtain the final model. This averaging technique leads to the
resulting model located at the center of the basin on the loss surface. We observe that
this significantly improves the performance of QDNNSs. In general, quantization can
be interpreted as adding quantization noise to the weights of a DNN. The lower the

bit-precision is, the stronger the quantization noise is. Thus, quantized weights may

locate the model at the minima’s edge on the basin. Thus, forcing to locate the net-
work to the center of the basin can greatly improve the generalization capability of the
quantized model. Furthermore, we presented a loss surface visualization method for
three QDNNSs on a single loss surface in order to analyze their inter-relationship on the

quantization domain.

1.4 Outline of the Dissertation

This dissertation is organized as follows. Chapter 2 analyzes the performance re-
siliency of QDNNs using the retraining-based quantization. In addition, we discuss
two proposed simple techniques, namely adaptive step size retraining and gradual
quantization, to improve the performance of small QDNNSs. In Chapter 3, we present
information showing that the learning rate and quantization precision are important
hyperparameters that affect the loss surface of QDNNs. Based on our analyses, we
introduce the HLHLp training scheme that helps to improve the generalization capa-
bility of QDNNSs. In our study, we employ KD to improve the performance of QDNNSs:
this is discussed in Chapter 4. Furthermore, our proposed SQWA training scheme is
described in Chapter 5. Moreover, we propose a visualization method for QDNNSs.
Finally, Chapter 6 concludes our dissertation.

It should be noted that significant portions of the information presented in Chapters
2 and 3 was previously published in [38, 18, 19, 39]; in addition, Chapters 4 and 5 have
been submitted to ICASSP 2020 and CVPR 2020, respectively.

Chapter 2

Analysis of Fixed-point Quantization of Deep Neural

Networks

2.1 Introduction

Real-time implementation of DNNs usually demands many arithmetics and weight
fetch operations. Thus, word-length optimization is needed in embedded applications
to reduce the strength of arithmetic and the size of the weight storage. However, direct
quantization of deep neural networks usually does not show satisfactory performance
with very low precision weights. Thus, retraining on quantized domain should be em-
ployed. With the algorithm, even ternary valued weights (+1, 0, and -1) for a DNN have
yielded satisfactory performance [18, 1]. Recently, several improved fixed-point opti-
mization methods are developed by employing retraining based fine tuning [40, 41].
Also, VLSI and FPGA based deep neural networks have been implemented using
fixed-point weights [42, 43, 44, 45, 46].

In this chapter, we try to investigate the retraining algorithm that can recover
the performance of feed-forward DNNs (FFDNNs), convolutional neural networks
(CNNs), and recurrent neural networks (RNNs) with low-precision weights. For this

study, the network complexity is changed to analyze their effects on the performance

gap between floating-point and retrained low-precision fixed-point deep neural net-
works. We also conduct layer-wise sensitivity analysis to investigate which layer is
more robust to quantization.

We conduct our experiments with an FFDNN for phoneme recognition, a CNN
for image classification, and RNNs for phoneme recognition and language modeling.
To control the network size, not only the number of units in each layer but also the
number of hidden layers are varied in the FFDNN. For CNN, the number of feature
maps for each layer and the number of layers are both changed. The RNN employs
the long short-term memory (LSTM) model to analyze the sensitivity of each layer.
This analysis intends to find an insight into the knowledge representation capability of
highly quantized networks, and also provides a guideline to network size and word-
length determination for efficient hardware implementation of DNNS.

Based on the analysis, improved retraining algorithms are developed for fixed-
point optimization of deep neural networks. The previous works determine the op-
timum quantization step size based on the distribution of floating-point weights and
freeze the step-size during the retraining period [1, 40]. The proposed algorithm adap-
tively determines the step-size at the re-quantization step during retraining. Since the
weight values change much at the beginning of retraining, this approach is especially
effective when applied at initial retraining epochs. In order to change the weight val-
ues less abruptly, we also propose and evaluate the gradual quantization method. In
this scheme, floating-point weights are converted to, for example, 6-bit weights, which
are then converted to 4-bit weights, and so on. We evaluate the proposed schemes in
three different networks: FFDNNs, CNNs, and RNNs. The proposed methods yielded

better results compared to the previous retrain-based quantization schemes.

2.2 Fixed-point Performance Analysis of Deep Neural Net-

works

This section explains the design of FFDNN, CNN, and RNN. We also review the fixed-
point optimization procedure and analyze their resilient properties with the retraining

algorithm [1].

2.2.1 Model Design of Deep Neural Networks

To analyze the properties of DNN under quantization, we employ three tasks including
phoneme recognition, image classification, and language modeling. We use FFDNN
and RNN for phoneme recognition, CNN for image classification, and language mod-
eling for RNN. The FFDNN, CNN, and RNN architectures are depicted in Figure 2.1.

The reference FFDNN has four hidden layers. Each of the hidden layers has IV},
units; the value of IV, is changed to control the complexity of the network. We con-
duct experiments with the Ny, size of 32, 64, 128, 256, 512, and 1024. The number
of hidden layers is also reduced. The input layer of the network has 1,353 units to ac-
cept 11 frames of a Fourier-transform-based filter-bank with 40 coefficients (+energy)
distributed on a mel-scale, together with their first and second temporal derivatives.
The output layer consists of 61 softmax units which correspond to 61 target phoneme
labels. Phoneme recognition experiments were performed on the TIMIT corpus. The
standard 462 speaker set with all SA records removed was used for training, and a sep-
arate development set of 50 speakers was used for early stopping. Results are reported
for the 24-speaker core test set.

The CNN consists of three convolution and pooling layers and a fully connected
hidden layer with 64 units, and the output has 10 softmax units. We control the num-
ber of feature maps in each convolution layer. The reference size has 32-32-64 feature
maps as used in [47]. We did not perform any preprocessing and data augmentation

such as zero-phase component analysis (ZCA) whitening and global contrast normal-

Input hl h2 h3 h4 Output Input Cl s1 C2 s2 C3 s3 F1

(a) A FFDNN with 4 hidden layers. (b) A CNN with 3 convolution layers and 1 fully-

connected layers.

Previous

Output Output Output

Input [2 i3

Output gate

(c) A structure of LSTM layer (d) An RNN with 3 LSTM layers.

Figure 2.1: The architectures of the DNNs that we employ in this chapter. The text in
the each figure represents sensitivity analysis group. In (c), each circle represents one
layer which is a part of the LSTM. A dotted line means a backward path and a solid
line is a forward path. The plus and multiplication signs show aggregation functions for
summing and multiplication, respectively. The graph in the circles means an activation

function for logistic sigmoid or tanh.

ization [48]. To know the effects of network size variation, the number of feature maps
is reduced or increased. The configurations of the feature maps used for the experi-
ments are §8-8-16, 16-16-32, 32-32-64, 64-64-128, 96-96-192, and 128-128-256. The
number of feature map layers is also changed, resulting in 32-32-64, 32-64, and 64
map configurations. Note that the fully connected layer on the CNN is not changed.
We employ two RNNs for phoneme recognition and language modeling. For both
applications, we construct three LSTM layers. The RNNs for acoustic and language
models have 512 and 1024 memory cells, respectively. For the data preprocessing in
acoustic modeling, we employ exactly the same setup with the FFDNN case. English
Wikipedia dataset is used for language modeling. Since we use the character-level
language model, the input and output layers contain 256 linear units to accept ASCII

code.

2.2.2 Retrain-based Weight Quantization

The retrain based quantization method includes the fixed-point conversion process in-
side of the training procedure so that the network learns the quantization effects [1].
This method shows much better performance when the number of bits is small.

A symmetric uniform quantization function, Q(-), is defined as follows:
M-1
Q(w) =sgn(w) - A - mm<{[ﬁ| + 0.5J , 2) =A-z, (2.1)

where sgn(-) is the sign function, A is a quantization step size, w is the set of the
floating-point weights, and M represents the number of quantization levels. Note that
M is normally an odd number since the weight values can be positive or negative.
When M is 5, the weights are represented by —2A, —A, 0, A, and 2A, which can be
stored in 3 bits.

For selecting a proper step size A, the L2 error minimization criteria is applied as

10

adopted in [1]. The quantization error E is represented as follows:

N N

EZ52(@(%’)—%)2:%Z(A'Zi—wi)Q, (2.2)

i=1 i=1
where N is the number of weights in each layer, w; is the ¢-th weight value in the
floating-point precision, and z; is the integer membership of w;. The quantization error
FE is minimized by the following two step iterative computation.

2 = argmin E(w, z, A®D)
z

=sgn(w;) - mm({igﬂl) + 0.5J , M2— 1) 2.3)
> - 2!
AW = argininE(w, z0 A) = 71':]; o (2.4)

where the superscript (¢) indicates the iteration step. Equation (2.3) can be computed
using Equation (2.1) and Equation (2.4) can be solved by using the derivative of the
error with respect to A®) to be zero. The iteration stops when A(®) is converged.
Activation can be quantized with a symmetric uniform quantizer. In the stan-
dard DNNSs, the popular activation functions are logistic sigmoid, rectified linear unit

(Relu), or tanh.

1

sigmoid(x) = T (2.5)
tanh(z) = = (2.6)

et —e
Relu(x) = max(0, x) 2.7

The output ranges of the sigmoid and the tanh are limited by O to 1 and -1 to 1, respec-
tively. The quantization step size A is determined by the quantization level M. For
example, if the signal word-length is two bits (M is four), the quantization points are
0/3, 1/3, 2/3, and 3/3 for the sigmoid and -1/1, 0/1, and 1/1 for the tanh. However sig-

nals of Relu units are not bounded and their quantization range should be determined

11

empirically. Thus, Relu can follows the same scheme with the weight quantization
strategy.

After the direct quantization, the retraining procedure follows. We maintain both
floating-point and quantized weights, since applying the backpropagation algorithm
directly to quantized weights usually does not work. The reason is that the amount of
weights to be changed on each training step is much smaller than the quantization step

size A. The entire retraining based quantization algorithm can be described as follows:

net; = Z ngq)y](q)

JEA;
'V = Ri(i(net;)) 2.8)
0; = &) (nety) Y Grwl? 2.9)
i€P;
OE _ © ()
G = 0, (2.10)
s _w“_a< OF >
ij,new ©j 8wij
w? o = Qij(Wijnew) @.11)

where net; is the summed input value of the unit 4, §; is the error signal of the unit
i, w;j is the weight from the unit j to the unit 7, y; is the output signal of the unit
J, o is the learning rate, A; is the set of units anterior to the unit ¢, P; is the set of
units posterior to the unit j, R(+) is the signal quantizer, Q(-) is the weight quantizer,
¢(+) is the activation function, the superscript (¢) indicates quantization, and (-) is an
average operation via the mini-batch. Equation (2.8), (2.9), (2.10), and (2.11) represent

the forward, backward, gradient calculation, and weights update phases each.

2.2.3 Quantization Sensitivity Analysis

DNNss usually contain millions of weights and thousands of signals. Therefore, it is
necessary to group them according to their range and the quantization sensitivity [10].
Fortunately, a neural network can easily be grouped layerwisely. Throughout this sen-

I ey 1
":l"\-_i _'-;.- ok 11

12

sitivity check, we can identify which layer in the neural network needs more bits for
quantization. For example, the RNN for the phoneme recognition contains three hid-
den LSTM layers. Thus the weights can be grouped into 7 groups, which are In-L1,
L1, L1-L2, L2, L.2-L.3, L3, and L3-Out groups, where In-L1 connects input and the
first LSTM layer and L1 is the recurrent path in the first LSTM layer. Figure 2.1 (a),
(b), and (d) illustrate the weight and signal grouping for FFDNN, CNN, and RNN, re-
spectively. In the sensitivity analysis, we only quantize the selected group while those

in other groups are remaining in full-precision.

2.2.4 Empirical Analysis
Results of Sensitivity Analysis

The quantized weight can be represented as follows,

w! = w; + wd (2.12)

P =

where wf is the distortion of each weight due to quantization. In the direct quantiza-

tion, we can assume that the distortion wf is not dependent each other.
Consider a computation procedure for a unit in a hidden layer, the signals from
the previous layer are summed up after multiplication with the weights as illustrated

in Figure 2.2 (a). We can also assemble a model for distortion, which is shown in Fig-

d

ure 2.2 (b). In the distortion model, since w; is independent of each other, we can
assume that the effects of the summed distortion are reduced according to the random
process theory. This analysis means that the quantization effects are reduced when the
number of units in the anterior layer increases, but slowly.

Figure2.3 (a) illustrates the performance of the FFDNN with floating-point arith-
metic, 2-bit direct quantization of all the weights, and 2-bit direct quantization only
on the weight group ‘In-h1’, ‘h1-h2’, and ‘h4-out’. Consider the quantization perfor-
mance of the ‘In-h1’ layer, the phone-error rate is higher than the floating-point result

with an almost constant amount, about 10%. Note that the number of input to the

13

3¢ 7]

(a) Floating-point (b) Distortion

Figure 2.2: Computation model for a unit in the hidden layer j.

‘In-h1’ layer is fixed, 1353, regardless of the hidden unit size. Thus, the amount of
distortion delivered to each unit of the hidden layer 1 can be considered unchanged.

Figure2.3 (a) also shows the quantization performance on ‘h1-h2’ and ‘h4-out’
layers, which informs the trend of the reduced gap to the floating-point performance as
the network size increases. This can be explained by the sum of the increased number
of independent distortions when the network size grows. The performance of all 2-
bit quantization also shows a similar trend of the reduced gap to the floating-point
performance. But, apparently, the performance of 2-bit directly quantized networks is
not satisfactory.

In Figure2.3 (b), a similar analysis is conducted to the CNN with direct quantiza-
tion when the number of feature maps increases or decreases. In the CNN, the number
of input to each output is determined by the number of input feature maps and the ker-
nel size. For example, at the first layer C1, the number of input signals for computing
one output is only 75 (=3x25) regardless of the network size, where the input map
size is always 3 and the kernel size is 25. However, at the second layer C2, the number

of input feature maps increases as the network size grows. When the feature map of

14

90

®©
=]

@
=)

Phone error rate (%)

a
=)

40

30

90

80

Phone error rate (%)

I3
=)
T

~
o

—o— floating result
—6— all direct
—%—In-h1
—#—h1-h2
—a—h4-out

80

~
=]
T

60

IS
S
T

Miss classification rate (%)

a
o

/

4

4

{
i

—e— floating result
—+—In-C1
—=—S1-C2
—%—S2-C3 1

; : i
32 64 128 256 512 1024 8-16 16-32 32-64 64-128 96-192128-256
Size of the network Size of the network
(a) FFDNN (b) CNN
T T T T
T T T T
L < floating result| — & floating result
. N L —&— 8 bit direct
—*— 8 bit direct 80 ——— 6 bt direct
—v— 6 bit direct &— 5 bit direct
r —=— 4 bit direct 4 —&— 4 bit direct
L bit d
—=— 2 bit direct ™ e
L 1 — b
60

501

Miss classification rate (%)

IS
S
T

(c) FFDNN

L ! i
32-32-64 64-64-128 128-128-256

Size of the network

L
16-16-32

(d) CNN

Figure 2.3: Results of the sensitivity analysis for the FFDNN (a) and the CNN (b). (¢)

and (d) show the performance of the direct quantization with multiple precision for the

FFDNN and the CNN, respectively.

15

I

TU

156 A,
L2 5 \

Floating result(1024)
Floating result(512)

Floating result(512)
Floating result(256)

miss classification rate(%)

2
the number of quantization levels in bits the number of quantization levels in bits

(a) (b)

Figure 2.4: Layerwise sensitivity analysis results of the weights in the phoneme recog-
nition and language model for RNN examples. In (a), the red and black horizontal lines
indicate the floating-point results for 512 and 256 LSTM size each. Similarly in (b),
they indicate 1024 and 512 LSTM size each.

32-32-64 is considered, the number of inputs for the C2 layer grows to 800 (=32x25).
Thus, we can expect a reduced distortion as the number of feature maps increases.

Figure 2.3 (c) shows the performance of direct quantization with 2, 4, 6, and 8-bit
precision when the network complexity varies. In the FFDNN, 6-bit direct quantization
seems enough when the network size is larger than 128. But, small FFDNNs demand
8 bits for obtaining a near floating-point performance. The CNN in Figure 2.3 (d) also
shows the similar trend. The direct quantization requires about 6 bits when the feature
map configuration is 16-16-32 or larger.

Figure 2.4 (a) shows the result of the layerwise sensitivity analysis of RNN phoneme
recognition. The original phoneme error rate was 27.26% and 28.63% for the LSTM
RNN with 512 and 256 memory cells, respectively. The results indicate that all layers
except the input-LSTM1 group shows almost the same quantization sensitivity and re-
quires only two bits for weight representation. Input-LSTM1 weights group demands
at least three quantization bits. In the signal sensitivity analysis, all layers need only

three to five quantization bits.

16

—o— floating result

—— 2bit direct 4
—<— 2bit retraining
#— 3 bit di
—a— 3 bit retraining
’

—o— floating result 4 801
——— 2 bit direct
—+— 3 bit direct

7 2 bit retrain
—=&— 3 bit retrain

~
=]
T

~
=}
T

@
3
A

)
=]
T

a
S
e

Phone error rate (%)
Miss classification rate (%)
/

(4]
=]
‘
»
o
pAq

N
=)

w
=}
T

I

L
32-64 64-128 96-192128-256

Size of the network

L
16-32

128 256
Size of the network

32 64

(a) DNN (b) CNN

Figure 2.5: Comparison of retrain-based and direct quantization for DNN. All the

weights are quantized with ternary and 7-level weights.

Figure 2.4 (b) shows the layerwise sensitivity analysis results of the RNN language
model. The bit per character (BPC) of the floating-point language model with the layer
size of 1024 was 1.485. The analysis shows that the most sensitive weights group of the
network is the L3-Out layer. Note that the last RNN layer is connected to the softmax
layer. The first weights group shows low sensitivity when compared to the phoneme
recognition example. This is because the one-hot encoding of the ASCII code is used
for the input in this language model. The LSTM RNN has two types of paths, the
forward and the recurrent connections. For both paths, the layer that is close to the
output layer shows higher quantization sensitivity. The sensitivity analysis of signals

shows that a minimum of four or five bits is needed for the activation quantization.

Results on Fully Quantized DNNs

The fixed-point performance of the FFDNN is shown in Figure 2.5 (a) when the num-
ber of hidden units in each layer varies. The performance of direct 2 bits (ternary
levels), direct 3 bits (7-levels), retrain-based 2 bits, and retrain-based 3 bits are com-
pared with the floating-point simulation. We can find that the performance gap between

the floating-point and the retrain-based fixed-point networks converges very fast as the

17

network size grows. Although the performance gap between the direct and the floating-
point networks also converges, the rate of convergence is significantly different. In this
figure, the performance of the floating-point network almost saturates when the net-
work size is about 1024. Note that the TIMIT corpus that is used for training has only
3 hours of data. Thus, the network with 1024 hidden units can be considered in the
‘training-data limited region’. Here, the gap between the floating-point and fixed-point
networks almost vanishes when the network is in the ‘training-data limited region’.
However, when the network size is limited, such as 32, 64, 128, or 256, there is some
performance gap between the floating-point and highly quantized networks even if
retraining algorithm is performed.

The similar experiments are conducted for the CNN while varying the number of
the feature maps, and the results are shown in Figure 2.5 (b). The configurations of
the feature maps used for the experiments are 8-8-16, 16-16-32, 32-32-64, 64-64-128,
96-96-192, and 128-128-256. The size of the fully connected layer is not changed.
In this figure, the floating-point and the fixed-point performances with retraining also
converge very fast as the number of feature maps increases. The floating-point perfor-
mance saturates when the feature map size is 128-128-256, and the gap is less than
1% when comparing the floating-point and the retrain-based 2-bit networks. However,
also, there is some performance gap when the number of feature maps is reduced. This
suggests that a fairly high-performance feature extraction can be designed even using
very low-precision weights if the number of feature maps can be increased.

