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ABSTRACT 

Greenhouses are widely used to create an artificial environment that is 

favorable for the growth of plants. Maintaining a suitable temperature, humidity, 

and carbon dioxide concentration is essential for environmental control within 

a greenhouse because these factors affect plant development, quality, and 

production levels. Plants exposed to unusually low or high temperatures or 

humidity may experience stress, disease, and/or death, causing significant 

financial losses for growers. Greenhouse climate control must consider a 

complex and nonlinear system in which variables are highly dependent on 

external climatic conditions and greenhouse design. Therefore, establishing a 

method for the precise control of the internal greenhouse climate is vital for 

responding to these dynamic changes and achieving efficient climate 

management. Therefore, the objective of this study was to develop an improved 

artificial intelligence-based climate control system using big data from a smart 

farm. 

In this study, a model employing PD-band- and P-band-based linear 

algorithms was proposed for the control of greenhouse actuators in the 

management of temperature, humidity, and CO2 concentrations, and the 

performance of this model was verified. To optimize the settings for the PD-

band model, response surface analysis and experimental analysis were 

conducted. Based on the results, the conditions required for optimal ventilation 

control were established, and the optimal values for each factor were applied to 

a real greenhouse temperature control system; the resulting root mean square 

error of 1.25 ℃ confirmed that the optimized coefficients improved climate 

management performance.

The deep-learning-based prediction model developed in this study was 

designed to respond to changes in the climatic conditions of the greenhouse due 

to operational changes. Artificial neural network, neural network 

autoregressive, and recurrent neural network with long short-term memory 



architecture (RNN-LSTM) models were developed to determine the best 

approach to predicting changes in temperature, humidity, and CO2, 

concentration. The RNN-LSTM exhibited the highest overall accuracy for 

temperature and CO2 prediction (5% standard error of prediction and 0.81–0.96 

R2, respectively). Various training conditions were also analyzed, and the 5–30 

min prediction performance was evaluated. Using a convolutional neural 

network (CNN) with LSTM, it was possible to predict environmental changes 

within actual greenhouses, and it exhibited a slightly stronger performance than 

did the RNN-LSTM. These results clearly demonstrate the potential for the use 

of deep-learning-based prediction models in greenhouse control. 

A method of determining the optimal actuator signal using backtracking was 

also introduced to the structure of an output feedback neural network (OFNN). 

This was employed in calculating the costs derived from the target climate 

settings, the current climate values, and the predicted change in the climate 

values after 30 min, and an optimization method to reduce these costs was 

devised. Gradient descent, which is commonly employed in machine learning 

and deep learning research, was employed in the form of an OFNN. Using a 

multiwindow ventilation control experiment in the field, it was verified that the 

actuator signal was more sensitive to environmental changes than the existing 

linear algorithm. For energy conservation, the driving energy for the actuators 

was used as a function in the cost gate to consider the energy consumption when 

determining the control signal. The actual energy savings were subsequently 

confirmed in a field application.  

The developed artificial intelligence-based climate control system was 

designed to minimize the input energy and errors associated with the set values 

for more efficient control decisions. This reduces the input energy and thus has 

positive economic implications that should encourage its adoption in smart 

farms in the near future. In addition, the increasing need for intelligent 

environmental control technology in other industries suggests that the system 

proposed in this study is of great significance for the horticultural industry in 



general. 

 
Keywords: Smart farm, Climate control, Climate predictive model, Intelligence 
control, Model predictive control,  
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1 INTRODUCTION 

1.1  STUDY BACKGROUND 

South Korea's agricultural industry continued to grow until the early 2000s. 

However, in recent years, the average farm income has stagnated, the self-

sufficiency rate for grain has decreased, the size of the rural population has shrunk 

and aged, and climate change has made it more difficult to attain target crop yields, 

which has resulted in a lower growth rate for agriculture (Yoo et al., 2016). As the 

crop yield and production has become more erratic, and the price of agricultural 

products has fluctuated dramatically, and food security for the nation has become a 

concern. Total agricultural production drastically increased from KRW 32 trillion in 

2001 to KRW 44 trillion in 2012 before leveling off until 2016. Despite this increase 

in overall production, the average yearly income per farm has remained relatively 

unchanged at around KRW 11.30 million between 2001 and 2015, while the size of 

the rural population significantly decreased from 4.0 million in 2000 to 2.6 million 

in 2015. In order to overcome these challenges, the South Korean government has 

implemented a new industrialization policy that promotes agriculture in connection 

with the primary, secondary, and tertiary industries (Shin et al., 2015). 

 Based on this new industrialization policy, the number of entrepreneurs launching 

startups increased from 752 in 2014 to 1,530 in 2016. In addition, governmentally 

operated industrialization service centers support the production and marketing of 

agricultural products in collaboration with related organizations, including 

agricultural product processing centers. As a result, tangible results in terms of an 

increase in sales have been attained. However, to more meaningfully advance 

Korean agriculture, it is necessary to actively embrace scientific technology, 

especially techniques associated with the 4th Industrial Revolution (e.g., the Internet 

of Things [IoT], big data, drones, robots, and artificial intelligence [AI]), for use in 

production, distribution, consumption, and upstream and downstream sectors. 

Indeed, smart agriculture systems have emerged in several developed countries, such 

as the U.S., the U.K., and Germany, based on advanced information technology and 

full agricultural mechanization. In terms of revenue, the North American region 
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dominated the market in 2016 and is expected to remain dominant in the near future.  

 

Prospects for Smart Farming Technology 

Smart farming involves the use of autonomous agricultural machines, intelligent 

robots, and autonomous farm control applications based on IoT, big data, and AI. 

Smart farms can solve current problems within the agricultural industry, such as 

labor shortages, decreasing productivity, and the stagnation of farm income. The 

global smart agriculture market was valued at USD 5.79 billion in 2016 and is 

expected to reach USD 18.22 billion by 2025, growing at a compound annual growth 

rate (CAGR) of 13.5% over the forecasted period (Figure 1). Despite this, South 

Korea's agricultural industry still operates according to the standards of the 3rd 

Industrial Revolution, where data are collected in field surveys, from statistics, or in 

a specific way, the information derived from modeling using the collected data is 

provided to farms, and then each farm manually adjusts its operations based on the 

information. Smart farming technology cannot be truly implemented until the 

technologies associated with the 4th Industrial Revolution are employed in 

downstream industries as well as in agricultural production, distribution, and 

consumption.  

In addition, automatic management systems need to be more fully embraced. For 

example, when structured data obtained from IoT devices and unstructured data 

collected from SNS are analyzed using deep learning, AI, and semantic web 

technologies, the analysis results can be uploaded to a cloud system and used for 

autonomous agricultural machines, robots, and drones. The Netherlands, one of the 

most advanced countries in terms of smart farming, focuses on software 

development, including big data analysis, on the grounds that there is no significant 

difference in hardware technology such as greenhouse construction and sensors in 

less advanced countries (Lee et al., 2016).  

Precision agriculture or satellite farming is a farming management concept based 

on measuring, observing, and responding to intra- and inter-field variability in crops 

(Ding et al., 2018; Roy et al., 2002). The goal is to provide a decision support system 

for farm management while preserving resources and optimizing the return on inputs. 

In precision agriculture, farmers collect real-time data on soil, weather, air quality, 
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crop maturity, and labor costs, which helps them to make informed decisions. In 

order to implement such systems in Korea and enhance the production of food, the 

agricultural industry requires a technology infusion. In particular, smart agriculture 

includes software and hardware components, with equipment requiring application 

software to be embedded and hardware requiring a connection to network services.  

Figure 1. Smart agriculture market size and growth prospects (revenue in million 
USD) 2014–2025 (Sources: Agfunder, EPA, World Bank Reports, Drone Blog, 
ICT Update, company annual reports, primary interviews, and Grand View 
Research) 

Artificial Intelligence (AI) in Agriculture 

AI involves the development of computer systems that are capable of performing 

tasks that usually require human intelligence. Applications of AI in the agricultural 

industry include precision farming, livestock monitoring, drone analytics, 

agricultural robots, labor management, smart greenhouse management, soil 

management, and fish farming management. The increasing strain on the global food 

supply due to the growing population and government support for the adoption of 

modern agricultural techniques have been the key growth drivers for AI in 

agriculture. As such, the adoption of AI in agriculture adds significant value to a 

farm as a whole as well as to the consumer supply chain (Lee et al., 2016; 

Muangprathub et al., 2019). In fact, the overall use of AI in agriculture was valued 

at USD 835 million in 2019 and is expected to reach USD 4.0 billion by 2026, at a 

CAGR of 25.5% between 2020 and 2026.  
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AI in agriculture provides intelligent farming solutions for farmers that allow them 

to grow crops more efficiently through the analysis of real-time data for weather 

conditions, temperature, soil moisture, weed detection, crop health monitoring, and 

crop prices (Wolfert et al., 2017). Machine learning, computer vision, and predictive 

analytics technologies have thus been increasingly adopted in the agricultural 

industry, mainly for forecasting crop yields (Figure 2). Other major factors that have 

contributed to the growth of AI in the agricultural market are the rising use of robots 

and drones on farms, increasing demand for enhanced crop yields, and the growing 

adoption of AI technologies such as machine learning, computer vision, and 

predictive analytics by farmers and agribusinesses (King, 2017). 

 

Figure 2. Global artificial intelligence (AI) market in agriculture, 2017–2026 
(million USD) (top) and growth of AI in the agricultural market between 2020 and 
2026 (bottom). (Sources: Annual reports, press releases, investor presentations, 
expert interviews, Association for the Advancement of Artificial Intelligence, 
Artificial Intelligence Association of India, Chinese Association for Artificial 
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Intelligence, Pattern Recognition and Machine Intelligence Association, and 
market analysis). 

Machine-learning-enabled solutions are being increasingly adopted by agricultural 

organizations and farmers worldwide to enhance farm productivity and to gain a 

competitive edge in business operations (Park et al., 2016). In the coming years, the 

use of machine learning in various agricultural activities is expected to rise further. 

Technological advancements and the proliferation of machine-learning technology 

for farm data generation are some of the major driving factors for the use of AI in 

the agricultural market. The increasing use of deep learning algorithms in a variety 

of applications in agriculture is also a major driving force for the increasing demand 

for AI in agriculture (Kamilaris and Prenafeta-Boldú, 2018). Deep learning is a 

machine-learning technology based on multiple algorithms that explore relationships 

among data points. Deep learning typically uses artificial neural networks (ANNs) 

to learn patterns within multiple levels of unstructured data, including text, images, 

and sound.  

Predictive analytics uses various techniques based on algorithms to analyze 

currently available data and predict crop yields, crop nutrient deficiencies, and plant 

health. Predictive analytics technology uses data from satellites and drones to 

virtually scout the area of a farm and to detect and classify specific anomalies.  

Farmers can then use this information to manage crop inputs and make agronomic 

decisions in order to improve overall productivity and crop efficiency (Morota et al., 

2018; Wolfert et al., 2017).  

 

The Future of Greenhouse Control system 

Unlike outdoor cultivation, greenhouse-based cultivation has the advantage of 

allowing the specific control of the growing conditions. As a result, productivity and 

product quality can be improved by analyzing the growing conditions, including 

climate and crop cultivation parameters. For this reason, the number of greenhouses 

in a certain area tends to increase when precision control and air conditioning 

techniques are made available. The early form of cultivation under a structure was 

limited to the supply of water. However, technological development now allows the 

automation of the entire crop cultivation process.  
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The primary issues in greenhouse horticulture are increasing productivity, reducing 

costs, and increasing crop quality. Productivity can be improved using hybrid 

environmental control and management, spatial cultivation techniques, growth 

diagnosis and forecasting techniques, and remote expert services. Hybrid 

environmental control includes temperature and humidity control and carbon dioxide 

(CO2) fertilization. Productivity can be greatly improved if relevant data are 

collected by IoT devices and analyzed using AI so that the environment can be 

automatically controlled. As such, a number of smart farms have installed a sensing 

system to monitor the growth of crops and an ICT system that transfers the 

information about crop growth and the internal climate and external weather 

collected from various sensors to a central server (Figure 3). As traditional 

agriculture focusing on the simple production of in-season crops is replaced by smart 

farming technology focusing on sophisticated control, crops can be produced 

irrespective of the season. Accordingly, more farms can adopt smart farming 

technology to increase their income, competitiveness, efficiency, and crop quality. 

 

Figure 3. Overview of ICT-based smart farm 

  

1.2. PROBLEM STATEMENT  

A greenhouse artificially manipulates the environment so that it is suitable for the 

target crop. Of the indoor environmental conditions that need to be monitored, 

maintaining an optimal climate is of great importance because it has a significant 
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effect on the development, quality, and quantity of plants produced (Qian et al., 2015; 

Takahata and Miura, 2017). Over time, greenhouses have developed from very 

simple structures with crude control options to modern industrial structures that offer 

various ways to manipulate the environmental conditions. However, the automatic 

control of the greenhouse climate still requires further development. A greenhouse 

is a highly nonlinear and strongly coupled system that is heavily influenced by the 

external weather and the behavior of the actuators installed in the system (Zeng et 

al., 2012). In recent years, many studies have investigated greenhouse environmental 

control (Coelho et al., 2005; Fitz-Rodríguez et al., 2010; Piñón et al., 2005), but the 

systems proposed in these studies have not entered the commercialization stage. At 

present, the performance of commercially available controllers for greenhouses is 

very limited. For example, there are numerous problems with precise temperature 

control, as shown in Figure 4. It is common for the air to become overheated because 

of the delay in releasing heat from the greenhouse, while frequent operation causes 

fluctuations in the temperature. In order to improve environmental control, 

experience-based linear algorithms can be used, but they often make the system less 

convenient to use. This section will summarize some of the key issues that need to 

be resolved in greenhouse environment management. 

 

Figure 4. Example of temperature changes in a typical greenhouse using a 
commercial controller. 



8

 

Nonlinear and coupled operation of environmental controllers 

A greenhouse is a very complex nonlinear system that requires a meticulous 

approach to controlling the environment. Figure 5 presents the relationship between 

the physiological and growth phenomena observable in a greenhouse and the system 

elements that can be controlled. For example, ventilation is associated with both the 

external and internal environment of the greenhouse, affecting the temperature, 

relative humidity, and CO2 concentration within the greenhouse, which in turn 

affects the atmospheric pressure and ultimately evapotranspiration, sap flow, and 

crop respiration. In addition, the amount of light inside a greenhouse can be adjusted 

by installing artificial lights and/or shading curtains. Light intensity is a very 

important environmental factor because it directly affects thermal radiation and 

photosynthesis within the greenhouse. CO2 enrichment also has a very complex 

impact on crop physiology, being used as the main raw material for the 

photosynthesis and anabolism of crops. Typically, CO2 from the external 

environment is used, but CO2 levels can be controlled by injecting more during the 

day when photosynthesis is highly active. However, CO2 concentration is very 

difficult to model because it is related to crop respiration. Nutrition and irrigation are 

control elements that affect the root zone of crops, which is involved in 

evapotranspiration and CO2/O2 exchange and affects nutrient uptake and crop growth. 

In addition, fogging and heating systems control the temperature and humidity inside 

the greenhouse. 

Currently, commercialized controllers operate using set values for each influential 

factor based on a certain linear band as selected by the user. The difference in the 

performance of different environmental controllers depends on how precisely the 

empirical equation based on these coefficients can be calculated. This set-up has led 

farmers to prefer foreign-manufactured controllers in a domestic environment where 

commercial environmental controller technology and products are relatively 

insufficient. 
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Figure 5. The relationship between various environmental control elements and the 
corresponding environmental factors within a greenhouse. 

Complexity of environmental controller setting factors

The performance of an environment controller depends on the set values, which are 

often complex and sophisticated. Figure 6 displays the complex configuration screen 

for a commercial product. It is necessary to present each reference value when 

inputting the coefficients into the settings for the greenhouse, and it is necessary to 

tune it according to the structure of the greenhouse and the growth of the target crop. 

However, in most cases, this function is not used effectively on Korean smart farms. 

Countries with advanced agricultural industries, particularly those in Europe, 

employ their own systems to produce various crops, thus increasing the quality and 

productivity and reducing costs. On the other hand, South Korean farms depend on 

imported equipment and lack appropriate cultivation and environmental 

management techniques. As a result, the crop production per unit area in South Korea 

is only half that of the Netherlands, which is a leading country for smart farms in 

Europe. Due to the costs involved, the majority of farms consider affordability rather 

than performance when purchasing smart farm equipment. However, because the 

core components of these systems are imported, when a failure occurs, immediate 

servicing is often impossible, thus damaging the farm’s operations. Thus, the 

development of high-performance controllers that utilize domestic components is 
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urgently required, as is the establishment of Korean smart farm techniques that are 

suitable for the local agricultural environment.  

Currently, domestic technology in this area is limited to IoT-based data collection 

and analysis, while temperature/humidity and heating/cooling systems continue to 

be manually operated. Thus, the majority of advanced domestic smart farms use 

imported multivariable environmental control systems that directly influence crop 

yield and quality. However, these imported control systems consider neither the 

weather conditions nor the growing conditions for crops in South Korea. For this 

reason, farmers have difficulty setting the controls (Figure 6). Although farmers need 

to be trained in the use of the control software, their control efficiency has not 

improved as much as expected because of the lack of knowledge from the farmer. 

Because linear control models have some limitations in terms of environmental 

control, precise control technology that utilizes environmental big data from farms 

is required. 

 

Figure 6. Examples of the setting screen for a greenhouse environmental controller: 

(a) the setting of influential parameters and (b) the setting screen for greenhouse 

ventilation control. 

 

Uncertainty and lack of standardization in the use of AI 

With the emergence of the 4th Industrial Revolution, various industries have 

harnessed AI to promote innovative productivity and increase efficiency. Smart 

farms are a noticeable example of this trend. In South Korea, many studies have 

actively sought to combine smart farm and AI technologies. In fact, deep-learning-

based image analysis technology has been so actively developed that it has spilled 

over from agriculture into other industrial areas. In terms of automatic environmental 
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control systems for smart greenhouses, various attempts have been made to apply 

AI-based algorithms, but significant success has yet to be achieved.  

 

Excessive energy use for environmental control 

The high energy costs associated with the use of the actuators required for the 

ventilation, heating, humidification, and cooling systems within a smart greenhouse 

increase the overall cost of production for a farm (Maher et al., 2016). It is thus 

necessary to maintain an environment that optimizes crop growth while still 

considering the economic efficiency of the farm. 

 

1.3. OBJECTIVES AND AIMS 

1.3.1. OVERALL OBJECTIVE 

This study aims to develop an AI-based climate control system that harnesses big 

data from a smart farm. This system will include various algorithms for the automatic 

control of the greenhouse climate. The results of this study are expected to facilitate 

the production of high-quality agricultural goods by minimizing labor costs and 

providing an optimal environment for the growth of crops in smart greenhouses. 

 

1.3.2. SPECIFIC OBJECTIVES 
 

The specific AI-based environmental control concept proposed in this study is 

shown in Figure 7 and Figure 8. In the first step, a set-point controller configuration 

based on a conventional linear algorithm is installed and tested. The second step is 

carried out based on the big data obtained from the linear controller, with various 

AI-based prediction models for environmental changes and control methods 

developed and tests. Finally, in the third step, an intelligent controller and a model 

that optimizes the control signals are proposed. These steps all focus on the control 

of rhizosphere nutrients and the environmental temperature and humidity. The 

overall goal is to develop a model that controls both factors using a sophisticated 

environmental controller. 

In summary, this study proposes a smart farm environmental control technology 
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that employs various AI algorithms. The specific objectives are to 

 

 Establish linear-based control logic for use in the actuators that maintain the 

climatic conditions of a greenhouse 

 Develop machine-learning- and deep-learning-based algorithms for climate 

prediction modeling of various IoT/ICT-based environmental monitoring 

systems 

 Create an AI optimization algorithm that sets the control signals based on the 

developed predictive model, and  

 Assess the AI optimization algorithm based on the energy efficiency of the 

actuators during operation. 

 

 

Figure 7. Development of a smart farm climate control system for greenhouses 

based on an AI prediction model. 
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Figure 8. The specific AI-based environmental control concept proposed in this 
study. 

Chapter 3 presents the development of the improved linear algorithms and explains 

the construction of a smart greenhouse, while Chapter 4 describes the construction 

of a climate prediction model using AI and proposes a prediction algorithm. Chapter 

5 establishes a control optimization method that moderates the climatic conditions 

of a greenhouse based on the developed predictive model. Chapter 6 creates a 

modified algorithm that makes optimal control decisions and considers the energy 

efficiency of the actuators. The technologies discussed in Chapters 3–6 are then 

combined and the expected results for on-site scenarios are investigated. The 

expected contributions of this study are as shown in Figure.9. 
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. 

Figure 9. Step-by-step research outline for the present study in the development of 
second-generation smart farm technology. 
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2. LITERATURE REVIEW  

2.1. OVERVIEW OF RESEARCH TREND 

 

Smart farms have recently emerged as the future of agriculture and have started to 

receive active governmental support. In particular, technical development has been 

concentrated in the smart farm system. For example, smart farm technologies have 

been introduced to hobby- and leisure-based urban agriculture to create added value, 

meaning that ordinary citizens have become more interested in smart farms. There 

is a diverse range of smart farms depending on the farm size and design, crop, and 

cultivation method. Because various techniques need to be developed for different 

farm types, a variety of studies in many areas have been carried out (Yeo et al., 2016).  

Table 1 presents the policy roadmap for smart farms established by the South 

Korean government. Government-initiated smart farms are now in a transition from 

second-generation to third-generation smart farms (Cha et al., 2016). AI technology 

is regarded as a key element in this phase. In second-generation smart farms, big data 

research has focused on platform development with governmental support. This 

groundwork intended to integrate data from various sensors and to standardize 

protocols. However, analysis engines that can optimally control the environment and 

enhance productivity have yet to be developed to an acceptable standard.  

 

Table 1. Government strategic classification of Korean smart farms (Cha et al., 
2016). 

 
1st generation smart 

farm  
2nd generation 

smart farm  
3rd generation smart 

farm  

Data 
collection 

Climate data 
Climate and crop 

data 

Climate and crop data 

Distribution and market 
data 

Data 
analysis 

Experience-based 
knowledge 

AI algorithm AI algorithm 

Service Automatic control Automatic control Automatic control 
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Decision making Decision making 

Crop growth management 

Control 
system 

Installed farm unit 
Control 

Cloud control 
Strategic crop harvest 

control by region 

 

 Currently, South Korean smart farms are restricted to importing main components 

(sensors, controllers, etc.) in order to install a control system. These farms face a 

large financial burden when purchasing, operating, and maintaining these systems. 

Moreover, because many system components lack compatibility, maintenance is 

very difficult and even minor failures often cannot be fixed. This lack of customer 

service forces some farms to abandon the use of these systems. In addition, the 

import-dependent structure of the South Korean smart farm market continues to 

release cultivation data from farms to the other conturies, where many system 

manufacturers and installers are located. Accordingly, these companies utilize the 

data for systems on domestic farms used to cultivate crops in greenhouses.  

The technical development of environmental control systems in South Korea has 

not yet reached a stage where a farmer can understand how to apply the data (e.g., 

outdoor atmospheric temperature, wind speed, humidity, rainfall, etc.) collected by 

the minute by multivariable environmental control sensors in greenhouses to 

agricultural fields (Jeong et al., 2019). In addition, many farmers are not aware of 

the importance of growth data, which has to be manually recorded. Accordingly, it 

is difficult to recognize how the growth of crops is affected by the environmental 

control system in a smart farm facility. Finally, because multivariable climate control 

systems have unsatisfactory operability, precise control is difficult, and the 

efficiency and economic outcomes for the farm tend to be dependent on the grower’s 

individual ability.  

AI and big data technologies for agricultural use have been most actively developed 

in the US. Since 2014, an open-data policy has promoted the development of 

agricultural services. Recently, robotics has started to be applied to agriculture in 

conjunction with IoT. For example, Google utilizes AI and big data technologies in 

a system that monitors the moisture and growth of crops and assists in decision-

making regarding the application of fertilizer and pesticide. In this system, ICT-
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based sensors are installed in agricultural machines and fields to collect as much data 

as possible, the data are analyzed using big data methods, and optimal farming 

methods are proposed for each region. This system enables farmers to monitor soil 

conditions and weather forecasts and to control the growth of their crops. 

In the Netherlands, 99% of greenhouses are glasshouses that are equipped with 

complex, precision environmental control systems, thus it is the leading country for 

smart farm technology. As a global leader in agricultural technology, it has already 

established the most efficient technology for crop production, developing various 

sensors and control solutions using the data that have been accumulated for decades 

and local know-how regarding the optimization of growing conditions. Based on 

agricultural ICT technology, production and quality have thus been optimized. Priva, 

a Dutch company, produces and exports the world’s best control system for 

greenhouses. 

The Netherlands is actively pursuing improvements in AI greenhouse control with 

Wageningen University & Research (WUR) as a leader in technology in agriculture 

(Hemming et al., 2019). The goal of a recent challenge along these lines was to 

remotely produce a cucumber crop within four months inside a greenhouse. The 

experimental greenhouse space and controls are provided by WUR, and the 

challenger teams were allowed to set up their own sensors and cameras. Each team 

extracted necessary data from the greenhouse and established their own ICT, model, 

and machine-learning algorithms (Figure 10) in order to decide on the control 

settings for the next day or period. 
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Figure 10. Concept art for AI-based control logic proposed for the autonomous 
greenhouse challenge hosted by Wageningen University & Research. 

The world’s leading countries in agriculture are actively introducing and utilizing 

smart farms in order to effectively solve labor shortages and other socio-structural 

problems faced by conventional agriculture. South Korea has also established active 

measures to develop and realize smart farms using ICT and AI technology. However, 

there is a gap in technology between South Korea and the leading countries, 

including the US and the Netherlands. Although Japan has undergone similar socio-

structural changes to South Korea in some respects, it also belongs to the leading 

group. In Japan, many companies provide various ICT-based services, including 

tracking the management of crops, monitoring the growing environment, and hosting 

cloud-based agricultural management systems. For example, Fujitsu offers a system 

that measures the air temperature, soil temperature, moisture, solar radiation, and 

fertilizer levels in the soil using IoT sensors, transfers measurements to a cloud 

server at specified intervals and proposes optimal quantities of water and fertilizer 

for each farm based on data analysis and prediction. The farms using this system 

have experienced a small increase in yield. Because the production and yield can be 

predicted, the data collected by this system are also used to establish a procurement 

plan for agricultural products. A system for predicting vegetable yields is a 

representative system that is applicable to crops cultivated in open fields.  

Table 2 and Table 3 present the main functions provided by representative 
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commercial environmental control systems that have been developed for smart farms 

to date in South Korea. Currently, environmental control systems based on the 

monitoring of crop growth have been developed as a domestic technology but have 

not been fully commercialized. On the other hand, other countries have already 

developed techniques for the active control of environmental conditions using crop 

growth monitoring systems. This technical gap is because growth and environmental 

data have been analyzed in depth for decades in leading countries, and these data 

have been successfully transferred to control systems using empirical formula-based 

modeling. AI technology is thus required for domestic Korean control systems in 

order to close the technical gap. This would enable the optimal use of the data 

collected from domestic crops, farms, and the environment. 

 

Table 2. Comparison of smart farm control technology offered by a Korean 
company and an international company. 

Functions of the climate 

controller 
Korean company  International company 

Environmental monitoring   

Remote control   

Crop monitoring X  

Type of control algorithm 
P-band-based linear 

control algorithm 

Nonlinear algorithm based 

on an environmental index 

(developed by Priva), 

development and 

application of a model 

based on an empirical 

formula 

Precision of growth 

environmental control 
Intermediate Advanced 

AI application X X 

Energy efficiency  X Partly 

Table 3. Comparison of specific control functions between a domestic conpany and 
an international company. 
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 Details Korean Company 
International 

Company 

Control logic 

Temperature change 

management 
○ ○ 

Six-phase control ○ ○ 

Windows step control ○ ○ 

Curtain gap control Ⅹ ○ 

Temperature control for 

heat retention curtain with 

artificial light 

X ○ 

Curtain functional step X ○ 

 Begin morning nautical 

twilight (BMNT) and end 

evening nautical twilight 

(EMNT) setting 

○ ○ 

Delay setting ○ ○ 

Accumulated radiation 

consideration 
○ ○ 

User settings for 

customization  
X X 

The present study also conducted a literature review on the progress that has been 

made on control systems for greenhouses. The greenhouse environment can be 

divided into the atmospheric and the root zone environment. Based on this 

classification, relevant studies were reviewed, and the development trends for the 

prediction models and control systems were analyzed. The ultimate goal of the 

literature review was to consider the specific role of AI algorithms.  
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2.2. CONTROL MODELS FOR INSIDE CLIMATE IN GREENHOUSE 

Kim et al., (2017) compares data-based models and physical energy equation-based 

models for greenhouse control systems. The authors also performed an experiment 

through P-Band control for field application. The data-based modeling turned out to 

be a possible alternative to the existing modeling method (Figure 11). However, 

since P-Band based control was necessary for real control operation, parameters had 

to be optimized, which seemed to be problematic. This problem could be solved by 

determining optimal Band coefficients in an iterative experiment.  

Figure 11. Frame of management system for greenhouse: Data collection, 
preprocessing, design of prediction model using ANN (proposed by Kim et al., 
(2017)). 

Van Straten et al., (2000) argued that the environmental control of greenhouse 

requires an economic optimization strategy. The author also pointed out that the 

current P-band control had some limitations. According to them, it is necessary to 

develop models that can predict various environmental changes and be applied to 

various matters like crop modeling, photosynthesis and evapotranspiration. The 

development of a control and operation system, which could actively apply such 
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models, turned out to be important.  

Coelho et al., (2005) introduced an optimal temperature control method for 

greenhouse under the concept of model-based prediction and control algorithm. The 

authors designed a prediction model by identifying outputs of a controller via the 

time series autoregressive method and proposed a method of determining control 

signals through a particle swarm optimization algorithm. They finally confirmed the 

better optimization performance of the particle swarm algorithm in comparison with 

genetic algorithms.  

Kim (2018) considered agriculture in South Korea as an industrial sector where 

new values can be created by innovative AI technology based on machine learning 

like deep learning, IoT and big data. Accordng to Kim, as South Korea has entered 

into developing the second generation smart farm technolgoy, those who are not 

much experienced in agriculture will benefit from IoT, big data and AI technology, 

which would support decision making and automate environmental control. These 

technologies will advance South Korea’s agriculture one step further.  

Gouadria et al., (2017) developed a solution for greenhouse climate control 

employing an online PI tuned with PSO algorithm. They indicate that the greenhouse 

model has high strong coupling and non-linearity, a feedback-feedforward 

linearization and decoupling method employing measured disturbances was used. 

The present controller is made in terms of several performance criteria like settling 

time, peak overshoot, rise time. In addition to the responses due to step input. Results 

show that the tuning PSO-PI using in this work has a good performance.  

Xu et al., (2018) defined a structural characteristic of Chinese type greenhouse 

system and proposed an optimal greenhouse energy control technique. The authors 

presented a two-time-scale receding horizon optimal control system that utilized the 

north wall structure of Chinese greenhouse to facilitate heat storage and discharge 

during the day and at night respectively (Figure 12). This model was developed by 

considering the climatic difference between the Netherlands and China. This case 

indicates the necessity of developing a greenhouse modeling and control system that 

is optimized to each country’s environmental conditions.  
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Figure 12. Two time-scale horizon optimal control system(TTRHOC) proposed by 
Xu et al., (2018) 

Ding et al., (2018) survey on the development of MPC during the last forty years 

and describe the potential future application of MPC in agriculture. This study argues 

that the application of intelligent algorithms to modern agricultural production 

requires the support of a database, which can be complex and difficult to use in 

practice and requires a large amount of computing. Moreover, model 

predictive control (MPC) methods can achieve highly accurate control operations 

with moderate complexity and can also allow for rolling optimization in a limited 

time domain, which improves precision. MPC is highly suited for application in 

agriculture because it can effectively address nonlinear and large time-delay systems.  

Muangprathub et al., (2019) proposed the wireless sensor networks’ development 

for watering crops to optimize agriculture to design and develop the control system 

between node sensors in the field of crops and the data management via smartphone 

and web application. According to the results, the moisture content of the soil was 

maintained appropriately for vegetable growth, reducing costs and increasing 

agricultural productivity. Moreover, the data mining technique was applied to 

analyze the obtained data for predicting the suitable temperature, humidity, and soil 

moisture of crops in the future plan. 

Yano et al., (2007) reported that a strategic ventilation strategy has an advantage in 

reducing energy consumption of greenhouse. Frequent control of vent openings 

according to the greenhouse temperature is difficult for common greenhouses where 

farmers operate vents by hand. Control of vent openings engenders advantages in 

greenhouse physical environment and energy consumption for the operation of vent 

openings is minimal.  
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Maher et al., (2016) presented for energy management by involving the 

photovoltaic energy in order to minimize the use of conventional electrical grid and 

to lower costs of agriculture production. The validation of the physical model 

showed a high agreement with the experimental measurement. The simulation results 

showed the effectiveness of the fuzzy controller as well as the PV generator for 

saving the energy and lowering the costs of crop production into greenhouses. 

 

Figure 13. Schematic of the fuzzy-based control system (Maher et al., 2016). 

 

2.3. DEEP LEARNING-BASED ENVIRONMENTAL MODELING 

As a means of forecasting for a diversified society, the phrase ‘‘big data’’ has 

become widespread. Since such big data provides more insight than existing limited 

data, it has received greater attention in diverse research fields (Kim et al., 2017; 

Wolfert et al., 2017), including science, engineering, defense, management, 

medicine, and politics. Data modeling is a method in which a model represents 

correlation relationships between one set of data and the other set of data. On the 

other hand, physics-based simulation modeling is a more classical, but more 

powerful, method in which a model represents causal relationships between a set of 

controlled inputs and corresponding outputs (Kim et al., 2017).(Figure 14). However, 

the physical model has several limitations. For instance, there might exist situations 

in which we are able to know little or nothing about the system. Simulation requires 

extensive physical and operational knowledge of a target system in order to be 

accurate. In this condition, for prediction, we should adopt the approach of data 
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modeling explained in the previous section. In addition, the simulation model 

requires idealistic assumptions and constraints about the system, while the data 

model does not. Data-based modeling requires relatively short time for simulation 

and real-time field application, whereas simulation time for physical model is 

relatively long and rarely used in an actual application. 

Figure 14. The difference between two modeling approaches. 

Dodge, (2019) introduced a data science paradigm with the aim of advancing 

research on movement and compared the pros and cons of each application field of 

the data-based model in the existing physical modeling method. 

Ferreira et al., (2002) used the radial basis function (RBF) NN to model the inside 

air temperature of a hydroponic greenhouse as a function of the outside air 

temperature, solar radiation, and the inside relative humidity. While the major 

drawback of such models, however, is their devoid of systemic analysis of input data 

samples of NN. In fact, large quantities of data samples often have redundant 

condition properties, data samples, and incompatible data samples. This cause many 

problems in the practical use of the NN models, such as slow convergence speed and 

low precision.  

Taki et al., (2018) was aiming to select the best method between Artificial Neural 

Network (ANN) and Support Vector Machine (SVM) to estimate three different 

variables include inside air, soil and plant temperatures (Ta, Ts, Tp) and also energy 

exchange in a polyethylene greenhouse in Shahreza city, Isfahan province, 

Iran. According to study results, comparing RBF, MLP and SVM models showed 
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that the performance of RBF to predict three temperature variables were better 

according to small values of RMSE and MAPE and large value of R2 indices. The 

range of RMSE and MAPE factors for RBF model to predict Ta, Tp and Ts were 

between 0.07 and 0.12 °C and 0.28–0.50%, respectively.  

He and Ma, (2010) proposed A back propagation neural network (BPNN) based on 

principal component analysis (PCA) for modeling the internal greenhouse humidity 

in winter of North China. The environment factors influencing the inside humidity 

include outside air temperature and humidity, wind speed, solar radiation, inside air 

temperature, the open angle of top vent and side vent, and an open ration of sunshade 

curtain, which were all collected as data samples. The predicted humidity agreed 

well with the measured, which showed that the model had high accuracy and can be 

used. Moreover, they compared the methods of BPNN based on PCA and stepwise 

regression, it was observed that the BPNN based on PCA performed better than the 

stepwise regression model. This study emphasizes the importance of machine 

learning in future greenhouse environment models. 

Figure 15. He and Ma, (2010) reorted result on regression lines between measured 
and predicted humidity by BPNN based on PCA.  

S. L. Patil et al., (2008) applied neural network models in order to control 

greenhouse data that are continuously generated. Diverse models were 

comparatively verified, and the NNARX (neural network automatic regression) 

model had the best performance. However, the reliability of the model could not be 

ensured since it was reconstructed without verification of measurement errors and 

logging errors. 

Unlike the modeling of atmospheric environment of greenhouse, that of the root 

zone has not been actively studied. Signore et al., (2016) emphasized the importance 

of a strategic approach to the control of nutrient solution replenished in order to 
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minimize the environmental problem caused by the hydroponic cultivation. In other 

words, a nutrient solution is not to be replenished in the same chemical composition, 

but its composition is to be changed according to the condition of the root zone 

substrate.  

Pawlowski et al., (2016) proposed an Event-based control technique for analyzing 

greenhouse irrigation system. The event-based control scheme uses a crop 

transpiration model to determine the volume of water required to compensate for the 

irrigation system and a water content model to trigger the irrigation system 

events.  They obtained results that the application of proposed event-based approach 

for the greenhouse irrigation system allows to improve the control performance and 

to reduce the water usage (about 20% of required water for the same performance 

obtained for commonly used on/off) being an important issue in intensive 

agriculture. However, this control method has a limitation that sophisticated 

evapotranspiration modeling should be preceded. 

Whitley et al., (2009) incorporated the use of an artificial neural network (ANN) as 

a statistical benchmark to compare the performance of both modified a Jarvis-

Stewarts model and the Penman-Monteith equation. Both models performed equally 

well during summer when soil water content was fairly high. During winter the 

modified Jarvis model performed significantly better than the Penman–Monteith 

model, especially under conditions of high transpiration. However, over the entire 

study period, the total modeled daytime sums of water used were all very close to 

the observed sum of 75.4 mm. 

Yu et al., (2016) proposed an optimal prediction model that is based on LSSVM 

(least square support vector machine) for predicting temperatures of solar 

greenhouses in China. The authors also used PSO (particle swarm optimization) 

through an empirical model. An artificial neural network model was constructed to 

compare prediction performances. In addition, the data cleaning was also conducted 

by using the generalization method and averages in the preprocessing stage. 

However, the proposed prediction model was not applied to control a real greenhouse. 

In this regard, an appropriate greenhouse control strategy was required. 

Wang et al., (2017) intended to obtain a transpiration model to implement 

greenhouse automatic water management based on the knowledge of the crop water 
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demand combined with automatic irrigation technology. In order to improve the 

prediction accuracy, they applied an optimization of the input vectors weights and 

accumulated error reduction. Although finally, the NARX has a better fit with actual 

transpiration, the result agrees with that of other research results (Sánchez et al., 

2012). They emphasize that compared with transpiration model using NN, the 

precision could be improved.   

Moon et al., (2018) applied the deep learning technology to predict the EC status 

of the root zone. It turned out that the RNN-LSTM model had the best prediction 

performance in comparison with various time series algorithms (Figure 16). This 

method innovatively improved the accuracy of environmental modeling for the root 

zone, as compared to the conventional complex modeling. Accordingly, it was also 

reported that diverse strategies for providing nutrient solution could be developed.  

Figure 16. A diagram of a closed-loop soilless culture system and measured data of 
nutrient solutions and growth environment (reported by Moon et al., (2018)) 

 Kim and Cho, (2019) proposed a novel deep learning model to stably predict 

electric energy consumption. The study analyzed the CNN-LSTM model with the 

large data collected in an actual residential house, and the model achieved the highest 

performance in high resolution compared with the previous works.  



29

Figure 17. CNN-LSTM structure proposed by Kim and Cho(2019) 

Livieris et al., (2020) proposed a new deep learning forecasting model for the 

accurate prediction of gold price and movement. The proposed model exploited the 

ability of convolutional layers for extracting useful knowledge and learning the 

internal representation of time-series data as well as the effectiveness of long short-

term memory (LSTM) layers for identifying short-term and long-term dependencies. 

The input used in this model is also a one-dimensional array, and the model is 

implemented using 128 past data. As a result, CNN–LSTM reported 0.0082, 0.0095 

and 0.01 MAE score for evaluating model’s forecasting performances.  

Figure 18 CNN–LSTM model architecture proposed by Livierise et al., (2020). 
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2.4. APPLICATIONS OF AI TO CLIMATE CONTROL  

  Fourati and Chtourou, (2007) attempted to solve the problems of the classic 

method in controlling and managing greenhouses. The authors trained an inverse 

dynamics model using a recurrent neural network and a multilayer-feed forward 

method and proposed a prediction model. The model thus constructed was verified 

through a simulation. They concluded that the artificial neural network was 

appropriate to control a complex greenhouse. However, an adaptive control method 

or a control strategy using a multiple neural network was required for enhancing 

control.  

 Kim et al., (2018) estimated heating loads through ANN-based prediction of an 

outdoor temperature of greenhouse. The reliability of data was ensured by applying 

preprocessing methods like IQR, Kalman filter and correlation analysis to measured 

data. The outdoor temperatures of greenhouse were predicted through an ANN 

model. The ANN model was verified by being compared with a multiple regression 

model and an SVM model with respect to the predictions. It turned out that the ANN 

model showed the best performance in spring and winter.  

 Calise et al., (2001) reported a direct adaptive output feedback control design 

procedure which is developed for highly uncertain nonlinear systems. This approach 

is also applicable to systems of unknown, but bounded dimension. In particular, the 

method considered single-input/single-output nonlinear systems, whose output has 

known, but otherwise arbitrary relative degree. This includes systems with both 

parameter uncertainty and unmodeled dynamics. The result is achieved by extending 

the universal function approximation property of linearly parameterized neural 

networks to model unknown system dynamics from input/output data. Numerical 

simulations of an output feedback controlled van der Pol oscillator, coupled with a 

linear oscillator, is used to illustrate the practical potential of the theoretical results 

(Figure 19). 



31

Figure 19. Nonlinear adaptive neural nettwork based control system architecture 
(proposed by Calise et al., (2001)). 

Recently, Ban and Kim, (2017) suggested an application of actor-critic 

reinforcement learning approach to control a nonlinear, complex and black-boxed 

system. they demonstrated this approach on artificial greenhouse environment 

simulator all of whose control inputs have several side effects so grower cannot 

figure out how to control this system easily. this approach succeeded to maintain the 

circumstance at least 20 times longer than PID and Deep Q Learning. However, the 

model only performed in lab scaled greenhouse.  

Tarange et al., (2015) developed web based automatic irrigation controller and 

reported Embedded Linux board. The board has an Ethernet interface and runs the 

simple data web server. Hence coordinator collects the data over ZigBee wireless 

communication protocol and allow user to monitor the data from a web browser.  
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Figure 20. Automatic irrigation controller and reported Embedded Linux board 
board (developed by Tarange et al., (2015)) 
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3.  DEVELOPMENT OF MULTIVARIABLE CLIMATE CONTROL 

SYSTEM BASED ON LINEAR ALGORITHM 

A greenhouse is a common agricultural system that artificially manipulates the 

growth environment for a target crop. Maintaining an optimal temperature, humidity, 

and CO2 levels are of particular importance in greenhouse environmental control 

because these environmental factors directly affect plant development, quality, and 

quantity. The greenhouse climate system is very complex and nonlinear (El 

Ghoumari et al., 2005; Seginer and McClendon, 1992), with the variables highly 

dependent on external climate conditions, which cannot be controlled independently 

(Fourati and Chtourou, 2007a; Frausto et al., 2003), and on greenhouse design. Crops 

exposed to low or high temperatures or humidity may also undergo mass death or 

drying due to fungal diseases and the lack of water, leading to significant financial 

losses for growers. Therefore, building a precise model of the internal greenhouse 

climate is important when looking to respond to these dynamic changes and to 

establish an efficient climate management strategy (Fitz-Rodríguez et al., 2012; Yu 

et al., 2016a).  

 Lanfang et al. (2000) described two approaches to building models of the 

greenhouse climate. One is based on the physical laws involved in the process, and 

the other is based on an analysis of input–output data for the process. In recent 

decades, due to an increase in computational performance, numerous physical 

greenhouse methods have been presented (Benni et al., 2016a; Kishor and Singh, 

2007; Norton et al., 2007; Soldatos et al., 2005), but this approach may yield 

inconsistent results when applied to real-world conditions. This is because the 

models are defined by high complexity and often need to calculate and estimate 

unmeasurable parameters such as the soil heat flux density, biological factors, 

photosynthesis rate, water vapor pressure, and environment changes. Prediction 

methods based on data processors have been proposed and applied in various fields 

due to the development of modern computational technology. This approach 

provides rapid and accurate results for implementation in the agricultural industry, 

such as the prediction of the internal temperature inside a greenhouse (Nury et al., 
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2017; Patil et al., 2008), transpiration rate prediction (Wang et al., 2015), and 

ventilation strategy in livestock (Soldatos et al., 2005).  

ANN models represent a powerful forecasting tool for analyzing nonlinear systems 

because of their ability to model systems without the need to make any assumptions, 

which are often implicit in most traditional statistical approaches (Dariouchy et al., 

2009). For this reason, these have been applied to the prediction of greenhouse 

climatic data and generally produce better results than state-of-the-art physical 

models (Fitz-Rodríguez et al., 2012; He and Ma, 2010; Nury et al., 2017). With this 

method, however, some concerns have been raised about optimization and 

application in practical use, including over-fitting, the need for many training sets, 

the lack of flexibility between different crops, and occasionally poor stability in 

strongly coupled and complex systems. 

The temperature, humidity, and CO2 levels inside a greenhouse are strongly 

coupled to system elements, such as ventilation, heating, fogging, and other actuators 

and physical behaviors in the greenhouse. Another obstacle to the development of 

precise models is the fact that greenhouses have different actuators for each target 

climate variable, and these actuators typically exhibit simple on/off behavior, thus a 

single element can be a dominant factor that leads to changes to the internal climate 

of the greenhouse. Past research has proposed time-series models that are able to 

provide simplified representations of large numerical systems for the accurate 

simulation and prediction of their dynamic responses (El Ghoumari et al., 2005; Fan 

et al., 2012; Lu et al., 2014).  

Greenhouse operating systems have proposed index criteria for heating and 

ventilation loads, and these systems employ a variety of elaborate experience-based 

models. These models make appropriate decisions based on crop growth data and 

greenhouse environmental information that have been accumulated over the past 

several decades (Yang et al., 1989). However, in countries with different climate 

conditions, the optimal value of the coefficients used in proportional band (P-band) 

control must be obtained using trial and error, or farmers can operate the greenhouse 

control system using their own established knowledge. Domestically, commercial 

products that utilize logic based on P-band control have been developed. P-band 

control uses a simple linear model that is applied to influence coefficients, which are 
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related to other influential factors that can affect the target environmental factor. For 

example, solar radiation, the outdoor temperature, and wind speed are commonly 

monitored as influential factors for ventilation control. However, it is very difficult 

to determine intuitively what the exact values should be for the coefficients for these 

factors and whether they have a positive or negative influence.  

To identify these conditions, experimental statistical methods have been widely 

used (Majdi et al., 2019). Of these methods, response surface methodology (RSM) 

determines optimal coefficients based on various experimental conditions (Thakur 

et al., 2018). This method minimizes the number of scenarios required for the 

experiment, so it is widely used in many fields (Kaushal et al., 2015). In addition, 

RSM is frequently used for tuning coefficients in the proportional–integral–

derivative (PID) controller for many applications (Demirtas and Karaoglan, 2012; 

Nakano and Jutan, 1994). Research on the optimization of coefficients for 

greenhouse environmental control using an experimental statistical approach is 

required, but actual results for this have rarely been reported.  

As an example, in greenhouses that utilize natural sunlight, optimal influence 

coefficients must be determined according to time. Daily changes in the greenhouse 

environment tend to follow certain patterns. The indoor temperature begins to rise 

from sunrise, and the heat inside the greenhouse tends to accumulate until the 

afternoon. However, the temperature inside the greenhouse before sunset drops 

drastically, meaning the heat is not preserved overnight (Blasco et al., 2007; Kwon 

et al., 2013). Therefore, a day can be divided into sunrise, sunset, noon, and midnight 

periods, and different strategies must be devised for these time periods in order to 

precisely control the greenhouse environment. A commercial integrated climate 

control software system for greenhouses should thus allow the user to change the 

settings for each time period, and there is a need to identify the corresponding 

optimal influence coefficients  

 

The specific objectives for this chapter are to 

1) Explain the components, structure, and system of the target smart farm, 

and explain the specific data collection method and installation process 

required for the research.  
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2) Introduce linear control (proportional derivate band [PD-band]/P-band) 

as the logic for greenhouse climate control, and 

3) Conduct an optimization experiment for outside influences on linear 

based P-band control. 

 

 

  



37

3.1. DESCRIPTION OF CLIMATE CONTROL SYSTEM IN SMART 

GREENHOUSE 

An experimental greenhouse at KIST, Gangneung, constructed as a multi-span 

Venlo structure, was used for this experiment. The size of each unit was 16 m in 

length and 16 m in width, and a total of four units were connected together as shown 

in Figure 21. Excluding the working space, the actual planting area was 16 m in 

length and 12.5 m in width, covering an area of 192 m2. The greenhouse was located 

at 37°47'47.1” N, 128°51'24.5" E. 

 

Figure 21. Overall appearance of the multi-span venlo-type greenhouse.  

3.1.1. HARDWARE OF CONTROLLER 

The crop used in the experiment was Dafnis tomatoes. A sensor node was located 

at the center of the greenhouse (Figure 22a) and the data collected every ten seconds 

was averaged each minute and then saved to a database. The sensor node measured 

the temperature, humidity, and CO2 levels inside the greenhouse. A DS Thermistor 

(R-T type, ADS103FU-C) was used to measure the temperature and humidity, and 

an SH-300-DC (Soha Tech, Korea) was used to measure the CO2 concentration. The 

experimental greenhouse was operated using an algorithm developed in-house.  
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Figure 22. Experimental set-up. (a) Temperature sensor used to monitor the 

environment inside the greenhouse. (b) Outside view of the vinyl multi-span 

Venlo greenhouse. (c) Tomatoes growing inside the greenhouse. (d) Weather 

station to measure outside climatic variables. 

 

A climate control system was installed to manage the environment inside the smart 

greenhouse (Figure 23). Each actuator was driven by a separate control logic and 

setup, operating according to the temperature, humidity, and CO2 concentration 

inside the greenhouse.  

The external and internal environmental data were collected by the weather station 

and the sensor node inside the greenhouse, respectively. The collected data was sent 

to the controller every minute using a standard transmission protocol. The 

transmitted data was stored in the database, which included a control algorithm 

program that generated operation commands for the actuators based on these data. 

The generated commands were then sent to a microcontroller, and the controller sent 

the signal to the relays to operate the actuators.  
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Figure 23. Monitoring sensors and environmental control actuators included in the 
greenhouse used for data acquisition. 

A Raspberry Pi computer (Model B, Raspberry Pi Foundation, United Kingdom), 

which is cheaper and more accessible than other commercial products, was used as 

the main controller. Details and specifications for Raspberry Pi are provided in 

Figure 24 and Table 4. Data was transmitted from the sensor modules inside and 

outside the greenhouse and stored on the Raspberry Pi board, before being 

communicated to the cloud server and the installed relay board as shown in Figure 

25. 
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Figure 24. Features of the Raspberry Pi 3.0 model B. 

 
Table 4. The specification of Raspberry Pi 3.0 model B 

 Raspberry Pi Model B 

Release date Feb. 29, 2016 

SoC BCM2837 

CPU Quad Cortex A53 @ 1.2GHz 

Introduction set ARMv8-A 

GPU 300MHz videocore IV 

Ram 1 GB SDRAM 

Storage Micro-SD 

GPIO 40 

Wireless 802.11n/Bluetooth 4.0 

Price $35 
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Figure 25. View of controller and relay board installed in the control room of the 
greenhouse. 

The floor plan for the greenhouse, including the position of the actuators and all 

relevant equipment (e.g., the fogging injector), is shown in Figure 26. The four 

individual greenhouse units were continuously connected. Figure 26(a) shows the 

location of the controller, the program that drove the controller, and the computer on 

which the program was installed. Figure 26(b) indicates the control box that 

connected the power supply to the greenhouse equipment (e.g., windows and 

curtains) and that connected the 24VAC power from the control room controller to 

operate the relay. Details of the operation and connection of the actuators are 

described in detail in Section 3.2.  
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Figure 26. Floor plan showing the structure of the greenhouse and the position of the controller and actuators
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3.1.2. CONTROL SOFTWARE 

Two control programs were employed in this study. First, the self-developed 

control program Welgrow was used to implement the control logic. It was eventually 

replaced with operating software developed for the purpose of monitoring and 

controlling the integrated environment of a greenhouse based on the open platform 

FarmOS (FarmOS V2, Jinong Inc., Gyeonggi Province, Republic of Korea)  

(Figure 27). The FarmOS-based software was then migrated and the actuators and 

sensors were modified to match the standard communication protocol (Huh et al., 

2018). The Raspberry Pi computers were configured to meet KS X3267 

communication standards (Park et al., 2019) by acting as sensor nodes and control 

nodes (Figure 28).  

A sensor module (SH-VT250, Soha Tech, Korea) was used to monitor the internal 

climate of the greenhouse. The sensors were installed at the center of the greenhouse, 

and the specifications for the sensors are presented in Table 5. The environmental 

controller consisted of a sensor node and a control node for the processing of sensor 

data. The software program that operated the individual nodes was installed on a 

Raspberry Pi computer (Model B, Raspberry Pi Foundation, United Kingdom). 

Monitoring and control logic were implemented using an open platform program 

(Park et al., 2019). The control logic used a control algorithm based on a P-band. 

The P-band used for ventilation determined the opening of the windows (%) by 

calculating the ventilation load using the external temperature, wind direction, wind 

speed, and solar radiation as setting parameters and linear coefficients. All of the 

control signals and sensor data from the environmental controller were stored in the 

database and used for the development of the prediction model and the design of the 

control algorithm. 
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Table 5. Sensor specifications for the internal climate of the greenhouse. 

Component 
Measurement 

range 
Resolution 

Operating 

temperature 

(℃) 

Response 

time 

(s) 

Temperatur

e 
-10.0–50.0 ℃ ± 0.3℃ -25.0–85.0 5.0–30.0 

Humidity 0–99.0 % RH ± 2.0 % -10.0–50.0 8.0 

CO2 0–3000 ppm 

± 10.0–50.0 ppm 

(proportional to the 

measurement range) 

-10.0–0.0 2.0 

 

Figure 27. Environmental control program monitoring in greenhouse operating 
room. 
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Figure 28. Overview of monitoring sensor communication protocol  

A message queuing telemetry transport (MQTT)-based message transmission 

protocol was used so that the collected environmental information could be received 

by authorized devices. MQTT is a lightweight open OASIS and ISO standard 

(ISO/IEC 20922) publish–subscribe network protocol that transports messages 

between devices. The protocol usually runs over TCP/IP; however, any network 

protocol that provides ordered, lossless, bi-directional connections can support 

MQTT. The MQTT protocol is based on the principle of publishing messages and 

subscribing to topics of interest. 

 The sensor data installed inside the greenhouse was collected through the 

Raspberry Pi sensor node, reprocessed, and published to the MQTT broker. The 

MQTT broker can be accessed by multiple clients who subscribe to the information. 

In the present study, the online automatic learning and environment prediction 

system was configured to be connected as a single client, as shown in Figure 29. The 

client was a small microcontroller (Jetson Nano, Nvidia, USA) and installed based 

on an embedded board with an Ubuntu 18.04 OS. The configured MQTT broker 

published environmental information from the greenhouse, the driving signal from 

the controller, and the current location every minute to deliver the information, and 

the embedded board composed of clients was given a command to collect this 

information and store it separately. 
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Figure 29. The overview of MQTT data publish/ subscribe system between the 
broker and clients 

The control program was an integrated greenhouse climate control algorithm that 

was developed in-house for the present study. Rule-based operations could be 

conducted for both P-band- and PD-band-based algorithms using this program. 

Table 6 presents the rules for various environmental conditions, while Figure 30 

displays the environmental control program for the Welgrow version and the setting 

window information for each section, and Figure 31 shows the FarmOS-based 

dashboard. 
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Table 6. Control operations for the environmental control program used in this 
study 

 Ventilation 
control 

Heating 
control 

Curtain 
control 

CO2 
control 

Fogging 
control 

Flow 
fan 

Operating 
conditions 

Difference 
between the set 
temperature and 

the indoor 
temperature 

Difference 
between 
the set 

temperatur
e and the 
indoor 

temperatur
e 

Solar 
radiation/ 
outside 

temperature 

Indoor 
CO2 

concentrat
ion 

Indoor 
temperatur

e 
condition 

Ventilati
on status 

Actuator 
logic 

PD band PD band P band P band 
P band 

/Trigger 
Trigger 

Influencing 
factors 

Solar radiation, 
wind direction, 

wind speed, 
outside 

temperature 

Solar 
radiation, 
outside 

temperatur
e 

Solar 
radiation, 
outside 

temperature 

Outdoor 
CO2 

concentrat
ion and 

solar 
radiation 

when 
ventilating 

  

Constraint 
controls 

Close all sections of the roof when raining 
Open all windows slightly (5%) during heavy winds 

Close all windows when spraying pesticide 
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Figure 30. Climate control software (Welgrow) developed for smart farm control in 
this study: (A) monitoring screen and (B) setting screen. 
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Figure 31. creen view of FarmOS, which can be used as an open platform for 
greenhouse climate management. 

3.2. MULTIVARIABLE CLIMATE CONTROL BASED ON A LINEAR 

ALGORITHM 

3.2.1. PD-BAND BASED CONTROL LOGIC FOR THE 

VENTILATION CONTROL 

In this study, the PD-band control technique was introduced as the logic for 

greenhouse ventilation control. In order to optimize the settings for this control logic, 

research was conducted to obtain the values for the solar radiation, outside 

temperature, and wind speed, as well as the values for the optimal influence 

coefficients for the P-band and D parameters. Thirty-two experimental conditions 

were derived from the RSM analysis, and a day was divided into six time periods so 

that the coefficients could be optimized for each time period. Ultimately, this study 

proposes a very simple and efficient method for temperature control through 

ventilation in the greenhouse and discusses the optimal coefficients for each time 

period. 

Ventilation control allowed external air to flow through the skylight in the 

experiment greenhouse. The structure of the window is shown in Figure 32 . Four 

windows were installed in each greenhouse unit, two on the left and two on the right, 

and windows in the same direction were opened or closed simultaneously. To open 
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and close the window, the installed rack gear was operated with a gear motor 

(CODM81064, Chung-oh Engineering, Daejeon City, Korea). The specifications for 

the motor are as presented in Table 7. 

 
Table 7. Specifications for the gear motor installed to open and close the windows 
in the greenhouse. 

Description Value 

Model number CODM 81064 

Voltage DC 24 V 

Rated current 8.0 A 

Rated power 192 W 

Motor speed 1.5 RPM 

Reduction ratio 1:2240 

Opening height/distance 4/100 m 

Weight 7.6 kg 

 

Figure 32 (a) Opening of the windows for ventilation control. (b) Installation of the 
rack geared motor to open the window. (c) Overall view of the windows. 
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Each window could open to about 50 degrees, which was defined as 100% open 

(Figure 32b and c). The opening and closing (100% and 0%, respectively) times were 

recorded in advance to adjust the position based on time. At the maximum open and 

closed positions, a limiter was set to stop the motor. A P-band is a control logic that 

is widely used in integrated greenhouse climate control systems. In this logic, the 

controller can decide how far to open the ventilation windows within the range of 0% 

to 100%. For example, when the greenhouse temperature is measured, the ventilation 

windows are opened to a degree proportional to how much the actual temperature 

has exceeded the set temperature by. Here, P-band control is required to calculate 

the position of the open ventilation windows. 

 The P-band indicates the degree to which the actual temperature needs to exceed 

the set temperature for the windows to be opened 100%, expressed in Celsius. Thus, 

once the greenhouse temperature exceeds the set temperature, the windows are 

opened by a certain percentage each time the greenhouse temperature rises by 1℃. 

Equation [1] was used to calculate the band value. In addition, the speed at which 

the heat and humidity were reduced using ventilation was determined primarily by 

the outside temperature and the wind velocity. The outside temperature is low and 

the wind is strong during winter, so the heat and humidity can be lowered quickly. 

However, during spring or early summer, when the outdoor temperature is high and 

the wind is relatively weak, it takes longer to reduce the heat or humidity. In order 

to seamlessly control the ventilation, the excess heat or humidity must be removed 

at an optimal speed (Fitz-Rodríguez et al., 2010). If greenhouse ventilation is too 

cautious, it takes longer to reduce the heat or humidity, which will rise as a result. In 

this case, a relatively small P-band is advantageous. However, if the P-band is set 

too low during the night when the heat needs to be preserved, the heat or humidity 

may be reduced too quickly, reducing ventilation performance. To avoid this issue, 

time differentials for the set value and the target value were added as constants to 

respond to the changes in the temperature difference.  

 

PB = 𝑋ଵ + 𝑋ଶ ∙
ோ೘

ோ೎
+ 𝑋ଷ ∙ ೚்೘

೚்೎
+ 𝑋ସ ∙

௏೘

௏೎
    [1]
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Output (%) =
ଵ଴଴

௉஻
∙ (𝐸+ 𝑋ହ ∙

ௗா

ௗ௧
)  [2] 

X1–X5: Influence coefficients 

 PB: Proportional bandwidth index  

 Rm: Maximum solar radiation (set value) 

 Rc: Current solar radiation (measured value) 

 Tom: Maximum outside temperature (set value) 

 Toc: Current outside temperature (measured value) 

Vm: Maximum wind speed (set value) 

Vc: Current wind speed (measured value) 

E: Difference between the current temperature and the target temperature 

Tc: Current indoor temperature. 

In this study, the actuator controls can be classified into two categories as shown in 

Figure 33: proportional control actuators that can adjust the signal proportionally and 

actuators that can only turn on or off. 
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Figure 33. The two types of greenhouse control actuator employed in the present 
study. 

3.2.2. CO2 CONTROL 

Maintaining CO2 levels is essential to ensuring optimal plant growth; in the 

greenhouse in the present study, these levels were based on those at noon, when the 

photosynthesis of the crop was most active. A solenoid on/off valve was installed in 

the greenhouse connected to CO2 cylinders; CO2 was injected into the greenhouse 

through an inlet at the bottom of the growing bed (Figure 34). Equations [3] and [4] 

were used to calculate the band value for CO2 control. The target CO2 concentration 

was set at 500 ppm (user input) from 9:00 to 15:00, the period of highest 

photosynthesis activation. However, the actual control performance was weaker than 

expected, with a root mean square error (RMSE) of 35.44 ppm. 
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Figure 34.Carbon dioxide gas for spraying in the greenhouse and carbon dioxide 
inlet at the bottom of the growing bed. 