Using the sensitivity analysis results, we construct a fully quantized LSTM RNN
and the results are shown in Table 2.1 and Table 2.2 for phoneme recognition and
language modeling, respectively. The results of the phoneme recognition show that the
phoneme error rate of 27.74% is achieved with only about 10% of the weight capacity
of the floating-point model. When compared to the phoneme recognition example,
the language modeling needs more quantization bits over the results as observed in

the sensitivity analysis. A reasonable BPC was achieved with two more bits for both

18

weights and signals than the sensitivity analysis result. The memory space needed for

weights is only 16.75% when compared to the floating-point model.

Fixed-point performances when varying the depth

It is well known that increasing the depth usually results in positive effects on the per-
formance of a DNN [49]. The network complexity of a DNN is changed by increasing
or reducing the number of hidden layers or feature map levels. The result of fixed-
point and floating-point performances when varying the number of hidden layers for
the FFDNN is summarized in Table 2.3. The number of units in each hidden layer is
512. This table shows that both the floating-point and the fixed-point performances of
the FFDNN increase when adding hidden layers from 1 to 4. The performance gap be-
tween the floating-point and the fixed-point networks shrinks as the number of levels
increases.

The network complexity of the CNN is also varied by reducing the number of
levels as reported in Table 2.4. As expected, the performance of both the floating-point
and retrain-based low-precision networks degrades as the number of levels is reduced.
The performance gap between them is very small with 7-level quantization for all
feature map levels.

These results for the FFDNN and the CNN with a varied number of levels also
indicate that the effects of quantization can be much reduced by retraining when the

network contains some redundant complexity.

Discussion

In this section, we control the network size by changing the number of units in each
hidden layer, the number of feature maps, or the number of levels. At any case, re-
duced network complexity lowers the resiliency to quantization. This work seems to
be directly related to several network optimization methods, such as pruning, fault tol-

erance, and decomposition [50, 41, 51, 52]. In the pruning, retraining of weights is

19

Table 2.1: Frame-level phoneme error rates (%) on the test set with the TIMIT
phoneme recognition with the RNN. Numbers in the parenthesis indicate the ratio

of the weights capacity compared to the floating-point version

Layerwise quantization bits FER(%)

Weights bits Signal bits
(In-L1,L1,L1-L2,L2, (Input, L1, Direct Retrain
L2-L.3, L3, L3-Out) L2,L3)

3-2-2-2-2-2-2 (6.39%) 4-4-3-5 48.00 28.74

4-3-3-3-3-3-3 (9.52%) 4-4-3-5 3437 28.87

3-2-2-2-2-2-2 (6.39%) 5-5-4-6 31.65 27.79
4-3-3-3-3-3-3 (9.52%) 5-5-4-6 3154 2774

Table 2.2: Bit per character on the test set with the English Wikipedia language model
with the RNN. Numbers in the parenthesis indicate the ratio of the weights capacity

compared to the floating-point version

Layerwise quantization bits BPC
Weights bits
Signal bits . .
(In-L1, L1, L1-L2, L2, Direct Retrain
(L1,L2, L3)

L2-L3, L3, L3-Out)

2-2-3-4-4-4-6 (10.52%) 6-6-7 3.623 1.546
3-3-4-5-5-5-7 (13.64%) 6-6-7 1.641 1.510
4-4-5-6-6-6-8 (16.75%) 6-6-7 1.517 1.499
2-2-3-4-4-4-6 (10.52%) 7-7-8 3.613 1.545
3-3-4-5-5-5-7 (13.64%) 7-7-8 1.639 1.508
4-4-5-6-6-6-8 (16.75%) 7-7-8 1.517 1.499

20

Table 2.3: Depth change in DNN

Number of layers . . .
Quant Level Direct Retraining Difference

(Floating-point result)

4 3-level 48.13% 31.86% 1.55%
(30.31%) 7-level 34.77% 31.49% 1.18%
3 3-level 49.27% 33.05% 2.24%
(30.81%) 7-level 36.58% 31.72% 0.91%
2 3-level 47.74% 33.89% 2.38%
(31.51%) 7-level 36.99% 33.04% 1.53%
1 3-level 69.88% 38.58% 391%
(34.67%) 7-level 56.81% 36.57% 1.90%

conducted after zeroing small valued weights. The effects of pruning, fault tolerance,
and network decomposition efficiency would be dependent on the redundant represen-
tation capability of DNNS.

This study can be applied to hardware efficient DNN design. For design with lim-
ited hardware resources, when the size of the reference DNN is relatively small, it is
advised to employ a very low-precision arithmetic and, instead, increase the network
complexity as much as the hardware capacity allows. But, when the DNNs are in the
performance saturation region, increasing the arithmetic precision is not recommended
because growing the ‘already-big’ network size brings almost no performance advan-
tages.

Even though the retraining based quantization can alleviate the loss due to quanti-
zation, small networks are not resilient. Thus, it is very important to find the quantiza-

tion method that also works well with small networks.

21

Table 2.4: Depth change in CNN

Layer . . .
Quant Level Direct Retraining Difference

(Floating-point result)

64 3-level 72.95% 35.37% 1.18%
(34.19%) 7-level 46.60% 34.15% -0.04%
32-64 3-level 55.30% 29.51% 0.22%
(29.29%) 7-level 39.80% 29.32% 0.03%
32-32-64 3-level 79.88% 27.94% 1.07%
(26.87%) 7-level 47.91% 26.95% 0.08%

2.3 Step Size Adaptation and Gradual Quantization for Re-

training of Deep Neural Networks

2.3.1 Step-size adaptation during retraining

As described in Section 2.2.2, the conventional method freezes the step size during
the retraining. However, in many cases, the weight values change much by retraining.
Note that the amount of change decreases as the retraining iteration progresses. Thus,
it is advantageous for improving the performance to adjust the quantization step size
during the retraining. Especially, the need for step size adaptation is greater at the
beginning of retraining. The proposed scheme adds the determination of A,,.,, at the
weight update stage of Figure 2.6.

We update the quantization step size during retraining by using the L2 error min-
imization between the floating-point and fixed-point weights. We consider two differ-
ent quantization step size update timing. The first one is ‘epoch-level update’, and the
other is ‘1 epoch update & fix’. The ‘epoch-level update’ changes the step size at every
epoch. The ‘1 epoch update & fix’ updates the step size only during one or two epochs

and freezes it for the remaining epochs. In our empirical evaluation, the first scheme is

22

- Quantization step size determining:
A = QStep(w) =
1 X 2
argmin = Y (Q(wi, A) — wi)
A 2

- Quantized weighfs:

w@ = Qw,A) =
sgn(w) - A - mm({% + 0.5J ; ?)

- Forward:
neti = Y wily;
JEA;
yi = ¢i(net;)
- Backward:
5; = ¢;(net;) > Sy
icP;
- Gradient calculation:
OF
Ow;; — 0
ij
- Weights update:

oF

Wijnew = Wij — &
’ 8w1
J

Apew = QStep(wijnew) (Proposed scheme)

Wy = Qi (Wijmew, Anew)

Figure 2.6: Overall fixed-point retraining algorithm with step size adaptation scheme,
where A is the quantization step size, w is the weight groups, net; is the summed
input value of unit ¢, §; is the error signal of unit 4, M is quantization points (2-bit
quantization = 3 points, 3-bit quantization = 7 points), « is the learning rate, NV is the
number of the weights in each layer, A; and P; represent the activation of next and
previous layer, ¢(-) is the activation function, E is the output error, and superscript (q)

means the value is quantized.

23

good for FFDNNs, but the second one shows better results for CNNs and RNNS.

2.3.2 Gradual quantization scheme

We also propose another step size adaptation approach which is similar to the cur-
riculum learning. The curriculum learning is a training strategy to move the goal from
an easy level to a more complex one gradually [53]. One of the important points in
curriculum learning is how to organize the tasks from easy to complex ones. We con-
sider that the fixed-point optimization with a small number of bits is a more difficult
problem than that with a large one.

In the proposed scheme, we begin fixed-point optimization with fairly high preci-
sion, such as 6 bits, and then keep lowering the word-length by one bit with retraining
for each precision. At each retraining process with a given precision, we also combine
the proposed quantization step size adaptation scheme. The experiments are conducted

for FFDNN .

2.3.3 Experimental Results

The proposed step size adaptation is evaluated for three applications. We employ
FFDNNs for phoneme recognition, CNNs for house number recognition, and RNNs
for language modeling. To analyze the effect of step size adaptation, we change the

size of networks and their word lengths.

Phoneme recognition using feed-forward deep neural networks

The FFDNN is trained with the TIMIT corpus [54], and the detailed experimental
condition for the data preprocessing is the same with [55]. We construct 11 consecu-
tive frames as the network input. The output layer supports 61 labels, and the labels
are merged into 39 classes for the final evaluation. For performance evaluation, the
number of units in each layer increases from 64 to 1024. We train the floating-point

networks using the stochastic gradient descent (SGD) with Nesterov momentum [56].

24

The learning rate decreases from 2e-3 to 3.90625e-6 with a factor of 2 when the devel-
opment set does not show improvements for 4 consecutive evaluations. For fixed-point
networks training, all other conditions are the same with the floating-point case but the
initial learning rate is Se-4.

The results of fixed-point optimization for FFDNNs with and without the step size
adaptation are reported in Table 2.5. The experiments also show the results with batch
normalization (BN) [57]. The step size is updated using the ‘epoch-level update’ until
the end of the retraining. Table 2.5 shows that the floating-point network performance
saturates at 512 units size when BN is applied, and at 256 units when BN is not used.
When the unit size in each layer is 512 or smaller, the proposed algorithm yields better
performance in both cases. For example, if the 512 units size network is quantized in 2-
bit without BN, the differences between the floating-point and the fixed-point networks
are 1.82% and 1% for ‘conventional’ and ‘adaptive’ schemes, respectively. In addition,
the phoneme error rate of the 3-bit network optimized with the ‘adaptive’ scheme
(29.83%) is lower than that of the 4-bit quantized network with the ‘conventional’
scheme (29.95%).

BN improves the performance of both floating-point and fixed-point networks. Ap-
plying the ‘adaptive’ method improves the performance. For example, if the layer unit
size is 128 and 2-bit quantization is used, BN brings the performance gain of 3.42%
when ‘adaptive’ scheme is used. Therefore, the proposed ‘adaptive’ method can be
efficiently used with BN.

When the unit size is large enough, the quantization scheme does not affect the
performance much because a larger size network has strong resiliency to quantiza-
tion [20]. Even the performance of 4-bit quantized 512 units size network without BN
is almost comparable to that of the floating-point 1024 units size network. When the
network is trained with BN, it shows a similar trend.

Figure 2.7 shows the quantization step size, A, of the proposed adaptive scheme

as the retraining progresses. Note that the step size is renewed at each epoch during

25

Table 2.5: Frame-level phoneme error rate (%) on the test set with the TIMIT phoneme

recognition examples. Note that ‘conventional’ is the baseline [1] and ‘adaptive’ is the

proposed scheme.

Without BN

With BN

Model size

64 128 256 512 1024

64 128 256 512 1024

Full-precision

34.38 31.63 30.17 29.61 29.53

33.82 30.81 29.79 29.77 29.59

Direct
2-bit Conventional

Adaptive

80.25 84.12 81.92 83.30 75.05
43.73 37.80 33.70 31.43 29.99
42.06 36.88 32.61 30.61 29.49

89.82 88.79 87.57 85.73 86.10
41.81 35.88 33.12 31.21 30.22
37.87 33.46 31.48 30.73 30.09

Direct
3-bit Conventional

Adaptive

68.13 63.65 60.33 51.46 48.61
40.63 34.73 31.41 30.49 29.33
37.89 33.80 30.74 29.83 29.40

80.41 69.55 69.42 81.60 64.55
36.88 32.58 30.53 30.14 29.76
35.29 31.94 30.32 30.10 29.65

Direct
4-bit Conventional

Adaptive

58.90 50.58 42.15 38.05 36.53
36.51 32.65 30.79 29.95 29.44
35.50 32.09 30.50 29.54 29.29

65.63 50.43 46.46 43.80 39.77
34.17 31.34 29.86 29.81 29.70
33.91 30.86 29.47 29.87 29.52

26

rrrr1rrrrrrrrrrrrrrrrrrrr.rrrrrrrrrrrrrrrrrr1r 11171
| | —<— Layerl .
0.4 Layer2 R
. | Layer3)
5 | |
38
3 |
S
4 | |
0.2 i
i X :
L o o
0 2 4 6 8 10 12 14 16 18

Number of epochs

Figure 2.7: Training curves in terms of A, for the FFDNN with the size of 256.

retraining. As shown in this figure, the step size of the last layer varies much, while
that of the first layer is almost constant. The step size adaptation is much needed for
the last layer.

We also evaluate the performance of the gradual quantization scheme. The results
are reported in Table 2.6. The floating-point results show a 29.61% error rate on the
test set. The 6-bit word length shows slightly better accuracy than the floating-point.
Thus, we define the easiest task as the 6-bit quantization. In Table 2.6, the ‘gradual’
scheme yields better performance than the ‘conventional’ strategy, but shows worse or
similar results compared to the ‘adaptive’ quantization. The combined strategy of the
‘adaptive’ and ‘gradual’ shows slightly better accuracy than the ‘adaptive’ strategy in
4- and 3-bit quantization, but it is worse than the ‘adaptive’ scheme in 2-bit quantiza-
tion. Since there is no performance difference between the ‘adaptive’ and ‘adaptive &
gradual’ scheme, we only employ the ‘adaptive’ scheme for CNN and RNN experi-

ments.

Image classification using convolutional neural networks

Image classification experiments are performed on the SVHN dataset [58]. The dataset
includes 600,000 labeled 32x32 RGB images from real-world house numbers. For the

data preprocessing, we employ the same method with [59]. The output label has ten

27

Table 2.6: The error rate of the proposed quantization strategies on TIMIT phoneme
recognition task. The network is FFDNN with two 512 size hidden layers, and the
floating-point result is 29.61%. ‘Conventional’ is general retraining based quantiza-
tion, ‘adaptive’ conducts proposed step size adaptation, ‘gradual’ is curriculum learn-
ing style quantization scheme, and ‘adaptive & gradual’ represents mixed approach

using both techniques.

Conventional Adaptive Gradual Adaptive & Gradual

6-bit 29.32 29.32 29.32 29.32
4-bit 29.95 29.54 29.53 29.49
3-bit 30.49 29.83 29.90 29.61
2-bit 31.43 30.61 30.69 30.62

units which represent the numbers from 0 to 9. For the evaluation of the proposed
scheme, we employ three different structures. We name the networks as ‘L, ‘C’, and
‘V’> which have the trainable parameters of 60k, 84k, and 435k, respectively. The ‘I’
network is Lenet5 [60], ‘C’ network is from [61], and ‘V’ network is constructed
as VGG style [15]. We train the floating-point networks using SGD with Nesterov
momentum. The learning rate is decreased from 2-e2 to 3.125e-4 with a factor of 2
when the development set does not show improvement for 4 consecutive evaluations.
For the fixed-point network training, the initial learning rate was Se-4. The effects of
step size adaptation in the CNNs are examined in Table 2.7. The step size is updated
using the ‘1 epoch update & fix’ strategy. Our algorithm works well for ‘L’ and ‘V’
networks regardless of the weight precision, 2, 3, or 4 bits. However, the ‘C’ networks
with the conventional retraining show a better result when the weight precision is 4bits.

Overall, the proposed method yields improved performances.

28

Table 2.7: Miss classification rate on the test set with the SVHN house number recogni-
tion example. The alphabets ‘L, ‘C’, and ‘V’ represent specific structure of the CNN.
The ‘L’ is the most smallest network and the ‘V’ is the biggest network. Please refer

Section 2.3.3 for details.

Type of network L C v

Floating result 6.45 5.65 4.50

Direct 45.68 23.17 73.55
2-bit
Conventional 8.37 7.10 5.24
(3 point)
Adaptive 8.01 6.65 5.02
Direct 10.14 7.88 6.73
3-bit
Conventional 7.04 5.97 4.57
(7 point)
Adaptive 692 591 4.53
Direct 7.85 6.03 4.79
4-bit
Conventional 660 576 4.74
(15 point)

Adaptive 646 586 4.60

Language modeling using recurrent neural networks

Character-level language modeling predicts the next character and is used for speech
recognition and text generation. Since the input and output layers consider only al-
phabets, the input and output complexities are much lower than the word level lan-
guage model. We adopt the English Wikipedia dataset for training the character-level
language modeling. The dataset contains 100 MB English Wikipedia text. The input
and output layers are composed of 256 units for the one-hot encoded ASCII code. The
RNN consists of three Long Short-Term Memory (LSTM) layers with a different num-
ber of memory cells ranging from 64 to 256 [62]. We train the RNNs using AdaDelta
based SGD with 64 parallel input streams. The networks are unrolled 256 times and

weights update is performed for128 forward steps. The learning rate starts from Se-4

29

Table 2.8: Bit per character (BPC) on the test set with the English Wikipedia language

model.

Size of each layer 64 128 256

Floating result 2.07 181 1.65

Direct 8.46 9.53 7.26
2-bit
Conventional 248 249 1.89
(3 point)
Adaptive 242 216 1.86
Direct 7.176 6.84 4.35
3-bit
Conventional 252 210 1.91
(7 point)
Adaptive 235 2.06 1.82
Direct 449 550 2.59
4-bit
Conventional 243 204 1.83
(15 point)
Adaptive 232 195 1.86
Direct 256 373 1.73
6-bit
Conventional 211 1.87 1.67
(63 point)
Adaptive 211 1.89 1.68

and decreases until 5e-8. For the step size adaptation, ‘1 epoch update & fix’ strat-
egy is employed. The fixed-point optimization results are reported in Table 2.8. As
with our previous FFDNN and CNN results, it shows much improved performances

on low-precision weights or small size networks.

2.4 Concluding remarks

This chapter investigates the fixed-point characteristics of deep neural networks. The
retraining-based fixed-point optimization greatly reduces the word-length of weights
and signals. The performance gap between the floating-point and the fixed-point neural

networks with severe quantization almost vanishes when the DNNs are in the perfor-

:l ¥

—
|

30

mance saturation region for the given training data. However, when the complexity
of DNN:ss is reduced, by lowering either the number of units, feature maps, or hidden
layers, the performance gap between them increases. To solve this problem, we devel-
oped improved fixed-point optimization methods. The first one adaptively determines
the quantization step size by measuring the weight distribution during the retraining
procedure. The second one is a curriculum learning style fixed-point optimization tech-
nique, which conducts fixed-point optimization from high- to low-precision gradually.
The proposed work yields better quantization results in FFDNNs, CNNs, and RNNs.
Especially the effectiveness of the proposed techniques increases when the number of

quantization levels is small and the network size is not large enough.

31

Chapter 3

HLHLp:Quantized Neural Networks Training for Reach-

ing Flat Minima in Loss Surface

3.1 Introduction

Many previous QDNN optimization algorithms consist of three steps: training a floating-
point network, quantizing the model, and improving the performance of the quantized
network by fine-tuning. As for the fine-tuning, usually low learning rates are used to
limit the deviation from the floating-point model as small as possible [63, 1, 64, 65, 21].
However, when only very low-precision weights are employed, the loss surface may
differ from that with high precision. Therefore, fine-tuning the QDNN with quantiza-
tion error feedback is not sufficient to design well-generalized QDNN.