PB = 𝑋ଵ + 𝑋ଶ ∙
஼೚೘

ு஼೚೎
      [3]

Output (%) =
ଵ଴଴

௉஻
∙ (𝐸)  [4] 

X1–X2: Influence coefficients 

 PB: Proportional bandwidth index 

 Com: Maximum outside CO2 concentration (set value 490 ppm) 

 Coc: Current CO2 concentrations (measured value) 

E: Difference between the current CO2 concentration and the target CO2 

concentration. 
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Table 8. Influence coefficients for the designated time slots for CO2 control. 

  
X1 

(P base) 
X2 

(Outside CO2) 

P1 0 0 

P2 0 0 

P3 4.0 -1.0 

P4 4.0 -1.0 

P5 3.0 -10 

P6 0 0 

 

Figure 35. The results for CO2 concentration control in the greenhouse. 

3.2.3. HUMIDITY CONTROL 

The relative humidity inside a greenhouse influences crop stress. When the 

humidity is below a certain level, the pores of the leaves close to prevent 

photosynthesis. In contrast, if it becomes too humid, mold can form on or around the 

crop, making it vulnerable to disease. The humidity levels in a greenhouse can be 

affected by a variety of factors, including a direct coupled relationship with 

temperature and a direct relationship with other actuators. With ventilation, a 

strategic approach in relation to external humidity is required. Equations [5] and [6] 

were used to calculate the band value for humidity control. 

The automatic humidity supply system is determined by the control program 
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(FarmOS/Welgrow); when the system is switched on, a signal is transmitted through 

the fog controller, and water and compressed air are introduced to the greenhouse 

through nozzles (low air nozzle, Samchang GreenTech, Gimhae City, Korea) via 

water pumps (PU-350M, Wilo, Dortmund, Germany) and an air compressor. 

 

Table 9 The specifications of fogging actuators installed in greenhouse. 

 Description Value 

Nozzle Nozzle diameter 0.5mm + 0.7mm 

Spraying range 4~7 m 

Spraying rate 80 ~100 ml/min 

Air pressure 392.26~588.40 kPa 

Pump 

(PU-350M, Wilo) 

Voltage 220 VAC 

Rated power 350W 

Pump head 10 m 

Maximum pump capacity  9,300 L/hr 

 

Figure 36. Overview of the automatic fog system used in the greenhouse. 
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PB = 𝑋ଵ + 𝑋ଶ ∙
ு೚೘

ு೚೎
+ 𝑋ଷ ∙

்಺೘

೎்
     [5]

Output (%) =
ଵ଴଴

௉஻
∙ (𝐸)  [6] 

X1–X5: Influence coefficients 

 PB: Proportional bandwidth index 

 Hom: Maximum outside humidity (set value) 

 Hoc: Current outside humidity (measured value) 

E: Difference between the current humidity and the target humidity 

Tc: Current inside temperature  
 
TIM: Maximum inside temperature (set value) 

Figure 37. The result of the controlled humidity. 

The relative humidity was controlled to remain at about 45% or below. As shown 

in Figure 37, outside dry air entered the greenhouse during the day, thus fogging 

control was implemented to prevent a drop in humidity. In the greenhouse, to 

improve control performance, a control design that considered various dynamic 

external disturbance factors was thus required.  
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3.2.4. HEAT RETENTION CURTAIN AND SHADE CURTAIN 

CONTROL 

Shade and heat retention curtains were installed under the windows as shown in 

Figure 38, with the heat retention curtains under the shading curtains. The two 

curtain types had opposite opening and closing directions to each other, and two gear 

motors (COAM81062DA, Chung-oh Engineering, Daejeon City, Korea) were 

located in the center of the greenhouse. (Figure 38).  

 

Figure 38. (A) Installation location and operating direction of the shading and 
heat retention curtains in the greenhouse and (B) their coverage area. 
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Table 10. Specifications for the gear motor installed to open and close the curtains 
in the greenhouse. 

Description Value 

Model number COAM 81062DA 

Voltage AC 380V (3 phase) 

Rated current 0.65 A 

Rated power 250 W 

Motor speed 0.9 RPM 

Reduction ratio 1:4000 

Opening distance 100 m 

Weight 10.2 kg 

 

The performance of heat retention curtains depends on their thermal transmittance, 

which is the amount of heat that passes through the insulation material. The heat 

retention curtains used in the experimental greenhouse were a two-layer thermal 

insulation curtain combining a polyethylene film and an aluminum metalized film. 

The thermal transmittance was about 1.8 (kcal·m-2·hr-1·℃-1). 

Figure 39. Heat retention curtains installed in the greenhouse. 

As the shade screen, an aluminum DTS 55 screen (DTS 55, Deltex, Yeoju City, 

Korea) was installed. The aluminum coating layer had fine pores so that water vapor 

could readily pass through (i.e., high moisture permeability). 
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Because the heat retention curtains were mainly closed at night, the temperature 

inside the greenhouse was used as a function to isolate the heat conduction with the 

outside of the curtain. In winter, the heat retention curtains can be used in conjunction 

with heating during the daytime, but the amount of radiation supplied to the crops is 

reduced by closing the curtains. On the other hand, in summer, it is generally not 

necessary to close the insulating curtains during the day or night. Equations [7] and 

[8] represent the P-band equations for the heat retention curtains, with the most 

important external factor being the outside temperature. Table 11 presents the initial 

coefficients set for heat retention curtain control. 

 

PBு஼ = 𝑋ଵ + 𝑋ଶ ∙
ோ೘

ோ೎
+ 𝑋ଷ ∙ ೚்೘

೚்೎
    [7]

Output (%) =
ଵ଴଴

௉஻
∙ 𝐸  [8] 

X1–X3: Influence coefficients 

 PBHC: Proportional bandwidth index for the heat retention curtain 

 Rm: Maximum solar radiation (set value, 1200 W/m2) 

 Rc: Current solar radiation (measured value) 

 Tom: Maximum outside temperature (set value, 35 ℃) 
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 Toc: Current outside temperature (measured value) 

E: Difference between the current temperature and the target temperature. 

 

Table 11. Influence coefficients for each time slot for heat retention curtain control. 

  
X1 

(P base) 
X2  

(Radiation) 

X3 
(Outside 

temperature) 

P1 0 0 0 

P2 0 0 0 

P3 5.0 -3.0 -0.5 

P4 5.0 -4.0 -2.0 

P5 7.0 -3.0 -2.0 

P6 0 0 0 

 

The shade curtains had similar driving conditions to the heat retention curtains but 

were made of a material with low heat insulation and high heat radiation. Although 

the sunshine was blocked, the curtains were less insulating than the heat retention 

curtains. During winter, the total amount of solar radiation was lower, thus the 

curtains were used at night to maintain the internal temperature in the same way as 

the heat retention curtains. During summer, the sunshine levels were very high, so 

the inner curtains were set to partially close when cooling of the greenhouse was 

required. Equations [9] and [10] represent the P-band equations for the shade curtains, 

and Table 12 summarizes the initial coefficients used for shade curtain control. 

 

PBௌ஼ = 𝑋ଵ + 𝑋ଶ ∙ ೚்೘

೚்೎
      [9]

Output (%) =
ଵ଴଴

௉஻
∙ 𝐸  [10] 

X1 and X2: Influence coefficients 

 PBSC: Proportional bandwidth index for the shade curtains 

 Rm: Maximum solar radiation (set value) 

 Rc: Current solar radiation (measured value) 
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E: Difference between the current radiation and the target radiation. 

 
Table 12. Influence coefficients for each time slot for shade curtain control. 

  
X1 

(P base) 
X2 

(Outside temperature) 

P1 0 0 

P2 0 0 

P3 3.0 -2.0 

P4 3.0 -2.0 

P5 4.0 -2.0 

P6 0 0 
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Figure 40. Controlled temperature by using P-band controller (top), and the opening ratios of windows and curtains(bottom) .
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3.2.5. HEATING CONTROL  

Water heating. 

The majority of hot water heating used the cart rail for working carts inside the 

greenhouse at the same time as the heated pipes. High temperature (40–80℃) hot 

water flowed from a metal pipe to heat the pipelines, consequently heating the air 

inside the greenhouse. This type of heating can use a geothermal heat pump or a 

separate heating boiler to produce hot water. The hot water supply in this study was 

produced using a kerosene boiler (KDB-1035RTG, Navien, Seoul City, Korea).  

The heater and the hot water supply were configured to operate automatically, and 

the controller generally sent two commands to the heating system: the target hot 

water temperature and the degree to which the linear-stroke valve was to be opened. 

The commands determined by the controller were the temperature of the hot water 

and the opening proportion of the linear-stroke valve actuator (ML7421A1032 E, 

Honeywell, North Carolina, United States). The degree to which the linear-stroke 

valve was opened regulated the supply of hot water through the rail pipe from the 

central heating pipe to the cultivation bed. Heating control was based on the target 

heating temperature set by the temperature control, and the opening proportion (%) 

of the linear-stroke valve was determined based on the outside weather, the solar 

radiation, and the deviation from the set value (Equations [11] and [12]). Table 13 

presents the initial coefficients used for heating control. 
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Figure 41. Overview of the automatic heating system used in the greenhouse. 

 

PBு = 𝑋ଵ + 𝑋ଶ ∙ ೚்೘

೚்೎
             [11]

Output (%) =
ଵ଴଴

௉஻
∙ (𝐸+ 𝑋ଷ ∙

ௗா

ௗ௧
)  [12] 

X1–X3: Influence coefficients 

 PBH: Proportional bandwidth index for heating  

 Tom: Maximum outside temperature (set value) 

 Toc: Current outside temperature (measured value) 

E: Difference between the current inside temperature and the target heating 

temperature. 
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Table 13. Influence coefficients for each time period for heating control. 

  
X1 

(P base) 

X2  
(Outside 

temperature) 

X3 
(D value) 

P1 4.0 0 -2.0 

P2 3.0 0 -2.0 

P3 10.0 3.0 -3.5 

P4 5.0 4.0 -2.0 

P5 7.0 3.0 -1.0 

P6 5.0 0 -1.0 

 

Table 14. Specifications for the boiler installed for heating water. 

Description Value 

Model number KDB-1035RTG 

Voltage AC 220V (60 Hz) 

Capacity of the hot-water supply 100,000 kcal/h (116.2 kW) 

Rated thermal efficiency 91.3% 

Fuel type Kerosene (coal oil) 

Fuel consumption rate 13.57 L/h 

Heating area 4.2 m2 

 

 

3.3. EXPERIMENTAL RESULTS FOR THE OPTIMAL 

COEFFICIENTS OF VENTILATION CONTROL 

3.3.1. THE DESIGN AND EXPERIMENT FOR THE RESPONSE 

SURFACE ANALYSIS METHOD TO OPTIMIZE VENTILATION 

CONDITIONS  

The response surface analysis is suitable for fitting a quadratic surface and it helps 

to optimize the process parameters with a minimum number of experiments, as well 

as to analyze the interaction between the parameters (Betiku and Taiwo, 2015). Also, 

the characteristics of the response surface analysis are that information can be 

distributed across the entire experimental region, residual and prediction errors are 
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minimized, and a high level of examining compatibility lack is exhibited models can 

be designed sequentially, from a simple model to a high-order model. Also, the 

combination of factor levels used is minimized, so excellent graph analysis can be 

performed using simple data patterns. Minitab 17 (Eretec Inc., Korea) is a program 

which was used in this study. Minitab 17 is equipped with the necessary tools to 

prepare data for analysis and derive results through analysis. The response surface 

methodology analysis was conducted to optimize the five influence factors, X1~X5, 

for the P-band control. In this analysis, the central composite was designed in a grid 

pattern.  

In this ventilation control experiment, the results for one sample was used as the 

response value by taking the RMSE difference of the temperatures collected during 

one day of greenhouse operation. The entire experiment lasted from April 2017 until 

May 2017. The spring weather condition was chosen because the reduction in 

temperature through ventilation is much needed during this period. Excluding the 

rainy days, the experiment was conducted over a total of 32 days. Also, a day was 

divided into six time slots, and the greenhouse control time slots were defined as P1 

through P6. These time slots were reflected in the results, and the optimization 

coefficients for each time slot were compared (Table 4). 

 

Table 15 Experimental design using central composite model of 32 trials 

No. X1 X2 X3 X4 X5  No. X1 X2 X3 X4 X5 

1 4 -0.5 -1.5 2 0.7 17 6 -0.5 -1.5 2 0.3 

2 4 -1.5 -1.5 0 0.7 18 6 -1.5 -0.5 0 0.7 

3 6 -0.5 -0.5 2 0.7 19 5 0 -1 1 0.5 

4 5 -1 0 1 0.5 20 4 -0.5 -1.5 0 0.3 

5 3 -1 -1 1 0.5 21 5 -1 -1 -1 0.5 

6 6 -0.5 -0.5 0 0.3 22 5 -1 -1 3 0.5 

7 4 -0.5 -0.5 2 0.3 23 5 -1 -1 1 0.9 

8 4 -1.5 -0.5 0 0.3 24 5 -1 -1 1 0.5 

9 5 -1 -1 1 0.5 25 5 -1 -1 1 0.5 

10 5 -1 -2 1 0.5 26 6 -0.5 -1.5 0 0.7 

11 6 -1.5 -0.5 2 0.3 27 6 -1.5 -1.5 0 0.3 
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12 7 -1 -1 1 0.5 28 5 -2 -1 1 0.5 

13 4 -1.5 -0.5 2 0.7 29 5 -1 -1 1 0.5 

14 5 -1 -1 1 0.5 30 6 -1.5 -1.5 2 0.7 

15 5 -1 -1 1 0.5 31 4 -0.5 -0.5 0 0.7 

16 5 -1 -1 1 0.1 32 4 -1.5 -1.5 2 0.3 

Table 16 Time slots for the greenhouse climate control operation and the target 
temperature through ventilation for each time slot 

 Time slot 
Target ventilation 

temperature 

P1 ~ 04:00 20 

P2 04:00 am ~ Sunrise 20-21 

P3 Sunrise ~ 4 hours after sunrise 21- 24 

P4 
4 hours after sunrise 

~ 4 hours before sunset 
24- 28 

P5 4 hours before sunset~ Sunset 28- 24 

P6 Sunset ~ 24:00 24-20 

 

3.3.1. APPLICATION RESULTS OF PD-BAND VENTILATION 

CONTROL 

The PD-band ventilation control experiment was conducted over 32 days between 

June 15, 2017 and July 29, 2017—on days when it was not raining. The coefficient 

value was designed using the response surface analysis method, and it was provided 

as an input each day. The 32 sample data in were divided into 6 equal parts, and the 

RMSE value between the target ventilation temperature and the actual temperature 

for each time slot was used as the response value. The target ventilation values were 

divided into linear intervals for each time slot and was compared with the measured 

value using 1:1 comparison to compute the RMSE values. These results can be found 

in Table 6. Also, according to the plan for the response surface analysis experiment, 

which was designed for the purpose of finding the optimal parameters for the 
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ventilation settings, characteristics of the following parameters were investigated 

under each specified condition: the basic band value (X1), the coefficient of solar 

radiation (X2), the coefficient of the outside temperature (X3), the coefficient of the 

wind speed (X4), and the coefficient of the differential error (X5). The conditional 

change characteristics were examined based on the RMSE error as the response 

variable (Table 5). 

 

3.3.2. RESULTS OF THE LINEAR REGRESSION MODEL 

By assigning the experimental results as the objective function of the response 

surface regression equation, the regression equation of second order [9] for the 

RMSE for the target ventilation value was derived. This equation was calculated by 

separating the P1~P6 coefficients for each time slot and the results, and the 

calculation results are shown in Table 17. Values for 20 coefficients were obtained 

using the analysis of variance (ANOVA), and 95% reliability was required for the 

analysis (p<0.05). 

The data in Table 17. P1~P6 coefficients of the regression model of second order 

obtained through the response surface analysis method were analyzed using the 

response surface optimization method, and the results were displayed using 3-

dimensional surface contour plots similar to ones shown in Figure 42. The figure 

shows the contour plots for the P4 time slot, which is when solar radiation is at the 

highest and the reduction in temperature is most needed due to the heat accumulated 

in the afternoon. This time slot is the most important period for ventilation control 

(Federico Villarreal-Guerrero et al., 2012). Here, the correlation between two 

influence factors can be verified. X2 and X3 are coefficients for the outdoor solar 

radiation and outside temperature, and it is shown that the more negative the 

influence of the two factors are, the lower the RMSE distribution is. This result can 

be attributed to the fact that the bandwidth is reduced in this period to increase how 

much the ventilation windows are opened because the temperature is more often 

higher than the target ventilation temperature during the P4 time slot. This pattern is 

also shown in the graph of the correlation between solar radiation (X2) and the 

coefficient of the differential error (X5), as well as in the graph of the correlation 

between the outside temperature (X3) and the bandwidth constant (X1). For the 



70

coefficient of wind speed (X4), correlation with all other influence coefficients 

yielded a second order polynomial relationship.  

 

𝑅𝑀𝑆𝐸(𝑃𝑥) = 𝑎 + 𝑏ଵ ∙ 𝑋ଵ + 𝑏ଶ ∙ 𝑋ଶ + 𝑏ଷ ∙ 𝑋ଷ + 𝑏ସ ∙ 𝑋ସ + 𝑏ହ ∙ 𝑋ହ + 𝑏଺ ∙ 𝑋ଵ
ଶ + 𝑏଻ ∙

𝑋ଶ
ଶ + 𝑏଼ ∙ 𝑋ଷ

ଶ + 𝑏ଽ ∙ 𝑋ସ
ଶ + 𝑏ଵ଴ ∙ 𝑋ହ

ଶ + 𝑏ଵଵ ∙ 𝑋ଵ ∙ 𝑋ଶ + 𝑏ଵଶ ∙ 𝑋ଵ ∙ 𝑋ଷ + 𝑏ଵଷ ∙ 𝑋ଵ ∙

𝑋ସ +∙ 𝑏ଵସ ∙ 𝑋ଵ ∙ 𝑋ହ + 𝑏ଵହ ∙ 𝑋ଶ ∙ 𝑋ଷ + 𝑏ଵ଺ ∙ 𝑋ଶ ∙ 𝑋ସ + 𝑏ଵ଻ ∙ 𝑋ଶ ∙ 𝑋ହ + 𝑏ଵ଼ ∙ 𝑋ଷ ∙ 𝑋ସ +

𝑏ଵଽ ∙ 𝑋ଷ ∙ 𝑋ହ + 𝑏ଶ଴ ∙ 𝑋ସ ∙ 𝑋ହ     … [13] 

Table 17. P1~P6 coefficients of the regression model of second order obtained 
through the response surface analysis method 

No. P1 P2 P3 P4 P5  P6  No. P1 P2 P3 P4 P5  P6  

1 2.83  1.31  2.11  2.14  2.87  1.09  17 1.01  1.66  2.99  1.79  3.27  1.35  

2 3.00  1.46  1.20  2.32  2.68  1.25  18 0.72  1.62  0.23  1.95  2.22  0.80  

3 1.28  1.46  1.98  1.82  2.26  0.40  19 1.86  2.07  2.24  2.79  3.15  1.27  

4 1.95  1.98  2.11  2.53  3.10  1.56  20 2.92  2.27  2.37  2.81  3.57  1.99  

5 3.56  1.95  2.31  2.73  3.48  1.89  21 1.36  2.27  0.92  2.41  3.03  1.49  

6 1.08  2.46  1.78  2.80  3.50  1.77  22 2.27  0.94  2.81  0.28  2.64  1.25  

7 3.13  2.02  3.05  2.77  3.62  2.17  23 2.14  1.37  0.98  2.09  1.92  1.16  

8 2.80  1.96  2.14  2.73  3.46  2.17  24 1.80  1.60  1.73  2.17  2.79  1.49  

9 1.57  1.72  1.73  2.07  2.94  1.36  25 2.06  1.56  1.72  2.13  2.92  1.51  

10 1.97  1.38  1.74  1.71  2.63  1.05  26 0.51  1.78  0.54  2.04  2.34  1.22  

11 0.81  1.45  2.77  0.89  2.98  1.94  27 0.25  1.67  1.14  1.85  2.96  1.61  

12 0.35  1.41  1.44  1.42  2.30  0.95  28 1.65  1.19  1.50  1.38  2.60  1.50  

13 2.96  1.17  1.94  1.12  2.75  1.64  29 2.07  1.71  1.96  2.17  2.94  1.32  

14 2.03  1.69  1.81  2.21  3.05  1.48  30 1.03  0.59  1.41  0.00  1.59  0.64  
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15 2.10  1.56  1.96  2.13  3.03  1.35  31 2.63  2.38  2.04  3.20  3.31  1.51  

16 1.44  2.04  2.87  2.31  3.79  2.30  32 2.54  1.22  2.36  1.05  3.06  2.11  
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Figure 42. Response surface plots with two factors to RMSE of P4 
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3.3.3. RESULTS OF THE SURFACE RESPONSE ANALYSIS FOR 

OPTIMIZING THE COEFFICIENTS 

The optimal values for the control influence coefficients (X1~X5) were obtained for 

each time slot (P1~P6) using the statistical numbers obtained through the surface 

response analysis method (Table 18). When the influence values for each time slot 

were examined, the influence values for the outdoor solar radiation and outside 

temperature is either zero or very small for P1 and P6 time slots. These time slots 

correspond to night time, so there is no outdoor solar radiation, and the outside 

temperature does not vary much. Also, the analysis results showed that the influence 

due to solar radiation (X2) is negative. This result is attributed to the fact that the 

bandwidth is reduced to lower the temperature quickly because the greater the solar 

radiation value is, the greater is the effect of solar radiation on the rise of the indoor 

temperature. A similar phenomenon can be observed for the influence of the outside 

temperature (X3). The influence of the wind speed (X4) is primarily positive, but it 

doesn’t appear to be a first order linear relationship as was verified by the 3-

dimensional surface contour plots. The index for the influence (X1) of the changes 

in the error exhibits a positive influence. Other than the P1 time slot, this value was 

0.9 for all other time slots. This result indicates that three values for the influence 

coefficient—0.3, 0.5, 0.7—which were used in the previous experimental design, 

were rather low. The result also shows that responding to changes in the temperature 

deviation is an important element. In the existing climate controller, factor X1 was 

non-existent. So it seems that low values were used during the experimental design 

because default values for this factor were not available. The coefficient values of 

X1 to X4 in the basic setup experiment were 5.0, 1.0, -1.0, and 1.0, respectively, and 

X5 was not applied to implement common P-band logic. 
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Table 18 Optimal influence coefficients per time slot obtained through the surface 
response analysis method for optimizing ventilation control. 

  
X1 

(P base) 
X2  

(Radiation) 

X3 
(Outside 

temperature) 

X4 
 (Wind 
velocity) 

X5 
 (D-base) 

P1 5.66 0 0 -1 0.76 

P2 7.0 -1.12 -1.32 3.0 0.90 

P3 7.0 -2.0 0.029 1.12 0.90 

P4 7.0 -2.0 -2.0 0.78 0.90 

P5 7.0 -2.0 -2.0 1.28 0.90 

P6 6.77 -0.05 -0.05 0.98 0.90 

 

The derived optimal coefficients were entered into the real system, and the 

operation of the greenhouse ventilation control was verified. The optimal 

coefficients were set for each time slot, and the ventilation control was performed to 

control the greenhouse temperature for three days. Figure 43 shows the temperature 

changes of the greenhouse before and after the application of the optimal coefficients. 

Figure 43 (top) shows the temperature change and the set temperature value, and the 

bottom of the graph shows the difference between the two values. For comparison, 

the temperature control performance through the optimal ventilation coefficients 

produced an RMSE value of 1.25 for the target temperature. When the experimental 

design method was conducted for approximately one month, the RMSE value of 2.03 

was obtained for the average temperature. Therefore, in comparison, the 1.25 RMSE 

result verifies improved performance. In particular, the ventilation control 

performance was excellent in the time slots P3 and P5, when the temperature changed 

more drastically. As for the P4 time slot, it seems there is a limitation in controlling 

the temperature through ventilation. For period such as this, a fogging method can 

be used to cool down the greenhouse.  
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Figure 43. Temperature changes in the greenhouse managed using the optimal 
ventilation coefficients and the comparison with the target ventilation temperatures. 
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Figure 44. Changes in external environmental conditions in the experiment with 
optimal ventilation coefficients.  
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3.4. CHAPTER CONCLUSION 

In this chapter, the structure of the smart greenhouse and the configuration of the 

actuators, sensors, and communication methods used in the experiment were 

described in detail. The control system used to collect meaningful information from 

the smart greenhouse was also outlined. 

A linear algorithm-based (PD-band or P-band) control method was proposed to 

control the greenhouse actuators for the management of the temperature, humidity, 

and CO2 levels, and its performance was verified. In ventilation control, the settings 

for the influencing factors were optimized for the PD-band, which determined the 

operation of the windows for ventilation. In addition, a P-band was applied when the 

actuator employed an on/off valve to consider complex factors in the control of the 

humidity and CO2 concentration. The control results produced an RMSE of 14.45% 

and 35.44 ppm for the temperature and CO2 concentration, respectively.  

RSM analysis and an experimental statistical method were conducted. Based on the 

results, the conditions for optimal ventilation control were established. In order to 

optimize influential factors such as solar radiation, the external temperature, wind 

speed, the P-band width, and the D coefficient, which were required for PD-band 

ventilation control, 32 experimental conditions were designed. The values for each 

factor were applied to the actual operation of greenhouse ventilation, and the 

response values were obtained using the RMSE for the target ventilation temperature.  

The greenhouse operation hours were divided into six time periods, and the 

response values were used to obtain the optimal coefficients for each time period. 

Using ANOVA analysis, a second-order polynomial equation was derived, and 

results were obtained for each time period. Finally, in order to minimize the RMSE, 

the optimal coefficients for the influential factors were calculated, and these values 

were applied to the actual greenhouse system. The ventilation control performance 

was evaluated, and the RMSE of 1.25 ℃ confirmed that the control performance had 

improved due to the use of the optimal coefficients. However, further long-term 

experiments need to be conducted in order to obtain the coefficients, and there is a 

concern that the optimization process here is specific to the greenhouse used in this 

experiment only.  
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It is also necessary to consider a method that can reduce the duration of the 

optimization process. This study proved that environmental settings, which are 

typically determined by the greenhouse operator’s skills and experience, can be 

optimized using a statistical approach. It is anticipated that the study results will be 

useful in providing numerical guidelines for the factors influencing ventilation 

control settings. In addition, it can be very useful for the automatic control of 

appropriate settings based on external weather changes or different ventilation 

periods during the day. However, responding to nonlinear changes in the greenhouse 

environment with a linear control algorithm appears to have limitations. For this 

reason, efforts to interpret or control nonlinear motion using AI-based algorithms are 

required. 
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4. GREENHOUSE INSIDE CLIMATE PREDICTION BASED ON 

ARTIFICIAL INTELLIGENCE MODEL 

 

A greenhouse is one of the major growing system by artificially manipulating a 

favorable environment for the plant. Especially maintaining adequate the 

temperature, humidity, and CO2 concentrations have been major concerns to 

greenhouse environmental control because these environmental factors can improve 

plants development, quality, and quantity of plants produced. The greenhouse 

climate system considers as very complex and nonlinear system (El Ghoumari et al., 

2005; Seginer and McClendon, 1992) in which the variables highly depend on the 

outside climate conditions and on the greenhouse design, and these climate 

conditions are unable to control independently (Fourati and Chtourou, 2007a; 

Frausto et al., 2003). Furthermore, Plants exposed to low or high temperatures or 

humidity may lead to mass death, dry plants due to low humidity and fungal diseases, 

which causes significant financial losses to growers. Therefore, building a precise 

model of greenhouse inside climate is important to the response of these dynamic 

changes and achieve an efficient climate management strategy (Fitz-Rodríguez et al., 

2012; Yu et al., 2016a).  

 Lanfang et al., (2000) describes two different ways for building the models of 

greenhouse climate. One is based in terms of the physical laws involved in the 

process, and the other is based on an analysis of the input-output data of the process. 

Over the last decades, owing to increase of computational performance, numerous 

physical greenhouse methods have been presented (Benni et al., 2016a; Kishor and 

Singh, 2007; Norton et al., 2007; Soldatos et al., 2005). Nevertheless, this approach 

may yield inconsistent results when applying in real-world condition. This is because 

the models are defined by high complexity and often need to be calculated and 

estimated unmeasurable parameters such as, soil heat flux density, biological factors, 

photosynthesis rate, water vapor pressure and environment changing as well. 

Recently, the prediction methods based on data process have been proposed and 

applied for various fields due to development of the modern computational 

technology. This approach provides accurate results and fast process to implement 

agriculture field such as, greenhouse inside temperature prediction (Nury et al., 2017; 
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S L Patil et al., 2008), transpiration rate prediction (Wang et al., 2015) and ventilation 

strategy in livestock (Soldatos et al., 2005). In the various fields, the ANN models 

are powerful forecasting tools for analyzing the nonlinear system. Because of their 

ability to system models without the need to make any assumptions as are implicit 

in most traditional statistical approaches (Dariouchy et al., 2009). For this reason, 

these methods have been applied in the prediction of greenhouse climatic data and 

performed better results than the state of the physical models (Fitz-Rodríguez et al., 

2012; He and Ma, 2010; Nury et al., 2017). In this method, however, some 

drawbacks have been raised on an optimization problem or an application issue in 

the real field, including over-fitting, need to many training sets, low versatile 

application to other plants, and sometime poor stability in strongly coupled and 

complex system. 

Greenhouse inside temperature, humidity, and CO2 concentrations are such 

strongly coupled factors by the influence of ventilation action, heating, fogging and 

other actuators and physical behaviors in the greenhouse. Moreover, the hindrance 

of making precise models is the facts that greenhouse has different actuators for the 

response each target climate and the most actuators have simple behavior on/off, and 

then regarded operation causes dominant changes of inside climate of the greenhouse. 

Several research has proposed a time-series model that should be able to provide 

reduced representations of large numerical systems for the accurate simulation and 

prediction of their dynamic response (El Ghoumari et al., 2005; Fan et al., 2012; Lu 

et al., 2014).  

Since Lapedes and Farber (1987) reported the modeling of a nonlinear time series 

with an ANN, machine-learning algorithms that combine time series with regression 

models, such as the autoregressive (AR) model, the autoregressive moving average 

with exogenous inputs (ARMAX) model, and the nonlinear autoregressive with 

exogenous inputs (NARX) model, have received significant attention.  

A recurrent neural network (RNN) is a special type of neural network that is 

designed for time series problems. Fourati and Chtourou (2007a) used an RNN based 

on an Elman structure and trained it to emulate the direct dynamics of a greenhouse 

temperature and hygrometry model. Recently, there have been significant 

improvements in the performance of RNNs, particularly with the introduction of 
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long short-term memory (LSTM) architecture to RNNs that is trained using 

backpropagation through time to overcome the vanishing gradient problem.  

The aims of this chapter are to 

1) Predict the inside temperature, relative humidity, and CO2 concentration 

using external climatic data and historical data for actuators in a real 

greenhouse cultivating tomatoes 

2) Build an ANN model for simultaneous forecasting and compare its 

performance in predicting the internal greenhouse climatic conditions with 

three time-series based models: NARX, an RNN model with LSTM (RNN-

LSTM), and a convolutional neural network (CNN) with LSTM (CNN-

LSTM)  

3) Propose and evaluate an automatic model training and updating system 

based on an embedded board for the developed deep-learning models. 

4.1. MACHINE LEARNING (ML) ESTIMATION MODEL 

4.1.1. MACHINE LEARNING-BASED PREDICTION MODEL FOR 

INSIDE CLIMATE CHANGE OF GREENHOUSE 

In general, the photosynthesis and evapotranspiration of crops are significantly 

affected by maintaining a constant temperature in a greenhouse. A constant 

temperature range is very important to the growth of crops. However, the 

temperature change in a greenhouse is impossible to predict. Greenhouses are 

frequently overheated by a large quantity of light in the daytime of summer. On the 

other hand, in winter, low outdoor temperatures cause the temperature loss in 

greenhouses, which results in excessive heating energy consumption.  

The existing technique controls the environment of greenhouse by comparing the 

current temperature with a target temperature set by a user. Such a discreet control 

strategy is not effective in correcting or responding to a long-term temperature 

difference. Besides, single span greenhouse, which have been conventionally used 

to grow crops, are equipped with side and roof windows for ventilation. Since a 

linear algorithm is adopted to determine the opening ratios of windows in this 
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structure, an environmental change cannot be effectively reflected. Especially, in 

case a single span vinylhouse has a multiple number of windows, the inflow of 

outdoor air varies depending on whether side or roof windows are opened, and the 

indoor temperature may have a drastic change accordingly. For this reason, an 

optimal control is difficult to achieve by the existing method.  

Although there have been many attempts to predict a temperature change inside a 

greenhouse by means of modeling, since necessary factors for modeling could not 

be measured, those attempts were not effective and failed to present accurate 

predictions. Recently, a learning algorithm of a nonlinear model was implemented 

for greenhouse modeling in order to derive parameters of PI or PID controller. 

However, this attempt aimed to determine a control logic, and accurate application 

was difficult due to a large error rate.  

To solve the above problems, this study proposes an atmospheric environmental 

control system and the related control method, where two parallel neural networks 

are connected with each other. These two parallel neural networks are a prediction 

model, which predicts a greenhouse temperature after a certain time by applying 

empirical data to a machine learning-based training model, and an optimization 

model, which optimizes the control signals of a roof window by using a cost function 

concerning the difference from a target temperature.  

 

4.1.2. ARTIFICIAL NEURAL NETWORK-BASED PREDICTION 

MODEL FOR GREENHOUSE INSIDE CLIMATE 

Neural network model is usually applied in a forecasting non-linear system, 

whereas traditional time-series methods may not be able to capture the nonlinear 

pattern in data (Mitrea et al., 2009). The field of artificial neural networks is often 

just called Neural Networks or Multilayer Perceptrons after perhaps the most useful 

type of neural network. A Perceptron is a single neuron model that was a precursor 

to larger neural networks. It is a field of study that investigates how simple models 

of biological brains can be used to solve difficult computational tasks like the 

predictive modeling tasks in machine learning. The goal is not to create realistic 

models of the brain, but instead to develop robust algorithms and data structures that 

could use to model difficult problems. The performance of neural networks comes 
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from their ability to learn the representation in the training data and how to best relate 

it to the output variable. In this sense, neural networks learn a mapping. 

Mathematically, they are capable of learning any mapping function and have been 

proven to be a universal approximation algorithm. The predictive capability of neural 

networks comes from the hierarchical or multilayered structure of the networks. 

Neural networks can be applied to time series modeling without assuming a priori 

function forms of models. Many varieties of neural network techniques including an 

artificial NN, recurrent NN and Nonlinear Autoregressive eXogenous have been 

proposed and successfully applied to time series prediction (Fourati and Chtourou, 

2007a; Moon et al., 2018; Sak et al., 2014). shows the structural differences of time-

based learning algorithms. 

Computational intelligence systems and among them, artificial neural networks 

(ANNs) has received attention recently in a field widely for approximation functions 

and forecasting (Altan Dombaycı and Gölcü, 2009; Khashei and Bijari, 2010; Patra, 

1997). One of the most significant advantages of the ANN models over other classes 

of nonlinear models is that ANNs are universal approximates that can approximate 

a large class of functions with a high degree of accuracy. In the present study, we 

use an MLP trained with a gradient backpropagation algorithm to calculate the 

gradient of the error of each neuron network, the last to the first layer to predict the 

internal temperature, internal moisture inside CO2 concentration of the greenhouse. 

The MLP consists of an input layer consisting of node(s) representing various input 

variable(s). The hidden layers consist of many hidden nodes and an output layer 

consisting of output variable(s). The input nodes pass on the input signal values to 

the nodes in the hidden layers. The values are distributed to all the nodes in the 

hidden layers depending on the connection weights between the input nodes and the 

hidden nodes. Activation functions can take several forms (Figure 46). The type of 

activation function is indicated by the situation of the neuron within the network. 

The most widely used activation function for the output layer is the linear function 

as non-linear activation function may introduce distortion to the predicted output 

(Khashei and Bijari, 2010). 
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Figure 45. Structural comparisons of times series neural networks and traditional 
neural networks (Revised from Mitrea et al., 2009).  

Figure 46. ANN basic Neuron for greenhouse climate prediction model. 

4.1.3. GRADIENT DESCENT METHOD 

The gradient of a multivariate function E (x1, x2, x3 …xn) is defined by Equation 

[14] below, which indicates the direction of the steepest increase of function value. 

As expressed in Equation [15], the gradient descent method determines the minimum 

value of a function by staring with an initial value (x0=x0, …, xn0) and proceeding in 

the opposite direction to the gradient. Parameters for training neural network nodes 

and minimizing the value of cost function are gradually found. 

∇𝐸 = (
డா

డ௑భ
,

డா

డ௑మ
, … ,

డா

డ௑೙
  ) [14]

x௞ାଵ = x௞ − 𝜆௞∇𝑓(𝑥௞), 𝑘 ≥ 0 [15]



85

The essence of the gradient descent method is moving from the current position 

toward the largest change of function value to obtain the maximum or minimum 

value of the function. Accordingly, if the direction of the largest change of function 

value can be obtained, the same concept will be applicable to various problems.  

4.1.4. GAUSS-NEWTON METHOD 

The Gauss-Newton method is a modification of the Newton method. This method 

is one of the representative optimization methods for nonlinear least squares problem. 

If the Newton method is applied to the optimization problem, the second order 

derivative is necessary. However, the Gauss-Newton method can find out a solution 

by means of the first order derivative. 

If observed values are (xi, yi), i=1 ,.., n, model parameters are p = ( p1, p2, ..., pm), 

a model is y = f(x, p), an error (residual) is ri(p) = yi - f(xi,p) and the objective 

function to be minimized is E(p),as shown in the Equation [16]. 

E(𝑷) =  ∑ 𝑟௜(𝑷)ଶ = [𝑟ଵ(𝑃) ⋯ 𝑟௡(𝑷)] ൥
𝑟ଵ(𝑷)

⋮
𝑟௡(𝑷)

൩ = 𝑟்𝑟 ௡
௜ୀଵ [16]

Here, the Gauss-Newton solution, which minimizes E(p) (that is, E'(p) = 0), is 

obtained by starting from the initial estimation p0 = (p0 ,..., pm) for the model 

parameter p and iteratively updating p by means of the equations below. Jr is a simple 

expression of Jr(pk), which indicates the Jacobian matrix value of r in pk (Equation. 

[17] and [18]). 

𝑃௞ାଵ = 𝑃௞ − (𝐽௥
்𝐽௥)ିଵ 𝐽௥(𝑃௄), 𝑘 ≥ 0 [17]

𝐽௥(𝑃) =

⎣
⎢
⎢
⎢
⎢
⎡

డೝభ

(௉)

డ೛భ

 ⋯  

డೝభ

(௉)

డ೛೘

⋮  ⋱ ⋮
డೝ೙

(௉)

డ೛భ

 ⋯

డೝ೙

(௉)

డ೛೘ ⎦
⎥
⎥
⎥
⎥
⎤

[18]

Equatin [18] is a simplified expression of Equation [19] 
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𝐩௞ାଵ = 𝐩௞ − 𝑝𝑖𝑛𝑣(𝐽௥)𝑟(𝐩), 𝑘 ≥ 0 [19] 

The essential principle of the Gauss-Newton method consists in finding a solution 

by locally approximating a nonlinear function to a linear function. If the error vector 

r(p) = [r1(p) ... rn(p)] T is approximated to a linear function near pk by using the 

Taylor expansion, r(p) ~ r(pk) + Jr(pk)(p - pk) is obtained (the second or above order 

terms are neglected). When p is obtained, which minimizes the sum of squared errors 

∥r(pk)+Jr(pk)(p-pk)∥2 for a linearly approximated error, it can be expressed as p = 

pk - pinv(Jr(pk))r(pk) of Eq. (9). Consequently, the Gauss-Newton method obtains the 

least square solution (pk+1) by linearly approximating an error function near the 

current parameter estimate (pk) and linearly approximates the error function again 

near the solution to obtain the least square solution, thereby gradually approaching 

to the solution.  

 

4.1.5. LEVENBERG-MARQUARDT METHOD 

As mentioned above, the Levenberg–Marquardt method is a combination of the 

Gauss-Newton method and the gradient descent method. The gradient descent 

method is applied when the solution is far away. On the other hand, when the solution 

is near, the Gauss-Newton method is used to find it. However, the Levenberg–

Marquardt method is more stable than the Gauss-Newton method in finding a 

solution (even if the initial value is far away from the solution, the Levenberg–

Marquardt method is more likely to find it), and quickly converges on the solution. 

For this reason, the Levenberg–Marquardt method is applied to most of the nonlinear 

least square problems. The Levenberg–Marquardt method was proposed by 

Marquardt in 1963, who improved the Levenberg algorithm (1944) (Ranganathan, 

2004). [20] 

𝐩௞ାଵ = 𝐩௞ − ൫𝐽௥
்𝐽௥ + 𝜇௞  𝑑𝑖𝑎𝑔(𝐽௥

்𝐽௥)൯
ିଵ

𝐽௥𝐫(𝐩௞), 𝑘 ≥ 0 [20] 

 

The gradient descent method finds a solution (the minimum point where an error 

function is minimized) by moving in the opposite direction and by the step size 
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proportional to the size of gradient. The Levenberg method, which is an 

improvement of the Gauss-Newton method, aims to reduce the risk of divergence 

and find a solution more stably by adding the constant multiple μI of an identity 

matrix to 𝐽௥
்𝐽௥. The constant μ(μ>0) is referred to as the damping factor. If μ has a 

small value, the Levenberg method becomes similar to the Gauss-Newton method. 

On the other hand, if μ had a large value, the Levenberg method becomes similar 

to the gradient descent method. If μ→∞, then (𝐽௥
்𝐽௥ +μI)-1→1/μI.. Accordingly, 

when μ increases, the Levenberg method is similar to the gradient descent method 

of which the step size is 1/μ. In the Levenberg method, however, the damping factor 

μ is not fixed but changes at each iteration (Figure 47). Accordingly, in the case of a 

stable convergence to a solution, μ is given a small value. Otherwise, that is, when 

the approach to a solution is not smooth, μ is given a large value. Specifically, if the 

error E(pk) calculated at the current step has been well decreased from that E(pk-1) 

of the previous step, μk has a small value to find a solution through the Gauss-

Newton method. On the other hand, if the error increases or the error decrease is not 

sufficient, μk needs to increase and the gradient descent method is applied to find a 

solution.  

On the other hand, the Gauss-Newton method finds a solution by considering both 

gradient and curvature. In Equation [20], 𝐽௥
்𝐽௥ has the significance of a Hessian, 

which a second order derivative (approximation matrix to Hessian). This indicates 

the curvature of a function. In other words, the step size for movement is determined 

by (the size of gradient)/ (the size of curvature). When the slope (gradient) is large 

but the curvature is also large (that is, the slope changes drastically), the minimum 

point is found by moving a little. On the other hand, if the curvature is small (that is, 

the slope hardly changes), the movement becomes larger to find a solution. 

Accordingly, the Gauss-Newton method can find a solution much more quickly and 

accurately than the gradient descent method. However, the Gauss-Newton method 

needs the calculation of the inverse matrix of (𝐽௥
்𝐽௥). For this reason, in case (𝐽௥

்𝐽௥) 

is approximate to a singular matrix (which has no inverse matrix), the calculated 

reverse matrix is numerically instable, which may result in divergence of solution.  
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Figure 47. Block diagram for training using Levenberg–Marquardt algorithm: wk 
is the current weight, wk+1 is the next weight, Ek+1 is the current total error, and Ek 
is the last total error. 

Therefore, the training process using Levenberg Marquardt algorithm could be 

designed as follows:  

- With the initial weights (randomly generated), evaluate the total error 

(SSE). 

- Do an update as directed by Equation 7 to adjust weights. 

- With the new weights, evaluate the total error.  

- If the current total error is increased as a result of the update, then retract 

the step (such as reset the weight vector to the precious value) and increase 

combination coefficient μ by a factor of 10 or by some other factors. Then 

go to step ii and try an update again.  

- If the current total error is decreased as a result of the update, then accept 

the step (such as keep the new weight vector as the current one) and 

decrease the combination coefficient μ by a factor of 10 or by the same 

factor as step iv.  
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- Go to step ii with the new weights until the current total error is smaller 

than the required value. 

4.2. TIME-SERIES BASED ALGORITHM MODEL 

4.2.1. RECURRENT NEURAL NETWORK 

There are various types of RNNs: Elman neural network, Jordan neural network, 

time lagged neural network, etc. This study mainly used a simple RNN that is 

basically similar to the most conventional feedforward neural network but has a 

recursive pathway, where the output of the middle layer unit is connected to itself.  

The recurrent neural network (RNN) is any neural network with (directional) cyclic 

pathway. Such a structure of RNN enables the temporary memory of information 

and the corresponding dynamic change of reaction. Accordingly, the ‘context’ 

existing in a sequence of data is grasped and the above classification problem can be 

effectively solved. This is the most significant difference between RNN and the 

feedforward neural network. 

There are various types of RNNs: Elman neural network, Jordan neural network, 

time lagged neural network, etc. This study mainly used a simple RNN that is 

basically similar to the most conventional feedforward neural network but has a 

recursive pathway, where the output of the middle layer unit is connected to itself 

(Figure 48).  

Figure 48. Basic 3-layered RNN model 

Every RNN receives a single input xt at each time t and produces a single output yt 

at the same time. When an output is calculated by a recursive pathway inside RNN, 

all the inputs received so far by the RNN are applied. The feedforward neural 

network models the mapping process where a single output is calculated for a single 

input. On the other hand, the modeling of RNN includes a different mapping process 
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where a single output is calculated for theoretically all the past inputs. The error 

function of RNN also sets a target (d1, …, dt) of an output sequence (y1, …, yt). This 

can be expressed as follows. 

𝐸(𝑤) = − ∑ ∑ ∑ 𝑑௡
௧ 𝑙𝑜𝑔𝑦௞

௧ (𝑥௡; 𝑤)௄
௞ୀଵ

்
௧ୀଵ

ே
௡ୀଵ [21]

Because of the above characteristics, a little different method from backpropagation 

algorithms, which were used to train the conventional simple neural networks, is 

needed to train RNNs. This new method is referred to as BPTT (Backpropagation 

Through Time).  

 
Figure 49. Weight connection flow of hidden layer (U, V, W) in Unfoloded RNNs  

The weights of the above unfolded RNNs can be expressed as U, V and W below. 

To understand BPTT, the equation for the existing backpropagation (BP) algorithm 

needs to be applied to unfolded RNNs as shown in Figure 49. In order to obtain a 

value that is to be backpropagated, the error between a predicted value and a real 

value in the output layer is calculated as follows.  

In BPTT, W, which is a weight of outputs in the hidden layer, can be updated in the 

same way as the conventional unfolded BP.  

[22]
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Here, the weight from the input layer to the hidden layer and the weight of the 

recursive pathway to the hidden layer calculate errors at a specific time, as follows.  

      [23] 

When the sum of errors calculated for a certain time is backpropagated, the weight   

from the input layer to the hidden layer and the weight of the recursive pathway to 

the hidden layer are updated. 

[24] 

 

 [25]
 

By the above update process, the error of the current time can be backpropagated 

to the past state for learning, as illustrated below Figure 50. 

 
Figure 50. By the above update process, the error of the current time can be 
backpropagated to the past state for learning, as illustrated below. 

4.2.2. LONG SHORT-TERM MEMORY 

RNN can grasp and estimate the context of a data sequence, where the length of a 

context, which can be grasped, is essential. In other words, the important issue is 

how far the current input can be backpropagated. The required length of the context 

increases as the problem becomes more complicated. Theoretically, all the past 

inputs should be considered. However, 10 hours (This is argued on field applications) 



92

is known to be the maximum possible length that can be reflected in RNN output. 

This limitation is attributable to the same cause as the gradient vanishing problem in 

the feedforward neural networks. In the case of a neural network with many layers, 

when the gradient is calculated by backpropagation, the calculation tends to 

drastically increase or vanish to zero while going back to layers. This can be 

understood in terms of the above-mentioned backpropagation of RNN. Even if RNN 

has a small number of layers, the backpropagation assumes many layers and thus the 

gradient is likely to either diverge or vanish. That is why RNN has a difficulty in 

dealing with a longer sequence. In other words, the above RNN can implement not 

a long-term memory but a short-term one. To solve this difficulty, some methods of 

realizing a long-term memory have been proposed. Among them, LSTM (Long 

Short-Term Memory) has been the most successful one (Hochreiter and 

Schmidhuber, 1997). 

A RNN is a class of ANN where connections between nodes form a directed graph 

along a temporal sequence (Hochreiter and Schmidhuber, 1997). In this study, an 

RNN structure using time series of multivariate inputs was built, and output the 

results through the dense layer after passing through the LSTM (Figure 51). The 

dense layer normally consists of neurons, whose outputs are computed by using the 

hyperbolic tangent function as an activation function. The number of outputs in a 

dense layer is equal to the number of neurons. During the training process, the output 

values of the first dense layer are computed and passed to the next RNN layer. The 

RNN model developed using a tensor flow and Keras library based on Python 3.7. 

The LSTM network consists of cells that take the input from the previous state and 

current input Xt. The past state, current memory, and present input work together to 

predict the next output. The main function of the cells is to determine the significance 

of the data, store it in memory, and transfer it to the next loop or ommit the memory. 

This capability allows the RNN to resolve a gradient vanishing in long time series 

analysis. The structure of the LSTM cell is shown in Figure 52; this operates in the 

following order. The first step is the forget gate (Equation. [26]), which receives 

information ht-1 and Xt outputs a number between 0 and 1 for each number in cell 

state Ct-1. An output number of 1 retains the data completely while 0 deletes the 

data. 
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𝑓௧ =  𝜎(𝑊௙ ∙ [ℎ௧ିଵ, 𝑋௧] + 𝑏௙)    … [26] 

The next step is divided into the update cells state and operate input gate, 

corresponding to Eqs. (18) and (19), respectively. The new cell state is determined 

by summing (a) the multiplication of the forget gate and the old cell and (b) the 

multiplication of the update cell and the input gate (Equation [27]). 

𝑖௧ =  𝜎(𝑊௜ ∙ [ℎ௧ିଵ, 𝑋௧] + 𝑏௜)   … [27] 

𝐶௧
෩ = 𝑡𝑎𝑛ℎ(𝑊஼ ∙ [ℎ௧ିଵ, 𝑋௧] + 𝑏஼)   … [28] 

𝐶௧ = 𝑓௧ ∗ 𝐶௧ିଵ + 𝑖௧ ∗ 𝐶ሚ௧    … [29] 

The output gate runs a sigmoid layer that decides the cell state (Equation. [30]), 

passes through the tanh function, and multiplies it by the output of the sigmoid gate 

(Equation [27]). 

𝑂௧ =  𝜎(𝑊௢ ∙ [ℎ௧ିଵ, 𝑋௧] + 𝑏௢)   … [30] 

ℎ௧ =  𝑂௧ ∗ tanh (𝐶௧)    … [31] 

 

 
Figure 51. LSTM configured by adding a cell-state to the hidden state in RNN 
structure. 
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Figure 52. A LSTM unit with input (i.e. ), output (i.e. ), and forget (i.e. ) gates. 
Each of these gates can be thought as a "standard" neuron in a feed-forward (or 
multi-layer) neural network. 

4.2.3. NONLINEAR AUTOREGRESSIVE EXOGENOUS NARX 

Dynamic networks are more powerful than static networks and generally somewhat 

more difficult to train. Because dynamic networks need to dispose of memory, they 

can be trained to learn sequential or time-varying patterns. NARX is one class of 

dynamic ANN models. The NARX model was developed based on autoregressive 

with exogenous input (ARX), which represents a linear system identification model. 

The NARX models have been widely applied in various fields because it can 

represent any nonlinear functions. (Menezes Jr and Barreto, 2006) proposed an 

architectural approach to deal with time series is one based upon “Nonlinear 

Autoregressive models with eXogenous input (NARX model), which is therefore 

called NARX neural networks (Diaconescu, 2008). All the specific dynamic 

networks discussed so far have either been focused networks, with the dynamics only 

at the input layer, or feedforward networks. NARX is a recurrent dynamic network, 

with feedback connections enclosing several layers of the network.(Figure 53). The 

NARX model is described on Equation. [32] which is based on the linear ARX model, 

which is commonly used in time-series modeling. The network was trained by an 

expanded Levenberg-Marquardt algorithm (with Bayesian regularization) which 

computes the new weights via the relationship. 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦൫𝑡 − 𝑛௬൯, 𝑢(𝑡 − 2), … , 𝑢(𝑡 − 𝑛௨)) … [32] 
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Figure 53. NARX structure for forecasting greenhouse climate value 

4.3. DEVELOPMENT OF PREDICTION MODEL BY TIME STEP 

The dataset used to develop the model included ~470,000 sample data points; these 

were prepared by outputting the target inside temperature, humidity, and CO2 

concentration with various time steps. In order to determine the predictability of 

changes in greenhouse inside temperature up to a few minutes, the data set was 

prepared every 5 min from 5–30 min because the determined operating time of the 

controller was < 5 min and > 30 min, so the model was developed with the structure 

shown in Figure 54 (a). Data for 3 days were separated and validated to compare the 

performances of the ANN and RNN-LSTM models. The prediction models’ 

accuracy was assessed by substituting the outside weather condition and control 

history of actuators among the available training input variables (Table 26). The 

input data is normalized based on the maximum and minimum values to reduce the 

dependence between seasonal factors and input (Equation [33]). 

 

𝑥௦௖௔௟௘ௗ =
௫ି௫೘೔೙

௫೘ೌೣି௫೘೔೙
                …[33]  

 

 

 

Table 19. Ranges of input data used for building a prediction models 

Input data (unit) Range 
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Outside temperature (℃) -4.5 ~ 34.8 

Outside humidity (%) 29.5 ~ 100 
Outside CO2 concentration (ppm) 341.4 ~ 442.0 

Radiation (W/m2) 0 ~ 1311.2 
Wind speed (m/s) 0 ~ 2.11 

Wind direction (°) 0 ~ 359 

Fan (0,1) 0,1 
Heating (%) 0~100 

Fogging (0,1) 0,1 
CO2 injecting(0,1) 0,1 

Heat retention curtain (%) 0 ~100 
Shade curtain (%) 0 ~ 100 
Left window (%) 0 ~ 100 

Right window (%) 0 ~ 100 
Time 0 ~ 100 

 

 

In an additional analysis, the prediction models were compared, when the input data 

was using only outside weather condition or the control history of actuators, 

respectively (Figure 54 (b)). 

 In addition, based on the developed environmental prediction accuracy, the results 

compared the model development performance by applying various training set 

conditions. In order to identify the minimum amount of training data required for 

model development, periods of 3, 6, 10, 20, and 30 d was used as training data sets 

based on the test set and for model development (Figure 54 (c)). The test data were 

randomly sampled from hot, cold, and warm external climate conditions. The 

average temperature for three climates was observed at 23.4 °C, 15.2 °C, and 2.4 °C 

for hot, warm, and cold climate, respectively. 
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Figure 54. Schematic diagram of three approaches for building the prediction 
models (a): comparison of various time step, (b): model performance comparison 
of two categories of input variables, (c): model performance comparison by the 
number of training data set 

 

A comparative analysis of the prediction models was conducted using the 

coefficient of determination (R2, a measurement of the correlation between observed 

and predicted data) and the percent standard error of the prediction (% SEP) and the 

root mean square error of prediction (RMSEP), which determine how well the model 

explains the differences between predicted values and observed values (Andreas 

Kamilaris and Prenafeta-Boldú, 2018). (Equations. [34–36]): 
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𝑅𝑀𝑆𝐸𝑃 =  ට
ଵ

ே
∑  (𝑋௢௕௦,௜ − 𝑋௠௢ௗ௘௟,௜)ଶ ௡

௜ୀଵ   … [34] 

𝑆𝐸𝑃 (%) =  
ଵ଴଴

௑ത೚್ೞ,೔
ට

ଵ

ே
∑  (𝑋௢௕௦,௜ − 𝑋௠௢ௗ௘௟,௜)ଶ ௡

௜ୀଵ   … [35] 

𝑅ଶ = 1 −  
ௌௌா

ௌௌ்ை
= 1 −

∑ (௑೚್ೞ,೔ି௑೘೚೏೐೗,೔)మ೙
೔సభ

∑ (௑೚್ೞ,೔ି௑ത೚್ೞ,೔)మ೙
೔సభ

   … [36] 

where SSTO a measurement of the variability of mean observed values, n is the 

total number of data sets used for estimation, 𝑋௢௕௦,௜  is the actual temperature 

(observed output), 𝑋௠௢ௗ௘௟,௜  is the predicted temperature (estimated output), and 

𝑋ത௢௕௦,௜ is the mean value of the observed outputs of the prediction set. For a perfect 

match, R2 should be close to 1 and the value of % SEP should be close to 0. 

4.4. THE RESULTS OF TIME-SERIES PREDICTION MODELS 

4.4.1. PREDICTION PERFORMANCE OF VARIOUS TIME STEP  

Table 20 shows the accuracy results of the model predicted by ANN model. 

Temperature had the highest prediction accuracy. ANN-5 (prediction after 5 min) 

temperature had an RMSEP of 0.89 ℃, a SEP of 3.97%, and an R2 of 0.94, as 

compared to humidity (5.67%, 8.59%, and 0.79, respectively) and CO2 (31.23 ppm, 

6.30 %, and 0.71, respectively); similar results were found for all time steps. 

 

Table 20 Comparison of ANN prediction accuracy at time steps of 5, 10, 15, 20, 25, 

and 30 min for greenhouse temperature (°C), humidity (%), and CO2 (ppm) change. 

 
ANN-5 ANN-10 ANN-15 

 
Temp Humidity CO2 Temp Humidity CO2 Temp Humidity CO2 

RMSEP 0.89 5.67 31.23 0.92 5.66 30.23 0.82 5.67 32.18 

SEP(%) 3.97 8.59 6.30 4.15 8.50 6.10 3.68 8.51 6.50 

R2 0.94 0.79 0.71 0.93 0.80 0.71 0.94 0.78 0.69 

 
ANN-20 ANN-25 ANN-30 

 
Temp Humidity CO2 Temp Humidity CO2 Temp Humidity CO2 

RMSEP 0.87 5.10 30.45 0.90 5.23 31.23 0.94 5.44 32.12 

SEP(%) 3.91 7.66 6.15 4.06 7.85 6.31 4.22 8.18 6.49 
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R2 0.94 0.78 0.72 0.94 0.82 0.68 0.94 0.78 0.70 

Table 9 and 10 show the results of applying NARX and RNN-LSTM model, 

respectively. In comparison, NARX’s performance was lower than RNN overall, but 

slightly higher than ANN model within 5 to 15 min predictions. NARX-5 

temperature had an RMSEP of 0.52 ℃, a SEP of 2.32%, and an R2 of 0.96. The 

NARX model has been observed to lose accuracy when the forecast time exceeds 15 

min. In the case of RNN-LSTM model, the predictive performance was better than 

that of other models. RNN-5 temperature had an RMSEP of 0.45 °C, a SEP of 2.01% 

and an R2 of 0.97. The RNN-30 SEP was 3.15% (temperature), 7.85% (humidity) 

and 5.72% (CO2).  

 

Table 21 Comparison of NARX prediction accuracy at time steps of 5, 10, 15, 20, 
25, and 30 min for greenhouse temperature ( C), humidity (%), and CO2 (ppm) 
change. 

  NARX-5 NARX-10 NARX-15 

  Temp Humidity CO2 Temp Humidity CO2 Temp Humidity CO2 

RMSEP 0.52  3.01  19.24 0.58  4.20  22.27 0.88  5.61  33.65 

SEP(%) 2.32  4.71  4.19  2.60  6.31  4.49  3.95  8.42  6.79  

R2 0.96  0.89  0.91  0.95  0.87  0.88  0.91  0.64  0.84  

  NARX-20 NARX-25 NARX-30 

  Temp Humidity CO2 Temp Humidity CO2 Temp Humidity CO2 

RMSEP 1.27  5.33  32.55 1.12  5.21  32.52 1.32  6.27  28.30 

SEP(%) 5.69  8.00  6.58  5.13  7.82  6.88  5.86  9.42  7.74  

R2 0.87  0.79  0.82  0.89  0.77  0.77  0.86  0.71  0.81  

 

 
Table 22 Comparison of RNN-LSTM prediction accuracy at time steps of 5, 10, 15, 

20, 25, and 30 min for greenhouse temperature (°C), humidity (%), and CO2 (ppm) 

change. 

  RNN-5 RNN-10 RNN-15 

  Temp Humidity CO2 Temp Humidity CO2 Temp Humidity CO2 

RMSEP 0.45  3.02  17.44  0.56  4.12  23.27  0.65  4.21  24.01  
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SEP(%) 2.01  4.72  3.80  2.51  6.19  4.70  2.92  6.32  4.85  

R2 0.97  0.88  0.85  0.96  0.82  0.80  0.96  0.81  0.83  

  RNN-20 RNN-25 RNN-30 

  Temp Humidity CO2 Temp Humidity CO2 Temp Humidity CO2 

RMSEP 0.62  4.75  27.54  0.65  5.21  24.57  0.71  5.23  28.30  

SEP(%) 2.78  7.13  5.56  2.98  7.82  4.90  3.15  7.85  5.72  

R2 0.96  0.86  0.83  0.96  0.81  0.82  0.96  0.80  0.81  

    

 

Figure 55, and Figure 57 present a bar chart for the performance comparison of 

each model, and the prediction error of each model is compared by SEP. In addition, 

this comparison charts show the changes in the prediction error for each time step. 

Figure 55 shows the SEP changes for predicted temperature. The performance of 

ANN has not changed over time, but the accuracy of NARX and RNN-LSTM has 

decreased over time. For example, NARX became far less accurate than ANN after 

20 min. In the humidity and CO2 prediction model, time-based algorithms, NARX 

and RNN-LSTM, have been found to increase in error over time (Figure 55Figure 

56 and Figure 57). 
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Figure 55. Comparison of SEP changes per time step for temperature prediction 
models 

 

 

Figure 56. Comparison of SEP changes per time step for humidity prediction 
models 
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Figure 57. Comparison of SEP changes per time step for CO2 prediction models 
 

Table 23 shows the results obtained by classifying the training data sets by type and 

separately excluding different sets, using models forecasting changes after 30 min 

with a one-year training data set. The validation data for this test was the same as 

that used in Table 10. The greatest drop in accuracy occurred when the input factor 

corresponding to the current values of the targets was removed. For example, the 

tendency of RNN-LSTM to depend on the present value as compared with external 

weather conditions or control history was confirmed. Humidity prediction was the 

most challenging; RNN-LSTM had an R2 of 0.80 when using all training data sets. 
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Table 23 Comparison of accuracy changes for each training set when external 
weather conditions or actuator control history, was used. Values in parentheses are 
the difference from results when using all datasets. 