The generalization capability of a DNN has been actively discussed [33, 34, 35].
The generalization capability of a DNN was explained in relation to the flat minimum
of the error or loss function [33]. The study by [34] reveals that the ratio of learning rate
to batch size is a key determinant of flatness of loss surface and generalization. Recent
studies schedule the learning rate to improve the generalization capability [66, 67].

In this chapter, we propose a QDNN training algorithm that is intended to avoid

sharp minima and reach flat minima in the discrete weight domain. The proposed ap-

32

proach intentionally changes the learning rate and the precision of the parameters in an
alternating manner to reach a flat minimum despite abrupt increases in the training er-
ror. The experiments exhibit particularly good results in the quantization of parameter-
size efficient convolutional neural networks (CNNs) and recurrent neural networks
(RNNS5). The contributions of this study are as follows:

e We derive that the quantization noise can play a role of escaping sharp minima
in the training of QDNN.

o A high-low-high-low precision (HLHLp) training scheme is developed to en-
courage a QDNN arriving at a flat minimum that exhibits a high generalization
capability.

e The proposed method is applied to the quantization of RNNs and CNNs. We
achieve the results that significantly exceed those of previous designs for RNNs

and competitive results for CNNs.

3.2 Related Works

3.2.1 Quantization of Deep Neural Networks

QDNN has been studied for a long time. However, earlier studies typically employed
an 8-bit or higher precision partly because the networks were small and a direct quan-
tization method was used. Stochastic gradient descent (SGD) for quantized DNNs to
2-bit ternary or 1-bit binary precision without significantly affecting the performance is
proposed by [1] and [15]. It is difficult to update discrete weights directly because the
gradients are much smaller than quantized weight values. Thus, the quantized weights
are obtained by the error feedback quantization method. The method retains the high
precision weights to accumulate gradients while the quantized weights are used in
forward and backward propagation [15, 63, 1, 64, 65, 21].

Several quantization techniques are developed to optimize QDNNSs, and these tech-

niques mostly try to reduce quantization errors by considering the distribution of

33

weights. In particular, various elaborate techniques are developed for CNNs, which
include weight cluster [68], stochastic rounding [69], data distribution [21], fittable
quantization scale [70], or trainable quantization [71].

RNNs weights were also quantized with a binary format, which employed stochas-
tic and deterministic ternarization, and pow2-ternarization methods [72]. Parameter-
dependent adaptive threshold [73] or increasing the size of the neural network [74] is
also investigated. Other studies formulated an optimization problem to determine the
optimal quantization step size with greedy approximation [75] or alternating multi-bit
quantization [64]. HitNet applies a different quantization algorithm to weight and ac-
tivation [76]. Quantize only the weight using batch normalization between inputs and

hidden state vectors shows high performance [77].

3.2.2 Flat Minima in Loss Surfaces

Most high performance deep neural networks contain a vast number of parameters,
and thus the training error almost converges to zero in many cases. The stochastic
gradient descent (SGD) algorithm updates the weights to minimize the training error.
However, neural network training is non-convex optimization, and low-training error
does not necessarily ensure good test performance capability. An early study proposed
that the determination of flat minima in the loss surface is important to train high-
performance networks [33]. Recent studies suggested that the increased amount of
noise in gradients of a small-batch method aids in reaching a flat minimum in the
loss surface [34]. Conversely, large-batch training wherein the gradient noise is low
requires an increased learning rate to obtain a good performance [35].

The learning rate is the most important hyper-parameter in the SGD-based train-
ing. Typically, the learning rate is designed to monotonically decrease when the train-
ing proceeds. At the early stage of training, the weights should be updated coarsely,
although they require fine-tuning at the final stage. However, [67] and [66] indicated

that cyclically increasing and decreasing or warm-restarting the learning rate improves

34

test accuracy. It should be noted that the training error is also fluctuating albeit not nec-
essarily decreasing monotonically when the learning rate is alternating. Understanding
flat minima is very important in QDNN design because quantization is equivalent to

injecting noise to weights, and flat minima imply resiliency in weight distortion.

3.3 Training QDNN for Improved Generalization Capabil-
ity

In this section, we first briefly explain the conventional neural network quantization
algorithm and derive that learning rate to quantization precision ratio controls the
stochastic noise. We also present a new QDNN training technique that aids to en-

courage reaching flat minima in the quantization domain.

3.3.1 Analysis of Training with Quantized Weights

The number of bits representing the quantized values is denoted as b. b is usually from
1 to 8 and b-bit quantization can support up to 2° levels. The quantization step size,
A, is inversely proportional to the number of levels, 2°. Thus, a low-precision weight
needs a large A. When b is 2, a weight can be represented as 2-bit ternary, which is +A,
0, and -A. The b-bit symmetric uniform quantization including the 2-bit quantization

can be generalized as follows:

Q¥(w) = sign(w)~A-min{K|X‘ +0.5)J,(M2_1)} 3.1)
where M is 2° — 1. We employ an L2-error minimization between floating and fixed-
point weights to obtain the quantization step size A [1, 78, 65].

Quantization can be interpreted as injecting noise whose range is between — % and
+%. Thus, the retraining process is equivalent to injecting noise to weights, which has
been known to improve the generalization capability [79]. As the number of bits, b,

decreases, the amount of noise injection increases. Following the approach proposed

35

n [34], we analyze the relationship between flatness and precision of weights. Specif-

ically, the weight update procedure in quantization retraining is expressed as follows:

w1 = wy — nVL(Q(wy)), (3.2)

where Q(+) is the quantization function, L is the loss, and 7 is the learning rate. Loss
surface surrounding the local minimum w* is approximated via the Hessian of L at

w*, and this is denoted as H:

L(w) ~ L(w") + %(w —w)T X H x (w— w?) (3.3)

VL(w)~VL(w")+H X (w—w") (3.4)
We rewrite Equation (3.2) by using Equation (3.4) as follows:
w1 = wp —nH x (Q(wy) — w") 3.5)
Let’s consider that n;, the quantization noise, has a uniform distribution.
w1 = wy — nH((wy +ny) — w*) (3.6)

We proceed the training for & step which is sufficiently training the model. Then the

Equation (3.6) can be rewritten under the same assumption with [34] as follows:

k—1
Witk = Wi — TH() (Wepi +nppi) — kw') 3.7)
=0
k—1 —
=W — UH(Z(Wt+i - W)+ Z Nyy;) (3.8)
=0 1=0

For floating-point SGD training, we have the following equation

k—1
Witk = W — Z Wt—H —-w" (3.9
=0

Only the difference between floating-point (Equation (3.9)) and fixed-point (Equa-

tion (3.8)) training is Eé:ol n:4;. Note that quantization noise for each step, n¢;, is

36

IID. Hence under the central limit theorem, the resulting quantization noise becomes

approximately a Gaussian. Thus, Equation (3.5) can be approximately expressed as

wi — nH x (w; + N(0, (¢2/2°°)T) — w*) (3.10)
=w; — nH x (wy — w*) — gHN(0, (¢?/2?")T) (3.11)
~ w; — nV L(w;) — N(0, (n*c? /2?2)H?), (3.12)

where c is a constant related to models. Therefore, we consider the quantization retrain-
ing algorithm as the gradient descent with noisy gradients [80], and this corresponds
to the Gaussian distribution with a covariance of (n%c?/22*)H2.

Eigendecomposition of Hessian matrix corresponds to H = VAV, where A
denotes the diagonal matrix of eigenvalues and V denotes an orthonormal matrix. We
consider that Equation (3.12) implements the following stochastic differential equation

(SDE) [34],
dw = —VL(w)dt + (cy/n/2") VAZAW (1), (3.13)

where W (t) denotes Wiener process. We transform Equation (3.13) to general Ornstein-
Uhlenbeck process (OUP). For this, we reparameterize w in terms of a new variable z
which is defined as z = VT (w — w*). The change of variable results in the following

expression:
dz = —2Azdt + (c\/n/2°) AdW (1) (3.14)

The stationary distribution of the OUP becomes the Gaussian A (0, (nc?/2?°)A). The

37

expected loss is written as

E(L(w) — L(w")) (3.15)
= L B((w — W) H(w — w) (3.16)
_ %E(ZT Az) (3.17)
= o S MERD) (3.18)
_ % S Nne?/22) (3.19)
= L0 2 Tr(A?) (3.20)
_ %(7,02 /22T (H2) (3.21)

The precision of weights b determines the trade-off between the expected loss and

the squared sum of eigenvalues, with
E(L(w) — L(w"))/Tr(H?) o« nc® /220 (3.22)

The eigenvalues of Hessian matrix represent the flatness of the loss surface around the
local minimum. Therefore, we conclude that the quantization precision also influences
the minima in low-precision domain as well as the three factors (learning rate, batch
size, and gradient covariance) found in [34].

Based on the above analysis, we propose a new quantization training scheme, high-
low-high-low-precision (HLHLp) training, that manipulates the learning rate, 7, and

quantization precision, b, during training to reach flat minima of the QDNN.

3.3.2 High-low-high-low-precision Training

The proposed HLHLp optimization employs a multi-step training scheme, and this
consists of floating-point training of a model from scratch, coarse-tuning on low-
precision, fine-tuning on high-precision, and fine-tuning on low-precision. It should be
noted that the low-precision means 2-bit weight representation, and the high-precision

indicates 8-bit or floating-point weight representation. The coarse-tuning step employs

38

a high learning rate to escape from the current minimum point while the fine-tuning
step proceeds with a low learning rate or decreasing learning rate. A detailed explana-

tion of each step is given as follows.

High-precision Model Training (H-step)

The first step involves training a neural network in floating-point. Commonly known
regularization techniques, such as dropout [81], batch normalization [82], and weight
decay [83], can be employed. The learning rate is selected to obtain the optimal floating-
point performance. Pretrained models can also be used. The initial learning rate in this

step is denoted as ns°P !

Coarse-tuning on Low-precision (L-step)

The second step performs retraining to 2-bit QDNN using the pretrained model from
the first step. Activation quantization can also be employed. The learning rate for the
conventional fine-tuning is an*®P !, where « is typically from 0.1 to 0.001 [19]. We
employ relatively high learning rate in this step for the purpose of coarse-tuning, as
opposed to fine-tuning. The coarse-tuning aids to escape from sharp minima by in-
creasing the dynamics of 7 to 22 ratio in Equation (3.22). The new learning rate for
this step is selected as approximately an°P ! x ﬁ. The ratio is initially designed by
considering the quantization step size ratios of 8-bit and 2-bit precision.

As we derived in Section 3.3.1, the eigenvalues of Hessian matrix represent the
flatness of the loss surface. However, computation of the exact Hessian is super inef-
ficient on large neural networks. To handle this problem, we approximate the Hessian
by a diagonal matrix from the second moment of gradient v [84]. Since v is an estima-
tor of diag(H?), we can obtain a sum of eigenvalues s exploiting by trace(sqrt(v)). It
should be noted that, to select the initial parameter of the third step, we measured both

s and the validation error rate during the training. More specifically, during the train-

ing of the current step, we save three to five model parameters considering validation

39

results ! and select the one which has the lowest value of s among them.

Fine-tuning on High-precision (H-step)

The third step performs retraining to 8-bit QDNN using the pretrained model from the
second step. The initial learning rate for this step is lower than that in the second step.
The fine-tuning decreases the dynamics of 7 to 22 ratio in Equation (3.22). This step
involves descending to the maximum possible extent from the new local minimum. To

select the initial model for the next step, we evaluate the validation results.

Fine-tuning on Low-precision (L-step)

The fourth step involves fine-tuning from the 8-bit weights obtained at the third step.
The learning rate for this step is not extremely high and is decreasing. Thus, the final
step is intended for fine-tuning and is similar to that in the conventional retraining-
based method. We can repeat the second and third steps again. In this case, the total
training is represented as HLHLHLp, and this denotes high-precision training, low-
precision coarse-tuning, high-precision fine-tuning, low-precision coarse-tuning, high-
precision fine-tuning, and final-tuning on low-precision. Additional HL steps may im-
prove performance but increase training time. In our experiments, performance has
converged in HLHLp in most cases.

The proposed HLHLp training scheme can employ various quantizers such as uni-
form quantizer [1] and asymmetric quantizer [17]. The experimental results that com-

bine the proposed training algorithm with various quantizers are shown in Section 3.4.

3.4 Experimental Results

We evaluate the proposed HLHLp training scheme on the following three tasks: im-

age classification (CIFAR-10/CIFAR-100 [48], ImageNet [85]), language modeling

! Accuracy for classification problem or perplexity for language modeling.

40

(PTB [86] and WikiText-2 [87]), and speech recognition (WSJ corpus [88]). The de-

scriptions of each dataset are as follows:

CIFAR-10 & CIFAR-100: CIFAR-10 and CIFAR-100 datasets [48] consist of
50K training and 10K test images on 10 and 100 classes, respectively. The image
size is 32 x 32 with 3 channels (RGB). We use 45K and 5K images for training
and validation, respectively. We employ a simple data augmentation, shifting
and mirroring as suggested by [89].

ImageNet: ILSVRC 2012 classification dataset [85] contains over 1.2M training
and 50K validation images from 1,000 classes. We resize the images to 256x256
and conduct random or center crop to 224x224 during the training or evaluation,
respectively.

PTB: Penn Tree Bank (PTB) corpus [86] contains 929k training, 73k validation,
and 82k test words with a vocabulary size of 10k. The dataset is widely used for
the rapid evaluation of language models.

WikiText-2: WikiText-2 corpus [87] consists of 2,088k training words, 217k
validation words, and 245k test words. The vocabulary size is 33k.

WSJ corpus: Wall Street Journal (WSJ) SI284 set [88] is composed of 81 hours
of speech data. We evaluated our QDNN model with the WSJ eval92 set.

3.4.1 Image Classification with CNNs

Network and Hyper-parameter Configuration: We evaluate our method on CNN’s

for image classification. For the CIFAR-10 dataset, we train three different ResNets

[5], namely ResNet-14, -20, and -32. Additionally, the same ResNet-20 and -32, and
MobileNetV2 [90] are employed for the CIFAR-100 dataset. All models for both the

CIFAR-10 and CIFAR-100 datasets are trained with the same hyper-parameters as

follows. The batch size is 128, and the number of epochs trained is 175. An SGD

optimizer with a momentum of 0.9 is used. The learning rate starts at 0.1 and decreases

by 0.1 times at the 75th and 125th epochs. Additionally, L2-loss is added with the scale

41

Table 3.1: Test accuracy on CIFAR-10 and CIFAR-100 dataset. The numbers in the
parenthesis are the accuracy difference between the floating and the 2-bit models. Both

fine-tuning and HLHLp results are an average of five times running.

Dataset CIFAR-10
Model ResNet-14 ResNet-20 ResNet-32
of params 0.18M 0.27M 0.47M
Float 91.35 92.15 93.65
Fine-tuning 89.20 (-2.15) 90.86 (-1.29) 92.32 (-1.33)

HLHLp 90.64 (-0.71) 91.58 (-0.57) 93.05 (-0.60)
Dataset CIFAR-100
Model ResNet-20 ResNet-32 ~ MobileNetV2
of params 0.28M 0.48M 2.45M
Float 68.01 69.97 75.98
Fine-tuning 64.47 (-3.54) 66.90 (-3.07) 74.97 (-1.01)

HLHLp

66.44 (-1.57)

68.66 (-1.31)

75.51 (-0.47)

of Se-4. We employ simple symmetric uniform quantizer from [4]. The initial learning
rate and the weight precision change as mentioned in Section 3.3.2 during HLHLp
training. These changes in learning rate and precision are applied to all experiments in
the rest of this paper.

Furthermore, we conduct the weight quantization of ResNet-18 on the ImageNet
dataset using the proposed method. We employ a pretrained network as for the full
precision model?. We set the batch size to 256 and conduct the retrain method for up
to 20 epochs for each HLHLp step.

Results on CIFAR-10/CIFAR-100: The experimental results of the CIFAR-10 and
CIFAR-100 datasets are presented in Table 3.1. Both the fine-tuned and the HLHL p-

*https://github.com/facebook/fb.resnet.torch

42

trained QDNNSs are inherited from the same full-precision models. All layers in the
models including the first and the last ones are quantized. In the case of the CIFAR-
10 results, the performances of the 2-bit QDNNs improve when the HLHLp training is
applied. Specifically, the HLHLp training results on ResNet-14 and ResNet-32 demon-
strates 1.44% and 0.73% increase in the test accuracy when compared to the existing
fine-tuning method [4]. The relative performance degradation of the 2-bit ResNet-32
for the full-precision model is 46% lower (0.6/1.3) when using the HLHLp training
method. This small gap is due to the sufficiently large model size for the CIFAR-10
dataset. Large DNN models show a small difference between full-precision and low-
precision networks.

The experiments with the more complex dataset (e.g. CIFAR-100) demonstrate
more improvements. The test accuracy of the 2-bit ResNet-20 is 66.44% and 64.47%
with the HLHLp training and the fine-tuning methods, respectively. The accuracy dif-
ference between our HLHLp and conventional training methods is reduced when the
model size increases. However, HLHLp outperforms the fine-tuning method and re-
duces the gap between the floating-point and 2-bit networks significantly for all net-
works considered.

In the remaining experiments, we demonstrate the performance improvement when
the HLHLp training scheme is applied, by using the same quantizers as those proposed
in several previous studies.

Results on ImageNet: The experimental results of the ImageNet dataset are reported
in Table 3.2. The compared low-precision models include TWN [16], TTQ [17], LQ-
Nets [71], and ADMM [91]. These models employ 2-bit weights but we do not quan-
tize the activations. Ours, TWN, and ADMM employ the symmetric ternary quantiza-
tion. However, TTQ employs asymmetric ternary (AT) quantization, whereas LQ-Nets
employs 4-level quantization. AT and 4-level quantization help in improving the per-
formance but also make the inference more complex. The experimental results demon-

strate that the proposed method is effective and that the top-1 accuracy with ternary

43

Table 3.2: HLHLp training results on ResNet-18 ImageNet. In this experiment, only
the weights are quantized in 2-bit. The values in the parentheses are the difference
between the full-precision and quantized accuracy (%) in literature. HLHLp result is

an average of five times running.

W2/A32 Levels Top-1 Acc Top-5 Acc

TWN 3 61.8 (N/A) 84.2 (N/A)
TTQ Asym3 66.6 (-3) 87.2(-2)
LQ-Nets 4 68.0 (-2.3) 88.0(-1.5)
ADMM 3 67.0(-2.1) 87.5(-1.5)

HLHLp (ours) 3 67.2 (-1.6) 87.8 (-0.8)

weights is better than ADMM. In the comparison of the accuracy difference between
the full-precision model and the QDNN, our HLHLp training results demonstrate 1.6%
degradation on Top-1 accuracy, which is much better than LQ-Nets (2.3%), TTQ (3%),
and ADMM (2.1%). In LQ-Nets, the first and last layers of the model are not quan-
tized, whereas, in ours, all the layers are quantized.

As part of the generalization test, we also evaluate our QDNN model with a con-
taminated dataset [92], which mixes various types of noise in the ImageNet validation
set as shown in Figure 3.1.

The detailed results for each contaminated dataset are reported in Table 3.3. Our
proposed HLHLp training scheme increases the average noise accuracy from 39.08%
(HL) to 45.99% (HLHL) in 2-bit QDNNSs. Thus, our HLHLp training helps to increase

the generalization capability in QDNN.

3.4.2 Language Modeling on PTB and WikiText-2

Network and Hyper-parameter Configuration: For the quantitative comparison with

previous works [75, 73, 74, 76, 64, 21], we constructed two word-level language mod-

44

Original Brlghtness Contrast Defocus blur Elastic transform

..

Gaussian blur Zoom blur Gaussian noise

-.

Glass blur Impulse noise JPEG compress Motion blur Pixelate

Shot noise Speckle noise

Figure 3.1: Examples of the added noises in the contaminated dataset.

45 e

Table 3.3: Detailed results on ImageNet contaminated test for Top-5 accuracy.

Test Orig. Avg. Noise Fog Shot Glass Zoom Snow

H 88.62 54.31 59.06 35.67 40.32 50.75 45.79
HL 84.26 39.08 40.86 1939 28.28 3141 3346
HLH 8841 47.56 5522 27.85 37.69 4495 41.24

HLHL 87.79 45.99 5196 2608 3632 4194 39.71

Spatter ~ Saturate Elastic Motion Frost Gauss B Defocus

H 63.50 76.21 61.15 4931 5036 5275 48.79

HL 46.78 59.37 48.85 31.71 38.60 3222 2730

HLH 56.34 70.38 58.08 4387 4645 41.70 37.16

HLHL 5521 68.91 56.50 4150 43.62 40.17 35.50

Brighness Pixelate Contrast Speckle Impulse JPEG Gauss N

H 81.55 64.96 6530 4592 3233 69.87 3822

HL 69.33 61.14 50.78 28.26 16.15 58.07 20.60

HLH 76.12 59.44 58.04 3838 2233 5927 29.10

HLHL 74.68 62.00 56.64 36.80 20.59 58.85 26.86

els (LMs) containing one long short-term memory (LSTM) [93] or one gated recurrent
unit (GRU) [94]. Each LM has a 300-memory cell for PTB and 512-memory cell
for WikiText-2. The initial learning rate for the floating-point network is 1.0. After 10
epochs, the learning rate decreases by a factor of 0.9 at each epoch. We clip the norm of
the gradients by 1.0 for PTB and 3.5 for WikiText-2. Both the batch-size and unrolling
steps are 20 for PTB, while, for WikiText-2, the values are 50 and 30, respectively.
We apply dropout [81] only at non-recurrent connections as suggested in [95] with a
keeping probability of 0.5 for PTB and 0.6 for WikiText-2. The performance of LM is
measured via perplexity (PPL). An LM with low PPL is considered a good model.

Results on PTB: The comparison of the PPL of our HLHLp scheme and that of pre-
vious studies is presented in Table 3.4 for 2-bit ternary and 2-bit 4-level weight repre-

|

46

Table 3.4: PPL for 2-bit ternary and 2-bit 4-level weight quantized network of LSTM
and GRU based language models on PTB test set. We denote 2-bit ternary and 4-level
as ‘T’ and ‘4’, respectively. The activations are also quantized in 2-bit 4-level. The
number in the parenthesis represents that the gap of the PPL between the 2-bit and

full-precision in literature. HLHLp result is an average of five times running.

W2 (T)/A2 LSTM GRU |W2@)/A2 LSTM GRU
[73] 152(43) 150 (50) [21] 126 (20) 142 (42)
[74] 152.2(435) N/A [75] 100.3 (10.5) 105.1 (12.6)

[76] 110.3 (13.1) 113.5(10.8) [64] 95.8(6.0) 101.2(8.7)
HLHLp 97.27 (7.82) 95.04 (1.80) | HLHLp 94.89 (5.44) 96.20 (2.96)

sentations. We employ two previously developed quantizers for the 2-bit ternary [76]
and 2-bit 4-level [75] weight respectively. The activations are also quantized in 2-bit.
The HLHLp with ternary weights significantly outperforms the previous studies and
also exhibits better results for the 2-bit 4-level representation. The GRU results also
outperform both the 2-bit ternary and 2-bit 4-level representations. To the best of our
knowledge, these results are the state-of-the-art when quantizing both weight and ac-
tivation in 2-bit.

Results on WikiText-2: The PPL of WikiText-2 is reported in Table 3.5. We employ
a simple uniform quantizer from [18]. The quantized network trained using HLHLp
outperforms the other previous results. The LSTM model quantized with the proposed
method shows lower (better) PPL when compared to the previous works in both ternary
and 4-level weights. Especially for the 2-bit 4-level result, we achieve the test PPL of
105.5 that is 0.6 lower than the work of [64] although our full-precision PPL is 2.9
higher (worse) than the compared work. In the case of GRU, our HLHLp quantization
scheme demonstrates a much better test PPL than [64]. We have improved the state-

of-the-art PPL from 113.7 to 105.96. Surprisingly, the quantized network performs

47

Table 3.5: Quantization results on WikiText-2 test set for 2-bit quantized networks.
‘FP’ means full-precision and ‘Difference’ represents the gap between the PPL for

2-bit and full-precision in literature. HLHLp result is an average of five times running.

Weight Test PPL for LSTM Test PPL for GRU

Levels FP 2-bit Difference FP 2-bit Difference

[76] Ternary 114.37 126.72 12.35 124.50 132.49 7.99

HLHLp Ternary 103.0 107.66 4.66 108.68 105.96 -2.72

[64] 4-level 100.10 106.10 6.00 106.70 113.70 7.00

HLHLp 4-level 103.0 105.5 2.5 - - -

better than the floating-point model, which suggest that the HLHLp scheme works as

a regularizer.

3.4.3 Speech Recognition on WSJ Corpus

Network and Hyper-parameter Configuration: We construct three unidirectional
LSTM layers with 512 memory cells. We employ the connectionist temporal classi-
fication (CTC) loss to train an RNN-based acoustic model (AM). We clip the norm
of the gradients by 4, and train the AM with the Adam optimizer. A dropout with a
keeping probability of 0.5 is applied for all the non-recurrent connections. The initial
learning rate for the floating-point training is 3e-4, which decreases by a factor of 0.2
whenever the validation loss does not decrease thrice consecutively.
Results: The experiment results for WSJ are reported in Table 3.6. For comparison, we
report another quantization result of the same RNN trained with the method suggested
in [45]. The character error rate (CER) is measured using greedy decoding. To obtain
the word error rate (WER), we follow the method used in [96] to decode the output
of the CTC-AM using the weighted finite-state transducers (WFST) network. We used
a retrained trigram LM with an extended vocabulary for decoding. The CER of the
7]

48

Table 3.6: HLHLp training results on WSJ corpus. We quantize both weight and acti-
vations in 2-bit. ‘CER’ is character error rate (%) and ‘WER’ means word error rate
(%). ‘Clean’ represents the results on Aurora-4 clean set, and ‘Noisy’ means the results

on average of all noisy set.

WSJ Aurora-4
W2/A2 Test Test Clean Noisy
CER WER CER CER
Float 8.18 11.16 7.37 51.95
[45] 9.76 1132 8.58 (+1.21%) 51.65

HLHLp (ours) 8.21 11.27 6.78 (-0.59%) 48.6

full-precision model is 8.18%, and that of the 2-bit quantized model measured after
the HLHLp training is 8.21%, which demonstrates almost no degradation. As part
of the generalization test, we evaluate on the Aurora-4 noisy test corpus [97], which
mixes the noises of a car, babble, restaurant, street, airport, and train to the WSJ eval
clean test set. The evaluation results of this test are presented in Table 3.6. When full-
precision was quantized to 2 bits using [45] method, CER increases by 1.21% on the
clean set, however, our HLHLp training shows 0.59% higher accuracy than the full-
precision result. A similar tendency is observed in the noise test. The performance of
the 2-bit weight representation obtained by the HLHLp training is 3.35% better than

the full-precision performance based on the average value of the noise test.

3.4.4 Discussion

Ablation Study: The experimental results demonstrate that the proposed HLHLp
training method works exceptionally well for all experiments, including image clas-
sification, language modeling, and speech recognition. However, some questions still

exist, such as “Are the improved results due to the longer training time?” and “Which

49

Table 3.7: Ablation study on GRU PTB LM. The results are reported in PPL. Results

in the same column represent obtained PPL with the exactly same epochs.

Float (H) 2-bit(L) 8-bit (H) 2-bit(L)

(A)
95.32 99.12 92.25 96.97
Float (H) Float (H) Float (H) 2-bit (L)
® 95.32 100.98 98.13 115.92
Float (H) 2-bit(L) 2-bit (L) 2-bit (L)
© 95.32 99.46 97.48 97.84
O Float (H) Float (H) Float (H) 2-bit (L)

- - 95.06 112.08

part helps in increasing the performance?”’. To answer these questions, we conduct ab-
lation experiments that optimizes an LM with a GRU using four different approaches
as follows:

e (A) is the proposed HLHLp training employing floating-point training for 50
epochs, 2-bit retraining for 30 epochs with high a learning rate, 8-bit retraining
for 30 epochs with a low learning rate, and 2-bit retraining for 30 epochs with a
low learning rate.

e (B) employs 110 (=50+30+30) epochs of floating-point training with a cyclic
learning rate which is exactly the same as the learning rate of (A). Additionally,
2-bit retraining for 30 epochs is conducted with the same learning rate as that of
the last step in (A).

e (C) adopts 50 epochs of floating-point training and 90 (=304+30+430) epochs of
2-bit retraining with exactly the same learning rate as that of (A). Therefore, this
setting converts the high-precision in the third step of (A) into low-precision.

e (D) conducts floating-point training but monotonically decreases the learning

rate during 110 epochs and performs the retraining of 30 epochs with 2-bit

50

weights representations. Thus, this method uses only fine-tuning.

Hie §

HLHLp)

(@ (b)

Figure 3.2: 3-D loss surface for test error on ResNet20 CIFAR-100. The three points in
(a) indicate full-precision (FLOAT), 2-bit QDNN that trained with fine-tuning (Hlp),
and 2-bit QDNN that trained with HLHLp (HLHLp). The three points in (b) represent
full-precision (FLOAT), 2-bit QDNN that trained with HLHLp (HLHLp), and 2-bit
QDNN that trained with HLp (HLp). Note that HLp means 2-bit QDNN after the

second step of HLHLp training scheme.

The detailed results are presented in Table 3.7. The results clearly indicate that HLHLp
((A)) training performs much better than training with cyclical learning rate ((B)) or
monotonic decreasing learning rate ((D)) without converting precision in the middle
of steps in HLHLp training. The gap in PPL between (A) and (C) also indicates that
fine-tuning in high-precision aids in improving the performance.
Visualization of Loss Surface: We employ 3-dimensional graphical visualization to
demonstrate that our proposed HLHLp training scheme aids to reach flat minima in
loss surface. We employ the method developed by [37]. This method can help compare
the training or test loss of three neural network models on the same 3-D surface, while
the previous visualization method in [36] only shows the loss surface of one model.
Figure 1 depicts the loss surface of test error on ResNet20 using CIFAR-100 dataset.
Figure 3.2 (a) compares the test loss of three models: full-precision (‘FLOAT”), 2-bit
quantized network retrained using a very small learning rate or fine-tuning (‘Hlp’),
and 2-bit quantized network trained with HLHLp (‘HLHLp’). We can find a path con-
SRk
51

>

U

necting ‘FLOAT’ and ‘Hlp’. Note that ‘Hlp’ point is located very close to the steep
loss wall, suggesting a poor generalization capability. On the other hand, connecting
‘FLOAT’ and ‘HLHLp’ seems more difficult because the loss surface between them
is not flat. However, ‘HLHLp’ is located near the center of a wide basin or a flat min-
imum. Apparently, ‘HLHLp’ should be preferred for good generalization. In Figure
1 (b), we compare the full-precision (‘FLOAT’), 2-bit QDNN trained with HLHLp
(‘HLHLp’), and 2-bit QDNN with HLp (‘HLp’). Note that ‘HLp’ means 2-bit QDNN
after the second step of HLHLp training scheme. ‘HLp’ employs a very large learn-
ing rate for coarse tuning. Here, we can find that ‘HLp’ is at the same basin with the
‘HLHLp’, but is at the boundary. The remaining steps of HLHLp training help move
‘HLp’ to the near center of the basin. In Figure 3.2 (a) and (b), we show the 3-D test
loss surface. The 2-D version of Figure 3.2 including training loss surface can be found
in Figure 3.3.

We also employ e-sharpness [35] and figures produced with another visualization
method [36]. The flatness measurement using e-sharpness is listed in Table 3.8, where
a low sharpness value indicates a flat surface. We employ a quantizer from [4] and
train QDNNs with and without HLHLp. The results clearly shows that our proposed

method has flatten loss surface.

Table 3.8: e-shaprness measurment. Lower value means flatter loss surface.

FP 0.167

Without HLHLp 2-bit 0.059

FirstL 0.03
Final L 0.008

With HLHLp

Figure 3.4 depicts the loss surface of the full-precision and quantized networks. To
draw the loss surface we employ graphical approach suggested by [36]. The curvature
of the loss surface is quite bent in Figure 3.4 (a). Figure 3.4 (b) and Figure 3.4 (c)

exhibit a similar degree of bending irrespective of whether or not a high learning rate

52

37
22.02
36.4880
35.9830

18.9860 35.4850

34.9940

16.3700 34.5097

34.0321
14.1144
33.5611
12.1697 33.0967

32,6386
10.4929
32.1870

9.0471 31.7415

(a) Train (b) Test
37
22,02
36.4880
35.9830
18.9860 35.4850
34.9940
16.3700 34.5097
34.0321
14.1144
335611
12.1607 33.0067
32,6386
10.4929
32.1870
9.0471
31.7415
40 60
(c) Train (d) Test

Figure 3.3: Illustrations of loss surface for train and test error on ResNet20 CIFAR-
100. The three points in (a) and (b) denote that W1 (float), W2 (2-bit QDNN trained
with [4]), and W3 (2-bit QDNN trained with HLHLp). The three points in (c) and (d)
denote that W1 (float), W2 (2-bit QDNN trained with HLHLp), and W3 (2-bit QDNN
trained with HLp).

53

m“““ \
iy

(a) Float

(c) 2-bit large Ir (d) Ours

Figure 3.4: Illustrations of loss surface for VGG-16 CIFAR-10. (a) 32-bit floating-
point weight. (b) 2-bit ternary weight trained with a low learning rate (c) 2-bit ternary
weight trained with a large learning rate. (d) 2-bit ternary weight obtained with HLHLp

training.

R L
54 i

is employed. The loss surface of the final results of the HLHLp training exhibits the

most stable curvature among the four cases in Figure 3.4 (d).

3.5 Concluding Remarks

In this chapter, we developed a HLHLp training scheme to obtain high-performance
quantized neural networks. At each training step, we employed different precisions
and abruptly changing learning rates during training to escape from sharp minima
and reach a flatter loss surface. Thus, the proposed approach significantly differs from
conventional methods, wherein training with quantized networks is conducted for fine-
tuning and the learning rates typically monotonically decrease. We applied the train-
ing scheme to the quantization of RNNs and CNNs and obtained very good perfor-
mance closing the gap between full-precision and low-precision models. Specifically,

the method exhibited extremely good results with respect to the quantization of RNNs.

55

Chapter 4

Knowledge Distillation for Optimization of Quantized

Deep Neural Networks

4.1 Introduction

Quantization is a widely used compression technique, and even 1- or 2-bit models
can show quite good performance. However, it is necessary to train the model very
carefully not to lose the performance when only low-precision arithmetic is allowed.
Many QDNN papers have suggested various types of quantizers or complex training
algorithms [63, 1, 64, 65, 21].

Knowledge distillation (KD) that trains small networks using larger networks for
improved performance [2, 98]. KD employs the soft-label generated by the teacher
network to train the student network. Leveraging the knowledge contained in previ-
ously trained networks has attracted attention in many applications for model com-
pression [99, 100, 101, 102] and learning algorithms [103, 104, 105, 106]. Recently,
the use of KD for the training of QDNN has been studied [30, 29]. However, there
are many design choices to explore when applying KD to QDNN training. The work
in [30] studied the effects of simultaneous training or pre-training in the teacher model

design. The result is rather expected; employing a pre-trained teacher model is ad-

56

vantageous when considering the performance of the student network. However, [107]
mentioned that a too large teacher network does not help improve the performance of
the student model.

In this chapter, we exploit KD with various types of teacher networks that include
full-precision [30, 29] model, quantized one, and teacher-assistant based one [107].
The analysis results indicate that, rather than the type of the model, the distribution of
the soft label is critical to the performance improvement of the student network. Since
the distribution of the soft label can be controlled by the temperature and the size
of the teacher network, we try to show how well-selected temperature can improve
the QDNN performance dramatically even with a small teacher network. Further, we
suggest a simple KD training scheme that adjusts the mixing ratio of hard and soft
losses during training for obtaining stable performance improvements. We name it as
the gradual soft loss reducing (GSLR) technique. GSLR employs both soft and hard
losses equally at the beginning of the training, and gradually reduces the ratio of the
soft loss as the training progresses.

The rest of the chapter is organized as follows. Section 4.2 describes how QDNN's
can be trained with KD and explains why the hyperparameters of KD are important.

Section 4.3 shows the experimental results and we conclude the paper in Section 4.4.

4.2 Quntized Deep Neural Network Training Using Knowl-
edge Distillation

In this section, we first briefly describe the conventional neural network quantization
method and also depict how QDNN training can be combined with KD. We also ex-

plain the hyperparameters of KD and their role in QDNN training.

57

4.2.1 Quantization of deep neural networks and knowledge distillation

The deep neural network parameter vector, w, can be expressed in 2° levels when
quantized in b-bit. Since we usually use a symmetric quantizer, the quantized weight

vector Q(w) can be represented using (4.1) or (4.2) for the case of b = 1 or b > 1 as

follows:
Q'(w) = Binarize(w) = A - sign(w) 4.1)
. . M-1
Q'(w) = sign(w) - A - mln{ L(T + 0.5)J : (2)} 4.2)

where M is the number of quantization levels (2° — 1) and A represents the quanti-
zation step size. A can be computed by L.2-error minimization between floating and
fixed-point weights or by the standard deviation of the weight vector [1, 78, 19].

Severe quantization such as 1- or 2-bit frequently incurs large performance degra-
dation. Retraining technique is widely used to minimize the performance loss [20].
When retraining the student network, forward, backward, and gradient computations
should be conducted using quantized weights but the computed gradients must be
added to full-precision weights [63, 1, 64, 65, 21].

The probability computation in deep neural networks usually employs the softmax
layer. Logit, z, is fed into the softmax layer and generates the probability of each class,
p, using p; = %. 7 is a hyperparameter of KD known as the temperature.
A high value of 7 softens the probability distribution. KD employs the probability

generated by the teacher network as a soft label to train the student network, and the

following loss function is minimized during training.
L{ws) = (1= NH(y,p°) + AH(p",p%), 43)

where H(-) denotes a loss function, y is the ground truth hard label, wg is the weight
vector of the student network, pT and pS are the probabilities of the teacher and student
networks, and) is a loss weighting factor for adjusting the ratio of soft and hard losses.

A recent paper [107] investigates the relation among the teacher, teacher-assistant,

and student models. The effect of KD gradually decreases when the size difference

58

Algorithm 1: QDNN training with KD
Initialization: wr: Pretrained teacher model,

wy: Pretrained student model,
A: Loss wegithed factor, 7: Temperature
Output : wg: Quantized student model

while not converged do
wd = Quant(ws)

Run forward teacher (wr) and student model (Wg)

Compute distillation loss £(wg, \)

q
Run backward and compute gradients 8[(;5:;5)
S
aL(wd)
wg=ws—1n-V S
S s—n awg
end
Return wi

between the teacher and student networks becomes too large. This performance degra-
dation is due to the capacity limitation of the student model. Since QDNN limits the
representation level of the weight parameters, the capacity of a quantized network is re-
duced when compared with the full-precision model. Therefore, QDNN training with
KD is more sensitive to the size of the teacher network. We consider the optimization
of three hyperparameters described above, temperature, loss weighting factor, and size

of the teacher network. Algorithm 1 describes how to train QDNN with KD.