Temperature  All 
datasets 

Excluding external 
weather conditions 

Excluding actuator 
control history 

ANN SEP 4.22% 5.34% (+1.12%) 6.34% (+2.12%) 
 R2 0.94 0.91 (-0.03) 0.85 (-0.09) 

NARX SEP 5.86% 6.24% (+0.40%) 7.96% (+2.10%) 
 R2 0.86 0.83 (-0.03) 0.80 (-0.06) 

RNN-LSTM SEP 3.15% 3.47% (+0.32%) 4.39% (+1.24%) 
 R2 0.96 0.95 (-0.01) 0.90 (-0.05) 

Humidity  ALL 
Excluding external 

weather conditions 
Excluding actuator 
control history 

ANN SEP 8.18% 9.20 % (+1.02%) 10.86 % (+1.68%) 
 R2 0.78 0.74 (-0.04) 0.71 (-0.07) 

NARX SEP 9.42% 9.49 % (+0.07%) 10.84 % (+1.06%) 
 R2 0.71 0.70 (-0.01) 0.62 (-0.09) 

RNN-LSTM SEP 7.85% 7.89 % (+0.04%) 8.86 % ( +1.01%) 
 R2 0.80 0.79 (-0.01) 0.77 (-0.3) 

CO2  ALL 
Excluding external 

weather conditions 
Excluding actuator 
control history 

ANN SEP 6.49% 8.26% (+1.79%) 7.89% (+1.40%) 
 R2 0.70 0.67 (-0.03) 0.67 (-0.03) 

NARX SEP 7.74% 7.81% (+0.70%) 8.67% (+0.93%) 

  R2 0.81 0.77 (-0.04) 0.72 (-0.09) 

RNN-LSTM SEP 6.79% 7.01% (+0.32%) 7.97 % (+1.18%) 
 R2 0.84 0.81 (-0.03) 0.80 (-0.04) 

 

  



104

4.4.2. COMPARISON OF VALIDATION RESULTS FOR THE THREE 

MODELS IN VARIOUS TRAINING CONDITIONS 

Figure 58, Figure 59, and Figure 60 show the prediction accuracy of a particular 

test sample over various learning sets for ANN, NARX, and RNN-LSTM, 

respectively, during varying climate conditions and number of training days. Overall, 

all three models showed relatively high accuracy for temperature prediction during 

the three climate conditions.  

ANN using 3 d of training data produced SEPs of 13.12% (temperature), 17.97% 

humidity), and 12.65% (CO2). After 30 d, the performance for temperature was 

significantly improved (8.83%) but still poor for humidity (14.29%) and CO2 

(12.37%). The NARX temperature prediction had good prediction performance even 

with a relatively small data set (SEP of 4–9%). CO2 performance improved with 

training days, reaching 5.37% SEP for 10 d, humidity remained poor throughout with 

a lowest SEP of 12.29%. RNN-LSTM had the best overall prediction performance 

of the three models. For example, using 10 d of training data, prediction was 

excellent with SEPs of 4.07% (temperature), 7.17% (humidity), and 5.35% (CO2). 

Using 30 d, the temperature SEP was reduced to 3.83%, a highly satisfactory 

performance, while humidity reached 5.29%, far better than the other models. 

In addition, the climate prediction model to be applied to greenhouses needs to be 

studied in a structure that includes image data of crops in the future. Alternatively, it 

is necessary to add information about the growth of crops by reflecting the index 

such as additional accumulated days after planting (DAP) of the input. 
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Figure 58. ANN prediction results using a test set of cold (days 1–3), hot (days 4–
6), and moderate (days 7–9) climates with various training datasets. 
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Figure 59. NARX prediction results using a test set of cold (days 1–3), hot (days 4–

6), and moderate (days 7–9) climates with various training datasets. 
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Figure 60. RNN-LSTM prediction results using a test set of cold (days 1–3), hot 
(days 4–6), and moderate (days 7–9) climates with various training datasets. 
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4.5. CONVOLUTIONAL NEURAL NETWORK (CNN)-LSTM 

MODELS FOR CLIMATE PREDICTION 

CNNs have recently been employed in agriculture to address various agricultural 

problems with increasing success, with more than 20 studies employing CNNs 

having been reported to date (Grinblat et al., 2016; Kamilaris and Prenafeta-Boldú, 

2018). Because CNNs may be the most widely used technique in agricultural 

research today for problems related to image analysis, this current review focuses on 

this specific sub-set of deep-learning (DL) models. To the authors’ knowledge, this 

is the first review for the agricultural domain that focuses on CNNs, although a small 

number of more general studies do exist (Andreas Kamilaris and Prenafeta-Boldú, 

2018; LeCun et al., 2006) that present and analyze related work in other research 

domains and application areas. 

CNNs are regularized versions of multilayer perceptrons. Multilayer perceptrons 

are typically fully connected networks in which each neuron in one layer is 

connected to all of the neurons in the next layer. This structure makes them prone to 

overfitting the data. Typical methods of regularization include adding some form of 

weight to the loss function, but CNNs take a different approach: they take advantage 

of hierarchical patterns in data and assemble more complex patterns using smaller 

and simpler patterns. Therefore, in terms of connectedness and complexity, CNNs 

are on the lower extreme. 

CNNs were inspired by biological processes in that the connectivity patterns 

between neurons resemble the organization of an animal’s visual cortex. Individual 

cortical neurons respond to stimuli only in a restricted region of the visual field 

known as the receptive field. The receptive fields of different neurons partially 

overlap such that they cover the entire visual field. 

CNNs use relatively little pre-processing compared to other image classification 

algorithms. This means that the network learns the filters that in traditional 

algorithms are hand-engineered. This independence from prior knowledge and 

human effort in feature design is a major advantage. 
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4.5.1. CONVOLUTIONAL LAYER 

A CNN consists of an input and an output layer, as well as multiple hidden layers 

(Figure 61). The hidden layers of a CNN typically consist of a series of convolutional 

layers that convolve with a multiplication or another dot product. The activation 

function is commonly a RELU layer, which is subsequently followed by additional 

convolutions such as pooling layers, fully connected layers, and normalization layers, 

collectively referred to as hidden layers because their inputs and outputs are masked 

by the activation function and the final convolution. 

 

 

Figure 61. Typical covolutional layer with sequence to classify handwritten digits. 

Though the layers are colloquially referred to as convolutions, this is only by 

convention (Shindel et al., 2019). Mathematically, it is technically a sliding dot 

product or cross-correlation. This has significance for the indices in the matrix, in 

that it affects how weight is determined at a specific index point (Yang et al., 2018). 

The input is a tensor with shape (number of images) x (image width) x (image 

height) x (image depth). Then after passing through a convolutional layer, the image 

becomes abstracted to a feature map, with shape (number of images) x (feature map 

width) x (feature map height) x (feature map channels). A convolutional layer within 

a neural network should have the following attributes: 

 convolutional kernels defined by the width and height (hyper-parameters) 
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 the number of input channels and output channels (hyper-parameter) 

 the depth of the convolution filter (the input channels) must be equal to the 

number channels (depth) of the input feature map. 

Convolutional layers convolve the input and pass its result to the next layer. This is 

similar to the response of a neuron in the visual cortex to a specific stimulus. Each 

convolutional neuron processes data only for its receptive field. Although fully 

connected feedforward neural networks can be used to learn features as well as 

classify data, it is not practical to apply this architecture to images. A very high 

number of neurons would be necessary, even in a shallow (the opposite of deep) 

architecture, due to the very large input sizes associated with images, where each 

pixel is a relevant variable. For instance, a fully connected layer for a (small) image 

of size 100 x 100 has 10,000 weights for each neuron in the second layer. The 

convolution operation brings a solution to this problem as it reduces the number of 

free parameters, allowing the network to be deeper with fewer parameters. For 

instance, regardless of image size, tiling regions of size 5 x 5, each with the same 

shared weights, requires only 25 learnable parameters. In this way, it resolves the 

vanishing or exploding gradient problem in training traditional multi-layer neural 

networks with many layers using backpropagation. 

 

4.5.2. POOLING  

Similar to the convolutional layer, the pooling layer is responsible for reducing the 

spatial size of the convolved feature. This decreases the computational power 

required to process the data by reducing the dimensionality. Furthermore, it is useful 

for extracting dominant features that are rotational and positionally invariant, thus 

maintaining the effective training of the model. There are two types of pooling: max 

pooling and average pooling. Max pooling returns the maximum value from the 

portion of the image covered by the kernel. On the other hand, average 

pooling returns the average of all the values from the portion of the image covered 

by the kernel. Max pooling also acts as a noise suppressant. It discards the noisy 

activations altogether and also performs de-noising along with dimensionality 

reduction. On the other hand, average pooling simply performs dimensionality 
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reduction as a noise suppressing mechanism. Hence, max pooling performs a lot 

better than average pooling as shown in Figure 62.  

The convolutional layer and the pooling layer together form the i-th layer of a CNN. 

Depending on the complexities in the images, the number of such layers may be 

increased to capture more low-level details, but at the cost of more computational 

resources. 

 

Figure 62. Types of pooling. 

4.5.3. FULLY CONNECTED LAYER 

Neurons in a fully connected layer have full connections to all activations in the 

previous layer, as seen in regular neural networks. Their activations can hence be 

computed with a matrix multiplication followed by a bias offset. Fully connected 

layers are an essential component of CNNs, which have proven very successful in 

recognizing and classifying images for computer vision. The CNN process begins 

with convolution and pooling, breaking down the image into features, and analyzing 

them independently. The result of this process feeds into a fully connected neural 

network structure that drives the final classification decision. As part of the 

convolutional network, there is also a fully connected layer that takes the end result 

of the convolution/pooling process and reaches a classification decision. 
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Figure 61 presents the layers needed to process the image of a written digit, with 

the number of pixels processed in every stage. Larger and more complex images 

would require more convolutional/pooling layers. 

 

4.5.4. DESIGN OF THE COMPONENTS OF THE CNN-LSTM MODEL 

The environmental prediction model developed in this study used data from sensors 

commonly used in greenhouses to estimate the electrical conductivity (EC) and 

volumetric water content (VWC) of the substrate and the evapotranspiration of the 

crop. The data was separated into a learning dataset and a validation dataset at a ratio 

of about 7:3 using data from 60 days from February to March 2019 and the same 

data from June to July of the same year. The test set was selected using data from 

three days per month. 

The basic structure of the environmental model proposed in this study is a deep-

learning model combining a CNN with LSTM. Figure 63 presents the overall 

structure of the model. As shown in Figure 63(a), two input datasets were used in 

the model, The first was used to predict the EC and VWC of the substrate based on 

internal and external greenhouse conditions and the nutrient irrigation control history. 

The second dataset contained crop condition and drainage data and was used to 

estimate evapotranspiration in conjunction with the input variables from the first 

dataset. 

The input data took the form of a two-dimensional (2D) array using about 30 

consecutive data points. A total of four synthetic layers were used for the 2D 

convolutional layers and a kernel size of (1, 3) was used. A kernel size of (1, 2) was 

used for each layer, and max pooling was used for pooling between composite layers. 

The pool size for each layer was (1,3), (2,1), and (1,2), and the ReLU activity 

function was used. The number of nodes in the dense layer was 15, and ReLU was 

used as the active function. The model was trained with a combination of 100 epochs 

and 5 batch sizes. The optimization function was set to the default value of Adadelta. 

A dropout rate of 25% was set for each floor to contribute to the learning rate. 

LSTM architecture can eliminate memory loss in continuous time-series data. In 

this learning model, the LSTM architecture in the latter part of the model inferred 

from the 2D CNN is combined. 
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Figure 63. Overall conceptual diagram of CNN-LSTM based environmental 
prediction model (a), 2 D CNN conv layer diagram (b), LSTM device (c). 

 

Figure 64 The details of CNN-LSTM structure. 
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The proposed CNN-LSTM model was developed using TensorFlow and Keras in 

Python 3.7 and compared with the performance of the RNN-LSTM model. The 

comparison model had the same input, output data, and time step size, two hidden 

layers with 30 and 20 nodes, and an ReLu activity function. 

 

4.5.5. THE RESULTS OF CNN-LSTM BASED CLIMATE MODELS 

 
In the present study, ANN, RNN-LSTM, and CNN-LSTM models were developed 

to predict environmental changes in the greenhouse, and their performance was 

compared. Although the RNN-LSTM model proposed in the time-series analysis 

performed better than the basic neural network structure, the best-performing 

approach was the CNN-LSTM model. This is because of the optimal combination of 

variables in the CNN model and the use of dropout and batch normalization 

techniques to avoid overfitting. Combined with the LSTM architecture, it 

outperformed the conventional RNN-LSTM model. The results for temperature, CO2, 

and humidity can be seen in Figure 65, Figure 66, and Figure 67, respectively. 

Statistical comparisons for the results are summarized in Table 24. 

 

Figure 65. Comparison of the predictive models for the change in temperature after 
30 minutes in the greenhouse. 
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Figure 66. Comparison of the predictive models for the change in CO2 after 30 
minutes in the greenhouse. 

Figure 67. Comparison of the predictive models for the change in relative humidity 
after 30 minutes in the greenhouse. 
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Table 24. Performance comparison for the predictive models for the change in 
climatic conditions after 30 minutes in the greenhouse 

 ANN CNN-LSTM RNN-LSTM 

 RMSE 
SEP 
(%) 

R2 RMSE 
SEP 
(%) 

R2 RMSE 
SEP 
(%) 

R2 

Temperature 1.09 3.99 0.92 0.83 3.10 0.94 0.82 3.03 0.95 

Humidity 8.52 11.27 0.54 5.79 8.56 0.82 5.86 8.91 0.84 

CO2 39.94 12.78 0.45 17.37 5.55 0.85 18.86 6.01 0.79 

4.5.6. THE RESULTS OF CNN-LSTM BASED SUBSTRATE MODELS 

Prediction of the environmental conditions in the substrate has not been carefully 

considered in conventional watering control. In this study, the CNN model was 

developed to predict not only the climatic conditions but also the EC and VWC of 

the hydroponic substrate in the target greenhouse. The performance of the CNN-

LSTM model and the RNN-LSTM models in the prediction of the EC (Figure 68) 

and VWC (Figure 69) was compared, with the CNN-LSTM model exhibiting the 

best performance, as summarized in Table.25. 

 

Figure 68. Comparison of the prediction models for the electrical conductivity (EC) 
of the hydroponic growing substrate. 
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Figure 69. Comparison of the prediction models for the volumetric water content 
(VWC) of the hydroponic growing substrate.  

Table 25. Summary of the performance of the predictive models for the change in 

the EC and VWC of the hydroponic substrate after 30 minutes in the greenhouse. 

 
CNN-LSTM RNN-LSTM 

 
RMSE SEP (%) R2 RMSE SEP (%) R2 

EC 0.07 1.89 0.94 0.13 3.60 0.92 

VWC 1.01 1.66 0.95 2.10 3.45 0.89 

 

 

The evapotranspiration rate of the greenhouse tomato crop was calculated using 

measurements taken by a device that monitored the weight of the hydroponic 

medium. Based on the change in the weight of substrate, water supply, and drainage, 

the evapotranspiration rate was calculated as shown in Figure 70. The 

evapotranspiration component of the CNN-LSTM model was developed based on 

data from 60 days. The actual evapotranspiration rate and that predicted by the model 

were compared; the proposed CNN-LTSM model demonstrated excellent predictive 
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performance with an RMSE of 0.14 ml/min (Figure 71). 

. 

Figure 70. Evapotranspiration monitoring dataset based on the weight sensor for 
the growing medium used to train the CNN-LSTM model. 

Figure 71. Comparison of the predictive results for the proposed CNN-LSTM 
model and the actual evapotranspiration rate. 

 

 

4.5.7. COMPARISON OF TRAINING PERFORMANCE BETWEEN 

RNN-LSTM AND CNN-LSTM 

Mathematically, convolution is a grouping formula. In a CNN, convolution occurs 

between two matrices to deliver a third output matrix. The matrix is simply a 

rectangular array of numbers stored in columns and rows. A CNN utilizes the 

convolution in the convolutional layers to segregate the input information and 

identify the actual information (Pandey and Janghel, 2019). The convolutional layer 

in a CNN is engaged in highly complicated computational activity, acting as a 
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numerical filter that helps the computer to identify the corners of an image, 

concentrated and faded areas, color contractions, and other attributes such as the 

height, size, and weight of the image, the depth, and pixel scattering. In a CNN, a 

pooling layer is often placed between the convolution layers to reduce the size of the 

representations from the convolutional layers, thus decreasing the memory 

requirements and allowing the use of many convolutional layers. 

CNNs contain numerous layers of filters or neuron layers that are hidden and 

optimized, increasing their efficiency in detecting an image. Because of this popular 

feature, they are called a feedforward loop (Fan et al., 2016). CNNs are specifically 

designed for computer vision tasks, but training them with appropriate data can also 

allow them to correctly classify music, speech, videos, and text (Kim and Cho, 2019).  

RNNs have the same traditional structure as ANNs and CNNs. However, they have 

another memory partition that can act as a feedback loop. Similarly, like the human 

brain, especially in conversations, high weight is given to the redundancy of data to 

relate and understand the sentences and the meaning behind them. This unique 

feature of an RNN is used to predict the next set or sequence of words. An RNN can 

also be fed sequences of data of varying lengths and sizes, while a CNN operates 

only with fixed input data (Zhang and Wang, 2001). 

The prediction performance of the RNN-LSTM and CNN-LSTM models in the 

previously developed greenhouse environment prediction model was compared, and 

the two models produced equivalent results. Therefore, when these two models are 

used in field applications, it is necessary to compare their training performance, 

including the time required for training. 

The daily greenhouse data used for training contained a total of 16 input variables 

(Table 26). There were 14,400 data points in total arranged in 10 mini-batches for 

each model. The output of the model was the temperature inside the greenhouse, and 

the performance of each of the two models was compared. A desktop computer 

(Intel® core ™ i9-9900K CPU @ 3.60 Hz, NVIDIA GeForce RTX 2080 Ti) and a 

Jetson Nano embedded board (NVIDIA Maxwell™ architecture with 128 NVIDIA 

CUDA® cores 0.5 TFLOPs, Quad-core ARM® Cortex®-A57 MPCore processor) 

were compared for training time. 
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Table 26. Ranges for input data used for building a prediction model of 
temperature. 

Input variables (unit) Range 

Outside temperature (℃) 18.5–29.9 

Outside humidity (%) 38.5–56.5 

Outside CO2 concentration (ppm) 371.4–402.0 

Radiation (W/m2) 0–1155.4 

Wind speed (m/s) 0–0.31 

Wind direction (°) 0–359 

Fan (0, 1) 0, 1 
Heating (%) 0 

Fogging (0, 1) 0, 1 
CO2 injection (0, 1) 0, 1 

Heat retention curtain (%) 80–100 

Shade curtain (%) 0–100 

Left window (%) 0–100 

Right window (%) 0–100 

Inside humidity (%) 33.2–67.5 

Inside CO2 concentration (ppm) 325.5–501.2 

 
Table 27. Training times for the CNN-LSTM and RNN-LSTM models. 

 CNN-LSTM RNN-LSTM 

 
Training time 

(seconds) 
R2  

Training time 
(seconds) 

R2  

Jetson Nano 251.0 0.99 145.2 0.99 

Desktop 
with GPU 

45.5 0.99 33.4 0.99 

Desktop 
CPU only 

242.1 0.99 222.1 0.99 

 
Table 27 presents the training time required for 1440 data points using the CNN-

LSTM and RNN-LSTM models. Overall, the RNN-LSTM model was faster than the 

CNN-LSTM model. With a GPU-equipped desktop, the CNN-LSTM model 

required 45.5 seconds, while the RNN-LSTM model required only 33.4 seconds. 

Using the Jetson Nano board, 251.0 and 145.2 seconds were required, respectively. 

However, in the CNN-LSTM structure, there is room for reducing the training time 
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further by adjusting the dropout, mini-batch, and kernel settings in the convolutional 

layers. 

 In addition, the CNN structure has several advantages over general neural 

networks. For example, a CNN can express the connectivity between the input data 

well and can evaluate the importance of data in the early stages. Li and Liu (2019) 

employed the information bottleneck (IB) theory to understand the dynamic behavior 

of CNNs and investigated how their fundamental features impacted their 

performance. In a series of experiments using the MNIST database, they 

demonstrated that the compression phase is not observed in all cases. This means 

that CNNs exhibit more complicated behavior than do feedforward neural networks. 

In addition, it is likely that future climate prediction models for greenhouses will 

need to be able to handle image data from crops. As a starting point for this, a deep 

neural network (DNN) model based on the CNN architecture will be a possible 

option. 
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4.5.8. STUDY TO IMPROVE THE HUMIDITY PREDICTION 

PERFORMANCE CONSIDERING THE AMOUNT OF 

EVAPOTRANSPIRATION RATE (ET) 

Accurately predicting the humidity within a greenhouse is more challenging than 

predicting the temperature (He and Ma, 2010). Because the evapotranspiration rate 

for a crop is associated with the humidity of the greenhouse (Orgaz et al., 2005; 

Stanghellini, 1992; Federico Villarreal-Guerrero et al., 2012), this study intended to 

improve humidity prediction performance by adding information about 

evapotranspiration to a data-based CNN model. Various studies have been conducted 

on the prediction of the evapotranspiration of crops in greenhouses because it is an 

important variable in irrigation strategy and crop management (Shin et al., 2014).  

Traditionally, many studies have been based on the Penman-Monteith equation 

(FAO 56-PM), which is the single standard method recommended by the FAO for 

the computation of ET from complete meteorological data (Beven, 1979; Chiew et 

al., 1995). Stanghellini (1987) revised the Penman-Monteith evapotranspiration 

model to represent the conditions in a greenhouse, in which air velocities are 

typically less than 1.0 m/s. The model also includes more complex equations to 

calculate internal and external resistance. To apply the model in a greenhouse 

environment, Stanghellini (1987) focused on the energy exchange from the leaf and 

expanded it to the entire plant. The radiation absorption by multi-layered canopies is 

also considered by applying the leaf area index (LAI). Villarreal-Guerrero et al. 

(2012) reported that the Stanghellini model produced the smallest deviation between 

the predicted and measured evapotranspiration in a greenhouse for tomatoes. 

The present study aimed to improve the prediction of humidity in a greenhouse by 

adding Stanghellini's evapotranspiration model to the CNN-LSTM model. 
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Table 28. List of variables used to determine the evapotranspiration rate using the 

Stanghellini model. 

Symbol Variable Unit 

E Evapotranspiration rate 

kg sec-1 m-

2canopy 

area 

Tair Ambient air temperature ℃ 

To Temperature at the leaf surface ℃ 

RH Relative humidity % 

Is Shortwave irradiance W m-2 

LAI 
Leaf area index; the ratio of the total leaf area (one 

side) to the canopy area, 2.5 in this study 
m2 m-2 

L 
Latent heat of the vaporization of water, 

2,502,535.239–2385.76 ∙ Tair 
J∙ kg-1 

ρa Air density, 100,000/ 287 ∙(Tair+273.16) kg m-3 

cp Air specific heat at constant pressure, 1013 Jkg-1 ℃-1 

δ 
Slope of the saturation vapor pressure–temperature 

curve, 41.45 exp(0.06088∙ Tair ) 
Pa ℃-1 

γ Psychometric constant, 
௖೛

௅
 

௉ೌ ೟೘

଴.଺ଶଵ଺
 Pa ℃-1 

𝑃௔௧௠ Atmospheric pressure, 101,325 (
ଶଽଷି଴.଴଴଺ହ ∙௛

ଶଽଷ
)ହ.ଶ଺ Pa 

h Elevation above sea level, 70 m  

ri 

Internal resistance of the canopy to vapor transfer 

𝑟௜ =  
𝐼௦ + 4.30

𝐼௦ + 0.54
[1 + 2.3 ∙ 10ିଶ(𝑇଴ − 24.5)ଶ]

∙ 𝑟̃௜(𝐶𝑂ଶ) ∙ 𝑟̃௜(𝑒଴ − 𝑒௔) 

𝑟̃௜(𝐶𝑂ଶ)  

= 1 ,                                                         𝐼௦ = 0 𝑊

 = 1 + 6.1 ∙ 10ି଻(𝐶𝑂ଶ − 200)ଶ,   𝐶𝑂ଶ < 1100
=   1,                                                  𝐶𝑂ଶ ≥ 1100

S m-1 
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𝑟̃௜(𝑒଴

− 𝑒௔) 
= 1 + 4.3 ∙ (𝑒଴ − 𝑒௔)ଶ, 𝑒଴ − 𝑒௔  < 0.8 𝑘𝑃𝑎

= 3.8,                         𝑒଴ − 𝑒௔  ≥ 0.8 𝑘𝑃𝑎
 

re 

External resistance of the canopy to sensible heat 

transfer, 

l =15 cm (5–20 cm) 

𝑟௘ =  
1174 𝑙଴.ହ

(𝑙|𝑇଴ − 𝑇௔| + 207 𝑢ଶ)଴.ଶହ
 

 

Th 

Apparent temperature of the ambient environment 

as determined by the pipe, floor, and cladding 

temperature, Tair 

 

rR 

Linearization factor of the radiation heat flux 

equation, 

𝜌௔𝑐௣

4 ∙ 𝜎 ∙ (𝑇௔ + 273.15)ଷ
 [𝑠 𝑚ିଵ] 

 

σ Stefan-Boltzmann constant, 5.669 ∙10-8 
J K-4 m-2 s-

1 

ea
* 

Saturation vapor pressure at mean air temperature, 

610.78 ∙ 𝑒𝑥𝑝 ൬
17.269 ∙ 𝑇௔௜௥

237.3 +  𝑇௔௜௥
൰   [𝑃𝑎] 

Pa 

ea 

Vapor pressure at air temperature, 

𝑒௔
∗

𝑅𝐻

100
 [𝑃𝑎] 

Pa 

 

Three versions of the CNN model were trained using data from 21 days from June 

1 to June 21 and verified using test data from 2.5 days. Table 29 presents the datasets 

used in the three CNN models. Figure 73 shows the trend in the evapotranspiration 

rate, which was used in Model 2, and the trends in the additional sensing information 

used in Model 3 are presented in Figure 74. 
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Table 29. The datasets used for the humidity prediction model 

Model Data 

Model 1 (previously developed set) 
Inside and outside climate sensors, all 

actuator signals 

Model 2 (+ evapotranspiration) 

Inside and outside climate sensors, all 

actuator signals, evapotranspiration 

rate 

Model 3 (+ root-zone and leaf 

temperature sensor) 

Inside and outside climate sensors, all 

actuator signals, leaf surface 

temperature, substrate weight, dew 

points 

 

 

Figure 72. Evapotranspiration rate calculated using the Stenghilini 

evapotranspiration model (used in Model 2). 
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Figure 73. Dew point temperature, leaf surface temperature, and substrate weight 

(used in Model 3). 

 

In the training stage, all three models produced an R2 of more than 0.95 (Figure 74), 

with the highest observed for Model 3 (0.98). In the test set, Model 2, which included 

the evapotranspiration rate, demonstrated the best prediction performance with an 

RMSE of 3.16. Overall, the standard error of prediction (SEP) improved from 9.12% 

in Model 1 to 5.78% and 6.12% for Models 2 and 3, respectively (Figure 75). This 

means that the relative humidity and the evapotranspiration rate in the greenhouse 

are closely related to each other, and the more information related to moisture that 

can be collected from the greenhouse, the more accurate humidity prediction will be. 

In the future, a hybrid of a deep-learning model based on data and a physical model 

should be investigated. 

 

Figure 74. Training results for the three models (left: Model 1; middle: Model 2; 
right: Model 3). 
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Figure 75. Test set results for the three models in predicting the relative humidity 
in a greenhouse. 

 

4.6. AUTOMATED LEARNING SYSTEM FOR DEEP LEARNING 

MODELS BASED ON EMBEDDED BOARD  

Greenhouses artificially control the environment to provide optimal conditions for 

crop growth and fruit development. In addition, by actively responding to various 

external climate changes, it is possible to stably cultivate crops by creating an 

internal environment, which can play a very important role in securing future food 

resources. The internal environment of the greenhouse includes temperature, 

humidity, light quantity, and carbon dioxide concentration. For this reaseon, strategic 

inside climate management needs to be carried out to promote photosynthesis, 

evapotranspiration, crop growth and fruit development. 

The climatic variables inside a greenhouse are closely related to each other, so it is 

not easy to interpret them individually. Therefore, although many studies have 

investigated environmental change modeling based on energy conservation laws 

(Norton et al., 2007), few of these techniques have been applied in the field and used 

directly in greenhouse management. For this reason, it is difficult to input exact 

numerical values for physical conditions such as the structure and construction 
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material for the greenhouse. To apply the results for one specific greenhouse to other 

greenhouses, accurate model analysis can only be conducted by entering the initial 

setting values. In addition, active model inference is limited by the wide variety of 

possible environmental changes (Bartzanas et al., 2002). 

Recently, with the development of ICT technology, many greenhouses have 

installed various sensors, meaning that data on the internal environment and crops 

can be acquired in real-time and used for big-data analysis. These changes are based 

on sensor data for the greenhouse environment management approach, and control 

algorithms based on measured environmental variables have been developed. In 

addition, methods for inferring the evapotranspiration rate of crops, which is 

otherwise difficult to measure, and for modeling growth have been proposed using 

data-based environmental modeling. Data-based modeling has been facilitated by 

the recent development of deep-learning technology and computing power, and it 

has been employed in various industries, particularly in agriculture. Indeed, they 

have been employed to model nonlinear environmental changes in greenhouses and 

have been reported to perform well.  

Recently, RNN models have been widely used, with these time series neural 

network models employed not only for greenhouse environmental changes but also 

for the LAI and evapotranspiration (Anapalli et al., 2016; Libardi et al., 2019). In 

addition, RNN-LSTM and NARX models have been proposed to predict 

environmental changes 30 minutes in the future inside a greenhouse, exhibiting 

better performance than previous models by utilizing ventilation control based on 

the predicted temperature. Various deep-learning models using CNNs have also been 

developed and applied outside of greenhouses (Hongkang et al., 2018). CNNs are 

particularly useful in image recognition. CNNs can also be applied to regression with 

excellent outcomes (Grinblat et al., 2016). For this reason, it is possible to develop a 

model for the prediction of the internal climate of greenhouses based on a CNN-

LSTM model.  
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4.6.1. EXPERIMENTAL ENVIRONMENT AND CONTROL 

CONDITIONS 

The experiment was conducted during March, which is the most important period 

for temperature control in Korea and a period when both heating and ventilation are 

required to maintain the temperature. Temperature control in the greenhouse 

cultivation environment was managed. Target temperatures were set for each of the 

six time periods (P1 to P6), and ventilation control was configured accordingly. The 

humidity was supplemented with fogging at a level of at least 40% starting from P3 

to P5. Sensor modules used to measure the internal temperature, humidity, and CO2 

levels in the greenhouse were installed and environmental data were obtained every 

minute, while a weather station was installed to monitor the external temperature, 

humidity, solar radiation, wind direction, wind speed, and rain. The environmental 

control signals included the left windows, right windows, the heat retention curtains, 

and the shading curtains, which were all operated on a proportional basis. In contrast, 

the fans, foggers, CO2 injectors, and electric heating had simple on/off valve control. 

The environmental data and control signals were connected, with a Raspberry Pi 3 

computer performing the central calculations to determine the monitoring and 

control signals. The monitoring environment was based on the open-platform 

FarmOS. The signal obtained from the sensor was first converted to an ADC or 

digital signal and then stored in the database.  

4.6.2. DEEP-LEARNING MODEL IMPLEMENTATION AND 

AUTOMATIC LEARNING ALGORITHM 

The goal of this experiment was to develop a model that could predict climatic 

changes in the greenhouse and for the output of this model to be used in adjusting 

the greenhouse settings. In total, 122,400 data points were obtained over 85 days 

from January to March 2020 for the training process. The CNN and RNN models 

were tested on three consecutive days of data from March 12 to 15 to compare their 

accuracy.  
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The CNN-LSTM and RNN-LSTM models tested in this experiment had already 

been developed based on three months of training data, but experiments are needed 

to determine the accuracy change in all environments and changing sites. Therefore, 

in this study, model fitting was conducted daily in the field using the two model 

structures that were trained offline and showed the best prediction performance 

(Figure 76). The models were updated daily, and the model weights were tuned using 

1,440 data points from the previous day.  