4.2.2 Teacher model selection for KD

In this section, we try to find the best teacher model for QDNN training for KD. We
consider three different approaches. The first one is training the full-precision teacher
and student networks independently and applies KD when fine-tuning the quantized
student model as suggested in [30, 29]. The second is training a medium-sized teacher

assistant network with a very large teacher model, and then optimizing the student

59

m T(F) 12 [91.94%]
04 m T(F) 15 [92.25%]
. 7| mmm T(F)_ 110 [92.18%]
= e T(Q) 710 [92.14%)]
203

o

o

s

£ 0.2

&£

(@]

(7]
0.1

Label

Figure 4.1: Example of the softmax distribution for label 6 from the teacher models
in Table 4.1. The numbers in square brackets are the CIFAR-10 test accuracies of the

student networks that trained by each teacher model.

network using the teacher assistant model as suggested by [107]. The last approach is
using a quantized teacher model for the possibility of the student learning something
on quantization.

Table 4.1 compares the results of these three approaches. Figure 4.1 also shows
the softmax distributions when the teacher models and temperatures vary. The test ac-
curacy of the quantized ResNet20 trained using hard loss was 91.71%. The results
using various KD approaches indicate the following information. First, whether the
teacher network is quantized or not, the performance of the student network is not
much different. Secondly, employing the teacher assistant network [107] does not
help increase the performance. The performance is similar to that of conventional KD.
Thirdly, KD training with a full-precision teacher network [30, 29] is significantly bet-
ter than conventional training when 7 is 5. But, no performance increase is observed
when 7 is 2. Lastly, the teacher models that achieve the student network accuracy of
92.14%, 92.18%, and 92.25% shows a similar softmax distribution. However, T(F)-S
with 7 = 2 shows a quite sharp softmax shape, and the resulting performance is similar

e g ke
60 - "

1

I

U

Table 4.1: Train and test accuracies of the quantized ResNet20 that was trained with
various KD methods on CIFAR-10 dataset. ‘T, “T’, ‘S’, “(F)’, and ‘(Q)’ denote large
teacher, teacher, student, (full-precision), and (quantized), respectively. HD is a con-
ventional training using hard loss. 7 represents the temperature. Note that all the stu-

dent networks are 2-bit QDNN and the results are the average of five times running.

Method Status Train Acc. Test Acc.
T (float) 99.95 94.02
T(F)-S S(t=95) 98.02 92.25
S(r=2) 98.76 91.94
TL (float) 99.99 95.24
TL(F)-T(F)-S T (float) 99.99 94.8
S (7 =10) 97.78 92.18
TL (float) 99.99 95.24
TL(F)-T(Q)-S T (4-bit) 99.99 94.46
S (7 =10) 97.79 92.14
T (8-bit) 99.99 94.34
T(Q)-S
S (r=10) 97.53 92.02
HD Conventional 98.91 91.71

61

to that of hard-target training.

These points indicate that the softmax distribution is the key to lead effective KD
training. Although the different teacher models generate dissimilar softmax distribu-
tions, we can control the shapes by using the temperature. A detailed discussion about

hyperparameters is provided in the following subsections.

4.2.3 Discussion on hyperparameters of KD

As we mentioned in Section 4.2.1 and 4.2.2, the hyperparameters temperature (T),
loss weighting factor (\), and size of teacher network (IN) can significantly affect
the QDNN performance. Previous works usually fixed these hyperparameters when
training QDNN with KD. For example, [30] always fixes 7 to 1, and [29] holds it to 1
or 5 depending on the dataset. However, these three parameters are closely interrelated.
For example, [107] points out that when the teacher model is very large compared to
the student model, the softmax information produced by the teacher network become
sharper, making it difficult to transfer the knowledge of the teacher network to the
student model. However, even in this case, controlling the femperature may be able
to make it possible. Therefore, when the value of one hyperparameter is changed,
the others also need to be adjusted carefully. Thus, we empirically analyze the effect
of KD’s hyperparameters. In addition, we introduce the gradual soft loss reducing
(GSLR) technique that aids to improve the performance of QDNN dramatically. The
GSLR is a KD training method that gradually increases the reflection ratio of the hard

loss.

4.3 Experimental Results

4.3.1 Experimental setup

Dataset: We employ CIFAR-10 and CIFAR-100 datasets for experiments. CIFAR-10
and CIFAR-100 consist of 10 and 100 classes, respectively [48]. Both datasets contain

62

Table 4.2: Train and test accuracies (%) of the teacher networks on the CIFAR-10 and

the CIFAR-100 datasets. “WRN20x/V’ denotes WideResNet with a wide factor of ‘/N”’.

CIFAR-10 Train Test CIFAR-100 Train Test

ResNet20 99.62 92.63 ResNet20 90.12 68.43
WRN20x1.2 99.83 9293 WRN20x1.2 9492 69.64
WRN20x1.5 99.93 9348 WRN20x1.5 98.63 71.80
WRN20x1.7 99.95 94.02 WRN20x1.7 9936 72.17

WRN20x2 9995 9436 WRN20x2 99.82 74.03

WRN20x5 100 9524 WRN20x3 9995 76.31
WRN20x10 100 95.23 WRN20x4 99.95 77.93

WRN20x5 9998 78.17
WRN20x10 99.98 78.68

50K training images and 10K testing images. The size of each image is 32x32 with
RGB channels.

Model configuration & training hyperparameter: To analyze the impact of hyper-
parameters of KD on QDNN training, we train WideResnet20x/N (WRN20x/V) [108]
as the teacher networks, where N is setto 1, 1.2, 1.5, 1.7, 2, 3, 4, 5, and 10. When
N is 1, the network structure is the same with ResNet20 [5]. All the train and the test
accuracies of the teacher networks on CIFAR-10 and CIFAR-100 datasets are reported
in Table 4.2. We employ ResNet20 as the student network for both the CIFAR-10 and
CIFAR-100 datasets. If the network size is large enough considering that of the dataset,
which means over-parameterized, most quantization method works well [20]. There-
fore, to evaluate a quantization algorithm, we need to employ a small network that
is located in the under-parameterized region [20, 109]. Although the full-precision
ResNet20 model is over-parameterized, which means near 100% training accuracy,

the 2-bit network becomes under-parameterized on the CIFAR-10 dataset. Likewise,

63

Table 4.3: Training results of full-precision and 2-bit quantized ResNet20 on CIFAR-
10 and CIFAR-100 datasets in terms of accuracy (%). The models are trained with

hard loss only.

Train acc. Test acc.

Full-precision 99.62 92.63
2-bit quantized 98.92 91.71

CIFAR-10

Full-precision 90.12 68.43
2-bit quantized 77.61 65.23

CIFAR-100

on the CIFAR-100 dataset, both the full-precision and the quantized models are under-
parameterized. Thus, it is a good network configuration to evaluate the effect of KD on
QDNN training. We report the train and the test accuracies for ResNet20 on CIFAR-10
and CIFAR-100 in Table 4.3.

4.3.2 Results on CIFAR-10 and CIFAR-100

We compare our models with the previous works in Table 4.4. The compared QDNN
models trained with KD include QDistill [29], Apprentice [30], and Guided [110]. We
achieve the results that significantly exceed those of previous studies. We compare our
model (0.27M) with the ‘student model 2’ (SM 2) of QDistill that has 0.3 M parame-
ters, and achieve an 18.32% of performance gap in the test accuracy. Also, it is about
1% better than the ResNet20 result reported by Apprentice and even achieved the same
performance with their ResNet32 result. When quantized to 1-bit, the test accuracy of
91.3% is obtained, which is almost the same as Apprentice’s ResNet20 2-bit model.
In the case of CIFAR-100, QDistil and Guided student models use considerably large
number, 17.2M and 22.0M, of parameters. Our student model only contains 0.28M
parameters but achieve 17.7% and 2.4% higher accuracies than QDistill and Guided,

respectively. These huge performance gaps show the importance of selecting hyperpa-

64

Table 4.4: Results of QDNN training with KD on ResNet-20 for CIFAR-10 and
CIFAR-100 dataset. ‘WRN’,‘RN’, ‘SM’, ‘DS’ represent WideResNet, ResNet, student

model, and deeper student, respectively.

CIFAR10 Teacher (full-precision) Student (2-bit)
params (M) Test #params M) Test A
(model name) (%) (model name) (%) T
0.3
53 ‘0 (SM 2) 742 5 0.5
L. (small network) : 5.8
QDistill (DS) 89.3 5 0.5
145 82.7
(WRN28x20) 27 (WrRN22x16) 423 S 03
0.66 0.27
_ (RN44) 93.8 (RN20) 916 1 0.5
Apprentice 066 047
(RN44) 93.8 (RN32) 926 1 0.5
0.61 0.27
(WRN20x1.5) 93.5 (RN20) 92.52 10 0.5
ours 0.38 92.9 0.27 913 3 0.5
(WRN20x1.2)) (RN20) 1-bit))
CIFAR100 Teacher (full-precision) Student (2-bit)
params (M) Test # params (M) Test A\
(model name) (%) (model name) (%) T
. 36.5 17.2
QDistill (WRN28x10) 77.2 (WRN22x8) 493 5 0.5
. 22.0 22.0
Guided (AlexNet) 654 (AlexNet) 64.6 - -
0.39 0.28
(WRN20x1.2) 69.64 (RN20) 66.6 2 0.5
ours 0.78 72.17 0.28 670 3 GSLR
(WRN20x1.7)) (RN20))

65

=t1=1 1=5-—1=10—Teacher =t1=1 1=2 —1=4 =1=5 —Teacher —Hard |abel

95.3%
7%

94.8%
& 94.3% %
O ga.8% g %
Q Joen O 71%
; 93.3% < 69%
0 92.8% E 67% _
Fow . Few == =—
g — 00— 63%
x1 x12 x15 x1.7 x2 x5 x1 x1.2 x1.5 x1.7 X2 x5
TEACHER NETWORK TEACHER NETWORK
(a) CIFAR-10 (b) CIFAR-100

Figure 4.2: Results of 2-bit ResNet20 that trained with varying the temperature (1)
and the size of the teacher network on the CIFAR-10 and the CIFAR-100 datasets. The

numbers in x-axis represent the wide factor (V) for WideResNet20x/V.

rameters.

4.3.3 Model size and temperature

We report the test accuracies of 2-bit ResNet20 on CIFAR-10 in Figure 4.2 (a). To
demonstrate the effect of the temperature for the QDNN training, we train 2-bit ResNet20
while varying the size of the teacher network from “WRN20x1" to “WRN20x5’. Each
experiment was conducted for three 7 values of 1, 5, and 10, which correspond to
small, medium, and large one, respectively. Note that WRN20x/N contains channel
maps increased by N times. When the value of 7 is small (blue line in the figure),
the performance greatly depends on /V, or the teacher model size. The performance
change is much reduced as the value of 7 increases to the medium (orange line) or the
large value (blue line). This is related to the accuracy of the teacher model (red line).
When the size of the teacher model increases, the shape of the soft label becomes simi-
lar to that of hard label. In this case, the KD training results are not much different from
that trained with the hard label. Therefore, with 7 = 1, the performance decreases to
91.9% when the teacher network becomes larger than WRN20x2. This result is sim-
ilar to the performance of a 2-bit ResNet20 trained with the hard loss (91.71%). The

soft label needs to have a broad shape and it can be achieved either by increasing the

3§ o | y|
-':l"-\._i _-_;___ -I-I_ =

66

Ol 012 O3 Cr4 015 0110 07120 0150 Ol 012 D13 Ci14 O15 0110 0120 Ot50

68% 68%
$67% 367%
gee% g 66%
< 65% < 65%
B 64% B 6106
F 63% |hL M H " 63%
62% 62%
x1 x1.2 x15 x17 x2 x3 x4 x5 x10 x1 x1.2 x15 x17 x2 x3 x4 x5 x10
TEACHER NETWORK TEACHER NETWORK
(a) KD (b) KD+GSLR

Figure 4.3: Results of 2-bit ResNet20 models that trained by the various size of teacher
networks and the temperature on CIFAR-100. In (b), the black horizontal line repre-

sents the test accuracy when the student network is trained with hard label only.

temperature or limiting the size of the teacher network. A similar problem can occur
for full-precision model KD training, but it is more important for QDNN since the
model capacity is reduced due to quantization. Therefore, when training QDNN with
KD, we need to consider the relationship between the size of teacher model and the
temperature.

Figure 4.2 (b) shows the test accuracies of the 2-bit ResNet20 trained with KD
on the CIFAR-100 dataset. Since the CIFAR-100 includes 100 classes, the soft label
distribution is not sharp and the optimum value of 7 is usually lower than that of the
CIFAR-10. More specifically, when 7 is larger than 5 (purple line), the test accuracies
are lower than 65.49% (green dotted line), the accuracy of the 2-bit ResNet20 trained
with the hard label. The soft label can easily become too flat even with a small 7,
thus the teacher’s knowledge does not transfer well to the student network. When 7
is not large (e.g. less than 5), the tendency is similar to CIFAR-10 experiment. When
7 is 1 (blue line), the best performance is observed with ResNet20. As 7 increases
to 2 (yellow line) and 4 (grey line), the size of the best performing teacher model
also changes to WRN20x1.5 and WRIN20x1.7, respectively. This demonstrates that a
proper value of temperature can improve the performance, but it should not be too high

since the knowledge from the teacher network can disappear.

67

4.3.4 Gradual Soft Loss Reducing

Throughout the paper, we have discussed the effects of the temperature and the size of
teacher network on the QDNN training with KD. Since the two hyperparameters are
interrelated, careful parameter selection is required and it makes the training challeng-
ing. We also have the risk of cherry picking if the outcome cannot be predicted well
without using the test result. Thus, we need to have a parameter setting technique that
is fail-proof.

We have developed a KD technique that is much less sensitive to specific parame-
ter setting for KD. At the beginning of the training, where the gradient changes a lot,
we use the soft and hard losses equally and then, gradually reduce the amount of the
soft loss as the training proceeds. We name this simple method as the gradual soft loss
reducing (GSLR) technique. To evaluate the effectiveness of the GSLR, we train 2-bit
ResNet20 while varying the size of the teacher and the temperature as shown in Fig-
ure 4.3. The results clearly show that GSLR greatly aids to improve the performance or
at least yields the comparable results with the hard loss (black horizontal line). When
comparing the traditional KD, shown in Figure 4.3 (a), and GSLR KD, in Figure 4.3
(b), we can find that the latter yields much more predictable result, by which reducing

the risk of cherry picking.

4.4 Concluding Remarks

In this chapter, we investigate the teacher model choice and the impact of the hyper-
parameters in quantized deep neural networks training with knowledge distillation.
We found that the teacher needs not be a quantized neural network. Instead, hyperpa-
rameters that control the shape of softmax distribution is more important. The hyper-
parameters for KD, which are the temperature, loss weighting factor, and size of the
teacher network, are closely interrelated. When the size of the teacher network grows,

increasing the temperature aids to boost the performance to some extent. We introduce

68

a simple training technique, gradual soft loss reducing (GSLR) for fail-safe KD train-
ing. At the beginning of the training, GSLR equally employs the hard and soft losses,
and then gradually reduces the soft loss as the training proceeds. With careful hyper-
parameter selection and the GSLR technique, we achieve the far better performances
than those of previous studies for designing 2-bit quantized deep neural networks on

the CIFAR-10 and CIFAR-100 datasets.

69

Chapter 5

SQWA: Stochastic Quantized Weight Averaging for Im-
proving the Generalization Capability of Low-Precision

Deep Neural Networks

5.1 Introduction

The purpose of DNN training is to achieve good generalization capability. Thus, it may
not be optimal to use quantized DNN (QDNN) designs that approximate floating-point
weights using elaborate coding techniques. In recent years, loss surface visualization
has helped to improve the generalization capability of DNNs [3, 37, 111]. Fast ge-
ometric ensemble (FGE) [37] and stochastic weight averaging (SWA) [3] have been
proposed based on the observation that local minima attained by stochastic gradient de-
scent (SGD) training are closely connected [37]. FGE and SWA capture multiple mod-
els during training and ensemble or average the models to obtain a well-generalized
network. Model averaging moves the averaged model to the center of the loss surface
especially when training with SGD causes sticking at the local minimum.

In this study, we employed the model averaging technique to design a QDNN with
improved generalization capability. We used cyclical learning rate scheduling for re-

training of directly quantized networks, and captured multiple low-precision models

70

near the end of training. However, it is not straightforward to apply the previously
developed SWA or FGE to QDNN design because the weight precision of the av-
eraged model increases. For example, if we take the average of seven 2-bit models
with ternary weights (-A, 0, and +A), then a 4-bit model is obtained(-7A, -6A,- - -, 0,
-+, +6A, and +7A). Thus, we must quantize it again to obtain a 2-bit model. Loss-
surface aware DNN training is facilitated significantly by recently developed visual-
ization techniques. However, the loss-surface of a QDNN is different from that of a
floating-point model because the representation capability of a low-precision network
is limited. In this study, we developed a new visualization technique for QDNNs by
applying the quantization training algorithm. The new visualization method can suc-
cessfully explain the mechanism of the proposed SQWA.
Our main contributions are as follows:
o We presented a new QDNN training technique, SQWA, to improve the general-
ization capability of QDNNS.
e With the proposed SQWA training scheme, we achieved state-of-the-art results
on CIFAR-100 and ImageNet datasets.

e We proposed a loss visualization method for low-precision quantized DNNS.

5.2 Related works

5.2.1 Quantization of deep neural networks for efficient implementations

Typically, the precision of parameters and data is reduced for efficient implementations
in real-time signal processing system designs. While audio and video signal processing
demands precision exceeding eight bits, many DNNs function well with lower preci-
sions, such as one or two bits. Particularly, the performance of low-precision DNNs
can be improved considerably by conducting retraining after quantization. Thus, quan-
tization is a highly promising approach for the efficient implementation of DNNs. The

quantization training algorithm, first proposed by [1] and [15], has been combined

71

with various types of quantization methods such as symmetric uniform [16], asym-
metric uniform [21], non-uniform [22], and differentiable [23, 25, 26, 27] quantizers.
In recent years, a few elaborate techniques have been developed, such as employing
knowledge distillation and carefully controlling the learning rate and bit-precision for
improved generalization [30, 29, 39]. Weight normalization is adopted to avoid a long
tail distribution of the model weights [31].

In this section, we focus on obtaining a good training scheme to optimize QDNNSs.
This approach is focused on developing well-generalized low-precision DNNs instead
of developing elaborate quantization schemes. It is noteworthy that we only used the
uniform quantization scheme for simplifying the hardware [112, 113] for inference.
Non-uniform quantization can yield improved QDNN performance when the precision
is the same; however, it demands additional operations, which can be time-consuming

when hardware with conventional arithmetic blocks is involved.

5.2.2 Stochastic weight averaging and loss-surface visualization

Stochastic gradient descent (SGD) is the most widely used method for DNN training.
However, the loss surface for SGD contains many sharp minima [33]; thus, SGD-
based training exhibits overfitting frequently. Many regularization techniques can be
applied for alleviating this problem, such as L.2-1oss, dropout, and cyclical learning rate
scheduling [114, 81, 67]. The ensemble of models is known to increase the general-
ization capability. However, this method typically demands increased cost for training
and inference. Fast geometric ensemble (FGE) is a recent technique for the ensemble
of models [37]. Dropout [81] and dropconnect [115] can be interpreted as building an
ensemble of models by weight averaging.

SWA is a recently developed regularization technique; that is based on the weight
averaging of models captured during training with cyclical learning rate scheduling [3].
SWA demonstrates excellent performances in many CNN models on various datasets.

SWA can be explained using the loss visualization technique. The visualization

72

method for representing three models in a single loss surface has been suggested
in [37] and [3]. In those studies, training algorithms SWA and FGE were presented
by discovering that the local minima trained with SGD were interconnected. Further-
more, because the loss surface for training and test were different, the minima found by
SGD during training were not necessarily the best for the test data. Instead, the average
of the models indicated a significantly improved generalization capability. Figure 5.2
(a) depicts three models captured during cyclical learning rate scheduling and shows
that the average is located near the center in the loss surface [3].

SWA has been applied to low-precision training. Stochastic weight averaging in
low-precision (SWALP) employs SWA for a cost-efficient training, where a low-precision
(e.g., 8-bit) model is trained with cyclical learning rate scheduling and models are cap-
tured during training at the lowest learning rate in the cycle. The captured models are
then averaged to obtain the final full-precision model. Thus, SWALP is intended to
design high-precision models and is vastly different from our work, which optimizes

severely quantized models (e.g., 2-bit) for inference.

5.3 Quantization of DNN and loss surface visualization

In this section, we explain how DNNs can be optimally quantized using a retraining
method and then present a loss surface visualization method for QDNNs. To this end,
we first revisit a previous method [3, 37] to visualize three weight vectors in a single
loss surface and explain the limitation when applied to QDNN loss surface visualiza-

tion.

5.3.1 Quantization of deep neural networks

The weight vector, w, of a deep neural network can be quantized in b-bit using a

symmetric uniform quantizer as follows:

Q¥(w) = sign(w) - A - min{ K'X' n 0.5)J : (M;D} (5.1)

73

where sign(-) is the sign function, A is the quantization step size, M is the number of
quantization levels that can be computed with 2° — 1. A trained full-precision model
can be directly quantized with Equation (5.1), but the performance will be significantly
degraded when severe quantization such as 1- or 2-bit is employed. To relieve this
problem, retraining on quantization domain is adopted in previous studies [1, 15, 19,

65] as follows:

I, = Z wg.])y](.q) (52)
JEA;
¥ = () (5.3)
0 = 85(l3) Y Sy (5.4)
ier

0F _ 5 (@

ow; (5.5
oF

Wijnew = Wij — 77<aw”> (5.6)
ngt'{)new = Qij(Wijnew) (5.7)

where [; is the logit of the unit 4, J; is the error signal of the unit 7, w;; is the weight
from the unit j to the unit 4, y; is the output activation of the unit j. 7 is the learning
rate, A; is the set of units anterior to the unit ¢, P; is the set of units posterior to the
unit j, Q(-) is the weight quantizer, ¢(-) is the activation function. The superscript
(¢) indicates the value is quantized, and (-) is the average operation over the mini-
batch. As described in Equation (5.2) to (5.7), the forward, backward, and gradient
calculation is conducted with the quantized weights, but weight update adopts the full-
precision parameters. This is because that the quantization step size, A, is usually
much larger than the computed gradients, 8—E The weights are not changed if the

ow
gradient is directly updated to the quantized weights.

74

5.3.2 Loss surface visualization for QDNNs

The visualization method in [3, 37] shows the location of three weight vectors wy,
wo, and w3. For locating these three models on the same loss surface, the projection

vectors u and v are formed as follows:

u = (W2 — Wl) (58)
v=(ws—wp)— (W3 —w,wy — W)/ ||wa — W1H2 5.9
G= (5.10)
[[ull
v= " (5.11)
[v]

The normalized vectors 1 and ¥ form an orthonormal basis in the plane containing
w1, Wo, and ws. These three vectors can be visualized on a Cartesian grid in the basis

1 and ¥ using a set of points P.
P=w+zx-0+y-V, (5.12)

where z and y are the coordinates.

We trained the 2-bit ternary quantized ResNet-20 [5] on the CIFAR-100 dataset [48]
using the retraining algorithm [1]. After the performance has fully converged during
the retraining process, we captured three quantized models w§Q), wé‘n, and wéq) with
time intervals' on the training epoch. Figure 5.1 (a) visualizes the three quantized net-
works using Equations (5.8) to (5.12).

It is noted that wgq), w§Q) , and qu) are located at ‘w1’, ‘w2’, and ‘w3’, respec-
tively. The limitation of this visualization method when applied to QDNNSs is obvious.
Even though qu)’ wéq), and w:(,,q) are quantized weights, the other points between
them are represented in full-precision. Thus, the exact shape of the loss surface can-
not be determined when the weights are quantized. Hence, we plot the loss surface

after quantizing the high-precision location vector, P. It is noteworthy that we can em-

ploy the full-precision weight vectors from Equation (5.6) to compute Equation (5.10)

'wi? wi? and wi? that were captured at epochs 214, 232, and 250, respectively

75

and (5.11). We denote these two normalized vectors as @if and ¥/ to avoid confusion;
subsequently, the three quantized vectors can be visualized on a Cartesian grid using a

set of quantized points, P4, for QDNNs as follows:
wi=wl+z.af +y.-9/ (5.13)
f M—1
P = sign(w/) - A - rnin{ [(Z‘ n 0.5)J : (2)} (5.14)

where w{ is the full-precision weight vector that can be employed during retraining.

We report the relationship of the three vectors wﬁ‘”, wgq), and wéq) obtained using the
modified visualization method in Figure 5.1 (b). The relationship of the three quantized
weight vectors, which cannot be observed in Figure 5.1 (a), is well represented. As they
were captured in the epoch order (‘wl’ — ‘w2’ — ‘w3’) during the retraining, a path
along wgq), wéq) and qu) appeared. Because all of the points, P, were expressed

in 2-bit quantized weights, the surface fluctuated strongly owing to quantization noise.

5.4 SQWA algorithm

Training a DNN can be regarded as guiding a model to near the center of the loss-
surface of the training data. The weight quantization of a DNN incurs a large pertur-
bation to the model, and even a well-trained DNN exhibits poor performance after
a severe quantization. Thus, retraining is typically employed to return a model to the
center of the training loss surface. The conventional fine-tuning approach that employs
a low learning rate seeks to obtain a permissible nearby minimum in the quantized do-
main. In our opinion, this can be improved by employing more aggressive training
methods.

The proposed SQWA retrains the quantized model using cyclical learning rate
scheduling instead of low learning rates for fine-tuning. We captured multiple mod-
els during retraining and obtained the average of the captured models. It is noteworthy

that the averaging process increases the bit-precision of the model. For example, if

76

ional

le loss surface with the convent

masing

o~
~

(a) Conventional [3]
(b) Ours

Visualization of three QDNNs5s

method [3] (a) and ours (b). Three models are captured during fixed-point retraining.
The points of wl, w2, and w3 represent the captured models at 214th, 232th, and

250th epochs, respectively.

Figure 5.1

~ — (@ Direct Quantized Model
X Captured Modelsby Retraining
— Training Trajectory

X Captured Models

[] SWA Aver age @) Averaged Model
— Training Trajectory| () Finetuning
(a) SWA (b) SQWA (ours)

Figure 5.2: Intuitions of the SWA and the SQWA.

we take the average of seven ternary models, then a 4-bit model is obtained. Thus, we
must re-quantize the averaged model, followed by fine-tuning using low learning rates.

SQWA can be explained as shown in Figure 5.2. The difference is that optimization
using the quantized loss surface is required. As shown in Section 5.3, the quantized loss
surface is rough when compared with its high-precision counterpart. Thus, optimiza-
tion is more difficult with low learning rates. Cyclical learning rate scheduling, which
uses high and low learning rates alternately, and weight averaging are more effective
than fine-tuning for traversing the rugged loss surface.

We demonstrate the entire workflow of the SQWA in Figure 5.2 (b). The details
are provided as follows.
Pretrain a full-precision model: We used high-performance floating-point models
for the design of the QDNN, instead of directly designing a QDNN from scratch. This
approach is more convenient considering the GPU-dominant training facilities avail-
able. According to our experiments, the performance of a quantized model is closely
related to that of the original floating-point network. Thus, good training methods such
as knowledge distillation (KD) [2] or SWA [3] are necessitated.
Quantize the full-precision model and retraining with cyclical LR scheduling: We
first quantized the full-precision model from step 1 and then conducted retraining on

the quantization domain with cyclical learning rate scheduling. We adopted discrete

78

cyclical learning rate scheduling for a better generalization [34]. Detailed guidelines
for scheduling are as follows. First, we define all values of the learning rates for the
full-precision model as 7. Then, the maximum and minimum values of the cyclic

. . . max(n ¢ min(n ¢
learning rate scheduling are determined as 7cycleMax = 1(07”) and 7cycleMin = 1((;7 f),

respectively. These values of the learning rate are highly related to the quantization
error. The quantized weights, w(%), can be interpreted as adding a quantization noise,
n, to the full-precision weight w(/). The quantization noise n increases as the number
of quantization bit, b, decreases. It is noteworthy that performing a direct quantization
with low-precision, such as one or two bits, typically degrades the performance sig-
nificantly. Thus, the smaller the number of bits, the larger is the required learning rate
for recovering the performance. Because our SQWA training method is designed for

severe quantizations (i.e., a 2-bit ternary model), ma);(onf) would be a good choice.

One period of the discrete cyclical learning rate, c, is a hyperparameter that affects
the training performance. The appropriate value of c is four to six epochs in our exper-
iments. Thus, one or two learning rate steps can be considered between 7cyclemax and
NeycleMin t0 form discrete cyclical learning rate scheduling. We captured the models
during training at the lowest learning rate (i.e., cycleMin)-

Averaging the captured models: The third step is averaging the captured low preci-
sion models. Model averaging improves the generalization capability by moving the
averaged model to the middle of the loss surface [3]. The number of captured models
for averaging affects SQWA training. When employing a 2-bit ternary symmetric uni-
form quantizer, for example, each captured weight is represented as —A, 0, and A. If
we select seven captured weights for averaging, the averaged model has the representa-
tion level of —7A, —6A,---,0,---,6A, and TA, which is a 4-bit QDNN. Averaging too
few models will degrade the final performance, whereas averaging too many networks
will render the training less efficient.

Re-quantization and fine-tuning of the averaged model: The final goal of SQWA

is to obtain a low-precision model, such as a 2-bit model; thus, we must quantize the

79

Table 5.1: Train and test accuracies (%) of the full-precision ResNet-20 for the SQWA
training on CIFAR-100 dataset. ‘Conventional’ means training without special tech-
niques, ‘KD’ represents knowledge distillation [2], and ‘SWA’ is stochastic weight

averaging technique [3].

Train Acc. Test Acc.

Conventional 90.12 68.43
KD [2] 87.55 71.06
SWA [3] 90.44 70.45
KD + SWA 87.02 71.26

averaged model into a low-precision one and fine-tune it with relatively low learning
rates. We employed a monotonically decreasing learning rate scheduling for this step.
Thus, we adopted the initial learning rate of 0.17cyclemax and trained three or four
epochs. It is noteworthy that we decreased the learning rate at every epoch.

More detailed information and experimental results of our proposed method are

reported in Section 5.5.

5.5 Experimental results

We evaluate the proposed SQWA method using the CIFAR-100 [48] and ImageNet [85]

datasets.

5.5.1 CIFAR-100

Network and hyperparameter configuration: We trained ResNet-20 [5] and Mo-
bileNetV2 [90] for the CIFAR-100 dataset. The training hyperparameters are as fol-
lows. For full-precision training, the batch size was 128 and the number of epochs
trained was 175. An SGD optimizer with a momentum of 0.9 was used. The learning

rate began at 0.1 and decreased by 0.1 times at the 75th and 125th epochs. Addition-

80

s 1T t ' 1 ! ! ! : 1
= I I n ! \ I ! n
S \ I h " " 0 "
S | I N " ,\ " h " M
on \ ! I \ P n I A 1
£ 05 Y I DA P L 0 I .
g) | I Lo P! | | - o
< \ ! o [' ;o .
5] | oy [\ | | Iy bt
. . . . POEY o » & ¢ o . POEY
0F “eev e ~—ev o _g-o cev NS¢ e —e v p
1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
T T T T « T T T -‘\ \/‘
= . R . POV ?/‘*tk' I NN ™,
X 60F oo AN ce . * 't \\ I t T
= ! LI ‘o ‘ol v ! 'y Y ‘o
8‘ I - v, v V! ‘\ I’ \‘ i i \\’
\
Z 50 I ‘1 o y \‘/ \ll . iy P
= , \Vl ¢ 1Y v J
(3] l .
B 40 +y i 1
N
1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
T T T T T T T T T T
-
~ 66 | .
15 I - ® e @ 2NN /’\.—"“ /'/ d
~ « :’_. '/)\ /’\ N s \'\‘/ \" \./
o -
S 64r N koot ‘ i
< AN
o 4 ‘
3 /
2 62} 1
‘
1 1 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200 220 240
Number of Epochs

Figure 5.3: (Top): Cyclical learning rate scheduling for CIFAR-100 dataset, (Middle):
the test accuracy curve with ResNet20, (Bottom): the sampled test accuracy curve

from the every minimum learning rates with ResNet20.

ally, L2-loss was added with a scale of 5e-4. For QDNN retraining, the batch size and
optimizer were the same as those of the full-precision one. The cyclical learning rate
scheduling for retraining is described in Figure 5.3 (Top).

We captured the quantized models at the minimum points of the cyclical learning
rate scheduling and obtained their average. To fine-tune the averaged model, the initial
learning rate was set as 0.001 and decreased by 0.1 times at every epoch. We only
performed three to four epochs for the fine-tuning. We did not employ L2-loss for the

QDNN training as it conflicted with the clipping of the quantization.

Results: As described in Section 5.4, SQWA requires a pretrained full-precision model.

We compare the full-precision ResNet20 that was developed with KD [2] and SWA [3]

81

in Table 5.1. The best full-precision model was trained by applying both KD and SWA.
Its test accuracy was 71.26%. We selected this network as the original full-precision
model.

In the next step of the SQWA training process, we performed QDNN training
with cyclical learning rate scheduling, as depicted in Figure 5.3 (Top). We captured
the models when the learning rates were the lowest in the cycles (i.e., blue diamonds
in Figure 5.3 (Top and Middle)). To select the models for averaging, we considered two
groups of the networks, as depicted in Figure 5.3 (Bottom). The first group (dashed red
box) was selected at the beginning of the training and the other group (solid blue box)
was captured after a sufficient number of training epochs has elapsed. We employed
seven models for both groups, and their performances are compared in Table 5.2.

More specifically, the models in the first group were captured between the 40th
and 76th? epochs. Their test accuracies were approximately 64.7% and the averaged
model demonstrated an accuracy of 67.94%. It is noteworthy that we took the average
of seven 2-bit ternary QDNNs (—A, 0, and A), of which the resultant model was
a 4-bit (—7A, —GA, <0, 0, -, 6A\, and 7A) QDNN. We conducted re-quantization
and fine-tuned the averaged model to obtain a final 2-bit QDNN, which yielded a test
accuracy of 66.75%. The result of the second group was significantly better than that of
the first group. The averaged 4-bit model yielded a test accuracy of 68.81%. After the
fine-tuning, the final performance of the 2-bit QDNN was 67.75%. From these results,
we can deduce the following:

o SQWA can be fully utilized when the models are captured after a sufficient con-

vergence.

e Based on the observation of the direct quantization results in Table 5.2, the sec-

ond group forms a wider minima in the loss surface than the first group. Because
direct quantization can be interpreted as a noise injection operation, less perfor-

mance degradation suggests that the model is laying in a wider minimum or at

>The training performance was too low to capture for models earlier than 40th epochs.

82

Table 5.2: Train and test accuracies (%) of the quantized model during retraining with
cyclical learning rate scheduling on CIFAR-100 dataset. The left column represents
the result obtained at the beginning phase of retraining, while the right shows that
at the last phase, 214th to 250th epochs. ‘Avg.’ means the averaged model using 7
models during cyclical learning rate training with specific epochs, ‘Direct’ represents
the direct quantization results of the averaged model, and ‘Fine-tune’ is the result after

fine-tuning of direct quantized network.

Epoch (precision) Train Acc. Test Acc.|Epoch (precision) Train Acc. Test Acc.
76 (2-bit) 72.80 64.56 250 (2-bit) 76.12 66.13
70 (2-bit) 73.28 65.20 244 (2-bit) 75.68 66.38
64 (2-bit) 72.32 64.03 238 (2-bit) 75.33 66.33
58 (2-bit) 73.16 65.14 232 (2-bit) 75.32 65.96
52 (2-bit) 72.03 64.43 226 (2-bit) 75.14 65.65
46 (2-bit) 72.00 64.54 220 (2-bit) 75.08 66.02
40 (2-bit) 72.27 64.60 214 (2-bit) 75.78 66.41
Avg. (4-bit) 76.53 67.94 Avg. (4-bit) 78.95 68.81
Direct (2-bit) 62.89 56.93 Direct (2-bit) 70.31 62.52
Fine-tune (2-bit) 74.25 66.75 | Fine-tune (2-bit) 76.83 67.75

83

Table 5.3: Comparison with literature in terms of the test accuracy (%) for quantized

ResNet20 and MobileNetV2 on CIFAR-100.

ResNet20 Quant Level Test Acc.
DoReFa-Net [65] 4-level 66.95
Residual [75] 4-level 65.97
LQ-Net [71] 4-level 66.53
WNQ [31] 4-level 67.42
HLHLp [39] Ternary 66.44
KDQ [116] Ternary 67.00
SQWA (ours) Ternary 67.75
KDQ [116] Binary 60.14
SQWA (ours) Binary 62.32

MobileNetV2 Quantization Level Test Acc. (%)

L2Quant [4] Ternary 74.97
HLHLp [39] Ternary 75.51
SQWA (ours) Ternary 76.73

the center of the loss surface.

We compare our SQWA results with those of previous studies in Table 5.3. Our
proposed SQWA outperforms the methods of previous studies. In particular, SQWA in-
dicated 0.8%, 1.78%, 1.22%, and 0.33% higher test accuracies than DoReFa-Net [65],
Residual [75], LQ-Net [71], and WNQ [31], respectively. This result is encouraging
as the previous studies employed 2-bit 4-level quantizers, whereas we adopted 2-bit
ternary and 1-bit binary quantizer. Furthermore, we compare our result to those involv-
ing 2-bit ternary and 1-bit binary quantizer. Our method with 2-bit ternary quantizer
outperformed HLHLp [39] and KDQ [116] in terms of test accuracy by 1.31% and
0.75%, respectively. For the binary weights, SQWA achieves 2.18% higher accuracy
than KDQ. It should be noted that KDQ improves the performance of the QDNN us-

84

ing the KD. Additionally, we exploit the KD technique to obtain a high-performance
full-precision model. Because SQWA outperforms KDQ, it suggests that SQWA train-
ing methods can combine with KD. Furthermore, we evaluated the proposed SQWA
method using MobileNetV2, which has a larger number of parameters than ResNet20.
We trained a full-precision MobileNetV2 with KD and SWA and achieved a test accu-
racy of 77.64%. We exploited SQWA with the same cyclical learning rate scheduling
used in the ResNet20 experiment. After a sufficient number of epochs, we captured
seven models to establish a 4-bit averaged model and fine-tuned it. Our final 2-bit Mo-
bileNetV?2 yielded the test accuracy that was 1.76% and 1.22% higher than those of
L2Quant [4] and HLHLp [39], respectively.

Discussion: We visualize the SQWA training results using the previous method [3]
and our method in Figure 5.4 (a) and (b), respectively. The results show similar trends
as reported in Figure 5.1 (a) and (b). The original visualization method [3] cannot
demonstrate the relationship between the QDNNs. However, our modified method
clearly depicts the relationship of the three quantized models. More specifically, we
visualized three models from “the final SQWA model” (w3), “the 2-bit quantized ver-
sion of the averaged model” (w1), and “one of the captured models during the cyclical
learning rate” (w2). Thus, w3 can be obtained by fine-tuning w1, and w2 is one of the
models to obtain w1. It is noteworthy that all three models were 2-bit ternary QDNNSs.
Figure 5.4 (a) does not provide a clear correlation of w1, w2, and w3. It shows that the
relationship between w1l and w2 is almost similar to that between w1l and w3. Our
proposed visualization method, as shown in Figure 5.4 (b), clearly distinguishes the
difference between them. w1 is fine-tuned with a low learning rate to obtain w3, and
they should exist in the same basin of the loss surface. Furthermore, it is clear that the
distance between w2 and w1 is much larger than that between w3 and w1. We expect
the proposed visualization method for the QDNN:Ss is very useful for understanding the

relationship between quantized networks in future studies.