 

Figure 76. Sampling from the original time-series for climate prediction models 

As shown in Figure 76, smaller sub-samples from the original time series were 

defined, and a moving window was used to sample from this series. This can be 

extended to a multi-variate case. Here, T is the sequence length, q is a positive integer 

that indicates the number of steps ahead to be predicted, and N is the total number of 

subsamples, which depends on the length of the original time series and T. Figure 77 

illustrates how LSTM models process sequential data. The values for the gates, 

memory cells, and hidden states are updated recurrently.  
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Figure 77 Unfolded LSTM layer.  

  Training of the model was conducted between 12:00 AM (midnight) and 1:00 AM, 

and the accuracy of the fitted model was tested by predicting the environmental 

changes that day. During training, the environmental and control data were 

continuously predicted, but environmental change prediction through model 

inference was paused during the updating process. A flow chart for the learning 

process is presented in Figure 78. A total of four models were compared in terms of 

their accuracy: the automatically trained RNN-LSTM and CNN-LSTM models, and 

the same two models trained offline (Figure 78).  

 

  

Figure 78. Flow chart for the automatic model training system. 
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4.6.3. THE RESULTS OF AUTOMATED LEARNING SYSTEM 

The IoT-based automatic model learning system was implemented based on actual 

greenhouse data for 14 days. All of the sensor and actuator information was updated 

and stored every minute, with a total of 1440 data points per day used to update the 

model. The results were compared with the results for the models trained offline, and 

the prediction accuracy was compared based on the SEP (%). The online model was 

used for model inference by substituting the current situation values with the updated 

model at 1:00 AM on the day of the temperature measurement.  

Figure 79 shows the results after three days of training for the temperatures 

predicted by the offline and online models. The solid red line shows the actual 

temperature. On March 8, there were no results for the online models because they 

were trained based on data from Day 1 to Day 2. The RMSE on Day 4 for the offline 

RNN and CNN models was 1.43 and 1.55, respectively, while that for the online 

models was 4.64 and 5.89. There was a significant deviation for the online models 

on Day 2, but it was difficult to predict the temperature changes on that day in the 

model using the training set created on Day 1. This was because it rained on the same 

day, and it was confirmed that external humidity and rainfall were not reflected in 

the temperature predictions.

 

Figure 79. Temperature prediction curves of four deep learning models with actual 
values at 1-4 days.
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The forecasting performance of the four models from March 12 to 15 is presented 

in Figure 80. The RMSEP for temperature during this period was 1.54 for both of 

the offline RNN and CNN models and 1.95 and 2.33 for the online models, 

respectively. 

 

Figure 80. Temperature prediction curves for the four deep-learning models 
compared with actual data from Days 5 to 9.

Figure 81. Relative humidity prediction curves for the four deep-learning models 
compared with actual data from Days 1 to 4.

Figure 81 presents the humidity predictions for the online and offline RNN and 

CNN models for the first four days. Overall, the accuracy of the humidity prediction 
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in terms of tracking the actual data was low for both the online and offline models. 

The offline RNN and CNN models had an RMSEP of 9.77% and 8.49%, respectively, 

while the online models had an RMSEP of 11.55% and 14.55%.  

Figure 82 displays the humidity prediction performance from Days 5 to 9. Overall, 

although the prediction accuracy was still relatively low, the predictive performance 

tended to improve over time. The RMSEP was 5.23% and 6.39% for the offline RNN 

and CNN models, respectively, and 10.15% and 7.23% for the online models. The 

online models tended to be vulnerable to sudden increases in humidity, possibly due 

to the lack of training data for sudden rain or increases in external humidity. 

Figure 82. Relative humidity prediction curves for the four deep-learning models 
compared with actual data for Days 5 to 9.

Figure 83 compares the prediction performance for temperature and humidity the 

next day using the automatic learning models. It presents the R2 values obtained by 

comparing the predicted and actual values for the four models each day. The 

temperature prediction performance of the online models was initially low, but it 

reached an R2 of 0.85 or higher after four days, with the performance level becoming 

similar to that of the offline models after around 9 to 12 days. It was thus 

demonstrated that the prediction performance of the online automatic learning 

models was more accurate than that of the offline models. Although the prediction 

performance for humidity was lower than that for temperature as a whole, the 

accuracy of the online models tended to continuously increase over time. The 
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mechanisms underlying the humidity levels inside the greenhouse are more complex 

than those for temperature, and significant errors were observed due to the effect of 

external influences, which are difficult to predict. 

To summarize, RNN-LSTM and CNN-LSTM models were employed to predict 

changes in the temperature and humidity of a greenhouse, which is important for 

controlling the internal climate. The models stored environmental and control history 

data collected from the greenhouse every minute and these data were used to tune 

the model at a specific time every night. The accuracy of these models increased 

over time as this process was repeated. After 9 to 12 days, the prediction performance 

of the online models was the same as that for the models that had been trained offline 

using 60 days of data. This proposed automatic learning model thus appears to be 

convenient for use in greenhouse management systems. 
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Figure 83. Comparison of the accuracy (R2) of the predicted temperature (top) and humidity (bottom) using the automatic model updating 
system.
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4.7. CHAPTER CONCLUSION 

In this chapter, the use of data-based modeling for the prediction of environmental 

changes in greenhouses was investigated. Based on the results, the NARX and RNN-

LSTM models, which employ time series-based algorithms, performed better than 

the CNN-based model. This indicates that, in a greenhouse, more dynamic modeling 

is advantageous for predicting continuous and repetitive environmental changes. 

This finding is consistent with previous reports (Moon et al., 2018; Pawlowski et al., 

2017). 

For temperature, the prediction performance was very satisfactory, and the CO2 

concentration was also accurately predicted by all three models (ANN, NARX, 

RNN-LSTM). However, the overall prediction accuracy for humidity was very low 

for all models. The humidity prediction model reported by He and Ma (2010) 

produced an RMSEP of 1.67 using a combination of ANN and PCA models, which 

was better than that obtained in the present study using the RNN-LSTM model. 

Using the RNN-LSTM model, the humidity prediction performance was low, 

specifically from the afternoon of Day 5 to Day 6. During this period, the humidity 

was consistently higher than normal due to heavy rainfall. Further improvement in 

the humidity prediction models could be achieved by incorporating data from 

additional rain-detecting sensors into the training dataset. Furthermore, the 

greenhouse used a hydroponic system to provide nutrients and moisture to the roots, 

thus, adding irrigation history to the training data could also improve the humidity 

prediction results. 

The shorter the prediction time, the greater the accuracy of the NARX model over 

general ANNs; however, the latter showed better performance at prediction times of 

over > 20 min. This suggests that time-series models are dependent on the current 

target values. In addition, the ANN model exhibited a relatively constant prediction 

performance irrespective of the time. On the other hand, although the RNN-LSTM 

model exhibited the best prediction performance, its accuracy declined with time, 

which suggests that the model could be effectively employed in the prediction of 

greenhouse environmental conditions and in greenhouse environmental control. For 
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instance, a predicted value could be used as an influence coefficient in a P-band 

controller. Moreover, it could be used to optimize the actuator signals used as input 

variables for the model. Another implication of the developed model is its possible 

role as a soft sensor. The model that was developed to predict the environmental 

conditions inside the greenhouse used external climate information and the history 

of the controller as input variables. In other words, the model can predict the 

environment inside the greenhouse without measuring it directly. This form of data 

sensing has been referred to as a type of soft sensor (Gonzaga et al., 2009; Sánchez 

et al., 2012). 

The ANN, NARX, CNN-LSTM, and RNN-LSTM models were developed to 

determine the best approach to predicting changes in temperature, humidity, and CO2, 

concentration, all of which directly affect the growth of greenhouse crops. The RNN-

LSTM model exhibited the highest overall accuracy for temperature and CO2 

prediction with a SEP lower than 5% and an R2 of 0.81–0.96, respectively. However, 

the accuracy of its humidity predictions was low; therefore, there was a need to 

improve this. Various training conditions were analyzed and the prediction 

performance for a time range of 5–30 min was determined. It was found that the 

accuracy of the time-based algorithm gradually decreased as the prediction time 

increased. However, the accuracy of the RNN-LSTM model was the highest at 30 

min and, the accuracy converged after around 10 days of training data, which 

suggests 10 days is an appropriate threshold for field applications. The results of this 

study clearly show the potential for the use of deep-learning-based prediction models 

in precision greenhouse control. In particular, the CNN-LSTM model shows great 

promise for the prediction of environmental changes in greenhouses.  

Finally, to develop a low-cost automatic learning model, an automatic environment 

model update system based on an embedded board was employed in an actual 

greenhouse. After 12 days of training, the automatic models exhibited a performance 

similar to that of models developed offline. The CNN-LSTM model in particular 

demonstrated excellent performance in the prediction of temperature changes.  
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5.  DEVELOPMENT OF CLIMATE CONTROL SYSTEM BASED ON 

AI 

Greenhouses are highly nonlinear and strongly coupled systems that are highly 

influenced by weather and the behavior of the actuators used for climate control 

(Zeng et al., 2012). In recent years, many studies have proposed control methods for 

greenhouse environments (Coelho et al., 2005; Fitz-Rodríguez et al., 2010; Piñón et 

al., 2005). Modern greenhouses use multiple-paned windows for more active natural 

ventilation, but it is more difficult to automatically control these complex systems 

and determine their effect on ventilation. Models of the window-opening process 

must consider both the external temperature and the effects of the wind direction and 

speed. In addition, it is difficult to continually develop new models for ever-changing 

configurations of greenhouses and their windows. Therefore, it is necessary to 

develop an improved ventilation control modeling method that can overcome these 

issues. 

Many studies have designed ventilation control systems using models based on 

physical phenomena monitored within the greenhouse (Han et al., 2019; Hong and 

Lee, 2014; Montoya et al., 2016; Federico Villarreal-Guerrero et al., 2012). A similar 

approach attempts to guide ventilation-based changes in the greenhouse environment 

based on the weather or other relevant environmental factors (Benni et al., 2016b; 

Francik and Kurpaska, 2020; Rouphael et al., 2016). These methods use control logic 

based on the modeling of material properties according to the conservation of 

physical energy or the experience-based empirical modeling of greenhouses. 

The most realistic control algorithms are based on PID logic, but it is difficult to 

apply this effectively in complex systems such as greenhouses because the relevant 

coefficients must be tuned (Chen and Huang, 2004). Furthermore, it takes a long 

time for the actuator to affect the internal environmental variables such as the internal 

temperature and humidity, and the influence of other environmental factors is 

considerable. Therefore, most studies have been conducted using simulations 

(Rodríguez et al., 2015; Zeng et al., 2012), and highly sophisticated model 

development is needed to tune the relevant coefficients based on a variety of physical 

phenomena. 
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Models based on neural networks are suitable for both linear and nonlinear 

modeling and have been applied to greenhouse environment modeling and control 

logic (He and Ma, 2010; Jung et al., 2019; Taki et al., 2018). Many studies have 

reported reliable results in environmental prediction modeling using ANNs (He and 

Ma, 2010; Khashei and Bijari, 2010; Li et al., 2007; Sukhatme et al., 2007; Teófilo 

et al., 2009). However, there have been few reports of this method being used to 

control greenhouse environments, with most having focused on simulations. For 

example, Fourati and Chtourou (2007) adopted an Elman neural network to emulate 

the dynamics of simulated greenhouse performance using a neural-network-based 

controller. Similarly, Fitz-Rodríguez et al. (2010) designed a dynamic greenhouse 

environment simulator for use in testing greenhouse control principles.  

The modeling of greenhouse environmental changes has led to studies investigating 

the use of predictive control (Blasco et al., 2007; Coelho et al., 2005; Ramos Ruiz et 

al., 2019; Zeng et al., 2012). For example, Blasco et al. (2007) assessed model-based 

predictive control logic and an optimization technique based on a genetic algorithm, 

with results showing that there is significant flexibility in selecting the control 

objectives. In addition, Coelho et al. (2005) applied a particle swarm optimization 

algorithm to control logic in a greenhouse air temperature controller and computed 

outputs to optimize the future environment of the greenhouse.  

Techniques that utilize input-output data processing based on ANNs are referred to 

as black-box modeling (Rodríguez et al., 2015; Taki et al., 2016). However, these 

models need to be understood and interpreted to determine the parameters for the 

model-based controller, and black-box models need to be analyzed empirically. In 

order to determine the parameters of these model-based controllers, it is necessary 

to understand and interpret the model (Kim et al., 2019). For optimal nonlinear 

tracking, output feedback neural-network (OFNN)-based techniques have been 

developed to generate an approximate solution (Ding et al., 2019). Due to the 

inherent approximation capability of neural network systems, adaptive neural 

controllers have been proposed for nonlinear systems (B. Chen et al., 2015; Li et al., 

2009; Theodorakopoulos and Rovithakis, 2014). The possibility of applying neural-

network-based control algorithms to greenhouse environments, where mathematical 

modeling is difficult, has been reported (Blasco et al., 2007), but the practical 
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applications remain underexplored. Therefore, the specific aims of this chapter are 

to 

1) Use the OFNN structure to propose a method for optimizing the control 

signal with the deep-learning climate prediction model developed in 

Chapter 4  

2) By comparing various optimization methods, develop a structure suitable 

for greenhouse climate control and confirm the feasibility of the proposed 

logic by applying it to actual single-span greenhouse ventilation control. 

 

5.1. OUTPUT FEEDBACK NEURAL NETWORK (OFNN) MODEL 

FOR OPTIMAL CONTROL 

Many previous studies have applied AI prediction models and deep-learning 

techniques for changes in the greenhouse environment. However, in terms of 

utilizing these models, specific research directions are currently lacking 

(Theodoridis, 2015). In other words, the environment needs to be predicted and the 

subsequent management or treatment response should be established. This chapter 

describes an approach to this and proposes related techniques. Deep-learning and 

neural-network-based system models are highly nonlinear. In order to reinterpret this 

or obtain an optimized value, a nonlinear optimization technique based on gradient 

descent should be utilized based on the trial-and-error method (Qian, 1999).  
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5.1.1. PERFORMANCE COMPARISON BY OPTIMIZATION MODULE 

 
The OFNN structure was demonstrated in the previous chapter, illustrating that 

gradient-descent-based techniques can be employed as a module to explore a black-

box model and find the optimal solution (Figure 84 and Figure 85). Currently, many 

stochastic gradient descent (SGD)-based parallel learning algorithms apply various 

approximation methods to improve computational speed. SGD is the most widely 

used backpropagation learning method for DNNs. An optimization algorithm based 

on SGD is inherently sequential, making it difficult to parallelize. A widespread 

strategy is to remove or ignore this sequential processing method to improve the 

learning speed by processing the gradient value calculated by SGD using an 

approximate method. 

Figure 84. Framework for determining the optimal signal in a deep-learning model.
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Figure 85. Schematic of the neural-network-based temperature prediction 
model and optimizer. 

Stochastic gradient descent 

Various methods have been employed to solve this sequential method and to 

parallelize the learning algorithm. Currently, a widely used learning method for 

DNNs is SGD-based backpropagation. The OFNN search method can be expressed 

as an optimization problem in finding parameters that minimize f, the multivariate 

objective function (Equation [39]). 

𝑓(𝜎[𝑊, 𝑥], 𝑦)𝑚𝑖𝑛ௐ , 𝑊 = [𝑤ଵ, 𝑤ଶ, ⋯ 𝑤௡]      [39] 
 

Here, w is a model parameter, x is a part or all of training data X = [x1, x1, ⋯ xi], 

and σ is an activation function. To solve this optimization problem, the following 

gradient descent is repeatedly conducted to optimize the parameters of the OFNN. 

The most basic structure of gradient descent is as follows: 

𝑤௧ାଵ =  𝑤௧ − 𝜂 ⨀ ∇𝑓(𝑤௧; 𝑥௧; 𝑦௧)        [40] 
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Figure 86. Oscillating Gradient Descent 

Figure 86 presents the optimized route taken by regular gradient descent from the 

starting point to the minimum point, which takes a zigzag form. The algorithm could 

converge earlier if the values for the oscillating component is reduced while 

maintaining the horizontal component. The algorithms SGD with momentum, 

RMSprop, and Adadelta are employed to address this issue, and their performance 

is compared for real greenhouse control history data. 

 

SGD with momentum 

SGD has difficulty navigating ravines, which are areas where the surface curves 

much more steeply in one dimension than in another (Qian, 1999); these are 

particularly common around local optima. In this scenario, SGD oscillates across the 

slope of the ravine while making slow progress towards the local optimum. 

Momentum can be used to accelerate SGD in the desired direction and dampens 

oscillations (Figure 86). It does this by adding fraction 𝛾 of the update vector of the 

previous time step to the current update vector as follows:  

 

υ୲ =  𝛾υ௧ିଵ +  𝜂∇ఏ𝐽(𝜃)      [41] 

𝜃 =  𝜃 − υ୲                    [42] 
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𝐽(𝜃): an objective function 

𝜃 : current parameter 

𝛾υ௧ିଵ: momentum term 
 
 
Adadelta 

Zeiler (2012) presented a novel per-dimension learning rate method for gradient 

descent called Adadelta. This method dynamically adapts over time using only first-

order information and has minimal computational overhead beyond vanilla SGD. 

The method requires no manual tuning of the learning rate and appears robust to 

noisy gradient information, different model architecture choices, various data 

modalities, and the selection of hyperparameters. Adadelta is an extension of 

Adagrad that seeks to reduce its aggressive, monotonically decreasing learning rate. 

Instead of accumulating all past squared gradients, Adadelta restricts the window of 

accumulated past gradients to fixed size ω in Equation [43]:  

 

E[gଶ]௧=γE[gଶ]௧ିଵ + (1 − γ)g௧
ଶ     [43] 

 

Instead of inefficiently storing ω   previous squared gradients, the sum of the 

gradients is recursively defined as a decaying average of all past squared gradients. 

The running average E[gଶ]௧  at time step t then depends (as fraction  depends 

similarly on the momentum term) only on the previous average and the current 

gradient. The parameter update vector of Adagrad that was derived previously thus 

takes the form [43] to [44]: 

 

Δθ௧ =  − 
ఎ

ඥ ೟ீା௘
 ⨀𝑔௧       [44] 

 

Because the denominator is just the RMSE criterion of the gradient, this can be 

replaced with a short-hand criterion: 

 

Δθ௧ =  − 
ఎ

ோெௌ[௚]೟
 𝑔௧         [45] 
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The update should have the same hypothetical units as the parameter: 

 

𝐸[△ 𝜃ଶ]௧=𝛾𝐸[△ 𝜃ଶ]௧ିଵ + (1 − 𝛾) △ 𝜃௧
ଶ    [46] 

 

The RMSE of the parameter updates is thus 

 

RMS[Δ𝜃]௧ =  ඥ𝐸[△ 𝜃ଶ]௧ + 𝜖      [47] 

 

RMS[Δ𝜃]௧  was approximated by the RMSE of the parameter updates until the 

previous time step. Replacing the learning rate η in the previous update rule 

with RMS[Δ𝜃]௧ିଵ finally yields the Adadelta update rule: 

 
Δθ௧ =  −

ோெௌ[୼ఏ]೟షభ

ோெௌ[௚]೟
 𝑔௧                [48] 

 
Δθ௧ାଵ = θ௧ + Δθ௧                                 [49] 
 
 

RMSprop 

RMSprop is an adaptive learning rate method that has gained popularity in recent 

years but which has also received some criticism (Wilson et al., 2017). It is famous 

for not yet having been published but being very well-known regardless. Indeed, 

most deep-learning frameworks include an implementation of this out of the box. 

RMSprop and Adadelta were both developed independently around the same time 

stemming from the need to resolve Adagrad's radically diminishing learning rates. 

RMSprop is identical to the first update vector of Adadelta described above: 

 
E[gଶ]௧ = 0.9𝐸[𝑔ଶ]௧ିଵ + 0.1𝑔௧

ଶ             [50] 
 
Δθ௧ାଵ =  𝜃௧ −  

ఎ

ඥா[௚మ]೟ାఌ
𝑔௧                [51] 

  
 

RMSprop combines the idea of only using the sign of the gradient with the idea of 
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adapting the step size individually for each weight rather than looking at the 

magnitude of the gradient.  

 

5.1.2. EXPLORING GRADIENT DESCENT-BASED OPTIMIZERS FOR 

LINEAR REGRESSION EXAMPLE 

 

This case study explores the simplest possible supervised learning algorithm: linear 

regression. This case study refers to the study of the previous study (Ruder, 2016). 

Doing so allows the shortcomings of different optimizers to be clearly understood, 

and these issues can be overcome using newer methods. Optimizers are used to 

optimize the model parameters of learning algorithms. They basically differ in their 

updating step given the current parameter value and the gradient value for all 

parameters. Updating the parameters to minimize the loss function is very similar to 

the example of a person trying to reach the bottom of a valley. At any point, they 

know where they are, and the direction of maximum change (gradient) in their 

neighborhood (Ruder, 2016; Theodoridis, 2015). The updated point keeps moving 

in the direction of the maximum downward slope until the algorithm finds that the 

slope moves upwards in all directions. 

y = 5x + 55 + w, where w ∈ 𝑁(0, 𝜎ଶ)           [52] 

 

It is a line with some Gaussian noise added. The true value of the parameters of the 

line, i.e. a and b, are known. In a supervised learning problem setting, the task would 

be to determine a and b. Starting with an initial pair (a, b), the direction of the 

optimizer is followed until the value of (a, b) that minimizes the mean squared error 

over all data points (i.e., the global minima) or a batch of data points (i.e., the local 

minima) is found: 

𝐽 =
ଵ

ଶ
 ∑ (𝑦௜ − (𝑎𝑥௜ + 𝑏))ଶ௡

௜ୀଵ                  [53] 
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Figure 87. Simple linear regression equation with noise used for case study. 

In Figure 87, the blue line at any point is the loss for a particular set of parameters 

(a, b). Notice how the rise or fall in the loss is much steeper when changing a than 

when changing b. This is even more evident in Figure 88 to Figure 91, in which the 

optimization process, fluctuation, and speed can be confirmed for each feature of the 

GD algorithm.  

Figure 88. 3D graph with visualized cost function. 
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Figure 89. Loss change for each step and optimization coefficient change in SGD 
algorithm (a,b). 
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Figure 90. Loss change and optimization coefficient for each step in the 
Momentom algorithm (a,b) and change in the velocity coefficient value. 
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Figure 91. Loss change and optimization coefficient for each step in the adadelta 
algorithm (a,b). 
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5.1.3. GREENHOUSE CONTROL SIGNAL DETERMINATION FOR 

PERFORMANCE COMPARISON OF OPTIMIZATION ALGORITHM 

The three optimization algorithms (SDG, SDG with momentum, and Adadelta) 

have different characteristics, so OFNN logic consisting of actual data and a 

prediction model was employed to identify which algorithm was best-suited to 

determining greenhouse control signals. In this study, three optimization algorithms 

were applied. By applying the SGD, SGD with momentum, and Adadelta 

optimization algorithms, the number of iterations required to find the optimal point 

was compared.  

 

Simulation of ventilation windows 

The algorithms were first applied to optimize the control model for opening the 

ventilation windows to control the temperature. On September 25, 2019, a sharp rise 

in temperature was observed from 9 am to 10 am. At around 9:20, the set target 

temperature was exceeded. At this time, the window open command required an 

opening of 58% for the left windows and 41% for the right (Figure 92). This was a 

result of considering the external climate and the internal temperature of the 

greenhouse in the P-band control. In this study, the OFNN algorithms were used to 

determine the optimal ventilation at this point. 
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Figure 92. Temperature profile for the optimization algorithm simulation. 

The OFNN is structured as shown in Figure 85. Using the predictive model and the 

output values obtained from the predictive model, the cost was calculated, and the 

SGD-based algorithm was applied to optimize the cost. As a result, the change in 

cost for the opening of the left and right windows is presented as a contour map in 

Figure 93. 
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Figure 93. Contour map of the change in cost according to the opening of the left 
and right windows in the simulation. 
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Table 30. Predicted values for the temperature model according to the opening 
position of the windows (corresponding cost in parentheses) 

Right 
Left 

10% 20% 50% 80% 

10 % 
19.21 

(0.252) 
19.16 

(0.217) 
19.02 
(0.135 

18.98 
(0.115) 

20% 
19.12 

(0.192) 
19.11 

(0.186) 
18.98 

(0.115) 
18.97 
(0.11) 

50% 
19.07 

(0.162) 
18.99 

(0.120) 
18.92 

(0.082) 
18.85 

(0.075) 

80% 
18.99 

(0.120) 
18.92 
(0.088 

18.98 
(0.115) 

18.72 
(0.0242) 

 

 

To generate the cost contour map, the left and right windows were input in steps of 

2.0%, generating about 2,500 output results. The x-axis represents the opening of the 

right window and the y-axis represents the opening of the left window. The current 

position of the left and right windows is indicated by the ( ) symbol in the center 

of the figure. The point at which the cost becomes the lowest is ( ), converging at 

an open signal of 99% for the left window and 98% for the right window. 

Figure 94 presents the results for the optimized search path using SGD. A total of 

88 iterations were conducted, with each triangle representing two iterations. Due to 

the nature of SGD, it was found that the slope search tended to be done in a certain 

step, thus the search fell into a local minimum. Past research has indicated that this 

can be solved using a momentum-based algorithm. 
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Figure 94. Contour map of the change in cost according to the ventilation rate and 
the trajectory of the change in the optimization point with SGD. 

Figure 95. shows the results of the search for the optimization point using the 

momentum-based algorithm. Unlike SGD, the search trajectory moved past the local 

minimum through an accelerated route. The minimization point was found after 33 

iterations. In this case, it was decided that the opening of the right window was more 

favorable for minimization. This is because the wind at the time was blowing in an 

upward direction, which gave more weighted calculation to the direction in which 

the wind was blowing to the left-right opening degree in the existing P-band-based 

control.  
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Figure 95. Contour map of the change in cost according to the ventilation rate and 
the trajectory of the change in the optimization point with SGD 

Figure 96 presents the optimized results using RMSprop. The optimal point was 

reached over 50 times, and the path was similar to that observed for SGD with 

momentum, but the number of iterations was lower (28). Figure 97 presents the 

optimized route using Adadelta, for which an optimal conclusion was obtained after 

24 iterations. Adadelta is a logic that combines the RMSprop’s exponential moving 

average function, Adadelta’s optimal path tracking theory, and the advantages of 

SGD with momentum. It thus provided the best performance here and has been 

actively used to train many deep neural networks in past research. 

 In this study, the signal determination process for opening the windows for 

ventilation control was explored. It is expected that the opening of the windows will 

be more optimal if the prediction model is able to accurately detect environmental 

changes within the designed OFNN structure. However, because these are only 

simulations results, further research is required to determine the control signals in 
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real-time through field applications. 

 

Figure 96. Contour map of cost change according to ventilation rate and trajectory 
of optimization point change with RMSprops.  
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Figure 97. Contour map of cost change according to ventilation rate and trajectory 
of optimization point change with Adadelta. 
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5.2.  OUTPUT FEEDBACK NEURAL NETWORK (OFNN) 

APPLICATION FOR OPTIMAL VENTILATION CONTROL 

 

As the modern systems to be controlled continue to become more complex, the 

control theory of uncertain nonlinear systems has also been developed (Tzirkel‐

Hancock and Fallside, 1992). It is often difficult to determine a mathematical model 

for a complex system. Erroneous modeling or a simplified model implies non-

structured uncertainty that is not found in the real systems. In order to respond to 

such a case, the intelligence control theory for introducing neural networks into 

controllers has been actively developed (Calise et al., 2001; Zhang and Wang, 2001). 

The primary goal of this study is to develop a precise model of predicting the 

environmental change of greenhouse through neural network systems. It is also 

necessary to determine a control logic that is suitable to respond to the predictions 

of environmental change. The control logic of a strongly nonlinear system like the 

environment of greenhouse presents only a state variable feedback controller under 

the assumption that every state variable can be observed by an adaptive control 

system. As, in a real greenhouse, only a few state variables can be measured, 

optimization at the output part is practically more advantageous. This type of control 

has not been dealt with in any of the existing studies.  

In Addition, this chapter focused on developing a new approach to applying control 

logic based on an OFNN algorithms for improved control of natural greenhouse 

ventilation. This is a promising idea based on a model that predicts temperature 

changes in response to window opening activity in greenhouses. In order to validate 

proposed method, the method was applied to a real greenhouse and verified by 

comparing the results. The next section describes experimental greenhouse, the 

design of the proposed method.  

The optimization of control is a kind of neural network that determined and outputs 

the on-off control signals of multiple roof and side windows for optimal ventilation 

by using a cost function about the difference between a predicted environmental 

value obtained by an environmental prediction model and a target temperature. As 

shown in Figure 98, the optimization of control includes a feedback neural network 

that has multiple optimization nodes producing control signals of multiple 
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controllers. Based on the cost function values thus calculated (Figure 98), the 

optimization of control utilizes the gradient descentmethod to update the weights of 

multiple optimization nodes and thus determines control signal values of roof and 

side windows. Specifically, the weights of multiple nodes continue to be updated by 

reducing cost through the partial differentiation of cost with respect to the weight of 

the optimization node. 

 

Figure 98. Conceptual diagram of output feedback neural network-based 
greenhouse environmental control 

5.2.1. NEURAL-NETWORK-BASED TEMPERATURE 

PREDICTION MODEL 

 

Our proposed temperature control method was theoretically founded on model-

based predictive control logic (Figure 98). First, a prediction model was developed 

based on data accumulated in the database, mainly sensor data and actuator history. 

The prediction model was a black box model based on an artificial neural network; 

the output value was the predicted inside temperature after 30 min. The control 

decision determines the control signal value corresponding to the input of the 

prediction model feedback from the output of the prediction model to the 

optimization node. The ANN-based prediction model consisted of four layers of 

neurons or nodes: the input layer, two hidden layers, and the output layer (Figure). 

Signals entering the input layer are transmitted to the hidden layers and output layer 
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through functions. The model used 15 input variables divided between the data 

obtained from the sensors and the current controller history. The first hidden layer 

used 45 nodes and the hyperbolic tangent (Tanh) activation while the second hidden 

layer used 30 nodes and the Rectified Linear Unit (ReLU) activation function (Table 

31). In the previous study, the results were verified through various combinations of 

active functions in the hidden nodes and parameter values, but no significant 

correlation was found. For training, Levenberg–Marquardt algorithm was used, a 

gradient descent method for avoiding local minima and overfitting (Jung et al., 2019) 

of the 73,440 samples used for model development, training used 70%, validation 

15%, and testing 15%. 

 

Table 31. Functions used in the artificial neural network hidden nodes. 

Name Equation Derivative 

Tanh 
𝑓(x) =

2

1 + 𝑒ିଶ௫
− 1 

 

𝑓ᇱ(x) =
1

𝑥ଶ + 1
 

 

ReLU 
𝑓(x) = ൜

0 𝑓𝑜𝑟 𝑥 < 0
 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 𝑓ᇱ(x) = ൜
0 𝑓𝑜𝑟 𝑥 < 0

 1 𝑓𝑜𝑟 𝑥 ≥ 0
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Figure 99. Structure of the neural network model for prediction of inside 
temperature. 