85

(3D

(a) Train

(b) Train (ours)

f three quantized models on a

1m accuraci€s o

f tra

isualization in terms o

Vi

Figure 5.4

le loss surface. (a) is depicted by [3] and (b) is by ours. The points of ‘w2’, ‘wl’,

sing

ively.

, respective

and ‘w3’ represent ‘Epoch 214’ ‘Direct’, and ‘Fine-tune’ in Table 5.2

86

4 T . T T T .]
Q r ! n I \ F ! n 1
g \ I " " i " "
\ h n N | \) n N
~ \ | \\ I i o " , 1\ ' "
I
éﬂzj O [- i L I "‘\ 1
= \ [P I ! [[
g 1 VY 1 Lo | | oy o P
54 | i . | [' | I |
) \ ! I ! I | ! I !
— N LIEEEN . » * « » &\ ¢ o . 2 @
0F .»."/‘ \‘—o‘ .-‘..(\‘-‘—o ‘ L] ‘ »Q—(‘ \‘4‘ o-f.(b
0 5 10 15 20 25 30 35 40 45 50
T T T T T T T ’ T T
~ 4 > N «
S . e ,A‘\ /r AN re 1\ , I./*o N
a0 S N SRS S AN Co T
S N ‘\ ’ . vy v \\ o 5 Vo
\
2 f/ \\ ! \ 1/ i ‘ . . /I VI \\ 1‘
— 90 N 'y * Y ¢ v
! ! Vy
& Y
= 40 H b
I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50
T T T T T T T T T ————
L e & [
§ 68 S P \\ P SN ..“‘L/:,,i‘;.,t‘
< / - ~ o
. 66 \ B
8 '/'\‘/’ \//
< 64 * 7
— /
Lol f
= ‘
60 ! I I I I I I I I I I I [
0 20 40 60 80 100 120 140 160 180 200 220 240

Number of Epochs

Figure 5.5: (Top): Cyclical learning rate scheduling for ImageNet dataset, (Middle): a
validation top-1 accuracy curve with ResNet18, (Bottom): the sampled top-1 accuracy

curve from the every minimum learning rates in the cycle.

5.5.2 ImageNet

Network and hyperparameter configuration: We trained ResNet-18 [5] for the ILS-
VRC 2012 classification dataset [117]. The training hyperparameters are as follows.
We trained the full-precision model with a batch size of 1024 on 90 epochs, with
the initial learning rate of 0.4 and decreased it by 0.1 times at the 30th, 60th, and
80th epochs. It is noteworthy that the initial learning rate of 0.4 was determined using
the linear scaling rule, as suggested in [118]. We used the SGD optimizer with a
momentum of 0.9. Additionally, L.2-loss was added with a scale of 1e-4. For the QDNN
retraining, the batch size and optimizer were the same as those of the full-precision

training. Because we employed SQWA training, cyclical learning rate scheduling was

87

Table 5.4: Detailed ImageNet Top-1 and Top-5 accuracies (%) of the quantized model
during retraining with cyclical learning rate scheduling for ResNet18. ‘Avg.” means the
averaged model using seven models that obtained from 202th to 238th epochs, ‘Direct’
represents the direct quantization results of the averaged model, and ‘Fine-tune’ is the

result after fine-tuning of direct quantized network.

Epoch (precision) Top-1 Acc. Top-5 Acc.

238 (2-bit) 67.66 87.83
232 (2-bit) 67.81 88.04
226 (2-bit) 67.90 88.00
220 (2-bit) 68.25 88.10
214 (2-bit) 68.12 88.09
208 (2-bit) 67.90 87.89
202 (2-bit) 67.40 87.75
Avg. (4-bit) 69.66 89.12
Direct (2-bit) 60.78 83.01
Fine-tune (2-bit) 69.34 88.77

employed, as shown in Figure 5.5 (Top). The maximum and minimum values of the
learning rates were determined by considering the learning rate of the full-precision
training, as suggested in Section 5.4.

We captured the models at the minimum points of the cyclical learning rate schedul-
ing and obtained their average. To fine-tune the averaged model, the initial learning rate
was set to 0.004 and decreased by 0.1 times at every epoch. We executed five epochs
for the fine-tuning and did not employ L2-loss for the QDNN training.

Results: Apprentice [30] and QKD [29] employed KD to improve the performance
of QDNNs. Thus, we employed KD loss for the full-precision training and achieved
a top-1 accuracy of 71.68%. With this full-precision model, we performed SQWA

with cyclical learning rate scheduling and captured the quantized models at the lowest

88

leaning rate in the cycles, as described in Figure 5.5 (Middle). The accuracy curve
of the captured models is depicted in Figure 5.5 (Bottom). We adopted the last seven
models for averaging and fine-tuning it to obtain the final 2-bit QDNN. The results
are reported in Table 5.4. The performance of the averaged model is 69.66%, and we
obtained 60.78% as the direct quantization results. It is noteworthy that the averaged
model has a 4-bit precision. After the fine-tuning, the accuracy improved to 69.34%,
which is significantly better than those of the captured models.

We conducted additional experiments to investigate the effect of number of models
on averaging. As discussed in Section 5.4, the number of captured models is related
to the precision of the averaged model. More specifically, the averaged model using
three 2-bit ternary models becomes a 3-bit QDNN. Thus, we employed 3, 7, 15, and
31 models such that the precision of the averaged model was 3, 4, 5, and 6 bits, re-
spectively, and fine-tuned each model. The results are reported in Table 5.5. Adopting
three models afforded a top-1 accuracy of 69.18%, which is 0.22% worse than the
seven models. When 15 models were employed, the top-1 accuracy was similar to that
of the 7 models but the top-5 accuracy was 0.2% higher. Using 31 models did not
improve the performance.

We compare our results with those of previous studies in Table 5.6. Our result
outperformed those of previous studies including the 2-bit 4-level (LQ-NET [71] and
WNQ [31]) and ternary (TWN [16], TTQ [17], INQ [119], ADMM [91], QNet [25],
QIL [24], and Apprentice [30]). More specifically, we achieved a top-1 accuracy of
69.4%. Only the QNet result is comparable with our result, although it is 0.3% lower.
This result is significant because QNet employs non-linear quantizer while we adopt

uniform quantization.

&9

Table 5.5: Effect of the number of captured models for averaging. The results are
reported in terms of top-1 accuracy after fine-tuning to achive final 2-bit QDNN model

on the ImageNet dataset.

of models 3 7 15 31
(bit-precision) (3-bit) (4-bit) (5-bit) (6-bit)
Top-1 Acc. 69.2 69.4 69.4 69.4
Top-5 Acc. 88.7 88.7 88.9 88.8

5.6 Concluding remarks

We proposed an SQWA algorithm for the optimum quantization of deep neural net-
works. The model averaging technique was employed to improve the generalization
capability of QDNNs by moving them to the wide minimum of the loss surface. Be-
cause SQWA captures multiple models for averaging using only a single training with
cyclical learning rate scheduling, it is easy to implement and can be applied to many
different models. Although we only used a uniform quantization scheme, our results far
exceeded the performances of existing non-uniform quantized models in the CIFAR-
100 and ImageNet datasets. Additionally, we presented a visualization technique that
showed the location of three QDNNs on a single loss surface. Because the proposed
method is a training scheme to improve the generalization of QDNN:S, it can be com-

bined with other elaborate and non-uniform quantization schemes.

90

Table 5.6: Comparison with literature in terms of the validation accuracy (%) for 2-bit

ResNet18 on ImageNet.

Methods Quant Level Top-1 Top-5

TWN [16] Ternary 61.8 84.2
TTQ [17] Ternary 66.6 87.2
INQ [119] Ternary 66.0 87.1
ADMM [91] Ternary 67.0 87.5
LQ-Net [71] 4-level 68.0 88.0
QNet [25] Ternary 69.1 88.9
WNQ [31] 4-level 67.7 879
QIL [24] Ternary 68.1 88.3

Apprentice [30] Ternary 68.5 88.4
SQWA (ours) Ternary 69.4 88.9

91

Chapter 6

Conclusion

In this dissertation, we studied the design of quantized deep neural networks (QDNN5)

to improve their generalization capability. In particular, by analyzing the performance
resiliency of QDNNSs, high-low-high-low-precision (HLHLp) training, QDNNs train-
ing with knowledge distillation (KD), and stochastic quantized weight averaging (SQWA)
techniques were developed.

We analyzed the performance of QDNNs by not only changing the arithmetic pre-
cision, but also varying network complexity. In addition, we employed layer-wise sen-
sitivity analysis for quantization, and our results clearly showed that the input or output
layers of DNNs are most sensitive to quantization. When the complexity of DNNS is
reduced by lowering either the number of units, feature maps, or hidden layers, the
performance gap between the full-precision and quantized model increases. Thus, a
large network that contains redundant representation capability for given training data
is not considerably negatively affected by lowered precision; however, a considerably
compact network is. Furthermore, we presented two simple quantization techniques,
namely the adaptive step size retraining and gradual quantization schemes, both of
which led to increased performance for compact networks.

We also proposed the HLHLp training scheme that can improve the generalization

capability of QDNNSs. This training scheme employs high-low-high-low bit precision

92

with cyclical learning rate scheduling. Our results indicate that QDNNS trained using
the HLHLp scheme have considerably better performance compared with those that
are trained using conventional method.

Quantization training with KD was also performend in our study. In particular, we
explored the effect of teacher network configuration on the quantization of DNNs, and
found that the softmax distribution generated by the teacher network plays a key role
in KD training. In addition, we showed that the softmax distribution of the teacher
model could be controlled by the hyperparameters of KD. Moreover, we presented the
gradual soft loss reducing (GSLR) technique to avoid cherry picking during the QKD
training.

The SQWA training technique was also introduced in our study. The SQWA tech-
nique involves captures multiple models that are then averaged during a single training
phase; it is easy to implement and can be applied to different models. As a result of
SQWA training, the trained QDNNs showed significantly improved performances. In
addition, we proposed a visualization method for three QDNNSs on a single loss surface
in the quantization domain.

In this doctoral study, we show that improving the generalization capability of
QDNN s can lead to a significant reduction in performance degradation. This approach
is quite different from that of previous works that have tried to employ sophisticated
quantization methods to improve the performance of QDNNs. In summary, our study
indicates that in the cases wherein only limited resources are available for DNN model
design, our proposed quantization training schemes, including HLHLp, KDQ, and

SQWA methods can be exploited for improving the generalization capability. .

93

[1]

Bibliography

Kyuyeon Hwang and Wonyong Sung, “Fixed-point feedforward deep neural
network design using weights +1, 0, and -1,” in Signal Processing Systems

(SiPS), 2014 IEEE Workshop on. IEEE, 2014, pp. 1-6.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and An-
drew Gordon Wilson, “Averaging weights leads to wider optima and better

generalization,” arXiv preprint arXiv:1803.05407, 2018.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung, “Fixed point optimization
of deep convolutional neural networks for object recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE International Conference
on. IEEE, 2015, pp. 1131-1135.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual
learning for image recognition,” in 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). IEEE, 2016, pp. 770-778.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai,
Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guo-

liang Chen, et al., “Deep speech 2: End-to-end speech recognition in english

94

[9]

[10]

[11]

[12]

[13]

[14]

and mandarin,” in International conference on machine learning, 2016, pp.

173-182.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria, ‘“Recent
trends in deep learning based natural language processing,” ieee Computational

intelligenCe magazine, vol. 13, no. 3, pp. 55-75, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger,
“Densely connected convolutional networks,” in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2017, pp. 4700—4708.

Dongyoon Han, Jiwhan Kim, and Junmo Kim, “Deep pyramidal residual net-
works,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 5927-5935.

Wonyong Sung and Ki-II Kum, “Simulation-based word-length optimization
method for fixed-point digital signal processing systems,” Signal Processing,

IEEE Transactions on, vol. 43, no. 12, pp. 3087-3090, 1995.

B Zahir M Hussain et al., “Short word-length LMS filtering,” in Signal Pro-
cessing and Its Applications, 2007. ISSPA 2007. 9th International Symposium
on. IEEE, 2007, pp. 1-4.

Perry Moerland and Emile Fiesler, “Neural network adaptations to hardware

implementations,” Tech. Rep., IDIAP, 1997.

Jordan L Holt and Thomas E Baker, “Back propagation simulations using lim-
ited precision calculations,” in Neural Networks, 1991., IICNN-91-Seattle In-
ternational Joint Conference on. IEEE, 1991, vol. 2, pp. 121-126.

Emile Fiesler, Amar Choudry, and H John Caulfield, “Weight discretization
paradigm for optical neural networks,” in The Hague’90, 12-16 April. Interna-

tional Society for Optics and Photonics, 1990, pp. 164-173.

95

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David, “Binaryconnect:
Training deep neural networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems (NIPS), 2015, pp. 3123—
3131.

Li Fengfu, Zhang Bo, and Liu Bin, “Ternary weight networks,” in NIPS Work-
shop on EMDNN, 2016, vol. 118, p. 119.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally, “Trained ternary
quantization,” International Conference on Learning Representations (ICLR),

2017.

Sungho Shin, Kyuyeon Hwang, and Wonyong Sung, “Fixed-point performance
analysis of recurrent neural networks,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2016 IEEE International Conference on. IEEE, 2016, pp.
976-980.

Sungho Shin, Yoonho Boo, and Wonyong Sung, “Fixed-point optimization of
deep neural networks with adaptive step size retraining,” in 2017 IEEE Interna-
tional conference on acoustics, speech and signal processing (ICASSP). IEEE,

2017, pp. 1203-1207.

Wonyong Sung, Sungho Shin, and Kyuyeon Hwang, “Resiliency of deep neural

networks under quantization,” arXiv preprint arXiv:1511.06488, 2015.

Shu-Chang Zhou, Yu-Zhi Wang, He Wen, Qin-Yao He, and Yu-Heng Zou, “Bal-
anced quantization: An effective and efficient approach to quantized neural net-

works,” Journal of Computer Science and Technology, vol. 32, no. 4, pp. 667—
682, 2017.

Daisuke Miyashita, Edward H Lee, and Boris Murmann, “Convolutional
neural networks using logarithmic data representation,” arXiv preprint

arXiv:1603.01025, 2016.

96

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang,
Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan, “PACT: Parame-
terized clipping activation for quantized neural networks,” arXiv preprint

arXiv:1805.06085, 2018.

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han,
Youngjun Kwak, Sung Ju Hwang, and Changkyu Choi, “Learning to quantize
deep networks by optimizing quantization intervals with task loss,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2019, pp. 4350-4359.

Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqgiang Li, Bing Deng, Jian-
giang Huang, and Xian-sheng Hua, “Quantization networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.
7308-7316.

Lu Hou, Quanming Yao, and James T Kwok, “Loss-aware binarization of deep

networks,” arXiv preprint arXiv:1611.01600, 2016.

Lu Hou and James T Kwok, “Loss-aware weight quantization of deep net-

works,” arXiv preprint arXiv:1802.08635, 2018.

Tim Salimans and Durk P Kingma, “Weight normalization: A simple reparame-
terization to accelerate training of deep neural networks,” in Advances in Neural

Information Processing Systems, 2016, pp. 901-9009.

Antonio Polino, Razvan Pascanu, and Dan Alistarh, ‘“Model compression via
distillation and quantization,” in International Conference on Learning Repre-

sentations, 2018.

Asit Mishra and Debbie Marr, “Apprentice: Using knowledge distillation tech-
niques to improve low-precision network accuracy,” in International Confer-

ence on Learning Representations, 2018.

97

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Wen-Pu Cai and Wu-Jun Li, “Weight normalization based quantization for deep

neural network compression,” arXiv preprint arXiv:1907.00593, 2019.

Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon
Wilson, and Christopher De Sa, “Swalp: Stochastic weight averaging in low-

precision training,” arXiv preprint arXiv:1904.11943, 2019.

Sepp Hochreiter and Jiirgen Schmidhuber, “Flat minima,” Neural Computation,

vol. 9, no. 1, pp. 142, 1997.

Stanistaw Jastrzkebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja
Fischer, Yoshua Bengio, and Amos Storkey, “Three factors influencing minima

in SGD,” arXiv preprint arXiv:1711.04623, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang, “On large-batch training for deep learning: Gen-
eralization gap and sharp minima,” International Conference on Learning Rep-

resentations (ICLR), 2017.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visu-
alizing the loss landscape of neural nets,” in Advances in Neural Information

Processing Systems (NIPS), 2018, pp. 6391-6401.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and An-
drew G Wilson, “Loss surfaces, mode connectivity, and fast ensembling of
dnns,” in Advances in Neural Information Processing Systems, 2018, pp. 8789—

8798.

Sungho Shin, Kyuyeon Hwang, and Wonyong Sung, “Fixed point performance

analysis of recurrent neural networks,” arXiv preprint arXiv:1512.01322, 2015.

98

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Sungho Shin, Jinhwan Park, Yoonho Boo, and Wonyong Sung, “HLHLp: Quan-
tized neural networks training for reaching flat minima in loss surface,” in

Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020.

Darryl D Lin, Sachin S Talathi, and V Sreekanth Annapureddy, “Fixed point
quantization of deep convolutional networks,” in ICML 2016: 33rd Interna-

tional Conf. Machine Learning, 2016.

Song Han, Huizi Mao, and William J Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding,”

arXiv preprint arXiv:1510.00149, 2015.

Jonghong Kim, Kyuyeon Hwang, and Wonyong Sung, “X1000 real-time
phoneme recognition vlsi using feed-forward deep neural networks,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2014 IEEE International Confer-
ence on. IEEE, 2014, pp. 7510-7514.

Jinhwan Park and Wonyong Sung, “FPGA based implementation of deep neural
networks using on-chip memory only,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 1011-
1015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally, “EIE: efficient inference engine on compressed
deep neural network,” in 43rd ACM/IEEE Annual International Symposium
on Computer Architecture, ISCA 2016, Seoul, South Korea, June 18-22, 2016,
2016, pp. 243-254.

Minjae Lee, Kyuyeon Hwang, Jinhwan Park, Sungwook Choi, Sungho Shin,
and Wonyong Sung, “Fpga-based low-power speech recognition with recurrent
neural networks,” in 2016 IEEE International Workshop on Signal Processing

Systems (SiPS). IEEE, 2016, pp. 230-235.

99

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Nicholas J Fraser, Yaman Umuroglu, Giulio Gambardella, Michaela Blott,
Philip Leong, Magnus Jahre, and Kees Vissers, “Scaling binarized neural net-
works on reconfigurable logic,” in To appear in the PARMA-DITAM workshop
at HIPEAC, 2017, vol. 2017.

A Krizhevskey, “CUDA-convnet,” 2014.

Alex Krizhevsky, Geoffrey Hinton, et al., “Learning multiple layers of features

from tiny images,” Tech. Rep., Citeseer, 2009.

Dong Yu, Alex Acero Deng, George Dahl, Frank Seide, and Gang Li, “More
data + deeper model = better accuracy,” in keynote at International Workshop

on Statistical Machine Learning for Speech Processing, 2012.

Dong Yu, Frank Seide, Gang Li, and Li Deng, “Exploiting sparseness in
deep neural networks for large vocabulary speech recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2012 IEEE International Conference
on. IEEE, 2012, pp. 4409—4412.