Our ventilation control model was based on the neural network output feedback 

method, which does not affect the training process but operates through the 

prediction model already developed. The logic determining window opening for 

ventilation uses the momentum-based gradient descent method by setting a node 

with a separate sub-routine that calculates the difference between temperature 

change after 30 min and the target temperature. This operates through a cost function 

based on the mean square error (MSE):  

 

𝐶௠(𝑘) =  
ଵ

ଶ
𝑒௠(𝑘)ଶ      [54] 

 

where em(k) is the error between the target temperature and predicted model output.  
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Figure 100. Structure of the output feedback neural network (OFNN) and 
operational direction. 

 

The proposed logic operates to reduce em (k) through a separate artificial neural 

network layer installed to adjust the weight of the neural network nodes (Figure 4). 

In order to adjust the weight parameter, we included a momentum term, a well-

known function used to increase the rate of convergence dramatically (Qian, 1999; 

Schmidhuber, 2015):  

 

∆𝑤௧ = −𝜀∇௪𝐸(𝑊) + 𝑝∆𝑤௧ିଵ     [55] 

 

where 𝑝 is the momentum parameter (0.01 was used). The modification of the 

weight vector at the current time step depends on both the current gradient and the 

weight change of the previous step (Schmidhuber, 2015) . 

The sub-routine stops repeating if three conditions are met (Figure 103): (1) when 

the cost function value calculated by the predicted temperature decreases below a 

certain value (Cost: 0.01), (2) when the progress value (difference between the value 

before and after the update) decreases below a certain value (r: 0.001), and (3) when 

the number of iterations reaches the set number of times (i: 100). At this point, the 

iterations stop and the process outputs the determined value to the signal 
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corresponding to the opening of six windows. The OFNN operates in conjunction 

with the predictive model, and the input variables are the MSE calculation results 

between the target temperature and the current temperature. The hidden node is 

composed of two layers, each having 15 and 10 nodes, and Tanh is used as the 

activation function. The output is six nodes, each of which directly determines the 

window open control signal. 

 

 

Figure 101. Flowchart for optimal control values using the gradient descent 
method. 
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5.3.  APPLICATION OF OFNN TO VENTILATION CONTROL OF 

SINGLE SPAN GREENHOUSE 

5.3.1. DESCRIPTION OF EXPERIMENTAL GREENHOUSE 

The greenhouse used in this study is a strawberry growing greenhouse and exterior 

is made of polyvinyl. The upper part of the greenhouse is arched and consists of 

about 3 layers of wall, which is consist of a width of 7 m, a height of about 3 m, a 

length of 70 m and a total growing area of about 500m2. This strawberry farm 

consists of three greenhouses with the same area as described above, each of which 

can be controlled independently. The interior and exterior photographs of the 

greenhouse are shown in Figure 102 (a) and (b). The greenhouse is equipped with an 

automated system, with sensors for monitoring the internal temperature, humidity 

and carbon dioxide, and automatically controls windows and internal fans for 

temperature control. In the present study, the ventilation control system installed in 

advance is designed to calculate the ventilation load using a linear algorithm and 

operates with a P (Proportional)-band based algorithm (Kim et al., 2017). The 

accumulated data is obtained by operating P-band control logic during two months, 

which has all of the environmental information and control history from March 2018 

to May 2018. 
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Figure 102. Strawberry greenhouse used in this study: (a) exterior and (b) inside 
with multi-window shell structure, and (c) schematic of experimental greenhouse 
monitoring and control system. 

The configuration diagram of the greenhouse is shown in Figure 102 (c). 

Temperature and relative humidity and CO2 concentration of inside climate were 

measured by using two sensor modules (SH-VT250, Soha tech, Korea), and the two 

sensor values were averaged. The sensors were installed at the center of greenhouse, 

and the specifications of the sensors are shown in table 1. The environment controller 

consists of a sensor node and a control node for processing sensor data (Figure 102 

(c)). The software program that operates the individual nodes is installed on a 

Raspberry Pi (Model B, Raspberry Pi foundation, United Kingdom). Monitoring and 

control logic were implemented using an open platform program (FarmosV2, Jinong 

Inc., Gyeonggi-province, Republic of Korea) (Park et al., 2019). The control logic 

uses a control algorithm based on a P-band. The P-band used for ventilation is a 

system that determines the window opening (%) by calculating the ventilation load 

through the external temperature, wind direction, wind speed, and solar radiation as 
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the setting value through the linear coefficients. All the control signals and sensor 

values of the environmental controller are stored in the DB as described above and 

used for prediction model development and control algorithm design. d 

 

Table 32. Sensor specifications for inside climate of the greenhouse 

Component 
Measurement 

range 
Resolution 

Operating 

temperature 

(℃) 

Response 

time 

(Seconds) 

Temperature -10.0 ~50.0 ℃ ± 0.3℃ -25.0 ~85.0 5.0 ~30.0 

Humidity 0 ~99.0 % RH ± 2.0 % -10.0 ~50.0 8.0 

CO2 0 ~ 3000 ppm 

± 10.0 ~ 50.0 ppm 

(Proportional to 

measurement range) 

-10.0 ~50.0 2.0 

 

The ventilation window structure of the greenhouse is driven by a total of six 

windows. There are three top windows and three side windows. The top window 1 

is located on the outermost side of the greenhouse and has a triangular structure that 

allows the wind to flow from both sides. Similarly, in the case of side window-1, it 

is located at the outermost side and the left and right sides open simultaneously. 

Operating ranges of three side window are 800 mm, 760 mm, and 650 mm, and open 

proportionally when the ventilation control logic determines that ventilation is 

necessary. All ventilation windows operate between 0 and 100% of opening and 

closing proportional to time. Window 1 and 3 must be opened for direct mixing with 

the air inside the greenhouse because of the characteristic of the experimental 

greenhouse, it is a 3-ply multi-window structure. In case of window 2, it can be set 

to determine a more minute ventilation amount, and additional insulation role is 

possible. 

 



169

 

Figure 103. Flow chart of the gradient descent-based optimization. 

5.3.2. SIMULATION AND FIELD EXPERIMENT TESTING 

In order to test the new control algorithm, field verifications on specific conditions 

were conducted on May 11, 2018, using the environmental data from three time 

points on this day. The test was confirmed the signal decision process and decision 

process of the developed algorithm. At this time, the predicted temperature and cost 

value for each loop determined repeatedly were checked, and the decision history 

about multi-window opening was compared. The final result of this case simulation 

comparison is to figure out the operation of OFNN-based optimization algorithm in 

practice. In addition, the result can be confirmed by comparing the relationship 

between the signal change of the six window and the effect of the obtained value on 

the temperature prediction model. The three cases below were selected based on the 

three most important points of the day, after sunrise, after midday and before sunset. 

The three time points used are shown in the table below. The change of control signal 

of each window due to OFNN was observed at each time point. In each case, the 

external and inside environmental conditions are fixed, and the ANN and OFNN 

models operate repeatedly to determine the six window open signals, and the specific 
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environmental conditions are shown in Table 33. In addition, the ANN model and 

OFNN were simulated simultaneously under the assumption that the whole day was 

continuously controlled by the proposed method. 

Table 33 Three case environmental conditions to confirm the simulation of the 
optimization algorithm. 

 
External 

temperature 
(Et) 

External 
humidity 

(Eh) 

Radiation 
(Rv) 

Wind 
speed 
(Ws) 

Inside 
temperat
ure (It) 

Inside 
humidity 

(Ih) 

Inside 
CO2 
(Ci) 

Time 

Case-1 14.1  64.5 % 25W/m2 
1.4 
m/s 

15.2  61.2 % 
454.3 
ppm 

06:30 

Case-2 26.9  62.5 % 
788 

W/m2 
0.8 
m/s 

27.9  67.3 % 
414.3 
ppm 

15:30 

Case-3 19.5  71.5 % 
105 

W/m2 
2.3 
m/s 

21.0  55.5 % 
464.6 
ppm 

18:30 

Field tests were carried out May 18 to May 24, 2018, in which used two 

greenhouses (Figure 104). The controller equipped with the newly developed in this 

study and the controller equipped with a standard commercial controller were 

installed in the greenhouse, respectively, and the control performance was evaluated 

by setting desired temperature value. The commercial controller adopts the P-band 

algorithm, which is a kind of proportional parameter that determines the opening 

angle of the window according to an excess of desired temperature: the difference 

between the set point and the measured point is the reciprocal of the proportional 

gain constant (Kamp, 1996; Kim et al., 2017).  

For comparison experiments. Both controllers used a Raspberry Pi microcontroller 

which received environmental sensor information and sent it to the server. In the 

greenhouse equipped with our control algorithm, an additional computer (Core i7-

6700 processor, Intel®, USA) was installed to infer prediction models and operate 

subroutines for determining the control signal.  
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Figure 104. Comparative greenhouse and control node diagram for field 
application experiment. 

5.3.3. PERFORMANCE OF TEMPERATURE PREDICTION MODEL 

The prediction results for the ~11,000 validation samples in the learning process 

yielded a 0.99 R2 for the calibration curve with a slope of 0.94, an offset of 1.53, and 

a total RMSE of 0.78 °C (Figure 105); this showed a very high accuracy of the 

developed model during training and validation. The temperature changes after 30 

min ranged from -3.9 °C to 6.3 °C (Figure 106); a comparison of the predicted and 

measured temperature change showed an R2 of 0.94 and an RMSE of 0.19.  
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Figure 105. Comparisons between predicted and measured temperature 

Figure 106. Comparisons between difference between current temperature and 
predicted or measured temperature after 30 min. 

To identify the temperature prediction performance of the model, the trained model 
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was implemented to predict the change of indoor temperature and the predicted 

values were compared with measurements. In Figure 107, the temperature change in 

a greenhouse can be identified by the graph of about 2 days. The RMS error between 

the measurements and the predicted values obtained from the prediction model was 

about 0.91 indicating the excellent performance. 

  

Figure 107. Performance of temperature prediction in 30 minutes. 

5.3.4. SIMULATION AND FIELD TEST RESULTS 

The OFNN-based control signal decision algorithm proposed in this study first 

performed driving verification in three cases. Figure108 shows the expected 

temperature change (left) and window opening change plot (right) simultaneously 

with the case-specific OFNN algorithm. Figure 108 (a) and (b) show the progression 

at 6:30, when the sun rises. The red dotted line in Figure 84 (a) is the target 

temperature, 15.70 °C, and the blue dotted line is the current temperature at that time, 

which is about 15.08 °C. The initial expected temperature is about 13.40 °C, and the 

temperature drop is expected below 4 epochs. In Figure 108 (b), the control 

algorithm initially inferred that the window was open, but since the expected 

temperature is far from the target temperature, the process of epoch 5-7 have given 

the command to close the window. The final expected temperature is 15.04 °C, and 

Six window openings were determined to close by 10-20%. Figure 108 (c) and (d) 
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show the case around 15:30, when the current temperature is about 27.91 °C and the 

target temperature is about 25.02 °C. In Figure 108 (d), the six windows converge 

on the open signal (70~90%) rather than before. Figure 108 (e) and (f) show that the 

inside temperature, which rises during afternoon around 18:30, suddenly drops as 

the sun radiation drops at sunset. The current temperature and the predicted 
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temperature were about 21.0 °C, in order to maintain the target temperature of 

21.6 °C, the windows are converging with the closing command. 

 

Figure 108 Three cases of predicted temperature change and window open ratio 
change plot as a result of the operation state of OFNN and ANN during 60 epochs; (c) 
expected temperature changes in case-2, (d) changes in window open ratio determined 
by OFNN 
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Figure 109. Comparison of temperature control performance between the proposed 
method and the conventional controller on 11 May. network-based controller. 
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Figure 110. Comparison of opening ratios of windows between the commercial 
controller and the output feedback neural network-based controller under the same 
condition. 

Finally, the OFNN based control logic was mounted on a real strawberry 

greenhouse, and our proposed logic and conventional ventilation control method are 

applied to two the same greenhouses. Over a six-day field test from 18–24 May, the 

RMSE of the target temperature as compared with the conventional controller 

(3.01 °C), higher than that for the proposed method (2.45 °C), again confirming the 

better control performance in the field application (Figure 110). Figure 111 and 

Figure 111 show changes in the environment outside the greenhouse and other 

environmental factors inside the greenhouse, respectively. The factors affecting the 

inside of the greenhouse appear to have a large proportion of outside temperature 

and solar radiation. In addition, it is possible to observe changes in the environmental 

conditions inside the greenhouse and the outside wind velocity during the field test 

period. 
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Figure 111. Field test results for the proposed method from 18 May to 24 May. 

 
 

Figure 112. Changes in outside environmental conditions in the experiment: 

outside temperature (a), solar radiation(b), and wind velocity (c). 
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P-band based control logic is mainly used in commercialized greenhouse 

controllers (Kim et al., 2017) and requires users to input many setting values for the 

optimal environmental condition, which is not easy for growers. In contrast, the 

predictive model and control logic developed in this study were trained by 

greenhouse conditions without the setting values inputs separately. For example, in 

the 11 May test (Figure 111 and Figure 112), the actual temperature decreased 

sharply between 6 AM and 7 AM, caused by low-temperature air entering the 

greenhouse. As for the conventional control based on P-band logic, it considered 

much ventilation due to the influence of increasing solar radiation after sunrise and 

opened several windows. It is because a simple linear algorithm makes a decision to 

open the window in response to a sharp rise in temperature at this time. Whereas, the 

control method developed in this study was trained from the greenhouse data, the 

temperature drop due to window opening was predictable, so the controller decides 

to keep the window closed at this time and opened a bit (Figure 56(b)). This effect 

can be confirmed by the field experiments from 18–24 May. 

The environmental control method based on the actual applied environmental 

model has been steadily proposed, and it was a major trend of applying the 

simulation through system identification. (Bennis et al., 2008; Shen et al., 2013). In 

this paper, the proposed method was implemented by the proposed optimization 

method, and the feasibility was confirmed through the field application results. This 

method is expected to be applicable not only to greenhouses ventilation control but 

also to ventilation management of livestock facilities or environmental management 

in residential building. This study evaluate that the neural network-based prediction 

model and control logic yields better control signals only in the greenhouse where 

training was conducted. In addition, the logic was applied in the external climate of 

spring and autumn season, and the window control was performed only for 

ventilation. However, humidity and radiation are also important factors affecting by 

ventilation. Therefore, various environmental factors and greenhouse structure 

should be considered by various attempts of OFNN structure and cost functions.  

A sever computer was installed in the field due to overloading of the Raspberry Pi-

based micro-controller. The developed logic executed up to 60 sub-routines in 

determining the control signal while updating the prediction model and the control 
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node. In Raspberry Pi, this took 1,100 ± 125ms while using 100% of the CPU, 

meaning that environmental monitoring and server data transfer could not be 

performed at the same time. In addition, the numerical values used in the 

optimization suggested in the study (Cost: 0.01, r: 0.001) could find the optimal 

convergence conditions in different ranges for other applications, and it is possible 

to compute the numerical analysis faster by adjusting these values. Solving this 

problem could be achieved through parallel algorithm optimization or cloud 

computing technology that implements real-time control algorithms.  

 

5.4.  CHAPTER CONCLUSION 

In this study, two techniques were tested for effective multi-window ventilation 

control in greenhouses. First, a temperature prediction model based on neural 

networks was developed for the monitoring of the internal environment of a 

greenhouse. Many studies based on predictive models have reported positive results 

for machine-learning or deep-learning technology in the modeling of the greenhouse 

environment (Baumeister et al., 2017; Andreas Kamilaris and Prenafeta-Boldú, 2018; 

Maher et al., 2016). As shown in Figure 105, the model developed to predict changes 

in temperature performed well (R2: 0.99; RMSE: 0.78), showing that model-based 

control was feasible due to the precise predictive model. Prediction models for 

various time periods should be developed in the future in order to improve control 

performance. 

 The second technique was the use of control signal decision algorithms to 

optimize the OFNN structure. The nonlinear relationship between the change in 

temperature and the ventilation rate of six windows was overcome by using the SGD 

with momentum method. The proposed OFNN-based control logic was implemented 

in a real strawberry greenhouse and compared with a conventional ventilation control 

method under the same conditions. Over a six-day field test from May 18–24, the 

RMSE for the target temperature using the conventional controller (3.01 ℃) was 

higher than that for the proposed method (2.45 ℃), again confirming its more 

accurate control performance in the field. It can be concluded that the proposed 

method provides a promising foundation for field applications in greenhouse 

environmental modeling research.  
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6. DEVELOPMENT OF ARTIFICIAL INTELLIGENCE CONTROL 

LOGIC CONSIDERING THE ENERGY USE EFFICIENCY OF 

GREENHOUSE 

Sustainable horticulture is an important goal in the agricultural industry because the 

global increase in the population has led to the need for higher production yields, 

which in turn has led to a rise in the energy demands of the industry (Vadiee and 

Martin, 2012). Because energy use accounts for the majority of greenhouse 

production costs, reducing energy costs is an important goal for the greenhouse 

industry (Mohsenipour et al., 2020). The increase in productivity per unit of energy 

is possible by reducing the energy use or improving the energy efficiency. Although 

most cultivation methods that increase production are based on greater energy inputs, 

setting up a control scheme without considering the energy consumption can have 

serious negative consequences for the environment. 

In general, the purpose of greenhouses in East Asia is to maximize the amount of 

solar radiation energy in autumn and winter, while minimizing energy losses and 

reducing the high temperatures in spring and summer. It occurs even though the 

lowest electricity price rate is set for energy facilities such as heat pumps and 

electrical boilers in the agricultural sector in South Korea. The relatively low cost 

for electricity may in fact lead to the careless waste of energy, but this would also 

suggest that there exists significant opportunity to reduce energy consumption by 

adopting energy-efficient measures that are commonly used in other sectors, such as 

in residential buildings or the manufacturing industry (Lee et al., 2019). 

The first step in improving the energy efficiency of a greenhouse is to maximize 

the use of solar radiation and minimize fuel consumption for heating. The next step 

is to use natural ventilation to control convection, which is the main source of energy 

loss, radiant energy emitted from the greenhouse surface, and latent heat. Therefore, 

the opening and closing of the windows and the optimal use of the heat retention and 

shade curtains are very important. Finally, in order to maximize the benefits of 

greenhouse environment management, a management system that considers energy 
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consumption in terms of the external climatic conditions is required, rather than 

continuously operating the controls for heating, ventilation, and CO2 supply.  

There has been an increase in the use of energy in the agricultural sector arising 

from greater access to machinery and facilities (Yu et al., 2016b). However, this has 

increased input costs such as heating costs and worsened greenhouse gas emissions. 

This chapter outlined the status of energy use in the facility-based horticulture sector, 

examined the changes in duty-free oil and electricity for farming, and controlled the 

supply status energy saving facilities for agriculture (Benni et al., 2016a). Currently, 

agricultural operations have to adapt to a more competitive environment and 

consequently use new intelligent technologies (Shamshiri et al., 2020). 

The purpose of this chapter is to design variable optimization control for energy 

consumption by adding a cost gate modified by the OFNN backpropagation method 

to climate control within a greenhouse using AI. The energy-saving effect of this 

design in a smart greenhouse is then tested. 

 

6.1. DESIGN OF ENERGY USE EFFICIENCY IN COST FUNCTION 

6.1.1. ENERGY CONSUMPTION MODULE 

Equation [56] is a partial differential optimization function, where θ is the 

parameter, m is the number of samples, and x and y are the predicted and target values. 

α is an index for the amount of heat consumed by the control actuator in controlling 

the temperature, β is a coefficient for humidity, and γ is a coefficient for CO2. These 

values are updated to reflect the calculated values, thus excluding the initial inputs. 

The updated values were calculated using α = 0.1 ∙ CSIT/5.0 and β = 0.1 ∙ CHIH / 20, 

γ𝜃 = 0.05  ∙  CC୍େ/5.0 and applied to the newly updated node. CSIT is the sum of 

the energy consumption of the control actuator that affects the temperature inside the 

greenhouse, and CHIH and CC୍େ correspond to the humidity and CO2, respectively. 

The active function of the OFNN employed the sigmoid function, and the conditions 

of the input nutrient solution were determined using two nodes. The optimization 

method employed momentum-based SGD, shown in Equations [9] and [10]. The 

number of repetitions was fixed at 50, and the final determined temperature, 
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humidity, and CO2 concentration were compared with the target values, which were 

applied at the time of determination for control determining. Optimization logic was 

applied to the test set data to derive the simulation results.  
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Where, 
Ti : Temperature cost compensation value (1.0 used) 
Hi : Humidity cost compensation value (0.125 used) 
Ci : CO2 cost compensation value (0.025 used) 
Ec : Energy consumption function (𝛼 + 𝛽+ γ) 

Figure 113. Cost gate design for climate control signal determination in a smart 
greenhouse.

6.2.  SIMULATION STUDY CONSIDERING ENERGY OPTIMIZATION IN 

DEEP LEARNING MODEL AND OFNN STRUCTURE 

6.2.1. GREENHOUSE OPERATING COSTS FOR ACTUATORS 

In this study, a method for optimizing the signal of the controller using a predictive 

model was developed. The energy cost gate was designed so that it would be possible 

to build a cost map by applying the actuator's energy consumption rate as a function. 

The purpose of a cost function that considers energy efficiency was to find an optimal 
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combination by comparing the amount of energy consumed by the actuators in the 

greenhouse. The required energy consumption for the actuators is summarized in 

Table 34. This table is applicable only to the actuators in the demonstration 

greenhouse described above. The energy consumption was calculated based on three 

assumptions: 

1) The amount of power consumed depends on the product specifications and 

does not take into account changes in efficiency due to the aging of the 

equipment. 

2) The power consumption rate for actuators is linear. 

3) The operating cost of the actuators is calculated in minutes based on the 

values determined by the control signal. 

 

Energy consumption was compared in watts because the actuators used electrical 

energy. For the kerosene boilers, the equation 1 kWh = 860 kcal was used to convert 

8,770 kcal per liter of kerosene into watts. The water heated by kerosene was 

expressed as an energy function for heating 1 ton of water based on the specific heat 

capacity of water. 

 

𝑄1 (𝑘𝐽) = (𝑇௧ − 𝑇௖) ∗ 𝐶௩ ∗ 1,000 kg (volume)     … [57] 

𝑄2 (
௞௝

௛
) = 𝐻௛,௞௘௥௢௦௘௡௘  ∗ 𝐵஼,௥௔௧௘  ∗ 𝐵௘௙௙௜௖௜௘௡௖௬    … [58] 

Duration (h) = Q1 /Q2  

 

λ୩: Burnout time per liter for the kerosene boiler (6.78 L/h) 

C୴: Specific heat for a constant volume of water (4.185 kJ/kg K) 

Tୡ: Current water temperature 

T୲: Target water temperature 

Hh, kerosene: High heating value of kerosene (43,400 kJ/kg) 

BC,rate: Fuel consumption rate of the boiler (13.57 kg/h)  

Befficiency: Rated thermal efficiency (91.3%) 
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Table 34. Energy consumption table for the actuators in the experiment greenhouse 
(agricultural electricity rates: 49.09 KRW/kWh; CO2 price: 300 KRW/kg; 
kerosene: 1,000 KRW/L; water: 360 KRW /ton)  

 Actuators 
Operation 

type 
Energy 

consumption  
No./area KRW/h 

Ventilation Windows Electric motor 0.25 kWh 4 49.09 

Fogging 
Spraying 
nozzle, 
pump 

On/off 
electric valve 
Electric motor 

Water 

0.07 kWh, 
0.35kWh,   

6L/h 
1 20.6178 

CO2 
Spraying 
nozzle 

On/off 
electric valve 

 CO2 Gas 

0.12 kWh 
0.19 kg/h 

1 61.909 

Heating - 
boiler 

Kerosene, 
pump 

Fuel 
consumption 
rate, electric 

motor 

13.57 L/h, 
0.65kWh 

 6811.91 

Heat 
retention 
curtain 

 Electric motor 0.25 kWh 2 24.54 

Shade 
curtain 

 Electric motor 0.25 kWh 2 24.54 

Circulator Fan Electric motor 0.036 kWh 6 10.60 

 
To simulate the control signal roadmap, including the energy cost gate, the OFNN 

model was run for a current temperature of 26.4 °C and a humidity of 35.5% at 1:00 

PM (Figure 114) in a March climate. The target internal environment temperature 

was 25.0 ℃, and the humidity was 50%. Fogging was dictated by an on/off controller, 

but a linear algorithm from 0%to 100% was used in which, if the outcome was 50 or 

more, fogging took place. In the linear logic of the P-band-based algorithm, the 

fogging command and the ventilation signal were set at 72% open. This was because 

the external solar radiation was intense, and the temperature was continuously rising. 

In this situation, when an OFNN cost map with the energy consumption rate was 

constructed (Figure 114), the lowest cost occurred at a fogging index of 100% and a 



186

ventilation index of 14.5% or 37%. This means that the loss in heat due to fogging 

was considered through learning, and the cost function moved in the direction of less 

ventilation to increase the efficiency of the fogging because its energy consumption 

was higher than that of ventilation. 

 

Figure 114. Cost map with energy consumption rate for determining control signals 
for fogging and ventilation. 
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Figure 115. Cost map with energy consumption rate for determining control signals 
for CO2 injection and ventilation.

The performance of this control logic was directly compared. The signals for 

temperature control and the actuators related to temperature control. Figure 115 

presents the signal and temperature as determined based on P-band control. In P-

band logic, window control is frequently used to set the target temperature for 

ventilation, and this causes a change in the fogging control signal. This can be 

confirmed in Figure 100. The RMSE for temperature based on the P-band logic was 

1.78, and the most extreme change in temperature was ∆0.48 every 30 minutes on 

average. Figure 116 presents the results of applying the AI cost-saving logic, which 

leads to an RMSE of 1.65 and a temperature change of ∆0.41 every 30 minutes. This 

confirmed that the AI control logic was more effective than the linear control.  

For humidity control, RMSE 8.5% in AI-based logic in P-band-based control 

obtained 10.4%, Δ 3.21% per 30 min in linear control, and Δ 5.32% per 30 min in 

linear control in AI control. Linear control was also more effective for CO2 control 

(Figure 119), which appears to be a signal decision to make a more favorable 

decision for energy consumption and temperature control.  

Figure 120 presents the results when the energy consumption rate was applied. The 
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energy consumed by the P-band logic was 8,234 KRW per day, compared to 6,000 

KRW per day for the AI logic, representing an energy-saving effect of 27.10%. More 

than 90% of the energy use was for kerosene consumption in the control of the hot 

water supply. If cost control is pursued in an experimental environment where 

independent control is possible, greater cost savings could be obtained. However, 

the results of this experiment suggest that, if costs are given too much weight in 

energy consumption calculations, climate control may become less accurate.

 



189

 
Figure 116. Change in the temperature (top), window and curtain signals (middle), and on/off actuator signals (bottom) for the P-band logic-
based climate control system.
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Figure 117. Change in the relative humidity, CO2, the on/off fogging signal, and the CO2 injector signal for the P-band logic-based climate 
control system. 
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Figure 118. Change in the relative humidity, CO2, on/off fogging signal, and CO2 injector signal for the AI logic-based climate control system.
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Figure 119. Change in the relative humidity, CO2, on/off fogging signal, and CO2 injector signal for the AI logic-based climate control system.
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Figure 120. Comparison of the energy consumption for the linear algorithm (P-
band) and AI logic control systems. 
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6.3.  AI CONTROL SIMULATION ANALYSIS RESULTS BY SEASONAL 

CLIMATE 

The AI-based logic system designed to account for energy consumption was 

subsequently tested via simulation using real data from three distinct seasonal 

periods. The aim was to determine whether there were any differences between the 

AI-based model performance and the actual results for the linear control of the 

greenhouse during these periods. The AI logic considering the energy consumption 

performed by the simulation was performed in the form of a simulation to control 

the actual data and intensive analysis. This reflects the driving characteristics of the 

seasonal actuators, and what is different from the actual controlled results, and 

research was conducted to confirm in advance the abnormal behavior when the AI 

algorithm is applied. 

Three consecutive days of data were used for each season. The temperature and 

climatic characteristics for each period are presented in Table 35. The AI logic 

control system was the same as that described in Chapter 6.1, and the target values 

used for the cost function were those set for the actual control logic. 

 

Table 35. Climate conditions for the three seasonal periods used in the simulation. 

 
Experimental 

days 

Average 
outside 

temperature 

(℃) 

Average 
outside relative 
humidity (%) 

Average 
outside CO2 

concentration 
(ppm) 

 Winter season 
(cold climate) 

Jan. 1–3, 2020 -0.54 ± 5.22 43.25 ± 3.22 
422.33 ± 

15.21 

Spring season 
(warm climate) 

Mar. 16–18, 
2020 

18.25 ± 6.27 52.44 ± 5.62 
420.85 ± 

21.03 

Summer 
season  

(hot climate) 
Jun. 1–3, 2020 24.56 ± 4.11 62.61 ± 7.11 

410.66 ± 
12.51 
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6.3.1. COMPARISON OF SIMULATION RESULTS IN WINTER 

CLIMATE 

The performance of the proposed method in a winter climate was verified using a 

simulation of three consecutive days. Figure 123 presents the temperature, humidity, 

and CO2 concentration for actual P-band control and for simulations with the 

proposed model. For temperature, the RMSE for the proposed model (2.01) was 

higher than that for the actual P-band control system (1.85). For humidity control, 

the two methods did not deviate significantly from the specified humidity range 

while, for CO2 control, the RMSE for the actual control system was 57.22 ppm, 

compared to the simulated RMSE of 34.55 ppm for the AI-based control method. 

The change in the CO2 levels for the actual control system was unusual, especially 

the unexpected increase in the CO2 concentration around 9:00 PM on the first day. 

It is possible that this was due to an equipment malfunction, such as a leak from the 

solenoid valve. This is the main reason why the simulated AI-based approach 

exhibited better performance. 

When comparing the energy consumption patterns, it was found that the AI logic 

tended to limit fan operation while using fogging when the P-band logic control did 

not. In general, in winter, it is often not necessary to use the fogging device because 

it is more important to maintain the temperature inside the greenhouse. In this logic, 

the internal humidity and temperature are affected by fogging (Figure 121). As 

observed in Figure 122, energy costs of 81,182 KRW were incurred by the actual P-

band controlled greenhouse, compared to only 72,579 KRW for the simulated AI 

logic control, a reduction of 10.59%. Most of this reduction was due to the heating 

boiler, which is thought to have resulted in the weaker temperature control 

performance. 
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Figure 121. Operating times for the actuators over three days in winter. 

Figure 122. Operating costs for the actuator over three days in winter. 
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Figure 123. Comparison of simulated control performance with AI logic and actual P-band control performance for temperature, humidity, and 
CO2 levels in winter. 
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Figure 124. Control history for the actual P-band-controlled actuators inside the greenhouse in winter.
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Figure 125. Control history for the simulated AI logic-controlled actuators inside the greenhouse in winter. 
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6.3.2. COMPARISON OF SIMULATION RESULTS IN SPRING 

CLIMATE 

The performance of the proposed AI-based control system in spring was assessed 

using a simulation of three consecutive days. Figure 123 presents the temperature, 

humidity, and CO2 concentration for the actual PD-band logic control system and 

those simulated for the proposed model. In terms of temperature control, the 

simulated AI logic (RMSE: 1.94) outperformed the actual PD-band control system 

(RMSE: 2.23). Similarly, the proposed method was more accurate for humidity 

(RMSE of 3.45 and 4.22, respectively). For CO2 levels, the RMSE for the actual 

control system was 35.01 ppm, while the simulated RMSE for the AI-based control 

system was 32.11 ppm.  

When comparing the energy consumption patterns, it can be seen that, compared to 

winter, the use of the boilers was significantly lower, while the opening of the 

windows for ventilation increased. The AI logic made the decision to limit the 

operation of the fans and was slightly more active in terms of ventilation than the 

real actuators were (Figure 126). Figure 127 shows that 56,367 KRW was required 

to power the PD-band controlled greenhouse, while 45,216 KRW was required for 

the simulated AI-based control system, a reduction of approximately 19.78%. This 

reduction was primarily achieved by limiting the use of the boiler and the ventilation 

windows.  
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Figure 126. Operating times for the actuators over three days in spring. 