Jian Xue, Jinyu Li, and Yifan Gong, “Restructuring of deep neural network
acoustic models with singular value decomposition.,” in INTERSPEECH, 2013,
pp- 2365-2369.

Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pascal Fua, “Learning
separable filters,” in Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on. IEEE, 2013, pp. 2754-2761.

Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and Jason Weston, “Cur-
riculum learning,” in Proceedings of the 26th annual international conference

on machine learning. ACM, 2009, pp. 41-48.

John S Garofolo, Lori F Lamel, William M Fisher, Jonathon G Fiscus, and

David S Pallett, “Darpa timit acoustic-phonetic continous speech corpus cd-

100

[55]

[56]

[57]

[58]

[59]

[60]

[61]

rom. nist speech disc 1-1.1,” NASA STI/Recon Technical Report N, vol. 93, pp.
27403, 1993.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton, “Speech recog-
nition with deep recurrent neural networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 2013, pp.
6645-6649.

Ilya Sutskever, James Martens, George E Dahl, and Geoffrey E Hinton, “On the
importance of initialization and momentum in deep learning.,” ICML (3), vol.

28, pp. 1139-1147, 2013.

Sergey loffe and Christian Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML, 2015, pp. 448—
456.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng, “Reading digits in natural images with unsupervised feature learn-
ing,” NIPS Workshop on Deep Learning and Unsupervised Feature Learning,
2011.

Pierre Sermanet, Soumith Chintala, and Yann LeCun, “Convolutional neural
networks applied to house numbers digit classification,” in Pattern Recognition

(ICPR), 2012 21st International Conference on. IEEE, 2012, pp. 3288-3291.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel, “Backpropagation applied
to handwritten zip code recognition,” Neural computation, vol. 1, no. 4, pp.

541-551, 1989.

Alex Krizhevsky, “cuda-convnet: High-performance c++/cuda implementation

of convolutional neural networks,” 2012.

101

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Felix A Gers, Nicol N Schraudolph, and Jiirgen Schmidhuber, “Learning precise
timing with Istm recurrent networks,” Journal of machine learning research,

vol. 3, no. Aug, pp. 115-143, 2002.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio, “Quantized neural networks: Training neural networks with low preci-
sion weights and activations.,” The Journal of Machine Learning Research, vol.

18, no. 187, pp. 1-30, 2017.

Chen Xu, Jiangiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong
Wang, and Hongbin Zha, “Alternating multi-bit quantization for recurrent neu-
ral networks,” International Conference on Learning Representations (ICLR),

2018.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou,
“Dorefa-net: Training low bitwidth convolutional neural networks with low

bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016.

Ilya Loshchilov and Frank Hutter, “Sgdr: Stochastic gradient descent with warm

restarts,” International Conference on Learning Representations (ICLR), 2017.

Leslie N Smith, “Cyclical learning rates for training neural networks,” in Appli-
cations of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE,
2017, pp. 464-472.

Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo, ‘“Weighted-entropy-based
quantization for deep neural networks,” in 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). IEEE, 2017, pp. 7197-7205.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan,
“Deep learning with limited numerical precision,” in International Conference

on Machine Learning (ICML), 2015, pp. 1737-1746.

102

[70] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos, ‘“Deep learning
with low precision by half-wave gaussian quantization,” in 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017, pp.
5406-5414.

[71] Dongqing Zhang, Jiaolong Yang, Donggiangzi Ye, and Gang Hua, “Lg-nets:
Learned quantization for highly accurate and compact deep neural networks,”
in Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 365-382.

[72] Joachim Ott, Zhouhan Lin, Ying Zhang, Shih-Chii Liu, and Yoshua Bengio,
“Recurrent neural networks with limited numerical precision,” arXiv preprint

arXiv:1608.06902, 2016.

[73] Qinyao He, He Wen, Shuchang Zhou, Yuxin Wu, Cong Yao, Xinyu Zhou, and
Yuheng Zou, “Effective quantization methods for recurrent neural networks,”

arXiv preprint arXiv:1611.10176, 2016.

[74] Supriya Kapur, Asit Mishra, and Debbie Marr, “Low precision RNNs: Quan-

tizing RNNs without losing accuracy,” arXiv preprint arXiv:1710.07706, 2017.

[75] Yiwen Guo, Anbang Yao, Hao Zhao, and Yurong Chen, ‘“Network sketching:
Exploiting binary structure in deep CNNS,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, 2017, vol. 2.

[76] Peiqi Wang, Xinfeng Xie, Lei Deng, Guoqi Li, Dongsheng Wang, and Yuan
Xie, “Hitnet: Hybrid ternary recurrent neural network,” in Advances in Neural

Information Processing Systems (NIPS), 2018, pp. 602—-612.

[77] Arash Ardakani, Zhengyun Ji, Sean C Smithson, Brett H Meyer, and Warren J
Gross, “Learning recurrent binary/ternary weights,” International Conference

on Learning Representations (ICLR), 2019.

103

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi,
“Xnor-net: Imagenet classification using binary convolutional neural networks,”
in Proceedings of the European Conference on Computer Vision (ECCV).

Springer, 2016, pp. 525-542.

Wei Wen, Yandan Wang, Feng Yan, Cong Xu, Chunpeng Wu, Yiran Chen, and
Hai Li, “Smoothout: Smoothing out sharp minima to improve generalization in

deep learning,” arXiv preprint arXiv:1805.07898, 2018.

Robert Kleinberg, Yuanzhi Li, and Yang Yuan, “An alternative view: When

does sgd escape local minima?,” arXiv preprint arXiv:1802.06175, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.

1929-1958, 2014.

Sergey loffe and Christian Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.

Anders Krogh and John A Hertz, “A simple weight decay can improve general-
ization,” in Advances in Neural Information Processing Systems (NIPS), 1992,

pp- 950-957.

Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic optimiza-

tion,” arXiv preprint arXiv:1412.6980, 2014.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.,
“Imagenet large scale visual recognition challenge,” International Journal of

Computer Vision, vol. 115, no. 3, pp. 211-252, 2015.

104

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert Maclntyre,
Ann Bies, Mark Ferguson, Karen Katz, and Britta Schasberger, “The penn tree-
bank: annotating predicate argument structure,” in Proceedings of the workshop
on Human Language Technology. Association for Computational Linguistics,

1994, pp. 114-119.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher, “Pointer

sentinel mixture models,” arXiv preprint arXiv:1609.07843, 2016.

Douglas B Paul and Janet M Baker, “The design for the Wall Street Journal-
based CSR corpus,” in Proceedings of the workshop on Speech and Natural
Language. Association for Computational Linguistics, 1992, pp. 357-362.

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen
Tu, “Deeply-supervised nets,” in Artificial Intelligence and Statistics, 2015, pp.
562-570.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen, “MobileNetV2: Inverted residuals and linear bottlenecks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2018, pp. 4510-4520.

Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong Jin, “Extremely
low bit neural network: Squeeze the last bit out with admm,” in Thirty-Second

AAAI Conference on Artificial Intelligence, 2018.

Dan Hendrycks and Thomas G Dietterich, “Benchmarking neural network
robustness to common corruptions and surface variations,” arXiv preprint

arXiv:1807.01697, 2018.

Sepp Hochreiter and Jiirgen Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735-1780, 1997.

105

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua Ben-
gio, “On the properties of neural machine translation: Encoder-decoder ap-

proaches,” arXiv preprint arXiv:1409.1259, 2014.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals, “Recurrent neural net-

work regularization,” International Conference on Learning Representations

(ICLR), 2015.

Yajie Miao, Mohammad Gowayyed, and Florian Metze, “EESEN: End-to-end
speech recognition using deep RNN models and WFST-based decoding,” in Au-
tomatic Speech Recognition and Understanding (ASRU), 2015 IEEE Workshop
on. IEEE, 2015, pp. 167-174.

Naveen Parihar, Joseph Picone, David Pearce, and Hans-Giinter Hirsch, “Per-
formance analysis of the aurora large vocabulary baseline system,” in 2004 12th

European Signal Processing Conference. IEEE, 2004, pp. 553-556.

Cristian Bucilud, Rich Caruana, and Alexandru Niculescu-Mizil, “Model com-
pression,” in Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2006, pp. 535-541.

Zhiyuan Tang, Dong Wang, and Zhiyong Zhang, ‘“Recurrent neural network
training with dark knowledge transfer,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 5900-
5904.

Xuemeng Song, Fuli Feng, Xianjing Han, Xin Yang, Wei Liu, and Ligiang Nie,
“Neural compatibility modeling with attentive knowledge distillation,” in The
41st International ACM SIGIR Conference on Research & Development in In-

formation Retrieval. ACM, 2018, pp. 5-14.

Taichi Asami, Ryo Masumura, Yoshikazu Yamaguchi, Hirokazu Masataki, and

Yushi Aono, “Domain adaptation of dnn acoustic models using knowledge

106

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

distillation,” in 2017 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2017, pp. 5185-5189.

Junpeng Wang, Liang Gou, Wei Zhang, Hao Yang, and Han-Wei Shen, “Deep-
vid: Deep visual interpretation and diagnosis for image classifiers via knowl-
edge distillation,” IEEE transactions on visualization and computer graphics,

vol. 25, no. 6, pp. 2168-2180, 2019.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio, “Fitnets: Hints for thin deep nets,” arXiv

preprint arXiv:1412.6550, 2014.

Mandar Kulkarni, Kalpesh Patil, and Shirish Karande, “Knowledge distillation
using unlabeled mismatched images,” arXiv preprint arXiv:1703.07131, 2017.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho, “Relational knowledge
distillation,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2019, pp. 3967-3976.

Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim, “A gift from knowledge
distillation: Fast optimization, network minimization and transfer learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2017, pp. 4133-4141.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, and Hassan Ghasemzadeh,
“Improved knowledge distillation via teacher assistant: Bridging the gap be-

tween student and teacher,” arXiv preprint arXiv:1902.03393, 2019.

Sergey Zagoruyko and Nikos Komodakis, “Wide residual networks,” arXiv

preprint arXiv:1605.07146, 2016.

Yoonho Boo, Sungho Shin, and Wonyong Sung, “Memorization capacity of

deep neural networks under parameter quantization,” in ICASSP 2019-2019

107

[110]

[111]

[112]

[113]

[114]

[115]

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2019, pp. 1383-1387.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqgiao Liu, and Ian Reid, “To-
wards effective low-bitwidth convolutional neural networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.
7920-7928.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A Hamprecht,
“Essentially no barriers in neural network energy landscape,” arXiv preprint

arXiv:1803.00885, 2018.

Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott,
Philip Leong, Magnus Jahre, and Kees Vissers, “Finn: A framework for fast,
scalable binarized neural network inference,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
ACM, 2017, pp. 65-74.

Kota Ando, Kodai Ueyoshi, Kentaro Orimo, Haruyoshi Yonekawa, Shimpei
Sato, Hiroki Nakahara, Shinya Takamaeda-Yamazaki, Masayuki Ikebe, Tetsuya
Asai, Tadahiro Kuroda, et al., “Brein memory: A single-chip binary/ternary re-
configurable in-memory deep neural network accelerator achieving 1.4 tops at

0.6 w,” IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 983-994, 2017.

Twan van Laarhoven, “L2 regularization versus batch and weight normaliza-

tion,” arXiv preprint arXiv:1706.05350, 2017.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus, “Regu-
larization of neural networks using dropconnect,” in International conference

on machine learning, 2013, pp. 1058-1066.

108

[116]

[117]

[118]

[119]

Sungho Shin, Yoonho Boo, and Wonyong Sung, “Knowledge distilla-
tion for optimization of quantized deep neural networks,” arXiv preprint

arXiv:1909.01688, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural Informa-

tion Processing Systems (NIPS), 2012, pp. 1097-1105.

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He,
“Accurate, large minibatch sgd: Training imagenet in 1 hour,” arXiv preprint

arXiv:1706.02677, 2017.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen, “Incremental
network quantization: Towards lossless cnns with low-precision weights,” arXiv

preprint arXiv:1702.03044, 2017.

109

73" (deep neural network, DNN)-2

710 A]
Al -

—_L
i

~

=
Tl

A (re-

[e]

fL

& A5

S

s A

5}

% e s

9]
{4

T

O
-
T

[l
=

o] FAF2Hquanti-

=

=

™, o]

1

gt vy ek (minima)o]] =&
t}. HLHLp (high-low-high-low-precision) = % H ¥

=

S

=
25}

o

%

5t

15

-

H
T =X (layer-wise sensitivity analysis)o]] 7|%F

o 7]
T

=

=)
=

Al

H(loss surface)Ato]|

Z

1

1—

o
o

=

5]

hiE
[¢]

(parameter) 52} AFE 27

training) 112
mle] Yoot Zolo] o}

zation)+= o] &
< dlojojd
quantization)

of &4

o

i

__o_w_

__o_w_

o}

110

= 2] 4] Z-F(knowledge distil-

°

B

ool PApate] 58 ol

5 ©

Q

(learning rate) &= 9F A5} A H ALo]

lation, KD) 7]&-& 9]

il

ol
To°

,m.o
1)

]

gl vl

Jo] 7 w}etu] €] 7}

©

9]

Ko

7} 7]

H

LS

(softmax)

o A
ah

S0l AZE

]_

o
R

]

o

]

LA

A%

_‘I

o

o

o
o

0

ol

4~ (gradual soft loss reducing) -2 A

T

“

Al
=
HE

ATLE &

3

WS
&

Kl

WS
™

7
ot ohjet of o oFx}at

=

TF(stochastic quantized weight averaging,

b

]

Z

=
o

£ et 7}

or

-
=
o

=

1

o}
htol

9

1

—

=
[
o

St

6

=

=22
] %43}, HLHLp

ol

2 0xA

H(retraining) T o A 1

[e]

pLs

| mrlel A o5 Aot =

111

A

=
K3

e ofAtst 7}

=
T

H:2013-23122

giolct

[e)
i
i

o
o

2o 21 oFztSh(direct quantization), (3) A

&-(cyclical learning rate)

A7, () A E B2

@A

	1.Introduction
	1.1 Quantization of Deep Neural Networks
	1.2 Generalization Capability of DNNs
	1.3 Improved Generalization Capability of QDNNs
	1.4 Outline of the Dissertation

	2. Analysis of Fixedpoint Quantization of Deep Neural Networks
	2.1 Introduction
	2.2 Fixedpoint Performance Analysis of Deep Neural Networks
	2.2.1 Model Design of Deep Neural Networks
	2.2.2 Retrainbased Weight Quantization
	2.2.3 Quantization Sensitivity Analysis
	2.2.4 Empirical Analysis

	2.3 Step Size Adaptation and Gradual Quantization for Retraining of DeepNeural Networks
	2.3.1 Stepsize adaptation during retraining
	2.3.2 Gradual quantization scheme
	2.3.3 Experimental Results

	2.4 Concluding remarks

	3. HLHLp:Quantized Neural Networks Training for Reaching Flat Minimain Loss Surface
	3.1 Introduction
	3.2 Related Works
	3.2.1 Quantization of Deep Neural Networks
	3.2.2 Flat Minima in Loss Surfaces

	3.3 Training QDNN for IMproved Generalization Capability
	3.3.1 Analysis of Training with Quantized Weights
	3.3.2 Highlowhighlowprecision Training

	3.4 Experimental Results
	3.4.1 Image Classification with CNNs
	3.4.2 Language Modeling on PTB and WikiText2
	3.4.3 Speech Recognition on WSJ Corpus
	3.4.4 Discussion

	3.5 Concluding Remarks

	4 Knowledge Distillation for Optimization of Quantized Deep Neural Networks
	4.1 Introduction
	4.2 Quantized Deep Neural Netowrk Training Using Knowledge Distillation
	4.2.1 Quantization of deep neural networks and knowledge distillation
	4.2.2 Teacher model selection for KD
	4.2.3 Discussion on hyperparameters of KD

	4.3 Experimental Results
	4.3.1 Experimental setup
	4.3.2 Results on CIFAR10 and CIFAR100
	4.3.3 Model size and temperature
	4.3.4 Gradual Soft Loss Reducing

	4.4 Concluding Remarks

	5 SQWA: Stochastic Quantized Weight Averaging for Improving the Generalization Capability of LowPrecision Deep Neural Networks
	5.1 Introduction
	5.2 Related works
	5.2.1 Quantization of deep neural networks for efficient implementations
	5.2.2 Stochastic weight averaging and losssurface visualization

	5.3 Quantization of DNN and loss surface visualization
	5.3.1 Quantization of deep neural networks
	5.3.2 Loss surface visualization for QDNNs

	5.4 SQWA algorithm
	5.5 Experimental results
	5.5.1 CIFAR100
	5.5.2 ImageNet

	5.6 Concluding remarks

	6 Conclusion
	Abstract (In Korean)

<startpage>15
1.Introduction 1
 1.1 Quantization of Deep Neural Networks 1
 1.2 Generalization Capability of DNNs 3
 1.3 Improved Generalization Capability of QDNNs 3
 1.4 Outline of the Dissertation 5
2. Analysis of Fixedpoint Quantization of Deep Neural Networks 6
 2.1 Introduction 6
 2.2 Fixedpoint Performance Analysis of Deep Neural Networks 8
 2.2.1 Model Design of Deep Neural Networks 8
 2.2.2 Retrainbased Weight Quantization 10
 2.2.3 Quantization Sensitivity Analysis 12
 2.2.4 Empirical Analysis 13
 2.3 Step Size Adaptation and Gradual Quantization for Retraining of DeepNeural Networks 22
 2.3.1 Stepsize adaptation during retraining 22
 2.3.2 Gradual quantization scheme 24
 2.3.3 Experimental Results 24
 2.4 Concluding remarks 30
3. HLHLp:Quantized Neural Networks Training for Reaching Flat Minimain Loss Surface 32
 3.1 Introduction 32
 3.2 Related Works 33
 3.2.1 Quantization of Deep Neural Networks 33
 3.2.2 Flat Minima in Loss Surfaces 34
 3.3 Training QDNN for IMproved Generalization Capability 35
 3.3.1 Analysis of Training with Quantized Weights 35
 3.3.2 Highlowhighlowprecision Training 38
 3.4 Experimental Results 40
 3.4.1 Image Classification with CNNs 41
 3.4.2 Language Modeling on PTB and WikiText2 44
 3.4.3 Speech Recognition on WSJ Corpus 48
 3.4.4 Discussion 49
 3.5 Concluding Remarks 55
4 Knowledge Distillation for Optimization of Quantized Deep Neural Networks 56
 4.1 Introduction 56
 4.2 Quantized Deep Neural Netowrk Training Using Knowledge Distillation 57
 4.2.1 Quantization of deep neural networks and knowledge distillation 58
 4.2.2 Teacher model selection for KD 59
 4.2.3 Discussion on hyperparameters of KD 62
 4.3 Experimental Results 62
 4.3.1 Experimental setup 62
 4.3.2 Results on CIFAR10 and CIFAR100 64
 4.3.3 Model size and temperature 66
 4.3.4 Gradual Soft Loss Reducing 68
 4.4 Concluding Remarks 68
5 SQWA: Stochastic Quantized Weight Averaging for Improving the Generalization Capability of LowPrecision Deep Neural Networks 70
 5.1 Introduction 70
 5.2 Related works 71
 5.2.1 Quantization of deep neural networks for efficient implementations 71
 5.2.2 Stochastic weight averaging and losssurface visualization 72
 5.3 Quantization of DNN and loss surface visualization 73
 5.3.1 Quantization of deep neural networks 73
 5.3.2 Loss surface visualization for QDNNs 75
 5.4 SQWA algorithm 76
 5.5 Experimental results 80
 5.5.1 CIFAR100 80
 5.5.2 ImageNet 87
 5.6 Concluding remarks 90
6 Conclusion 92
Abstract (In Korean) 110
</body>