Figure 127. Operating costs for the actuators over three days in spring. 
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Figure 128. Comparison of the simulated control performance with AI and the actual controlled (P-band) performance for temperature, 
humidity, and CO2 levels in spring. 
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Figure 129. Control history for the actual P-band-controlled actuators inside the greenhouse in spring.
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Figure 130. Control history for the simulated AI logic-controlled actuators inside the greenhouse in spring. 
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6.3.3. COMPARISON OF SIMULATION RESULTS IN SUMMER 

CLIMATE 

Figure 133 presents the temperature, humidity, and CO2 levels in summer for the 

actual PD-band control system and the simulated values for these for the proposed 

AI-based model. For temperature, the simulated AI-based control performance was 

better than the actual PD-band-controlled performance (RMSE of 3.21 and 3.45, 

respectively), while humidity was also better controlled by the AI logic (RMSE of 

5.11 and 6.25, respectively). For CO2, the RMSE for the simulated AI-based control 

was lower than that for the actual PD-band control system (40.04 and 41.92 ppm, 

respectively).  

When comparing the energy consumption patterns, the use of fogging increased 

significantly, while heating was rarely used, appearing only in the simulated AI logic 

system. Ventilation using the windows continued to represent a major component of 

the energy expenditure. AI logic again limited the use of the fans (Figure 131). It 

was estimated that it cost 9,645 KRW to power the greenhouse under actual PD-

band-based control, compared to 12,472 KRW for the AI logic simulation, an 

increase of 29.20% (Figure 132 and Figure 122). This was primarily due to the use 

of heating under the AI-based control system. 

 

 

Figure 131. Operating times for the actuators over three days in summer. 
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Figure 132. Operating costs for the actuators over three days in summer.
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Figure 133. Comparison of the simulated control performance with AI logic and the actual P-band control performance for temperature, 
humidity, and CO2 levels in summer. 
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Figure 134. Control history for the actual P-band-controlled actuators inside the greenhouse in spring. 
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Figure 135. Control history for the simulated AI logic-controlled actuators inside the greenhouse in summer.
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Table 36. The overall results of the simulation study. 

 Temperature (℃) Humidity (%) CO2 (ppm) Energy (KRW) 

 P-band AI P-band AI P-band AI P-band AI 

Winter 1.85 2.01 4.23 3.22 57.22 34.55 81,182 72,579 

Spring 2.23 1.94 4.22 3.45 35.01 32.11 56,367 45,216 

Summer 3.45 3.21 6.25 5.11 41.92 40.04 9,645 12,472 

6.4.  FIELD TEST AND RESULTS 

Field verification experiments were conducted using the algorithm proposed in this 

study over two weeks from March 16 to 31, 2020. Two tomato greenhouses in 

Gangneung were managed using a commercial controller and the proposed AI 

controller. As shown in Figure 136, the second greenhouse in a row of four Venlo 

greenhouses was equipped with the commercial controller, while the fourth 

greenhouse was equipped with the AI-based environmental control logic proposed 

in this study. The heating systems operated under the same conditions and were 

excluded from optimized empirical control because it was physically impossible to 

gain complete independent control in the test greenhouse. 

The environment was run for two months using the linear algorithm before being 

run by the AI-based control logic. The CNN-LSTM model was in control for two 

weeks using the automatic model update system described above. Based on this, the 

final signal was determined using the OFNN Adadelta algorithm, and energy-saving 

logic was added by adjusting the temperature, humidity, and CO2 concentration in 

the greenhouse. 
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Figure 136. Tomato greenhouses used for the verification experiment. 

The Adadelta algorithm is presented as Equation 43. The constants used were as 

follows: learning rate 0.003, rho 0.95, and epsilon 0.00001. Figure 137–Figure 139 

show the changes in temperature, humidity, and CO2 concentration during the 

experiment. The target temperature was set for each of the six periods. The minimum 

humidity was set at 50%, while 400 ppm and 470 ppm were set as the boundary 

concentrations for CO2. 

For the target temperature, the commercial controller exhibited an RMSE of 2.15 ℃, 

which was higher than the 1.78 ℃ for the AI controller (1.65 ℃ and 0.98 ℃ for the 

30-min average; Figure 137). This means that the AI controller outperformed the 

commercial product in terms of temperature control. On the other hand, when 

comparing the control performance when the humidity control falls below 50%, 

RMSE 4.6% AI controller for commercial products is 6.5%, and half-hour change 

average is 5.2% for commercial products and 3.6% for AI controllers. Thus, for 

humidity control, the commercial controller exhibited better performance. On 

average, the fogging time was about 175 minutes for the commercial controller 

during the day, compared to 160 minutes for the AI controller, but there was no 

significant difference. This lower performance may be due to greater ventilation 

leading to the loss of humidity. In addition, the AI logic tends to inject less energy 

due to the energy consumption function, which was most apparent in the control of 

the CO2 levels; for the target of 470 ppm, the commercial controller had an RMSE 

of 34.45 ppm, while the AI controller had an RMSE of 44.22 ppm (Figure 139). 
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These results indicate that adjusting the compensation value in the cost gate leads 

to favorable decisions with regards to the control of humidity and CO2. In this 

experiment, under the assumption that the heating conditions were the same, it is 

applied to energy consumption only by driving the controller. It appears that the AI 

logic placed more weight on ventilation (Figure 140), while fan operation was 

minimized under AI control. In the model, the fans had no direct effect on 

environmental control. However, the fans circulated the air above and below the 

greenhouse to evenly distribute the elements of the environment. This was not 

considered by the AI logic, hence the implementation of additional restrictions.  

In this test, the climate control logic for heating was excluded because, unlike other 

controllers, heating uses the same boiled water source unless a completely 

independent boiler is used. In other words, completely independent control is 

physically impossible, so it was excluded from consideration. This element of the 

greenhouse environment thus requires additional analysis through the use of a 

completely separate heating system in the future. Nevertheless, the predictive model 

proposed in this study was confirmed to be capable of achieving superior 

performance in terms of environmental control compared to the commercial 

controller in the field. 
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Figure 137. Test results for the AI logic and commercial controller in terms of temperature control.
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Figure 138. Test results for the AI logic and commercial controller in terms of humidity control.
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Figure 139. Test results for the AI logic and commercial controller in terms of CO2 control.
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Figure 140. Window and curtain control history for the AI logic and commercial controller.
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Figure 141. Fogging, CO2 spraying, and fan control history for the commercial controller.
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Figure 142. Fogging, CO2 spraying, and fan control history for the AI controller.
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6.5. CHAPTER CONCLUSION 

This study proposed a control system based on an OFNN to determine the 

environmental control signals using a previously developed prediction model. This 

was achieved by determining the cost calculated from a comparison between the 

temperature obtained from the prediction model and target value and then developing 

a signal decision algorithm via optimization.  

In order to reduce the energy consumption of the actuators, the operating costs for 

each actuator were functionalized and applied to the optimization algorithm, which 

led to more efficient operation as verified by three season-specific simulations. In 

winter, energy costs totaled 81,182 KRW in the conventionally controlled 

greenhouse, which was higher than the 72,579 KRW required for the AI logic-based 

system, a reduction of 10.59%. In spring, the actual costs were 56,367 KRW 

compared to 45,216 KRW for the simulated AI logic model (-19.78%). This cost 

reduction was primarily due to limitations on the use of the boiler and ventilation 

windows. However, the energy used in summer was higher for the AI-based model 

(12,472 KRW) than the actual PD-band-based control system (9,645 KRW), an 

increase of 29.20%.  

The performance of the energy-saving environmental control logic based on the 

proposed automatic prediction model was verified using empirical field experiments 

over two weeks. Excellent results were obtained for temperature control when 

compared to a commercially available controller, and energy-savings of about 5.67% 

was achieved during this period. It is thus expected that the AI-based environmental 

control logic proposed in this study will improve the performance of multivariable 

greenhouse climate control. 
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7. OVERALL CONCLUSION AND DISCUSSION 

 This chapter reviews the results of this study, including its achievements and 

limitations, and discusses potential future research directions. 

 

7.1. CONCLUSION 

This study developed a high-performance controller that combined smart farm and 

internal environmental control within a greenhouse system, incorporating 

automation and ICT technology combined with AI to improve performance and 

increase the convenience for users. The methodology and technologies were 

specifically employed to provide an optimal control solution based on data from the 

Lohan greenhouse system. As such, greenhouse environmental control using AI big 

data was presented.  

In commercial controllers, the general linear algorithm uses P-band-based 

environmental control technology. This P-band-based algorithm is designed to input 

empirical-based coefficients rather than mathematical or scientific system modeling 

to reflect the influence of simple external factors. In Chapter 3, the methodology for 

optimizing the coefficients in linear algorithm-based control was presented, and a 

controller-based design was demonstrated. 

Chapter 4 presented data-based deep-learning modeling of environmental changes 

in a greenhouse. Many existing studies have developed several models based on 

scientific energy conservation laws; however, only a few have employed data-based 

deep learning. In this study, various training and verification sets were presented for 

each step to predict changes in the temperature, humidity, and CO2 concentration of 

the greenhouse. The deep-learning models RNN-LSTM and CNN-LSTM, which 

have previously exhibited excellent predictive performance, were developed to 

predict the greenhouse environmental conditions. The models were successfully 

modified and their performance evaluated. The greenhouse environmental prediction 

model that employed a CNN was specifically designed for the prediction of 

physiological activity, such as evapotranspiration; thus, the results are expected to 

have an academic contribution. 

An improvement in humidity prediction was exhibited by both proposed models, 
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which included the evapotranspiration rate and data from the root-zone and leaf 

sensors, with a SEP of 5.78% and 6.12% for the RNN-LSTM and CNN-LSTM 

models compared to 9.12% for a previously developed model. This means that the 

relative humidity in the greenhouse and the relative humidity in the greenhouse are 

closely related to each other. In addition, if more information related to moisture is 

collected from the greenhouse, humidity prediction can be improved even further. In 

the future, it seems to be an important case study in which the two methods 

complement each other as a hybrid concept between the deep learning model based 

on data and the physical model. 

The deep-learning-based prediction model developed in his study was designed to 

respond to changes in the atmospheric environment according to operational changes. 

A method of determining the optimal actuator signal by backtracking was also 

introduced to the structure of the OFNN. This was employed in the calculation of the 

cost from the target environmental profile, current value, and environmental change 

that would occur after 30 min, and an optimization method to reduce this cost was 

devised. SGD, which has been utilized in previous machine-learning and deep-

learning studies, was employed in the form of an OFNN. Moreover, a multiwindow 

ventilation control experiment found that the actuator signal was more sensitive to 

environmental changes than the existing linear algorithm. 

To promote energy conservation, the driving energy for each actuator was used as 

a function in a cost gate that considered the energy consumption when determining 

the control signal. The actual energy-saving effect was confirmed using field testing, 

thus demonstrating great promise for use in various sectors in the near future. 
The cost-based environmental control technology developed in this study has 

numerous potential applications. In particular, if data-based plant growth is modeled 

following the design presented in this study, the growth rate could be increased, or 

more informed decisions about the environmental components could be made, which 

would be favorable for the physiological activity of crops. It was confirmed that this 

framework could be employed in a system that analyzes the data obtained from 

various facilities and be used to make appropriate decisions in smart farm research.  
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7.2. DISCUSSION 

P-band based control logic is commonly employed by commercialized greenhouse 

controllers (Kim et al., 2017) and requires users to input many settings to ensure 

optimal environmental conditions, which may not be easy for growers. In contrast, 

the predictive model and control logic developed in this study are trained using the 

greenhouse conditions without requiring settings to be input separately. For example, 

in the May 11 test (Figures 113 and 114), the actual temperature decreased sharply 

between 6 AM and 7 AM, caused by low-temperature air entering the greenhouse. 

The conventional controller based on P-band logic strongly considered ventilation 

due to the influence of increasing solar radiation after sunrise and opened several 

windows. This is because the simple linear algorithm made the decision to open the 

windows in response to a sharp rise in the temperature at this time. In contrast, the 

control method developed in this study was trained using the greenhouse data; thus, 

the drop in temperature due to windows opening was predictable, so the controller 

decided to keep the window closed at this time and opened it a little.  

Climate control methods based on the actual applied environmental model have 

been regularly proposed, and it was a major trend of applying the simulation through 

system identification (Bennis et al., 2008; Shen et al., 2013). In this paper, the 

proposed method was implemented by the proposed optimization method, and the 

feasibility was confirmed using field testing. This method is expected to be 

applicable not only to greenhouse climate control but also to climate management 

for livestock facilities or environmental management of residential buildings. This 

study found that a neural-network-based prediction model and control logic yield 

better control signals only in the greenhouse in which the training was conducted. In 

addition, the logic was applied during spring and autumn, and window control was 

conducted only for ventilation. However, humidity and radiation are also important 

factors affected by ventilation. Therefore, various environmental factors and 

greenhouse structures should be investigated using the OFNN structure and cost 

function. 

It was more difficult to obtain the same control over humidity as was achieved for 

temperature. Although it was possible to increase the predicted performance by 
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adding sensor information related to the amount of evapotranspiration or crop 

conditions, this requires additional sensors. In particular, the Stanghellini model was 

used as the evapotranspiration model, and the LAI was fixed at 2.5. The LAI for 

tomatoes is actually very difficult to measure non-destructively in a greenhouse. In 

this regard, it is necessary to apply a deep-learning algorithm that deals with image 

information such as the CNN-LSTM model, thus the proposed CNN-LSTM model 

and the two-dimensionalization of the climate information may provide the roadmap 

for future applications. 

In addition, the CNN structure has several advantages over the general NN. 

Structurally, the advantage of CNN is that it can express the connectivity between 

input data well and can judge the importance of data in the early stages. Li and Liu, 

(2019) employed IB theory to understand the dynamic behavior of CNNs and 

investigate how the fundamental features have impact on the performance of CNNs. 

Through a series of experimental analysis on benchmark of MNIST, the study 

demonstrated that the compression phase is not observed in all these cases. This 

shows us the CNNs have a rather complicated behavior than feedforward neural 

networks. In addition, the climate prediction model to be applied to greenhouses 

needs to be studied in a structure that includes image data of crops in the future. As 

a starting point for these studies, the deep neural network model based on CNN 

structure will be one of possible solution. 

In addition to optimizing a predictive model using the OFNN proposed in this study 

to determine the control signal, reinforcement learning (RL) has also been used as a 

climate control technique based on AI (Vinyals et al., 2019). RL is a model-free 

framework for solving optimal control problems known as Markov decision 

processes (MDPs) (Puterman, 2014). Buşoniu et al. (2018) reported that MDPs work 

in discrete time: at each time step, the controller receives feedback from the system 

in the form of a state signal and takes an action in response. Hence, the decision rule 

is a state feedback control law, called a policy in RL. The action changes the system 

state, possibly in a stochastic manner, and the latest transition is evaluated via a 

reward function (i.e., negative cost). The optimal control objective is then to 

maximize from each initial state the (expected) cumulative reward, known as the 

value. In this respect, it differs from the OFNN proposed in this study. The OFNN 
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looks to reduce this by calculating a penalty (cost) in the action decision, and in RL, 

the action is decided by looking to obtain greater benefit by considering the predicted 

and cumulative rewards. If RL is used to control the climate of a greenhouse, 

environmental behavior can be designed to compensate for crop physiology or 

growth. Nevertheless, there is a chance that it will be negative, and its prospects for 

use in the field are not optimistic. This method is likely to lead to unstable behavior 

before the model is fully established due to the nature of the RL algorithm. Therefore, 

the environment in which the RL algorithm is most effective is virtual reality, such 

as in a video game. Further discussion on the potential for RL-related greenhouse 

control and its design is described in the appendix of this thesis. 

 

7.2.1. LIMITATIONS AND FUTURE WORK 
 

Although not covered in this study, a significant component of environmental 

control inside a greenhouse is the setting of the target environmental values. It is 

crucial that the target environment can be flexibly changed, taking into account the 

agronomic view and the crop conditions. In this model design, how to determine the 

optimal conditions for the operation of the controller by reflecting the environmental 

factors in the input is important. For example, in the field, an approach to increasing 

the growth rate or increasing the daily difference by determining the thickness of the 

plant stem is required (Qian et al., 2015), and it would be desirable to utilize image 

information and match it to the climate control history to focus on crop growth (Dong 

et al., 2017; Gruber et al., 2011). It is possible that the implementation of this study 

could be conducted using a framework based on RL, but there have been very few 

cases in which it has been used as a concrete design for a climate control system that 

considers plant growth. 

 

 

7.2.2. THE POSSIBILITY OF UNKNOWN SIDE EFFECTS 

USING AI LOGIC 
 

A cautious approach to the use of AI algorithms has been suggested by some 

researchers in previous studies (Amodei et al., 2016; J. Chen et al., 2015; Wilks, 
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2019). In particular, careful consideration of potential unusual behavior in the pursuit 

of a particular purpose is required. In this study, an AI algorithm with two 

approaches were proposed for greenhouse environmental control. The algorithm 

considered the target values for environmental control and the energy consumption 

rate of the actuators, while the optimization of the driver in issuing a command was 

restricted. Therefore, potentially dangerous control was avoided, and this was 

confirmed through simulations. Nevertheless, there are cases in which signal 

decisions are made under fitted characteristics of the seasonal actuators, so it seems 

to be more stable when restrictive rules are added. 

In addition, if the performance of a prediction model does not reach a certain level 

because the underlying algorithm is limited, or if the driving characteristics of the 

actuator use a unilateral learning set, it is unlikely that a correct decision will be 

made during the optimization process. In addition, if the constant ratios of the two 

targets (energy consumption and climate control) do not match, there is a concern 

that extreme control will occur. If there are no specific rules in a nonlinear model, 

sufficient simulation studies and feasibility testing should be conducted before using 

an AI algorithm in the field.  
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국문 초록 (Korean) 

 

시설재배는 노지재배와 다르게 재배환경을 조절할 수 있어서 기상환경 조건, 

작물 재배 조건 등 재배환경의 분석을 통해 생산성의 증대와 품질 향상을 달성할 

수 있다. 이 때문에 시설재배에서 정밀제어와 냉·난방을 활용하는 온실이 

증가하고 있다. 초기의 시설재배는 간단한 농업용수의 공급 정도였으나 기술의 

발달과 고도화로 인하여 작물 재배과정 전반에 걸쳐 자동화가 이루어지고 있다. 

스마트팜 기술은 첨단 ICT, 빅데이터, 자동화/로봇 기술을 이용하여 농민의 

개입을 최소화하면서 생산성과 품질을 극대화하고 수익 창출형 모델을 확립이 

가능한 신개념의 농법이다. 온실의 복합 환경조절은 특히 농작물의 수확량과 

품질에 직접적인 영향을 주는 핵심적인 기술 요소로 국내 선진화된 스마트팜 

농가는 대부분이 해외 복합 환경제어 시스템을 사용하고 있다. 하지만 해외 

제어시스템에서는 국내의 기후조건 국내산 작물 품종의 재배환경 등을 고려하고 

있지 않으며, 농민들이 직접 제어 설정 값을 미세 조정해야 하는 어려움을 겪고 

있다. 이러한 원인으로, 농민들에게 전문적인 제어 소프트웨어 교육 훈련 및 

숙달이 필수적이고, 작동 숙달 미숙으로 인해 제어 효율이 기대치만큼 못 미치고 

있다. 궁극적으로, 환경제어를 위한 선형제어 모델은 비선형성이 크며 매우 

동적인 온실 환경에 적용하기에는 한계가 있다. 따라서, 스마트팜 농가의 환경 

빅데이터를 활용한 인공지능 기반의 정밀한 제어 시스템을 개발하는 것이 본 

연구의 목적이다.  

본 연구에서는 온실 내부 대기환경인 온도, 습도 및 CO2 농도를 관리하기 위해 

외부 영향인자가 고려된 선형 알고리즘 (PD-band, P-band) 기반 제어 방법을 

제안하였고 그 성능을 검증하였다. 구동기별 설정인자에 대한 설정 (영향 계수)을 

최적화하기 위해 반응 표면 분석 방법을 실험설계를 통해 수행하였다. 결과를 

바탕으로 최적의 환기 제어 조건을 조사하였으며, 각 요인에 대한 영향 값을 실제 

온실 온도 제어에 적용하였고 제어 성능을 평가하였으며, 그 결과 1.25 ℃의 

RMSE 값은 최적화 된 계수로 인해 개선된 성능을 확인 하였다. 

온실의 환경변화를 예측하기 위해서 딥러닝 알고리즘을 적용하여 데이터 기반의 

모델링을 수행하였다. ANN, NARX 및 RNN-LSTM 모델은 온실 작물의 성장에 

직접적인 영향을 미치는 온도, 습도 및 CO2 농도 변화 예측 성능을 비교하였다. 
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RNN-LSTM 모델은 각각 5 % 이하의 SEP 와 R2 0.81–0.96 에서 세 가지 

환경인자 예측성능을 보였다. 또한 다양한 훈련 조건을 비교하기 위해 5-30 분의 

타임스텝에 대한 예측 성능을 비교하였다. 추가적으로, CNN-LSTM 을 활용하여 

온실 환경변화 예측에 적용하였는데, 입력 인자들의 정보를 시간열에따라 

2 차원화하여 예측모델을 설계하였다. 개발된 CNN-LSTM 기반의 환경 예측 

모델은 RNN-LSTM 모델과 비교하여 나은 성능을 확인 하였다. 최종적으로는, 

이러한 모델들을 소형 임베디드보드에 탑재하여, 자동으로 온실의 데이터를 하루 

간격으로 수집하여 매일 학습 및 모델 수정이 되는 시스템을 제안하여, 다양한 

구조의 온실에 적용할 때 초기 학습이 용이하도록 하였다. 이 연구의 결과는 온실 

제어에서 딥러닝 기반 예측 모델의 적용 가능성 및 환경해석에 도움이 될 것으로 

판단된다.  

Output feedback neural network 구조를 기반으로 하는 예측모델의 최적 해를  

추종하는 제어 방법을 제안하여, 온실의 30 분 후에 발생하는 기후 변화로부터 

목표 설정 값과의 비용을 계산하고 이를 최적화된 제어 구동기의 신호를 

결정하였다. 인공지능에 활용되는 SGD, Rmsprops, Adadelta 등 다양한 최적화 

기법들을 비교하였으며, 시뮬레이션을 통해 제어 가능성을 확인 하였다. 또한, 

현장 실험을 통해 제안된 방법으로 환경제어 신호를 결정할 경우 기존 선형 

알고리즘보다 환경 변화에 더 유리하다는 다중 창 환기 제어 실험을 통해 

검증하였다. 에너지 절약 효과를 위해, 액추에이터의 동작에 소비되는 에너지를 

상대적으로 비교하여 Cost gate 를 활용하여 최적화를 위한 함수에 부분 제한 

변수로 사용이 가능함을 제안하였고, 시뮬레이션과 실제 현장 적용을 통해 실제 

에너지 절약 효과를 확인하였다. 시뮬레이션 결과 여름철 기후에서는 난방 신호를 

결정하거나 유동 팬 동작을 기피하는 인공지능 모델 추론을 확인 하였으며, 이는 

앞으로 인공지능의 활용에 있어서 제한된 동작범위와 현실적은 목표 설정이 

요구됨을 확인 할 수 있었다. 이러한 점을 개선한다면 최종적으로 이를 통해 입력 

에너지를 절약하고 경제적 기여를 할 수 있으며 가까운 시일 내에 다양한 

분야에서 응용이 가능할 것으로 판단된다.  
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8. APPENDICES 

8.1. DESIGN AND APPLICABILITY OF REINFORCEMENT 

LEARNING TO THE OPTIMAL CLIMATE CONTROL 

8.1.1. THEORY OF REINFORCEMENT LEARNING (RL)   

Reinforcement learning (RL) is the method of determining an action in a given 

situation so to maximize a reward. Most of the machine learning techniques give 

instructions directly to the learning agents about what actions to take to achieve given 

goals. On the other hand, RL does not designate any action to the learning agents. 

Each agent finds out an action that could maximize a reward for each action critic. 

The action thus taken has a direct effect on both the reward and subsequent situation. 

In other words, all the subsequent rewards are affected. RL can be understood only 

when the definition of a learning problem is distinguished from that of a learning 

technique. Any technique that helps in solving a problem can be regarded as an RL 

technique. In comparison with other learning techniques, RL is clearly distinguished 

with respect to trial and error learning and delayed reward. Every agent of RL is 

trained on the correlation between an action and a result through the two 

characteristics. 

Most current studies focus on supervized learning, which seems to be similar to RL, 

except for two techniques that are fundamentally different. Supervised learning (SL) 

utilizes samples with given labels. Although this method is very useful, it is not 

appropriate for an interaction-based learning technique. In a case wherein a machine 

is made to investigate a new topography, SL is usually not applicable. 

The basic element of SL is interaction between an agent and the environment, and 

in which the following factors are also included. The agent of SL is usually trained 

in the following procedure. Some states concerning the agent and environment are 

defined. At a specific point, the agent receives a state containing information about 

the surrounding environment (Figure 143). 
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Figure 143. Basic components of supervised reinforcement learning 

The policy about actions, which the agent is expected to take, is defined. This policy 

executes the decision-making function. The agent’s action for an input state is 

determined by the policy. The agent acts according to the decision of the previous 

step. The environment reacts to the agent’s action, and the agent receives a reward 

from the environment. The agent records information (type and state) about the 

reward. The RL system implements multiple tasks simultaneously. Trial and learning 

is executed, the model of the environment to which the agent belongs is trained, and 

the next action is determined using the developed model. 

8.1.2. APPLICATION OF RL IN THE CONTROL OF A 

NUTRIENT SOLUTION SUPPLY IN A SUBSTRATE 

To employ RL in the control of a nutrient solution supply in a substrate, an agent-

environment structure must be constructed. In this study, a Q-learning environment 

was built, which combined the critic and actor methods. The amount of the supply, 

concentration, and time of nutrient solution were determined, and a reward was given 

in the form of an error from the state of the root zone. 

An actor-critic policy gradient-based RL agent with an artificial neural network was 

implemented in the fertigation control system. This deep RL algorithm finds how to 

maximize future rewards, thus the control performance is maximized (Ban and Kim, 

2017). 

In this study, we focus on RL, which is an area of machine learning. Its main idea 

includes having an agent with the possibly zero knowledge of the structure of the 
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surrounding environment, except for its observations (states). One can train this 

agent to perform optimal actions for the given state, where each action is rewarded 

with some values. The agent learns the optimal behavior (policy) by trial and error 

to maximize the cumulative gain. For plant growth, positive rewards are given for 

good growth rates and final crop yield, whereas, negative rewards are given for the 

consumption of resources (Somov et al., 2018). 

The mathematical model for RL is the Markov decision process. It is defined as a 

tuple with the state space of environment (air, temperature and humidity, solution 

content, and plant type and size), the set of actions the agent can take (turn on/off 

light, irrigate, and harvest), and a reward function that returns the immediate reward 

received by the agent upon taking an action. The Markov property implies that the 

state transition depends only on the current state and action taken by the agent. The 

policy function describes the behavior of the agent, i.e., which action it takes while 

being in the state. 

The output corresponds to an action to be applied to the environment, and the inputs 

to the actor are based only on observation. The network parameters are updated with 

critic output value. The critic network has a 3-layered FNN model, which has a fuse 

operation on the second layer (Figure 144). Another single layer receives the output 

of the actor to be merged with the encoded observation information. The 

backpropagation of this critic network follows both subnetworks at the same time; 

hence, the network naturally shows how to optimize the actor policy by evaluating 

it with respect to a simultaneous observation. Network parameters are updated to 

reduce the mean squared error between the previously predicted Q value and 

discounted real rewards (Ban and Kim, 2017; Tchamitchian et al., 2005). 

. 
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Figure 144. Network architecture of the RL agent consists of multi-independent 
deep neural networks. 

8.1.3. REINFORCEMENT LEARNING BASED PREDICTIVE 

CLIMATE CONTROL SYSTEM 

Figure 145. Concept of RL control of irrigation for greenhouse rootzone 
environmental control.

RL has a potential application in the agricultural sector because there is no existing 

control model for controlling the orientation of crops. For this reason, related studies 

on the modeling of various physiological and growth phenomena of crops are 

underway. Therefore, the application of RL in the control of the greenhouse 

environment would be a considerably meaningful approach. 

We designed the algorithm by selecting the climate control system as the most 
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suitable environmental control for RL. Figure 105 shows a concept that combines 

RL concepts with climate control. The trigger on/off and up/down switchs, which 

control ventilation rate (% cooling and heating) are also considered, with +/− 

switches for adjusting the rate (%). If the RL model based on climate control is 

conducted without the preceding model, the control method based on the preceding 

model is devised because it is controlled to the extent that it adversely affects the 

crop. The preceding model was derived from the CNN-LSTM environmental 

prediction model and optimizer. Based on these, we designed the final control signal 

decision by summing the tuned control history value of RL and control history of the 

preceding model at the ratio of about 1:1 (it was not fixed). 

Figure 146. Control nodes based on RL and generator neural network control 

8.1.4. REWARDS DESIGN FOR IMPLEMENTING 

REINFORCEMENT LEARNING 
 

The agent used could be the irrigation controller, state is the greenhouse 

environment, and supply of nutrient solution must be the action. Two reward 

functions were selected, including the evapotranspiration rate of the crop and the rate 

of drainage solution. The reward was designed to create higher scores as the 

evapotranspiration increases and the amount of discharged solution decreases. This 



244

is calculated by applying a bandwidth of about 10% to the average level of the 

average historical data. Both the parameters store the accumulated amount using a 

load cell and a flowmeter, as shown in Figure 148. 

The most important factor for the application of RL in nutrient control is the design 

of rewards. RL proceeds in the direction in which the most statistical compensation 

is obtained for actions to be taken in the environment. Therefore, to have an existing 

gap of current irrigation technologies, it is necessary to set the concept of reward for 

the growth and physiology of the crops rather than a simple set-point-based control. 

Therefore, this chapter introduces RL design for a novel control method that operates 

in a such away that encourages the evapotranspiration of crops and energy-saving. 

Error! Reference source not found. and Figure 148 show two guidelines for 

compensation, which are designed to be used in RL by calculating their relative 

reward values. 

 

Figure 147. Example of a reward scoreline for ET input rate during a day. 
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Figure 148. Example of a reward scoreline for energy input rate during a day. 

 
 
 

Algorithm flow for Q-learning in Irrigation 

    Initialize Q(s , a) arbitrarily 

2  repeat 
       for all e(s , a) do 

4           e(s , a) <-- 0 
       end for 

6       for  i =1, i++, while  i <n+1 do 
            s  State (I , Rei); 

8            Get action a 
           [Rei +1, Ii  ]  SimRE ( I , a) 

10            S   State(I, Rei) 
            a   greedy (e, Q, Si+1)    

12            if  I < n then 
                r  0 

14            else 
                  E  Sum(RE1) * EvapoCost 

16                  D  Sum(RE2) * DrainCost 
                  Reward  E-D 
18                 if Reward < threshold then 
                       r  -10 
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20                 else 
                       r  Reward       
22                 end if 
             end if 
24              delta  r +rQ(s  , a ) Q(s,a) 
              e(s , a)  e(s , a) +1 
26             for all s and a do 
              Q(s,a)  Q(s,a) + e(s,a) 
28              e(s,a)  e(s,a) 
              end for 
30               a  a  
         end for 
32    until Q(s,a) coverages / policy sufficiently stabilized 
 
 
 

Figure 149. Reward simulation obtained through reinforced learning-based 
environmental control. 
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 CODES 

The core code used in this study will be released through the online open 

platform Github : jeoguss/Deep-learning-GH-control.git 
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